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Abstract
The focus of the computational structural biology community has taken a dramatic shift over the
past one-and-a-half decades from the classical protein structure prediction problem to the possible
understanding of intrinsically disordered proteins (IDP) or proteins containing regions of disorder
(IDPR).  The  current  interest  lies  in  the  unraveling  of  a  disorder-to-order  transitioning  code
embedded in the amino acid sequences of IDPs / IDPRs. Disordered proteins are characterized by
an enormous amount of structural plasticity which makes them promiscuous in binding to different
partners, multi-functional in cellular activity and atypical in folding energy landscapes resembling
partially folded molten globules. Also, their involvement in several deadly human diseases (e.g.
cancer, cardiovascular and  neurodegenerative diseases) makes them  attractive  drug targets, and
important for a biochemical understanding of the disease(s). The study of the structural ensemble of
IDPs is rather difficult, in particular for transient interactions. When bound to a structured partner,
an IDPR adapts an ordered conformation in the complex. The residues that undergo this disorder-to-
order transition are called protean residues,  generally found in short contiguous stretches and the
first step in understanding the modus operandi of an IDP / IDPR would be to predict these residues.
There are a few available methods which predict these protean segments from their amino acid
sequences; however, their performance reported in the literature leaves clear room for improvement.
With this background, the current study presents 'Proteus', a random forest classifier that predicts
the likelihood of a residue undergoing a disorder-to-order transition upon binding to a potential
partner protein. The prediction is based on features that can be calculated using the amino acid
sequence alone. Proteus compares favorably with existing methods predicting twice as many true
positives as the second best method (55% vs. 27%) with a much higher precision on an independent
data set.  The current  study also sheds  some light  on a possible 'disorder-to-order'  transitioning

consensus, untangled, yet embedded in the amino acid sequence of IDPs. Some guidelines have also
been suggested for proceeding with a real-life structural modeling involving an IDPR using Proteus.
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Introduction

After extensive research over one-and-a-half decades, it is evident that many functional proteins
lack well-folded 3D structures. These intrinsically disordered proteins (IDPs), could be completely
disordered  or  contain  intrinsically  disordered  protein  regions  (IDPRs)  [1–5].  In  contrast  to  the
classical view of protein folding  [6], where a nascent cytoplasmic polypeptide chain folds into a
stable globule, concomitantly while being synthesized [7,8], these proteins are born disordered [3]
and remain either completely or partially unstructured throughout their entire life span. It is only
when they interact with functionally relevant binding partners that they switch to ordered structures
[4]. In fact, their existence in a biologically active form without adapting to a unique 3D-structure
contradicts the traditional notion of the “one protein–one structure–one function” paradigm [1]. 
 
IDPs are highly abundant in nature and have been found to be involved in a number of functions
within the living cell,  most of which belong to the non-classic (non-enzyme) type  [9,10]. They
possess  remarkable  binding  promiscuity  [4] in  a  wide  range  of  intermolecular  interactions,
complementing the functional repertoire of ordered globular proteins, similar to the phenomena of
enthalpy – entropy compensation  [11]. The promiscuity is primarily manifested in their ability to
interact specifically with structurally diverse molecular partners and obtaining different structures
upon binding. It is highly likely that these peculiar characteristics may be attributed to their non-
native-like  multi-funneled   and  relatively  flat  energy  landscapes  [12,13],  wherein  the  favored
conformations closely resemble to the partially folded molten globules [13] which also enable them
to  preserve  the  necessary  amount  of  disorder  even  in  their  bound forms  [4].  Considering  this
flexible nature, they have been referred to as part of the 'edge of chaos' systems [14], serving as a
bridge between well-ordered and chaotic system that is critical in the context of cellular energy
balance. 

In  addition  to  these  peculiar  biophysical  and  folding  attributes,  IDPs  are  also  of  considerable
biomedical interest due to their functional importance. In fact, the functions they are involved in
(e.g.,  regulation, signaling, and control) are mostly the ones that require high specificity – low-
affinity interactions [15]. Recent studies have highlighted their multifarious activities as molecular
rheostats and molecular clocks, in tissue specific and alternative splicing of mRNA, transport of
rRNA and proteins and RNA-chaperons [16]. Also, by sustaining enough disorder even in the bound
form, IDPs are enabled to  participate in  both one-to-many and many-to-one signaling  [2].  The
promiscuity in binding also suggests that not only misfolding  [17], but also misidentification or
mis-signaling  [2] in  biomolecular  recognition could serve as  the root  cause of some extremely
complex  human  diseases  [3] including  cancer,  diabetes,  amyloidoses,  and  cardiovascular  and
neurodegenerative diseases [18]. 

Taken together,  there is  a  great  need for a  deeper  understanding of IDPs and their  interactors.

However,  since  obtaining  information  about  IDPs  from experiments  is  difficult  owing  to  their
inherent disorder, computational modeling provides a realistic way forward.  For most IDPs, only a
subset of the disordered residues can actually undergo a disorder-to-order transitions upon binding

to a folded protein, leading to the concept of 'folding coupled with binding'  [19]. These segments
are called  protean borrowed from Greek mythology, meaning 'ever-changeable' or 'mutable'  [19].
To model the 3D structure of an interacting IDP / IDPR, a first aim would be to predict the potential
'mutable' protean regions. It is important to note that, due to the intrinsic disorder, these regions in
an isolated X-ray structure are presented as 'missing electron density' patches (listed in REMARK

465 in the corresponding PDB file [5]), and should only appear structured in its bound form. This is
in fact also the definition of a 'protean' segments. 
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Extensive studies have analyzed the sequence space of IDPs in relation to their intrinsic disorder.
These studies reveal their correspondence to low entropy sequences with less complexity [5,20]. In
particular, tandem repeats have often been found to be embedded in these sequences (e.g. poly-
glutamine stretches in amyloid beta  [21]) giving rise to the notion of 'the more perfect the less
structured'  proteins  [22].  Thus,  in  a  sense,  low sequence  entropy  can  potentially  lead  to  high
conformational entropy, characteristic of the IDPs. Some mechanistic insights into the origin of the
disorder have also been suggested, for example, the low content of hydrophobic residues with an
abundance of charged residues in IDPs [23] disfavoring self-folding [24] by potentially decreasing
the number of possible two-body contacts [25]. Furthermore, the charge – hydrophobicity boundary
have  been  envisaged  to  represent  a  trade-off  between  repulsive  and  attractive  interactions
reminiscent of globular – disorder transitions [26].

Nevertheless, it remains highly challenging to decipher the root cause of intrinsic disorder from
pure sequence-based investigation given the limited structural data. Concerted efforts have been
made  to  untangle  a  possible  disorder  code  from  amino  acid  sequence  alone  which  includes
deciphering  the  propensity  for  intrinsic  disorder  [26],  and  statistical  mechanical  potentials
describing sequence-derived elasticity [27].  The nature of the problem is ideal for machine learning
algorithms given the availability of annotated sequence data. In fact, quite a few predictors have
recently been developed that predict not only the disordered regions [28–32], but also the 'protean'
segments  [32–35].  Still,  'protean  prediction'  is  in  an  early  stage,  offering  much  room  for
improvement. In this background, the current study does not only attempt to shed some light on a
possible yet unexplored sequence consensus of such 'disorder-to-order' transitions, but also presents
‘Proteus’,  a  random forest  classifier  that  predicts  protean segments  solely from the amino acid
sequence of an IDP. Proteus compares favorably to the existing predictors.  Some guidelines have
also been suggested on how and where to use Proteus during the course of a real-life structural
modeling involving an IDPR. 

Methods

Training Dataset 
Two databases containing proteins with annotated protean segments, IDEAL[19] and MoRF[34]
were pulled together to build the final training dataset. IDEAL (Intrinsically Disordered proteins
with  Extensive  Annotations  and  Literature)  contains  557  proteins  with  experimentally  verified
protean segments called ‘ProS’ in the database. However, only 203 of 557 proteins in this database
actually contain protean segments. The rest are IDPs where no protean segments have yet been
experimentally verified and thus serve as negative examples in training. The MoRF dataset comes
from MoRFpred [34], one of the existing classifiers. It contains 840 proteins, and all of them have
at  least  one  protean  segment.  More  importantly,  all  members  of  MoRF  have  direct  structural
evidence from the PDB. Members from IDEAL and MoRF will henceforth be referred to as 'ProS'
and 'MoRF' respectively, and the combined dataset as 'PnM'. The details of all datasets have been

enlisted in Table 1.

Independent Benchmark
Nine proteins that were used as independent benchmark in the DISOPRED3 study  [32] were used
as an independent benchmark set here as well. In the DISOPRED3 study 29 chains having protean
segments were initially culled using database annotations and publications, later they had to be
reduced to nine proteins, as the other 20 chains were found to be used in the training datasets of the
competing methods, ANCHOR [33], MoRFpred  [34] and MFSPSSMPred  [35]. None of the nine

proteins were similar to any protein in the current training dataset.
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Target Function
The binary status for each amino acid residue in the sequence to be protean or non-protean was used
as the target function in training the classifier, denoted by 1 and 0 respectively, for positive and
negative  examples.  It  is  to  be  noted  that  non-protean  residues  refer  to  the  ordered  as  well  as
disordered residues which do not undergo the 'disorder-to-order transition' upon binding and hence,
remain disordered even in the bound state. 

Data Clustering and Cross-Validation Benchmark
To avoid training and testing on similar examples,  BLASTclust was used to cluster the protein
sequences in the combined dataset 'PnM'. Sequences with a pairwise similarity of at least 30% over
at least 50% of the sequence length (-S 30 -L 0.5) were clustered. This resulted in 774 clusters, the
largest containing 38 proteins, and 253 clusters containing more than one protein. One third of all
ProS sequences were found to be similar to at least one MoRF sequence and vice-versa. 

To prepare the data for five-fold cross-validation, five folds were built by grouping clusters in such
a way that the number of target proteins remain consistent among the folds. This resulted in four
folds with 280 targets and one fold with 279 targets,  containing between 158,651 and 218,870
amino acid residues, and around 1.4% to 2.2% positive examples. During cross-validated training,
four of the folds are used for training and the remaining one is used for testing. This is repeated five
times to make predictions for all five folds. 

Random Forest Classifier 
The random forest  classifier  module in  scikit-learn Python package  [36] was used for training.
Every decision tree in the forest classify examples as positive or negative, and a final decision is
made according to a majority vote.  

Evaluation Measures
In binary classification, there are four possible outcomes when classifying an example: (i) True
Positive  (TP):  a  positive  example  correctly  classified  as  positive;  (ii)  True  Negative  (TN):  a
negative example, correctly classified as negative; (iii) False Negative (FN): a positive example
incorrectly  classified  as  negative;  and  (iv)  False  Positive  (FP):  a  negative  example  incorrectly
classified as positive. By counting these four possible outcomes, the following evaluation measures
were calculated. 

Precision (PPV)
Precision, also known as specificity or the Positive Predicted Value (PPV), measures how many
examples classified as positive were actually positive, calculated by the ratio, TP / (TP + FP). 

Recall (TPR)
Recall (or coverage) measures how many positive examples were correctly classified as positives. It

is also called the 'True Positive Rate' (TPR) and calculated by the ratio, TP / ∑P, where ∑P is the
total number of  positives, i.e., ∑P = TP + FN. 

F1-score
F1-score is  the harmonic mean between PPV and TPR and could be interpreted as a  trade-off

between PPV and TPR. It is defined by the following equation: F1=2PPV×TPR/(PPV+TPR).

Matthews Correlation Coefficient
Another  direct  evaluation  measure  of  classification  performance  is  the Matthews  Correlation
Coefficient  (MCC) ranging  from -1  (perfect  inverse  prediction)  to  +1 (perfect  prediction)  and
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calculated as:  MCC=((TP×TN)-(FP×FN))/((TP+FP)(TP+FN)(TN+FP)(TN+FN))1/2  . This was used
in conjugation with the F1-score to estimate the overall performance of the predictor. 

Tuning Training Parameters

Decision tree depth
In general the deeper the tree, the more complex patterns it can fit. However, this can easily lead to
over-fitting.  Thus,  finding an optimal  tree  depth is  important.  The maximum depth was varied
between 1 and 25 (Supplementary Fig. S1) and a depth of 13  yielded the highest MCC and F1
scores. 

Number of trees in the forest
Another important parameter is how many decision trees to use. In theory, the more trees the better,
but there is a saturation in performance, beyond which the increase in performance is only marginal.
Therefore, it is important to find the optimal number of trees to save computational time. As can be
seen from the Supplementary Fig. S2, 50 decision trees yield a reasonable performance, which is
only slightly increased (by ~5%) using more trees. Therefore, using 50 trees was considered to be
enough for the computationally expensive feature selection part. However, for the final selected
combination of features, 500 trees were used to achieve maximum performance. 

Probability cutoff
The classifier needs a user-defined probability cutoff (Pcut) above which an example is classified as
positive.  Pcut was  varied  in  the  whole  range  of  0.0  to  1.0  and  based  on  the  performance
(Supplementary Fig. S3), was set to 0.5 (majority vote). Therefore, if 50% or more decision trees
voted for the particular example to be positive, it was classified as positive. 

Frequency Analyses of Protean and Disordered Residues

Amino Acid Propensity
The propensity (Pr) for a particular amino acid, X to occupy a particular 'class' (e.g. protean vs.
disordered residues) was calculated as the ratio of two probabilities (P) as: Pr(X) = P(X)class/P(X)full

= (N(X)class/N(All)full) / (N(X)full / N(All)full) where 'full' stands for the entire training dataset and N
denotes the raw count of amino acid(s) in the said 'class'. A propensity value of 1 represents no
preference whereas a higher or lower value represent higher or lower preference, respectively, of the
amino acid to occupy the given class with respect to the baseline.

Predicted Secondary Structural Content
PSIPRED [37] was used to predict the secondary structure in three classes (H: Helix, E: Strand, C:
Coil).  For each amino acid, the relative fraction of each of the three main secondary structural
classes (H, E, C) were calculated for protean, non-protean, disordered and ordered sequences. The
aim was to decipher if there was any preference in disorder vs. order sequences that might have
propagated to protean segments during the 'disorder-to-order' transitions.  

Design of the sequence-driven features 

Consideration of local and global effects
The origin of disorder is a conjunction of multiple factors. Therefore, ideally the contribution of

both, the local sequence (neighboring effect) and that of the global three-dimensional fold of the
protein should be considered in the design of features. However, it is highly non-trivial to take into
account the global effect of the overall protein fold without actually attempting to build homology
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models for the predicted 'structured' regions, in their bound form. Incorporating such a modeling
pipeline will be computationally costly and will also have low confidence associated with the built
models due to the lack of enough structural data. One alternative way to indirectly take into account
the global constraints is to perform a homology search against all non-redundant sequences [38] and
then  convert  the  sequence  into  a  profile.  To this  end,  PSI-BLAST  [39] was  used  to  construct
sequence  profiles.  In  addition,  PSIPRED  [37] was  used  to  predict  secondary  structure  and
DISOPRED3 [32] was used to predict disorder probability for each amino acid residue. Thus, the
plausible global constraints were also accounted for in the designed features, at least implicitly.

To describe the neighboring environment,  a sliding window of 15-residues centered around the
current residue was considered in the design of most features. This will produce an average property
of the feature, taking into account the local sequence dependence associated with disorder-to-order
transitions. The size of the window was optimized by trying different lengths in the range of 9-21.
The optimal size agrees with the average length of protean segments (Fig. 1).

In total 342 features, in seven different feature groups, were used and are described in detail below
(Table 2)

Feature Group 1: Amino Acid Mutability (Features: 1-300)
Considering the influence of the local sequence on disorder, it is likely that empirical trends (over
and under-representations) will be found in the distribution of amino acids in protean compared to
non-protean regions. In other words, certain amino acids might preferentially occur in the protean
segments  but  not  others.  This  was  represented  by  Position  Specific  Scoring  Matrices  (PSSM)
constructed by running three iteration (-j 3) of PSI-BLAST  [39] against  UniRef90  [38] with an
inclusion E-value threshold of 10-3 (-h 0.001). The PSSM contains scores for each of the 20 possible
amino acid  substitutions  in  each position,  representing  the  amino acid  mutability  at  any given
position.  The higher  the score,  the higher  the probability  that  these amino acids  occurs at  that
position. To improve convergence, the raw PSSM scores were linearly scaled to [0.0, 1.0] based on
the maximum and minimum values observed for each amino acid in the whole training set.  To
account for the local sequence bias, a 15-residue window of the PSSM was used centered around
the current residue, giving 300 (15×20) features in total for each residue.

Feature Group 2: Amino Acid Conservation (Feature: 301)
The conservation score is derived by PSI-BLAST [39] from the PSSM matrix, and, as the name
suggests, conceptually,  it  is complementary to that of 'mutability'.  Numerically, it is a modified
Shannon Entropy  [40] term representative of the heterogeneity of amino acid substitutions for a
given  position  in  the  input  sequence.  Again,  to  take  care  of  the  neighboring  environment,  the
conservation score was averaged over a 15-residue window. In contrast to all other feature groups,
this group consists of only a single value. 

Feature Group 3: Amino Acid Composition (Features: 302-321)
This feature group describes the individual concentration of all amino acids, in a 15-residue long
window, i.e. 20 features in all, representing a coarse-grain estimation of the amino acid properties in
the local neighborhood around the central residue. 

Feature Group 4: Amino Acid Properties (Features: 322-330)
It is natural to believe that the physiochemical properties of different amino acids hold the key for
developing intrinsic disorder and also for the disorder-to-order transitions. In contrast to the 'amino
acid composition group' described above, Polarity, Charge, Hydrophobicity and Molecular Weight
were   explicitly  described  in  this  feature-group,  in  a  15-residue  sliding  window.  Polarity was
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divided into polar, non-polar, acidic-polar or basic-polar, and charge into positive, negative, and
neutral  [41]. Hydrophobicity was described using the Kyte Doolittle scale  [42]. For each of these
seven features, the corresponding counts were averaged over the 15-residue window.

Feature Group 5: Predicted Secondary Structure (Features: 331-333)
Secondary structural propensities of individual amino acids in the close neighborhood of a residue
might have major influence on disorder and might serve as a discriminative feature between protean
and non-protean fragments. For example, if this likelihood keeps altering between helices to sheets
along the sequence, the resultant main-chain trajectory would potentially keep wobbling giving rise
to an unstructured region.  The other  possibility  is  of  course having most  residues  predicted as
'random coils'. The probabilities of each amino acid residue in a sequence to form one of the three
main secondary structures (Helix, Strand, Coil) were predicted by PSIPRED[37] and averaged over
a 15-residue sliding window, serving as three distinct features. 

Feature Group 6: Predicted Disorder Probability (Features: 334-340)
The probability for disorder was predicted using DISOPRED3 [32]. The disorder prediction score
from DISOPRED3 is a confidence estimate (or probability) for a residue in a protein sequence to be
disordered. It is defined in the range [0, 1] and DISOPRED3 assigns the disordered status to a
residue if the score is greater than 0.5. The disorder prediction score, averaged over the 15-residue
window centered on the current  residue was directly  used as  the first  feature in  this  group. In
addition, to describe the local properties of the disorder prediction, the length of disordered and
ordered segments and the start and end positions relative to the total sequence length were also
used. In detail, if the score was greater than 0.5, the positions on either side of the current residue
where the score drops below 0.5 were identified. From this, the length, start and stop positions of
the segment could be calculated. This was performed for residues predicted to be disordered (score
> 0.5)  and for  residues  predicted to  be ordered  (score  < 0.5),  resulting  in  7 (1+3+3) features.
Depending on the predicted disorder of the segment, three of the seven features will always remain
zero. 

Feature Group 7: Disorder Topography (Features: 341-342)
Disorder topography measures the topography of peaks and valleys in the predicted disorder score
graph (Supplementary Fig. S4). Each residue is classified as being part of a peak (1), valley (-1) or
neither (0). A residue is part of a peak if on both sides, there exists another residue with a score at

least 10% lower than the current residue. Likewise, a residue is part of a valley if there are residues
with disorder scores at least 10% higher than the current residue. If a residue is neither at a peak nor

in a valley it is classified as neither. In addition, the length of the current peak or valley residue is
also calculated and used as a separate feature. Thus, the disorder topography feature consists of the

peak/valley/neither  classification  (feature  no.  341)  and  the  topographic  length  of  the  current
peak/valley (feature no. 342). 

Results and Discussion 

Propagation of sequence consensus during disorder-to-order transitions
Sequence-driven  properties  such  as  amino  acid  propensities  and  predicted  secondary  structural

content might serve as crucial consensus in the information transfer during the 'disorder-to-order'
transition. A comparative study of these properties in predicted disordered and annotated protean
segments  will  also serve to  explore  and identify  empirical  trends  in  the  designed features  and

thereby act as a guide in determining the features that are more discriminative compared to the
features that can act as filters. Taking this into account, the referred properties were investigated in
(i)  protean  vs.  non-protean  residues  and  (ii)  disordered  vs.  ordered  residues  (as  predicted  by
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DISOPRED3 [32]) and compared with each other. The aim was to identify any pattern that might be
responsible for the disorder-to-order transitions, implicitly embedded in the protean sequences. To
that end, we wanted to collect the most discriminating trends in the disordered vs. ordered regions
which were either maintained or inverted in the protean vs. non-protean segments. These combined
trends should be instrumental in both sustaining the intrinsic disorder and also in the information
transfer  during  the  'disorder-to-order'  transitions.  However,  since  the  'disorder  vs.  order'
classification is clearer and more distinct, it was expected that the trends for 'disorder vs. order'
should be more prominent than the 'protean vs. non-protean' trends.

Amino acids preference in protean and disorder residues
The first  and most  fundamental  characteristic investigated was the of amino acid propensity in
disordered,  ordered  and protean  /  non-protean residues.  The predicted disordered regions  show
drastic under-representations of hydrophobic amino acids compared to predicted ordered regions
(Fig. 2A). Even among the distribution of hydrophobic amino acids, there is an unmistakable trend
with respect to the size of the hydrophobic side-chain. The gradual increase in the propensity of the
hydrophobic side-chains in the predicted ordered regions is found to be directly proportional to their
side-chain volume (Ala → Val → Leu → Ile → Phe → Tyr → Trp) (Fig. 2B); whereas in the
predicted disordered regions, the relationship appears inversely proportional. This trend is perfectly
consistent with the notion of hydrophobic core formation within ordered protein tertiary structures
[43], and on the other hand, bulky aromatics (Phe, Tyr, Trp) should be unfavorable in disordered
regions, due to their potential incompatibility with regard to side-chain volume and entropy. The
other noticeable features are the significant over-representation of cysteines in ordered regions with
a  concomitant  under-representation  in  disordered  regions,  consistent  with  the  idea  of  fold
stabilization by disulfide bridges [44], which must be avoided during the natural design of intrinsic
disorder. On the other hand, prolines are significantly over-represented in disordered compared to
ordered regions, which is consistent with their ability to break regular secondary structures  [45],
especially helices [46]. Even if found in regular secondary structures (β-sheets for example), proline
needs additional structural constraints from pre-prolines (e.g., glycine rescue) to become stabilized
[47]. In line with these observations, proline has been identified as the most disorder promoting
amino acid residue [48].

The other well-known residue, responsible for backbone flexibility, glycine [45] was also found to
be over-represented in disordered compared to ordered regions. This is in accord with the well-
established idea that prolines and glycines are general indicators of entropic elasticity [27,48] and

hence control self-organization of elastomeric proteins (e.g., amyloid fibrils)  [49]. In fact, recent
studies have formulated correlation functions of elasticity in terms of coiling propensity based on

sequences rich in proline and glycine in disordered proteins [27,48]. 

The  other  noticeable  difference  was  seen  for  serine,  again  a  small  and  polar  amino  acid,
significantly  over-represented  in  disordered  and  under-represented  in  ordered  regions.  Indeed,
serine-rich proteins in bacterial enzymes like kinases [50] and eukaryotic splicing factors [51] have

been reported to be part of intrinsically disordered proteins. The other polar (Thr, Asn, Gln) and
charged (Asp, Glu, Lys, Arg) amino acids were found to have similar or slightly higher propensities
in disordered compared to ordered sequences, which agrees well with the earlier observations  [48]

[47]. 

But as mentioned earlier, the focus of the current work was to identify patterns that were not only
discriminative in disorder vs. order sequences but were also maintained in protean vs. non-protean
sequences  and therefore might help in establishing a crucial  consensus in  the understanding of

disorder-to-order  transitions.  However  as  expected,  the  patterns  in  protean  vs.  non-protean
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sequences were not as prominent as in disordered vs. ordered sequences (Fig. 3). The collection of
all non-ProS plus non-MoRF sequences served as the 'non-protean' baseline which raised a value of
~1.00 (+/- 0.01) for the baseline propensities of all amino acids (Fig. 3B). This was not surprising
since  the  bulk  majority  of  the  training  dataset  contained  negative  examples  (non-protean
sequences).  Similar  to  amino  acid  propensities  obtained  for  the  ordered  regions,  all  large
hydrophobic residues (Leu, Ile, Phe, Tyr, Trp) were found to be over-represented in the protean
segments  (Fig.  3A)  and drastically  under-represented in  the disordered  regions  (Fig.  2A).  This
inversion  in  trends  from disordered  to  protean  segments  is  rather  interesting  since  the  protean
segments  are  merely  subsets  of  the  originally  disordered  regions.  It  strongly  indicates  that  the
potential  to  get  ordered  by  mediating  enough  hydrophobic  interactions  is  in  fact  implicitly
embedded in the protean sequences, just like that of globular proteins, but masked by neighboring
or flanking disordered residues in their unbound forms. 

At the same time, the charged charged residues (Glu, Asp, Lys, Arg) also acquired much larger
propensities  compared  to  what  they  had  in  disordered  sequences,  and  also  noticeably  higher
propensities compared to ordered sequences in general (Fig. 2B and Fig. 3A). The results clearly
indicate that both large, hydrophobic and charged residues are preferentially selected during the
'disorder-to-order' transitions (via binding). In other words, not all disordered regions undergo the
same transition; rather, there is a preferential selection of sequences containing large hydrophobic
and charged residues leading to stabilization through hydrophobic and salt-bridge interactions at the
protein-protein interface.  This is  in accord with the general  notion of stability  upon binding in
protein-protein  interfaces  where  both  shape  and  electrostatic  complementaries  are  crucial  for
binding [52,53]. 

Finally, as for disorder residues cysteines are clearly under-represented in protean residues as well,
reflecting the fact that the stability of protean residues should not involve disulfide bridges (at the
cost of massive loss of plasticity). However, in contrast to disordered residues both proline and
glycine are under-represented in protean residues,  indicating that these residues do not undergo
disorder-to-order transition; instead, they remain disordered. 

Secondary structure preference in protean and disordered residues
It is also important to conceptualize the secondary structural trends during the course of disorder-to-
order transitions. The relative content of coil (C), including loops and turns is higher than helix (H)
and strands (E) in all classes of sequences ranging from disorder-to-order and from protean to non-
protean. But when comparing between two opposite class (e.g. disordered vs. ordered), it is the
relative increment in (H+E)/C that is of interest. On that note, ordered sequences naturally have far
greater  regular  secondary  structures  (H+E)  amounting  to  ~50%  of  the  whole  population  than
disordered sequences (H+E: ~15%; C: ~85%) (Fig. 4). As expected, the relatively low proportion
(~15%)  of  helices  and  strands  in  disorder  residues  definitely  increases  the  disorder-to-order
transitions  in  protean  segments  (H+E:~40%),  which  is  roughly  the  same  as  in  non-protean

sequences (Fig. 5). Recall that the large majority of the non-protean sequences are in fact the usual
ordered sequences and the subset of disordered sequences that gets ordered only constitute a small
(leftover) fraction. Among the regular secondary structures, helices appear to be more prevalent in

protean (~32%) than non-protean segments (~27%) whereas beta-strands seem to be slightly more
preferred in non-protean (~10%) compared to protean segments (~5%).  

Indecisiveness in adapting a particular secondary structure class from sequence
Another property investigated based on secondary structure is the indecisiveness of an amino acid

sequence in adapting a particular secondary structure. The assumption being that protean segments,
when disordered in  isolation,  might  be indecisive  in  its  choice to  adapt  a  particular  secondary
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structure (H, E or C) along their main-chain trajectory and thereby end up becoming unstructured.
Given the current lack of structural data for these sequences, PSIPRED [37] was used to predict
secondary  structure  and  to  test  the  above  hypothesis.  A  measure  for  the  indecisiveness  or
randomness in secondary structure prediction called Altscore was defined as the average number of
transitions (H→C, C→E etc.) for each protean and non-protean segment. Regions with an Altscore
value of 'zero' were omitted for both protean and non-protean regions, since they would only add
noise to any potential signal.  Focusing on the regions with Altscore> 0, the frequency distribution
(Fig. 6) clearly discriminated between protean and non-protean classes with a wider spread being
obtained for the protean class in addition to a peak-shift towards higher values (0.1 compared to
0.05 for non-protean). The results indicate that the intrinsic disorder associated with the unbound
protean segments potentially suffers from the indecisiveness of the main-chain trajectory to adapt to
a particular secondary structure. 

Both the above observations, (i) the reappearance of large hydrophobic and charged amino acids
into  the  protean  segments,  as  well  as  (ii)  the  indecisiveness  associated  with  their  predicted
secondary structures should serve constructively in unraveling a hidden consensus in promoting
disorder-to-order transition. 

Training a classifier to predict protean residues
To be able to predict protean residues from sequence, a random forest classifier was trained on the
features described in the Methods section. Most features were calculated using a 15-residue sliding,
optimized by trying different window sizes in the range of 9-21 (Supplementary Fig. S5). The
chosen window size was optimal in the sense that it fell right in the center of the distribution of the
protean segment-lengths  (Fig.  1).  An identical  sliding window size was also used to  determine
protein-binding residues  embedded within  disordered  regions  previously  [32].  Note  that  for  all
feature groups except Feature Group 1: Amino Acid Mutability, the number of features will remain
the same even with a different  window size.  Among all  features,  some features  might be non-
informative, others might be redundant. Indeed, some features are similar in their physiochemical
descriptions  and therefore might  be excluded without  loss  in  performance.  But  sometimes it  is
advantageous for the classifier to learn from explicit rather than implicit features. To find the best
combination of the seven feature groups, all 127 possible combinations were exhaustively examined
by measuring the final  cross-validated performance using MCC and F1-scores for each feature
group combination.

The 20 best feature group combinations according to the MCC and F1-scores have been shown in
Supplementary Fig. S6 and Fig. S7 respectively. The difference is small between the top feature
group combinations. Also, the top-combinations as evaluated by MCC and F1 are not identical,
whereas, using all features resulted in good scores being attained in both evaluations. Therefore, the
combination of all feature groups was chosen judiciously. The absolute MCC and F1 score values
are relatively small ~0.13, owing to a large number of false positives and negatives. However, the

magnitude  of  the  scores  are  comparable  to  other  studies  [32–35],  and  reflect  the  difficulty  of
predicting  residues  that  will  be  ordered  upon  binding  from information  in  one of  the  binding
partners  only.   This  is  further  illustrated  in  the  recall  vs.  precision  (PPV) curves  for  the  best

combination (Fig. 7). The recall vs. precision curves were constructed by varying the cutoff (Pcut)
and calculating precision and recall for each cutoff. The random base line precision is 1.9% and the
curve for the best combination is clearly above that and it can also be seen that 500 trees is slightly
better than 50. But the question remains of whether, the rather modest 10% precision at 23% recall
(Pcut>0.5) is useful at all. Considering that it is still five times better than a random prediction, it is

arguably useful given the state-of-the-art. But there is of course plenty of room for improvement
which might be brought about in future studies by incorporating additional information not directly
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obtainable from the sequence alone. In principle, one might perform structure prediction with these
sequences, and, during the course, filter out residues that are actually ordered by themselves; and
also predict the surrounding residues. The predicted and demarcated structural units can also be
used as starting templates in molecular dynamic simulations or docking studies exploring a reduced
conformational  space.  In  addition,  advanced  structural  validation  [54–56] could  also  be
incorporated as filters in an iterative prediction pipeline to improve the sequence-based prediction. 

Relative Importance of Features 
In an effort to learn what features contributed to the overall prediction, the relative importance of
each feature group as calculated by the random forest prediction module was used. To take account
of  the  inherent  randomness  associated  with  the  classifications,  this  relative  importance  was
averaged over predictions of 500 decision trees. As we can see, there are three features that stand
out above the rest (Fig. 8): Topographic length (group 6) is by far the most important feature and
describes the length of the topographic region where the current residue is located. Interestingly, the
second most important feature is also a length descriptor, namely the more coarse-grained length of
the ordered region corresponding to the current residue (group 5). Note that this feature will be
'zero' for all residues predicted to be disordered. The third most important feature is the predicted
disorder score averaged over the current window size (group 5).

The other seven features in top the ten were the following. Rank 4: the relative distance to ordered
residue before the current one (group 6), rank 5: length of the disordered region the current residue
resides in (group 6), rank 6: the topography score (group 7), rank 7: probability of the current
residue to form a coil (group 5), rank 8: probability of the current residue to form a helix (group 5),
rank 9: the relative distance to ordered residue after current one (group 6), and rank 10: charge-
neutrality of the current amino acid (group 4).  

True Positive Enrichment by Analyzing the Proteus Score
A common  test  of  machine  learning  predictors  is  to  analyze  the  true  positive  enrichment  by
constructing score plots, which is more detailed compared to recall vs. precision curves. Score plots
are  conventionally  defined  as  the  overlay  of  two  independent  evaluation  measures,  Positive
Predicted Value (PPV) and recall  (true  positive  rate)  as  two distinct  functions  of  the  predicted
Proteus score. Ideally, both the PPV and recall should be high but there is a conflict in finding as

many true positives as possible (high recall) and at the same time having a high PPV (few false
positives). In reality there will always be at a trade-off between the two, which is also the main

reason to use the combined measure F1. In the current case (Fig. 9A), F1 peaks at around the score
of  0.5,  which  is  also the  cutoff  chosen for  positive  prediction  in  the  final  predictor  (Pcut=0.5);
corresponding to 10% PPV and 23% recall as discussed above. It can be noted that after that point
the PPV increases quite rapidly, and scores > 0.7 have PPV > 40%. Unfortunately there are rather
few examples that obtain this high score resulting in a rather modest recall overall. Still, if the score
is  high we can certainly trust it  to be a relatively accurate prediction.  This is also reflected by

analyzing the distribution of scores for protean and non-protean residues (Fig. 9B), where the score
was found to be much higher for predicted protean residues than non-proteans with median values
of 0.4 and 0.24 respectively, and with roughly equivalent median absolute deviations. It can also be

seen that there are quite a large number of high scoring outliers in the non-protean residues. These
might  of  course be completely  wrong,  but  there is  also a  possibility  that  these predictions  are
actually  sites for yet unknown interactions. Since the study of transient interaction is difficult, and
the focus of the structural biology community so far has been on stable interactions that can even
form crystals, there is still a lot more to be discovered if the dynamics are also taken into account.

Benchmark on Independent Data Set
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In  any machine  learning scheme it  is  an  advantage  if  the  final  classifier  can  benchmarked on
independent data, and against other classifiers. In the recent DISOPRED3 paper [32] the following
methods  were  benchmarked  with  ANCHOR  [33] MoRFpred  [34],  MFSPSSMpred  [35],  and
DISOPRED3  [32] using  a  set  of  2,209 residues  out  of  which  163 were  protean  (i.e.,  positive
examples) from nine proteins (see  Methods). None of the examples in the independent set were
similar to any example used in training Proteus, thus before classifying, Proteus was retrained on
the full non-cross validated training set. The predictions for the other methods were generously
made  available  by  the  authors  of  DISOPRED3  through  the  following  link:
http://bioinfadmin.cs.ucl  .ac  .uk/  downloads/  DISOPRED/suppl_data/.  The  evaluation  measures
precision, recall, F1, and MCC were calculated for all methods using the binary classification of
each method (Fig. 10) and as recall vs. precision curves using the raw scores from each method
(Supplementary Fig.  S8).  Overall,   Proteus  is  better  in  all  measures.  Proteus  has  the  highest
precision (0.26 compared to 0.22 for DISOPRED3, the second best), for a much larger recall (0.56
compared to 0.28 by ANCHOR, the next best). This combined improvement in both precision and
recall is also naturally reflected in a concomitant increase in the F1-score (0.35 compared to 0.18 by
DISOPRED3, the next best).  It also attained a higher MCC value than the other methods (0.30
compared to 0.13 by DISOPRED3). Even though the independent set is small, the high recall is
particularly  encouraging  if  Proteus  is  to  be  used  as  an  initial  step  before  implementing  more
elaborate approaches (as discussed earlier). It is crucial not to miss any true positives at an early
stage.

Conclusions

With the realization that protein disorder is involved in a range of human diseases, including cancer,
cardiovascular and neurodegenerative diseases, it is important to compile more and more structural
information for these proteins to understand their modus operandi. A first step in this direction is the
classification and prediction of protean segments. The literature shows that there is indeed much
room for improvement for the existing predictors  [32].  Proteus seems to perform better than the
existing predictors on the available independent dataset. Of course this has to be re-evaluated when
more data becomes available. It is also possible to combine different individual methods to build
hybrid methods to increase the performance even further.  Given the current  state-of-the-art,  the
predicted 'protean' segments should be considered 'potential' binding sites for proteins in general,
whereas, for a specific interaction with known partners, the predicted segments should serve as
'different'  starting  points  for  model  building.  The  built  models  then  need  to  undergo  stringent
validation  filters  in  an  iterative  cycle  for  screening  and  selection.  It  is  also  important  to
conceptualize the multiple sequence driven factors and realize that it is their complex coordination
which holds the key consensus in promoting the 'disorder-to-order' transitions. The consensus is yet
untangled and needs other exclusive studies to eventually be resolved, however, the current work
explores certain empirically observed trend which appears to be instrumental in the transition from

disorder to order. These factors include the reappearance of large hydrophobic and charged amino
acids  in  the  protean  segments,  which  are  significantly  under-represented  in  the  originally
'disordered' regions. The study also reflects that there is an inherent indecisiveness to adapt to a
specific secondary structure (helices, strands or loops) associated with the protean segments. In
other words, the protean segments remain indecisive in their choice to adapt a particular secondary

structure. This is consistent with the notion of sustaining enough 'disorder' even in the bound form
[4] which potentially helps the proteins to sustain their binding promiscuity. To conclude, the study
has both a basic and an applied content, both of which should serve the IDP as well as the broad

biological community.

The software package is available at https://github.com/bjornwallner/proteus
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Tables

Table 1. Description of the datasets 

Dataset Proteins Protean Residues Non-Protean Residues Total Residues

ProS 557 6,245 356,053 362,298

MoRF 840 10,549 494,264 504,813

ProS + MoRF (PnM) 1,397 16,794 850,317 867,111

Validation 9 163 2,046 2,209

Table 2. A Summary of Feature groups

Feature Group Name Feature Number Count

1 Sequence Profile 1-300 20×15=300

2 Amino Acid Conservation 301 1

3 Amino Acid Concentration 302-321 20x1=20

4 Amino Acid Properties 322-330 4+3+1+1=9

5 Predicted Secondary Structure 331-333 3×1=3

6 Predicted Disorder 334-340 3+3+1=7

7 Disorder Topography 341-342 1+1=2

Figure Legends

Fig.1. Distribution of size of the 'annotated' protean segments. The distribution is obtained from
the combined 'PnM' training dataset. 

Fig.2. Amino Acid Propensities in the 'predicted' disordered vs. ordered regions.  The Black
Horizontal Line (Propensity = 1.0) serves as the baseline; meaning no preferential occurrence of the

said amino acid in the said class. A propensity greater or lesser than 1.0 represents over and under
representations respectively. 
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Fig.3. Amino Acid Propensities in the 'annotated' protean vs. non-protean segments. The Black
Horizontal Line (Propensity = 1.0) serves as the baseline; meaning no preferential occurrence of the
said amino acid in the said class. A propensity greater and lesser or 1.0 represents over and under
representations respectively. 

Fig.4. Secondary Structural probabilities in the 'predicted' disordered vs. ordered regions. H,
E and C stands for α-Helix, β-Strand and Random Coil (non-helix, non-strand) respectively.

Fig.5. Secondary Structural probabilities in the 'originally classified' protean vs. non-protean
segments.  H,  E  and  C  stands  for  α-Helix,  β-Strand  and  Random Coil  (non-helix,  non-strand)
respectively.

Fig.6. Indecisiveness in adapting a particular secondary structure for the 'originally classified'
protean vs. non-protean segments. Probability Distributions of the Altscore (see Text) have been
drawn for both sets. Segments assigned as purely 'Coil' were excluded from both sets.

Fig.7. Recall vs. precision curves to analyze the cross-validated performance of Proteus.  All
five separate training / test folds as well as the final five-fold cross-validated 'Proteus' predictions
(mean) are tabulated. The dashed line (- -) with a slope of 1.0 represents the random baseline.

Fig.8. Relative feature importance. The top ten features contributing most to the prediction in the
random forest features.

Fig.9. Analysis of Proteus Score for the cross-validated predictions. (A) Proteus score vs PPV
(solid, blue), recall (dashed, red), and F1 (dotted, orange) for the cross-validated predictions.  (B)
Box plots showing the distribution of predicted Proteus scores for protean and non-protean residues.
The median of the two distributions is shown by the horizontal red line in the middle of the two
boxes. 

Fig.10. Comparison of Proteus with other classifiers using the standard evaluation measures.
All methods were tested on the same validation set of nine proteins containing 2209 residues (total
number of examples) with 163 protean (positive examples). Precision, Recall, F1-score and MCC
tabulated for each method. Proteus predicts twice as many true positives as the second best method

(55% vs. 27%) with a much higher precision.
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