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Abstract 19 

Mapping the network of ecological interactions is key to understanding the composition, stability, 20 

function and dynamics of microbial communities. These ecosystem properties provide the 21 

mechanistic basis for understanding and designing microbial treatments that attempt to promote 22 

human health and provide environmental services. In recent years various approaches have been 23 

used to reveal microbial interaction networks, inferred from metagenomic sequencing data using 24 

time-series analysis, machine learning and statistical techniques. Despite these efforts it is still not 25 

possible to capture details of the ecological interactions behind complex microbial dynamics. Here, 26 

we develop the sparse S-map method (SSM), which generates a sparse interaction network from a 27 

multivariate ecological time-series without presuming any mathematical formulation for the 28 

underlying microbial processes. We show that this method outperforms a comparative equation-29 

based method and that the results were robust to the range of observational errors and quantity of 30 

data that we tested. We then applied the method to the microbiome data of six mice and found that 31 

the mice had similar interaction networks when they were middle- to old-aged (36-72 week-old), 32 

characterized by the high connectivity of an unclassified Clostridiales. However, there was almost 33 

no shared network patterns when they were young- to middle-aged (4-36 week-old). The results 34 

shed light on the universality of microbial interactions during the lifelong dynamics of mouse gut-35 

microbiota. The complexity of microbial relationships impede detailed equation-based modeling, and 36 

our method provides a powerful alternative framework to infer ecological interaction networks of 37 

microbial communities in various environments. 38 

  39 
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Introduction 40 

Microbial communities contribute to the evolutionary fitness of other living organisms by inhabiting 41 

their bodies (Mueller and Sachs 2015) and surroundings (Panke-Buisse et al. 2015, Heederik and 42 

von Mutius 2012, Chaparro et al. 2012). For example, the gut microbiota assists host metabolism 43 

(Sommer and Bäckhed 2013, Tremaroli and Bäckhed 2012) and provides defense against pathogens 44 

(Kamada et al. 2013). This understanding has motivated the development of microbial medicinal 45 

interventions that attempt to treat various disorders through the manipulation and control of 46 

microbial communities (Borody and Khoruts 2012). Furthermore, an emergent property of the 47 

microbial community is the potential contribution to environmental remediation through the 48 

degradation of pollutants (Iranzo et al. 2001, Swenson et al. 2000). The composition, stability, 49 

function and dynamics of a microbial community provides the mechanistic basis for these microbial 50 

treatments, and closer ties between these ecosystem properties and ecological interaction networks 51 

(interaction webs) have been revealed (Tylianakis et al. 2010). Hence, an understanding of ecological 52 

interaction networks is crucial for both human health and environmental sustainability. While it is 53 

difficult to study complex microbial interactions using traditional laboratory cultivation approaches, 54 

recent developments in next generation sequencing technology and high performance computing 55 

environments have enabled various approaches for revealing ecological interaction networks, 56 

ranging from time-series analysis, machine learning and statistical techniques (Vacher et al. 2016, 57 

Faust et al. 2015, Bucci and Xavier 2014, Faust and Raes 2012). However, there are currently no 58 

sufficiently effective methods for capturing details of ecological interactions within microbial 59 

communities, which frequently exhibit complex dynamics (Gerber 2014, Ravel et al. 2013, Pepper 60 

and Rosenfeld 2012, Relman 2012, Caporaso et al. 2011, Dethlefsen and Relman 2011). 61 

 62 

An ecological interaction network is defined as a directed network that describes interactions 63 

between organisms, such as mutualisms, competition and antagonistic (predator-prey) interactions 64 

(Faust and Raes 2012, Morin 2009). An ecological interaction network is generally described as a 65 

pairwise interaction matrix whose elements take zero, positive or negative values with regard to the 66 

effect of one species on the other. Here, we summarize the ties between ecological interaction 67 

networks and other ecosystem properties in three main points. First, the stability of an ecological 68 

system relies on its ecological interaction network, as is known from the seminal work of May (1973) 69 

that formulated how the stability of an ecological system relates to the density and strength of its 70 

ecological interactions. In microbial communities in particular, mutualistic interactions may have a 71 

disruptive effect on community stability (Coyte et al. 2015). Second, there are extensive studies 72 

suggesting that an interaction network is crucial to the development and maintenance of microbial 73 

ecosystem functions (reviewed by Vacher et al. 2016). For example, findings from a type of artificial 74 

selection experiment led Blouin et al. (2015) to suggest that reducing interaction richness is crucial 75 

to developing and maintaining microbial ecosystem function in terms of low CO2 emission. Third, an 76 

ecological interaction network can be used to identify key species having significant effects on the 77 

stability and/or function of ecological systems out of proportion to their abundance (Jordan 2009, 78 
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Power et al. 1996, Paine 1969). For example, Jordan (1999) proposed a “keystone index” that 79 

identifies key species based on their topological position within an interaction network, a-pioneering 80 

theoretical development underpinning recent microbial community studies (Toju 2016, Berry and 81 

Widder 2014). 82 

 83 

An ecological interaction network is different from an ecological association network such as a 84 

correlation network (Friedman and Alm 2012) or co-occurrence network (Faust et al. 2012). 85 

Although correlations between time-series data are often used as a proxy for interactions between 86 

species, this is not a reliable method even if a strong correlation exists between two species (Fisher 87 

and Mehta 2014). A co-occurrence network only implies the presence of underlying ecological 88 

interactions, whereas it provides significant information regarding associations between microbial 89 

species (Vacher et al. 2016). As an alternative approach, algorithms have been developed to infer 90 

ecological interaction networks directly from microbial time-series (Bucci et al. 2016, Fisher and 91 

Mehta 2014, Jiang et al. 2013). However, these algorithms may not be applicable to the complex 92 

dynamics of microbial communities, which require the following algorithm properties. First, a time-93 

series demonstrating non-equilibrium dynamics must be available because such dynamics are 94 

common in microbial interaction networks. There are many reasons for this, such as species 95 

interactions, environmental fluctuations, experimental perturbations, invasions and aging, and 96 

understanding the dynamics resulting from these processes is clearly an important goal. Second, a 97 

method that can capture microbial relationships without any presumption regarding their 98 

mathematical formulation (in other words, an equation free approach) is desirable. As claimed for 99 

ecological systems in general (Deyle et al. 2015), ecological interactions are often nonlinear, i.e., the 100 

effect of species X on Y is not simply proportional to the abundance of Y, and attempting to 101 

formulate all these relationships into mathematical functions is not realistic (Bashan et al. 2016, 102 

DeAngelis and Yurek 2015). This fact will reduce the reliability of approaches that assume a priori 103 

any underlying equation. Overcoming these obstacles will widen the applicability of network 104 

inference methods without losing their reliability, and will promote our understanding on microbial 105 

communities further. 106 

 107 

We developed an algorithm, the Sparse S-Map method (SSM; Fig 1, see Materials and Methods), 108 

that satisfies the above requirements. This algorithm generates a sparse interaction network from a 109 

multivariate ecological time-series without assuming any particular underlying equation. Using 110 

simulated multispecies population dynamics, we compared the performance of SSM to a comparable 111 

equation-based method, sparse linear regression (SLR) to highlight the differences between 112 

equation-free and equation-based methods. The robustness of the SSM’s performance against 113 

observational error and dataset size was also tested. We then applied the SSM to the time-series of 114 

gut-microbiota taken from the faeces of six mice over 72 weeks. To harness data limitations (18 time 115 

points per mouse), we performed network inference by aggregating the data of five mice and 116 

selected the network that best explained the dynamics of the remaining sixth mouse. This was also 117 
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a cross-validation test for the universality of ecological interaction networks among mice. 118 

 119 

Result 120 

Sparse S-map method 121 

The sparse S-map method (SSM) is an algorithm that executes a forward stepwise regression 122 

scheme with bootstrap aggregation (“bagging”) to calibrate species’ interaction topology, i.e. with 123 

which species a focal species interacts, for S-map (Dixon et al. 1999, Sugihara et al. 1996, Sugihara 124 

1994). In other words, the SSM is a data-oriented equation-free modelling approach (empirical 125 

dynamic modelling; Deyle et al. 2015, Ye et al. 2015, Deyle et al. 2013, Sugihara et al. 2012) for 126 

multispecies ecological dynamics whose interaction topology is unknown. 127 

 128 

S-map is a locally weighted linear regression model used for the mechanistic prediction of complex 129 

ecological dynamics (Deyle et al. 2015). It is applicable to complex ecological dynamics without any 130 

limitation in the dynamic property of given data and requires no special effort in formulating the 131 

underlying species relationships into mathematical functions. However, so far it has only been 132 

applicable to ecological systems with a small number of species whose interaction topology is 133 

already known. By applying a forward stepwise regression with bootstrap aggregation, the SSM 134 

realizes the appropriate selection of the interaction topology for S-map so that S-map becomes most 135 

relevant for explaining a given set of data points. The ability of S-map to describe non-linear species 136 

relationships makes the selection of interacting species reliable. 137 

 138 

The SSM is essentially a non-parametric method that does not require any additional effort to 139 

adjust parameters for the given data. Furthermore, owing to the forward stepwise scheme, it is 140 

applicable to both absolute and relative abundance data without special treatment (Fisher and 141 

Mehta 2014). Fisher and Mehta (2014) have already applied the forward stepwise scheme with 142 

bagging to a linear regression model and thus developed an algorithm inferring the sparse 143 

interaction matrix (sparse linear regression; SLR). However, because of the use of linear regression 144 

model, the authors limited the applicability of SLR to systems whose dynamics are close to 145 

equilibrium. 146 

 147 
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 148 

Figure 1. Overview of the sparse S-map method (SSM). 149 

 150 

 151 

Performance of the SSM 152 

To compare equation-free and comparative equation-based methods, we tested the performance of 153 

the SSM and SLR for complex ecological dynamics generated from a generalized Lotka-Volterra 154 

model with seven species with random interactions (see Materials and Methods). A significant 155 

positive correlation (p < 0.01) between inferred interaction strength and that of the true network 156 

was found in both the SSM and SLR, although the SSM showed a stronger correlation than SLR 157 

(Fig. 2ab). In both methods, the inferred strength was slightly greater than the actual interaction 158 

strength because of the non-linear species relationships. However, the correlation between actual 159 

and inferred interaction strengths assures their correspondence. 160 

 161 

Two major performance criteria for network inference methods are sensitivity (the ratio of detected 162 

interacting species pairs with respect to all interacting pairs) and specificity (the ratio of detected 163 

non-interacting species pairs with respect to all non-interacting pairs). Furthermore, accuracy 164 

(sensitivity times the ratio of interacting pairs plus specificity times the ratio of non-interacting 165 

pairs) quantifies the overall performance of the method for discriminating interacting and non-166 

interacting pairs. Figure 2c shows that the mean accuracy of the SSM was approximately 72%, 10% 167 

greater than that of SLR. The SSM had greater specificity than SLR, which compensated for its 168 

lower sensitivity. This means that the SSM is more conservative than SLR in finding a link between 169 
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two species, which makes the SSM accurate than SLR. 170 

Another important question is how reliable the detected interactions are. Hence, we also calculated 171 

precision (the ratio of detected interacting species pairs that actually interact with respect to all 172 

detected interacting pairs). The mean precision of the SSM was 62%, 10% greater than SLR. The 173 

SSM thus outperformed SLR in both accuracy and precision. However, 62% precision means that 174 

more than one third of the detected links are false. One remedy for this was obtained by introducing 175 

a threshold value for accepting inferred interactions. For example, when filtering out interactions 176 

whose inferred strength is less than three (approximately 40% of all detected interactions remain; 177 

Fig.S1), the mean precision of the SSM exceeded 90%, whereas it was approximately 80% in SLR. 178 

 179 

 180 

Figure 2. Performance of the SSM and SLR for simulated ecological dynamics. Scatter plot with 181 

regression line (a), and correlation measured by Pearson’s correlation coefficient (b). Points are 182 

assembled from 100 network inference results for time-series with100 data points sampled from 183 

dynamics generated from a seven species GLV model with random species interactions. Accuracy (c), 184 

sensitivity (d), specificity (e) and precision (f), is calculated separately for each of 100 trials for the 185 

SSM and SLR, either including all interactions or after excluding inferred interactions whose 186 

strength is less than three. Bars indicate the first and third quartiles, and the line indicates the 187 

mean. All values are calculated after excluding intra-specific interactions. 188 

 189 

 190 

Robustness of the SSM for observational errors and data size 191 

Both mean accuracy and precision of the SSM outperformed SLR for all dataset sizes and 192 

observational errors that we tested (Fig. 3). The mean accuracy and precision was robust against 193 

increases in observational error because the increase in specificity compensated for the decrease in 194 
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sensitivity. The increase in dataset size from 25 to 100 points raised mean sensitivity by 20% in both 195 

the SSM and SLR, while it reduced mean precision by 7%. More importantly, it reduced mean 196 

accuracy by only 5% in the SSM but by 10% in SLR. Thus, increasing dataset size generally 197 

enhances both methods to detect more links, while this benefits the SSM more than SLR because its 198 

negative effect on accuracy is weaker in the SSM. The mean precision for inferred networks after 199 

excluding weak (less than three) interactions was over 90% in the SSM for the all dataset sizes and 200 

observational errors we tested (Fig.S2). In contrast to the cases when all interactions were 201 

considered, no negative effect on accuracy or precision was found in both methods. It should be 202 

noted that in figure 2S, among 100 trials, approximately 20% of the networks that were inferred 203 

from 50 data points and that the 40% of those inferred from 25 data points were not included 204 

because they had no inter-specific links. 205 

 206 

  207 

Figure 3. Robustness of the SSM and SLR for observational errors and data size. Accuracy, 208 

sensitivity, specificity and precision for different observational errors were calculated for time-series 209 

with 25 data points (a-d), 50 data points (e-h) and 100 data points (i-l) sampled from simulated 210 

ecological dynamics. Blue lines indicate the SSM and red lines indicate SLR. Solid lines indicate the 211 

mean value and the error bars indicate the first and the third quartiles. All results are calculated 212 

from 100 different time-series generated from a seven species GLV model with random species 213 

interactions. All values are calculated after excluding intra-specific interactions. 214 

 215 

 216 

Application of the SSM to gut microbiome data 217 

We applied the SSM to the time-series data of gut-microbiota taken from the faeces of six male 218 

C57BL/6J mice (M1 to M6) which were maintained in a vinyl isolator over a 72 week period 219 

(Nakanishi et al. in prep., see Materials and Methods). Because only18 data points were obtained 220 
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per mouse (sampled once every 4 weeks between 4 to 72 weeks of age), we performed network 221 

inference by aggregating the data of five mice and selected the network that best explained the 222 

dynamics of the remaining sixth mouse. We regard that network as the most relevant network. The 223 

most relevant networks are inferred using the 4-40 week and 36-72 week data points, considering 224 

the shift in community composition around the middle of mouse’s aging processes (Nakanishi et al. 225 

in prep.). For the 4-40 week time-series data, the most relevant networks had small number of links 226 

(18 in total), and it was difficult to determine any characteristic patterns shared among mice (Fig. 227 

S3). In contrast, for the 36-72 week time-series, the most relevant networks had many links (52 in 228 

total), where 2.6 individuals on average shared any one link (Fig. 4). This was greater than the 229 

bootstrap 95% confidence level (2.5) calculated from the surrogate data. All links found within more 230 

than four mice (except for those included as “others”) included an unclassified Clostridiales, that 231 

exhibited a positive relationship between Allobaculum and the Clostridiales, the positive effect from 232 

the Clostridiales to an unclassified S24-7 (Bacteroides) and a Lactobacillus to the Clostridiales and 233 

the negative effect from an unclassified Rikenellaceae to the Clostridiales. 234 

 235 

 236 

Figure 4. Interaction networks of six mice inferred by data points at 36-72 weeks of age. (a) to (f) 237 

corresponds to mouse M1 to M6. Positive and negative effects are indicated by blue and red arrows 238 

respectively. The size of the nodes indicates the relative abundance. The thick arrows indicate the 239 

links whose strength is in the top 40% among all the links. Inter-specific links are not shown. 240 
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 241 

 242 

Discussion 243 

We developed the sparse S-map method (SSM), an equation-free method used for inferring 244 

ecological interaction networks from a multivariate ecological time-series (Fig.1). Using simulated 245 

multispecies population dynamics, we compared the performance of the SSM to a comparable 246 

equation-based method, sparse linear regression (SLR), to highlight the differences between 247 

equation-free and equation-based methods when applied to complex microbial dynamics. The SSM 248 

outperformed SLR in both accuracy and precision, and showed particularly remarkable precision 249 

when weak (less than three) links are filtered out (Fig. 2). Furthermore, both mean accuracy and 250 

precision of the SSM outperformed that of SLR for all the dataset sizes and observational errors we 251 

tested (Fig. 3), with 90% mean precision when the weak links are filtered out (Fig S2). As an 252 

equation-free method, the SSM has greater ability to determine species interactions in complex 253 

ecological dynamics than the comparative equation-based method, and the performance is robust 254 

against observational errors. It is worth noting that increases in the dataset size raised the 255 

sensitivity of both methods (Fig 3.b,f,j) and the number of networks that contain strong links (Fig. 256 

2S), but might not not affect accuracy and precision in general. 257 

 258 

We then applied the SSM to the time-series of gut-microbiota taken from the faeces of six mice. 259 

Here, the procedure of applying the SSM to mouse gut microbiota can be regarded as a cross-260 

validation test for the universality of the interaction network among mice. Our results suggested 261 

that in the middle to old age (36-72 weeks old), the mice had similar interaction networks, which 262 

were characterized by the high connectivity of an unclassified Clostridiales. However, in the young 263 

to middle age (4-40 weeks old), there was almost no network pattern common among mice. Hence, 264 

the result validates universality in the interaction network only in the latter half of the lifelong 265 

dynamics of mouse gut microbiota. This might be due to transitivity of microbial interactions during 266 

the development of physiological and immunological functions as well as that of the development of 267 

the gut microbiota itself. Recently, Odamaki et al. (2016) showed the age related compositional 268 

shifts in human gut microbiota. We anticipate that applying SSM to human subjects in different age 269 

groups will offer deeper insights into how the human gut microbiota shaped through its lifelong 270 

developmental processes. 271 

 272 

While we adapted a Holling Type III functional response identically to all species relationships in 273 

the simulation, a variety of processes will be the source of non-linear species relationships in 274 

empirical microbial communities. The complex interdependency of metabolism (Baran et al. 2015), 275 

inter specific competition (Hibbing et al. 2010), intercellular signaling such as quorum sensing 276 

(Atkinson and Williams 2009), formation of multi-species complexes known as biofilms (Stoodley et 277 

al. 2002), and evolutionary processes running concurrently to ecological processes (Gomez et al. 278 

2016) might all contribute to the mechanistic basis. The relative performance of the SSM to SLR 279 
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will depend on the ubiquity and strength of these processes. In this case, large non-linearity indices 280 

characterized the dynamics of mouse gut-microbiota (Fig. S4), indicating the effects of nonlinear 281 

relationships. Together with the performance of the SSM shown here, the need of equation-free 282 

approaches for the analysis of microbial dynamics is demonstrated. 283 

 284 

In the near future, advances in metagenomic technology will further reduce the cost to collect time-285 

series data and its output will be much more accurate and precise. One important question to ask is 286 

whether this will allow the replacement of equation-free approaches with equation-based 287 

approaches that utilize advanced modelling techniques (e.g., Brunton et al. 2016). There are two 288 

reasons why this seems improbable. First, the complex nature of microbial interactions we have 289 

described, even with such data, still present difficult challenges in formulating all the present 290 

relationships into mathematical formulations (De Angelis 2015, Perretti et al. 2013a, Perretti et al. 291 

2013b, Hartig and Dormann 2013). Second, a theoretical study proved that finding a precise 292 

dynamical equation for a time-series is, in general, computationally intractable even with any 293 

amount/quality of data (Cubitt et al. 2012). Conversely, these data advances would simply benefit 294 

our approach by promoting its ability to find links between species. In addition, Ye and Sugihara 295 

(2016) suggested a way to utilize high dimensionality of data to harness the predictive ability of 296 

equation-free forecasting. Thus, the future development of metagenome technologies would 297 

reinforce both the applicability and reliability of equation-free approaches and help improve our 298 

mechanistic understanding of microbial communities. We agree with DeAngelis et al. (2015), who 299 

stressed the value of equation-free approaches for the analysis of complex dynamical systems. 300 

 301 

 302 

Materials and Methods 303 

Data processing 304 

We assume that time-series X = �x(t)
����  is an array of vectors x(t) = �x�(t)
����  where t = 1,… , L 305 

indicates data points with a constant interval (say 1 day), i = 1,… ,N indicates species (OTUs) and 306 

x�(t) is the abundance of species. If x�(t) is the relative abundance, then Σ�x�(t) = 1. However, we do 307 

not specify whether x�� is relative abundance or absolute abundance because our method is 308 

applicable to both cases. For convenience, we assume that X� = �x�(t)
����  is the time series of species 309 

i. We also define a time series Y = �y�(t)
������, with y�(t) = log x�(t + 1) − log x�(t), to apply gradient 310 

matching (Elner et al. 2002), which assumes y�(t) as the response variable and x� as the 311 

explanatory variable. In the regression processes, the explanatory variables and the response 312 

variable having the same time index is treated as a pair (x(t), y�(t)). We refer to the set of these 313 

pairs " = �(x(t), y�(t))
������ as “data”. 314 

 315 

Bootstrap aggregation 316 

Because forward stepwise regression as explained below is known to be unstable, we used a 317 

bootstrap aggregation (“bagging”) method to obtain a stable result. To apply the bagging procedure, 318 
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half of the pairs in " are randomly sampled to make a “database” "#$ and rest of the points are 319 

assumed as a “target” "%&. We use Y' = �y(�(t)
, X' = �x((t)
 and x((t) = �x(�(t)
 when we need to 320 

specifically indicate the points in "%&. The process of forward stepwise regression is repeated γ* 321 

times with different partitioning. Here, we set γ* = 100. 322 

 323 

S-map 324 

S-maps is a locally weighted multivariate linear regression scheme that approximates the best local 325 

linear model by giving greater weight to points on the attractor that are close to the current 326 

ecosystem state. This approach does not require presupposed mathematical formalization of the 327 

target dynamics, and thus regarded as an equation-free modeling approach (empirical dynamic 328 

modelling; Deyle et al. 2015, Ye et al. 2015, Deyle et al. 2013, Sugihara et al. 2012). 329 

 330 

Algorithm 1: S-map 331 

1. Initiate θ = 0. 332 

2. Select a pair (x(s), y�(s)) from "%&. 333 

3. Calculate weight vector by, 334 

w. = /exp1−2‖x((4), x(k)‖d. 78
9(:)∈<=>

, 335 

where, 336 

d. = 1nΣ9(:)∈<=>‖x(., x:‖. 337 

Here, ‖∙,∙‖ denotes the Euclidian distance between two vectors and n = |"#$| is the number of 338 

elements in "#$. 339 

4. Generate a weighted design matrix as, 340 

A. = �w.:x:
:��C , 341 

where w.: is the kth element of wD. 342 

Similarly, generate a vector of weighted response variable as, 343 

B. = �w.:y�(k)
:��C . 344 

5. Solve a linear equation 345 

B. = A.C.. 346 

as, 347 

C. = A.��B.. 348 

Here, A.�� is the pseudoinverse of A.. 349 

6. Prediction for y(�(4) is obtained as, 350 

y�∗(s) = C.x(s). 351 

7. Iterate 2-6 until all pairs in D�I is selected. Then, calculate 352 

JKLMNO = ΣP'Q(.)∈<RS(y�
∗(s) − y(�(s))T
|"%&| . 353 

8. If θ = 0, or θ ≠ 0 and JKLMNO < JKL inclement θ by dθ, set JKL = JKLMNO and back to 2, else 354 
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return JKL. 355 

 356 

The ith column of the inferred interaction matrix, c�∗ = Wc�X∗ YX���  is obtained by simply assuming that 357 

cZ = 1n Σ:��C C:, 358 

and set c�X∗ = cZ(j) for j ∈ I]^��_` and c�X∗ = 0 otherwise. Here, cZ(j) represents the element of cZ 359 

corresponding to the jth species in I]^��_`. As explained in the next section, I]^��_` is the set of the 360 

index of species whose interaction to species i is active (thus, non-zero). 361 

 362 

The parameter θ tunes how strongly the regression is localized to the region of state space around 363 

each x(.. It is also used as an indicator for the degree of non-linearity of dynamics (Sugihara 1994). 364 

Note that if θ = 0, the S-map model reduces to a vector auto-regression (VAR) model. Thus, S-maps 365 

include linear VAR models as a special case. More importantly, this also means that the SSM 366 

includes SLR as a special case. For θ > 0, the elements of w. can vary with the location in the state 367 

space in which (x, y�) is plotted, and with increasing θ they can vary more strongly for different x(. 368 

If θ is too small, the coefficients will underestimate the true variability in interaction strength. 369 

However, with larger θ the regression hinges on only the most proximal points on the manifold and 370 

will therefore be more sensitive to observation error. Here, we selected θ that minimizes MSE by 371 

incrementing θ from zero by dθ = 0.2 steps because as a function of θ, MSE generally has a global 372 

minima not very distant from zero (say, θ < 10). It is the simplest procedure for the minimization of 373 

MSE adopted for explanation, and would be replaced by a more sophisticated method. 374 

 375 

Forward stepwise regression 376 

The use of forward stepwise regression is motivated by two reasons (Fisher and Mehta 2014). The 377 

first reason is that the forward stepwise selection can distinguish between the presence and absence 378 

of species interactions and include interactions only when it improves the predictive power of model. 379 

This makes inferred interaction networks sparse and easily interpretable. The second reason is that 380 

modern metagenomic techniques can only measure the relative abundances of microbes, not their 381 

absolute abundances. Hence, the design matrix for the linear regression becomes singular, and 382 

there exists no unique solution to the ordinary least squares problem. In the forward stepwise 383 

procedure interactions and species are added sequentially to the regression as long as they improve 384 

the predictive power of the model. Because the design matrix now only contains a sub-set of all 385 

possible species, it is never singular and the linear regression problem is well-defined. Below, we 386 

describe the forward stepwise regression including bootstrap aggregation. Since all of the 387 

regressions are performed independently for each species, we described the algorithm for a species, 388 

i.e. inferring a row of the interaction matrix (c�∗). The full interaction matrix is obtained by repeating 389 

the procedure from i = 1 to N. 390 

  391 
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Algorithm 2: Forward stepwise regression with bootstrap aggregation 392 

1. Set the target species i. 393 

2. Initiate index γ = 1. 394 

3. Sample half of the pairs in " to make "cd, and set the rest as "�I. 395 

4. The set of the index of explanatory variables (species) that have active interactions to species i is 396 

initialized to I]^��_` = �i
 because the presence of intra-specific interaction is natural, and the 397 

interaction with the rest of the species is unified as I�C]^��_` = �j
Xe�. 398 

5. A regression for y� by �x:
:∈fghiQjk is performed by S-map. This returns JKLlmNn. 399 

6. For each index j in I�C]^��_`, create I�`.�(o) = I]^��_` ∩ �j
, where the suffix h indicates that j is the 400 

hth element of I�C]^��_`. 401 

7. Perform a regression y� by �xr
r∈fiksi(t)  by S-map. 402 

8. Repeat 7 to obtain JKL(o) for all h. 403 

8. Set the least JKL(o) as JKL$ND% and I�`.�(o)
 as Id`.�. 404 

9. If Q = 1 −JKLlmNn/JKL$ND% is greater than a pre-specified value (Q^) then set JKL$ND% as 405 

JKLlmNn and Id`.� as I]^��_`, remove hth element of I�C]^��_` and go back to 6, otherwise go to 10. 406 

10. Return c�∗(γ) where γ indicates that the inferred interaction strength for species i is obtained 407 

by the γth iteration. If γ < γ* increment γ* by 1 and go back to 3, otherwise terminate the loop. 408 

10. Return c�∗ = Median(�c�∗(γ)
y��yz ). 409 

 410 

Q^ controls the sensitivity of the algorithm to find links between species. It is reasonable to fix Q^ 411 

to zero because this means that a new link will be accepted as long as it improves MSE. Thus we 412 

set	Q^ to zero in both the SSM and SLR unless otherwise mentioned. 413 

 414 

Simulation model 415 

We used a population dynamics model to generate the data set for validation. The model is based on 416 

a generalized Lotka-Volterra equation (GLVE), 417 

dx
dt = x�WG(x�) + ΣX��� F�~xX�Y, 418 

(1) 419 

which has been frequently used to model microbial population dynamics (Bucci et al. 2016, Coyte et 420 

al. 2015, Fisher and Mehta 2014). Here, G(x�) = r�(1 − Σ���� x�/K) and F�~xX� = c�XxXT/(β + xXT). F� is 421 

known as the Holling Type III functional response and introduces nonlinear species relationships. r� 422 

is the intrinsic growth rate and K is the carrying capacity that defines upper limit of abundance. 423 

Here, the metagenomic read count roughly corresponds to K. c�X represents the effect of species j 424 

on i. Thus, the matrix C = �c�X
 expresses the “true” interaction between species except for where 425 

i = j, in which the effect of the first and second terms in (1) cannot be divided. β is the half-426 

saturation constant of the interspecific interaction and controls the strength of non-linearity within 427 

the population dynamics. 428 

 429 
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To reduce the right hand side of equation (x), we used the relationship, 430 

1
x
dx
dt =

d log x
dt . 431 

Hence eq. (1) is transformed to, 432 

d log x
dt = G(x�) + ΣX��� F�~xX�. 433 

(2) 434 

The discrete nature of metagenomics data is captured by discretizing eq. (2) as, 435 

log x�(t + ∆t) − log x�(t) = WG(x�) + ΣX��� F�~xX�Y∆t. 436 

By setting ∆t = 1 without loss of generality and introducing demographic stochasticity, we obtain 437 

the equation describing the population dynamics as, 438 

log x�(t + 1) = log x�(t) + G(x�) + ΣX��� F�~xX� + η�(t)/�x�(t). 439 

(3) 440 

Here η�(t) is a random value drawn from a normal distribution with mean 0 and variance σT. σT 441 

determines the strength of stochasticity relative to the deterministic processes. 442 

 443 

One can easily see that eq. (3) is transformed to, 444 

y�(t) = log x�(t + 1) − log x�(t) = G(x�) + ΣX��� F�~xX� + η�(t)/�x�(t). 445 

(4) 446 

This equation gives the true relationship between x’s and y� when applying the regression test. It 447 

is worth noting that, although we specify G and F here, the SSM does not require F and G to be 448 

known or even described as a specific mathematical formulation. It should be noted that due to the 449 

form of F we adopted, the inferred interaction strength is roughly scaled as c�X∗~c�X/K. Hence we 450 

rescaled it as c�X∗ → Kc�X∗  .  451 

 452 

Data generation 453 

We used eq.(4) to generate ground truth data as follows. We generated the initial state as W10��Y����  454 

where ξ� is a random value drawn from a uniform distribution (0,4) and N is the number of 455 

species. The interaction matrix C is generated by the following rule; (1) C must have (NT − N)/2 456 

non-zero elements, (2) value of a non-zero element is randomly assigned from a uniform distribution 457 

(−2,−0.05) or (0.05,2) and (3) cX� ≠ 0 if c�X ≠ 0. With this initial state and interaction matrix, we 458 

numerically solved eq.(4) up to 5000 steps and took the latter 200, 100 or 50 steps. The numerical 459 

simulation was discarded if the abundance of at least one species fell below one; otherwise the result 460 

was sampled every 2 steps to make a time-series with 100, 50 or 25 data points. 461 

 462 

Other parameter values were as follows. We set r = 1 so that the scale of dynamics was relevant to 463 

the simulation of microbial dynamics observed as the time-series of 100, 50 and 25 data points. 464 

Intra-specific competition (c�� < 0) was −0.4. This controlled the balance between stability and 465 
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instability. For example, a species does not coexist if c�� is too large, while most communities 466 

converge to an equilibrium if c�� is too small. The variance coefficient of process noise was set to 467 

σT = 0.04. This became a source of complexity within time-series data at a certain level. K was set 468 

to 10� considering the standard size of a metagenomic read count. Finally, we set β to 0.05 × KT to 469 

introduce non-linear effects throughout the functional response. Because these values are for the 470 

specific Lotka-Volterra equation we used, except for two parameters (r and K) specified by general 471 

criteria, discussion of whether the parameter values are valid for microbial systems or not is not 472 

important. Instead, the parameter values were adjusted so that the GLV model constantly 473 

generated dynamics that satisfied the acceptance criteria θ > 1, because the relative performance of 474 

the SSM is in general higher than SLR if θ deviates from zero. The Holling Type III functional 475 

response was also adapted because it reduces extinctions and non-persistent chaos in multispecies 476 

communities (Williams and Martinez 2004). 477 

 478 

Nonlinearity of time-series 479 

We evaluated the non-linearity of time-series by calculating θ� as follows. 480 

 481 

Algorithm 3: Calculation of θ� 482 

1. Set the target species i. 483 

2. Initiate index γ to 1. 484 

3. Sample half of the pairs in " to make "cd, and set the rest to "�I. 485 

4. A regression for y� by x is performed by S-map and set θ that minimizes JKL as θ�(y) and 486 

increment γ by 1. 487 

5. Back to 3 if γ < γ�, otherwise terminate the loop. 488 

6. Set the mean of θ�(y)’s to θ�. 489 

 490 

Here, we set γ� to 24. We accepted the time-series only if Min(�θ�
���� ) > 1 is satisfied. 491 

 492 

Observational error 493 

To simulate observational error, each abundance data x�(t) was perturbed by a random value 494 

drawn from a normal distribution with mean zero and variance ςx�(t). Here, we used six different 495 

values (0,1,2,4,8,16) for ς. 496 

 497 

Application of the SSM to mouse microbiome data 498 

In the mouse gut microbiome data we used, OTUs were categorized into genus-level groups by the 499 

CLASSIFIER program of the Ribosomal Database Project (RDP) within a software package 500 

Quantitative Insights into Microbial Ecology (QIIME). For detailed description of this data set see 501 

Nakanishi et al. (in prep.). For our analysis, we picked the seven most abundant groups that 502 

comprise approximately 85% of the total microbial biomass and classified the abundance of the 503 

remaining groups into a single group of “others”. Next, (x, y�) was calculated for all mice and one 504 
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mouse (M:) selected as the test dataset. The remaining mice (�Mr
re: ) were used as the training 505 

data for cross validation which was aggregated to form dataset D. The SSM was performed on D as 506 

described above but instead of accepting the last step before Q^ exceeded zero, I]^��_` of each step in 507 

a forward stepwise regression was stored for 0.2 < Q^ < −0.2. Then, the value of I]^��_` that 508 

minimizes the MSE of S-map predicting y� from x in the test data was selected and c�∗ was 509 

calculated as per the explanation of S-map. The above procedure was repeated for all groups in k to 510 

form the M:’s most relevant network. θ�’s values were also calculated for M: using Algorithm 3 511 

(Fig. 4S). 512 

 513 

Data accessibility 514 

The mouse gut microbiome data is available in the DDBJ database (http://getentry.ddbj.nig.ac.jp/) 515 

under accession number DRA004786. We used Mathematica 10.2 to implement the SSM and SLR, 516 

generate simulation data, process mouse gut microbiome data and to perform analysis. Computer 517 

codes (Mathematica notebook files) can be provided upon request to the authors. 518 

 519 

 520 

  521 
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Supplementary figures 658 

 659 

 660 

Figure S1. Cumulative distribution of inferred interaction strength in figure 2a for SSM (a) and 661 

SLR (b). 662 

 663 

 664 

Figure S2. Robustness of SSM and SLR for observational errors and data size for networks where 665 

weak (fewer than three) inferred interactions are filtered out from the results of figure 3. Accuracy, 666 

sensitivity, specificity and precision for different observational errors were calculated for time-series 667 

with 25 data points (a-d), 50 data points (e-h) and 100 data points (i-l) sampled from simulated 668 

ecological dynamics. Blue lines indicates SSM and red lines indicate SLR. Solid lines indicate the 669 

mean value and the error bars indicate the first and the third quartiles. Among 100 trials, about 670 

20% of the networks inferred by 50 data points and 40% of that of 25 data points were not included 671 

because they had no inter-specific links. 672 

 673 
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 675 

Fig. S3. Interaction networks of six mice inferred by 4-40 weeks old (a-f). Positive and negative 676 

effects are indicated by blue and red arrows respectively. The size of nodes indicates relative 677 

abundance. Inter-specific links are excluded. 678 

 679 

 680 

Fig. S4. θ� of M� calculated for all (18) data points. Indices 1-8 corresponds to, Allobaculum, S24-7, 681 

Clostridiales, Lactobacillus, Ruminococcaceae, Prevottela, and others, respectively. θ�s are not 682 

significantly different for other mice. 683 
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