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Abstract	27 

Molecular	interactions	affect	the	evolution	of	complex	traits.	For	instance,	adaptation	may	28 

be	constrained	by	pleiotropic	or	epistatic	effects,	both	of	which	will	be	reflected	in	the	29 

structure	of	molecular	interaction	networks.	To	date,	empirical	studies	investigating	the	30 

role	of	molecular	interactions	in	phenotypic	evolution	have	been	idiosyncratic,	offering	no	31 

clear	patterns.		Here,	we	investigated	the	network	topology	of	genes	putatively	involved	in	32 

local	adaptation	to	two	abiotic	stressors—drought	and	cold—in	Arabidopsis	thaliana.		Our	33 

findings	suggest	that	the	gene-interaction	topologies	for	both	cold	and	drought	stress	34 

response	are	non-random,	with	genes	that	show	genetic	variation	in	drought	response	35 

(GxE)	being	significantly	more	peripheral	and	cold	response	genes	being	significantly	more	36 

central	than	genes	not	involved	in	either	response.	We	suggest	that	the	observed	topologies	37 

reflect	different	constraints	on	the	genetic	pathways	involved	in	the	assayed	phenotypes.		38 

The	approach	presented	here	may	inform	predictive	models	linking	genetic	variation	in	39 

molecular	signaling	networks	with	phenotypic	variation,	specifically	traits	involved	in	40 

environmental	response.		41 

	42 

Significance	Statement	43 

Our	study	focuses	on	genes	whose	transcriptional	activity	exhibits	genetic	variation	in	44 

response	to	the	environment,	or	“GxE.”	GxE	is	a	widely	observed	phenomenon	of	critical	45 

importance	to	understanding	the	genotype-to-phenotype	map,	the	evolution	of	natural	46 

populations,	medical	genetics,	population	response	to	climate	change,	and	agricultural	47 

improvement.	We	investigated	expression	GxE	in	plant	responses	to	two	abiotic	cues:	cold	48 

and	drought.	We	found	that	genes	showing	genetically	variable	response	to	cold	stress	are	49 

centrally	located	in	regulatory	networks	whereas	genes	showing	genetically	variable	50 

response	to	drought	stress	are	peripherally	located	in	regulatory	networks.	This	result	51 

suggests	that	selection	is	presented	with	vastly	different	mutational	landscapes	for	shaping	52 

evolutionary	or	breeding	response	to	these	two	important	climatic	factors	53 

	54 

Introduction	55 

Genes	do	not	function	nor	evolve	in	isolation.	The	transcriptional	activities	of	genes	in	a	56 

genome	are	often	highly	correlated	with	one	another,	forming	hierarchical	regulatory	57 
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networks	comprised	of	functionally	related	modules	(1).	Within	such	networks,	some	58 

genes	--	“nodes”	–	have	stronger	or	more	interactions	--	“edges”	–	with	one	another	than	do	59 

other	genes.	Because	the	effect	size	of	mutations	is	strongly	associated	with	their	60 

evolutionary	fate	(2),	the	structural	properties	of	genetic	regulatory	networks	will	likely	61 

affect	selection	acting	on	individual	component	genes	(3-5).	Advances	in	high-throughput	62 

molecular	phenotyping	and	systems	analysis	have	improved	our	ability	to	characterize	63 

molecular	interaction	networks,	providing	the	opportunity	to	address	classic	questions	64 

about	the	evolution	of	genetic	interactions.		65 

Two	related	features	of	gene	regulatory	networks	might	affect	the	evolution	of	66 

individual	genes	within	those	networks.	The	first	is	the	widespread	observation	that	genes	67 

vary	in	their	number	of	interacting	neighbor	genes,	perhaps	even	by	orders	of	magnitude	68 

(6).	This	feature	--	the	centrality	or	connectivity	of	a	gene	--	can	be	measured	in	many	69 

different	ways,	including	the	number	of	directly	interacting	genes	or	the	number	of	paths	to	70 

other	genes	that	pass	through	a	given	gene	(7).		The	second	feature	of	networks	that	can	71 

impact	gene	evolution	is	modularity,	i.e.	the	degree	to	which	the	network	is	composed	of	72 

functionally	related	sub-networks	of	genes,	or	modules.	Modules	are	often	under	the	73 

transcriptional	control	of	core	proteins,	high-level	switches	that	regulate	the	module’s	74 

activity	(8)	using	shared	regulatory	motifs	among	genes	within	it	(9).	Evidence	for	the	75 

pleiotropic	nature	of	core	genes	has	been	found	through	decades	of	developmental	genetics	76 

research,	which	identified	putative	master	regulators	of	the	level,	timing,	and	location	of	77 

expression	of	tens	to	thousands	of	other	genes	(3,	8,	10).	78 

		 Transcriptional	regulation	by	core	genes	plays	an	important	role	in	adaptive	79 

responses	to	the	environment	(11,	12).	Environmentally	responsive	transcripts	are	often	80 

co-regulated	as	functional	modules	(13,	14),	and	in	some	instances	the	response	of	81 

particular	genes	to	environmental	cues	may	be	characteristic	of	entire	species	or	kingdoms	82 

(15,	16).	Considerable	genetic	variation	in	transcriptional	response	to	environment	--	83 

expression	Genotype	by	Environment	interaction,	eGxE	--	has	also	been	identified	within	84 

species	(17).	At	the	molecular	level,	eGxE	may	be	controlled	by	genetic	variants	acting	in	85 

cis,	e.g.	by	SNP	or	presence-absence	variants	in	promoter	motifs,	or	by	genetic	variants	86 

acting	in	trans,	such	as	transcription	factors,	small	RNA	species,	or	a	number	of	other	87 

regulatory	factors	upstream	of	genes	showing	eGxE.	Genetic	variants	affecting	eGxE	are	of	88 
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particular	interest	because	GxE	represents	the	mutational	substrate	for	the	evolution	89 

environmental	response	(18,	19)	and	because	GxE	for	fitness	is	required	for	local	90 

adaptation	(20).		91 

In	the	present	study,	we	explore	two	hypotheses	for	how	environmentally	92 

responsive	regulatory	networks	evolve	and	might	thereby	be	involved	in	local	adaptation	93 

to	environment.	The	first	hypothesis,	that	eGxE	is	driven	by	genetic	variation	in	core	94 

transcriptional	regulatory	proteins,	arises	from	the	observation	that	suites	of	traits	often	95 

show	high	genetic	correlation	((21);	in	this	context,	“traits"	could	be	either	individual	96 

transcripts	or	higher-level	physiological	or	developmental	phenotypes).		Genetic	variants	97 

in	one	or	a	small	number	of	regulatory	genes	could	therefore	have	considerable	98 

downstream	consequences,	both	positive	and	negative	with	respect	to	transcription	level,	99 

trait	expression,	and	fitness.	This	model	predicts	that	eGxE	genes	would	have	relatively	100 

high	network	connectivity	and,	by	extension,	be	clustered	in	relatively	discrete	functional	101 

modules.		The	second	hypothesis	posits	that	eGxE	could	be	primarily	driven	by	variation	in	102 

genes	located	peripherally	in	transcriptional	networks,	which	are	expected	to	have	smaller	103 

effect	sizes	and	reduced	deleterious	pleiotropy.		Variation	in	peripheral	genes	could	104 

therefore	allow	natural	selection	to	“fine-tune"	environmental	response	by	changing	only	a	105 

small	number	of	expression	or	higher-order	traits.	While	these	are	not	mutually	exclusive	106 

hypotheses,	their	relative	importance	in	nature	has	not	been	established.		107 

Here,	we	extend	earlier	work	assessing	genetic	variation	in	transcriptional	activity	108 

during	acclimation	to	cold	(22)	and	soil	drying	(23)	in	Arabidopsis	thaliana.	We	predict	109 

different	patterns	for	the	genes	associated	with	each	environmental	response	based	on	our	110 

previous	observations.	The	sequence	conservation	in	environmentally	responsive	111 

promoter	motifs	among	cold	eGxE	genes	in	Arabidopsis	(24)	leads	us	to	predict	that	cold	112 

acclimation	eGxE	genes	will	be	clustered	and	highly	connected.	The	conserved	patterns	of	113 

nucleotide	diversity	imply	that	cis-regulatory	elements	of	eGxE	genes	for	cold	are	114 

evolutionarily	conserved	and	that	expression	diversity	is	controlled	by	genetic	diversity	in	115 

upstream	regulators	such	as	transcription	factors.	These	transcription	factors,	acting	as	116 

core	regulators,	would	cause	the	coexpression	of	large	sets	of	eGxE	genes	that	would	be	117 

observed	as	a	highly	connected	network.	Conversely,	we	predict	that	drought	eGxE	genes	118 

will	be	located	peripherally	in	networks	because	these	genes	show	evidence	of	adaptive	cis-119 
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regulatory	variation	(24).	This	predominant	role	of	cis	variants	suggests	that	most	genes	120 

involved	in	drought	local	adaptation	have	small	trans	effects	and	are	therefore	likely	to	121 

have	low	connectivities	in	the	coexpression	network.	By	extension,	we	predict	that	the	122 

relative	contribution	of	cis-	and	trans-	associated	expression	variation	indicates	the	123 

structure	of	response	to	environment	across	a	molecular	network.		124 

	125 

Results	and	Discussion	126 

Stress-responsive	genes	are	non-randomly	distributed	in	a	transcriptional	co-expression	127 

network	128 

We	first	tested	the	hypothesis	that	genes	whose	expression	responds	to	environmental	129 

gradients	are	non-randomly	distributed	in	a	transcriptional	regulatory	network.	130 

Specifically,	we	assessed	the	positions	of	stress-responsive	genes	in	a	co-expression	131 

network	estimated	for	A.	thaliana	by	Feltus	et	al.	((25);	hereafter	“Feltus	network”).	We	132 

take	stress-responsive	genes	from	a	previous	analyses	of	two	experimental	datasets:	our	133 

“cold”	dataset	comes	from	Lasky	et	al	((24)	a	re-analysis	of	Hannah	et	al.	(22)),	while	our	134 

“drought”	dataset	comes	from	Des	Marais	et	al.	(23).	Briefly,	the	approach	taken	by	Lasky	135 

et	al.	(24)	and	Des	Marais	et	al.	(23)	was	to	partition	variance	in	gene	expression	level	136 

among	the	effects	of	genotype	(inbred	natural	accession),	environment	(response	to	137 

experimental	treatment),	and	their	interaction	(“eGxE”).	In	the	context	of	this	paper,	stress-138 

responsive	genes	are	those	classified	as	“eGxE”,	which	show	a	genetically	variable	response	139 

to	environmental	changes,	as	well	as	genes	that	show	a	similar	pattern	of	response	across	140 

natural	accessions	(“cold-response”	or	“drought-response”	genes).		141 

The	Feltus	network	was	reconstructed	by	aggregating	data	from	7105	published	142 

microarray	experiments	differing	in	environment,	tissue,	and	genotype;	this	network	143 

hypothesis	is	therefore	a	meaningful	summary	of	the	transcriptional	relationships	among	144 

genes	in	diverse	environmental	settings	and	genomic	backgrounds.	For	each	gene	(node)	in	145 

the	network,	we	calculated	the	degree	of	the	node,	which	measures	the	number	of	146 

neighboring	nodes	in	the	network,	as	well	as	the	centrality	if	the	node.	Centrality	of	a	node	147 

estimates	the	number	of	paths	between	other	nodes	that	pass	through	this	node;	here,	we	148 

present	node	centrality	as	eigenvector	centrality.		A	gene	will	have	a	high	eigenvector	149 

centrality	if	it	is	both	well	connected	itself	and	if	its	neighbors	are	also	well	connected	(see	150 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2016. ; https://doi.org/10.1101/080804doi: bioRxiv preprint 

https://doi.org/10.1101/080804


Methods	and	Newman	(26)	for	more	details).		We	obtained	qualitatively	similar	results	151 

with	alternative	centrality	metrics,	e.g.,	degree,	betweeness,	and	closeness	centrality	(see	152 

Supplement).	153 

For	both	data	sets,	genes	showing	significant	eGxE	were	non-randomly	distributed	154 

with	respect	to	network	degree	and	centrality.		Drought	eGxE	genes	had	lower	degrees	155 

(Figure	1a)	[median	for	drought:	eGxE	=	4;	non-	eGxE	=	13],	i.e.	had	fewer	connections	to	156 

other	genes,	and	were	less	central	(Figure	1b)	when	compared	to	non-	eGxE	genomic	157 

controls.		Cold	eGxE	genes	exhibited	the	opposite	effect,	having	higher	degree	(Figure	1c)	158 

[median	cold:	eGxE	=	38;	non-	eGxE	=	11]	and	being	more	centrally	located	(Figure	1d)	159 

compared	to	genomic	controls.		Statistical	significance	was	determined	by	selecting	a	160 

random	subset	of	genes	equal	in	size	to	the	genes	showing	eGxE	and	then	calculating	their	161 

degree	and	centrality	(see	Supplement).		Out	of	10,000	permutations,	we	did	not	observe	a	162 

single	set	of	genes	with	more	extreme	low	(drought)	or	high	(cold)	distributions	of	degree	163 

and	eigenvector	centrality,	corresponding	to	a	p-value	of	10-4.	Interestingly,	cold	eGxE	164 

genes	had	higher	average	connectivity	than	that	of	cold	or	drought	response	(environment)	165 

genes,	of	which	we	have	hypothesized	represent	the	conserved	environmental	response	of	166 

a	species	(23,	24)	(see	Supplement).	167 

To	verify	the	robustness	of	our	results,	we	confirmed	the	non-random	distribution	168 

of	genes	using	community	detection.	The	above	analysis	using	the	Feltus	network	makes	169 

the	assumption	that	all	genes	in	the	network	are	equally	likely	to	participate	in	170 

environmental	response.	However,	because	certain	pathways	must	be	involved	in	the	171 

phenotypic	response	to	drought	or	cold,	it	is	possible	that	the	appropriate	null	distribution	172 

should	be	constructed	using	nearby	genes	(e.g.	those	with	strong	co-expression	in	the	173 

Feltus	network).		To	explore	this	possible	statistical	artifact,	we	performed	standard	174 

community	detection	using	the	leading	eigenvector	method	(27)	as	implemented	in	the	R	175 

package	igraph	v.1.0.1	(28)	on	the	Feltus	network	and	subdivided	the	graph	into	sets	of	176 

genes	that	are	densely	connected	among	themselves	and	loosely	connected	to	other	parts	177 

of	the	gene	co-expression	network.		Averaging	the	results	across	all	detected	communities,	178 

with	significance	again	determined	by	permutation	test,	we	recover	the	same	pattern	seen	179 

in	the	global	network:		Cold	eGxE	genes	have	higher	degree	(cold	eGxE	genes	had	a	median	180 

of	34	more	connections	than	non	eGxE	genes)	and	a	significantly	higher	median	181 
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eigenvector	centrality	(median	0.14	above	non	eGxE),	while	drought	eGxE	genes	have	182 

lower	degree	(cold	eGxE	genes	had	a	median	of	16	fewer	connections	than	non	eGxE	genes)	183 

and	had	a	significantly	lower	eigenvector	centrality	(median	0.04	below	non	eGxE).	A	184 

similar	result	was	found	using	the	subnetworks	(their	“GILs”)	previously	constructed	by	185 

Feltus	(see	Supplement).	186 

We	further	validated	this	result	by	performing	iterative	out-of-sample	model	187 

validation.		Briefly,	we	randomly	selected	80%	of	genes	in	the	network	and	constructed	a	188 

generalized	linear	model	with	a	binomial	error	distribution	(i.e.	a	logistic	regression)	to	189 

predict	genes	as	eGxE	based	solely	on	their	degree	and	eigenvector	centrality.		We	then	190 

predicted	the	eGxE	state	for	the	remaining	20%	of	genes	and	recorded	the	error.		We	191 

repeated	this	procedure	1,000	times	for	both	cold	and	drought.		Assuming	a	threshold	for	192 

accurate	classification	of	5%,	we	were	able	to	correctly	classify	95.4%	of	genes	for	cold	and	193 

77.0%	of	genes	for	drought.		These	results	accommodate	classification	errors	for	both	eGxE	194 

and	non-	eGxE	genes,	which	means	that	for	cold	we	were	able	to	correctly	classify	nearly	195 

every	gene	included	in	the	co-expression	network	as	being	eGxE	based	solely	on	its	degree	196 

and	eigenvector	centrality.	197 

	198 

eGxE	genes	show	modular	distribution	that	differs	between	environments	199 

We	next	asked	whether	the	non-random	distribution	of	node	connectivity	of	eGxE	200 

genes	reflects	their	membership	in	particular	sub-communities,	or	modules,	of	interacting	201 

genes	as	identified	using	our	community	detection	approach,	described	above.	202 

Interestingly,	both	the	cold	and	drought	eGxE	genes	were	non-randomly	distributed	with	203 

respect	to	the	sub-communities	defined	using	our	community	detection	approach.		For	204 

cold,	32.5%	of	all	eGxE	genes	exist	within	a	single,	large	sub-community	containing	605	205 

genes	(Figure	2a)	and	an	additional	26.5%	of	cold	eGxE	genes	are	found	in	a	second	large	206 

sub-community	containing	425	genes.	In	contrast,	for	drought,	the	two	sub-communities	207 

with	highest	accumulation	of	eGxE	genes	together	contain	only	18%	of	the	total	number	of	208 

eGxE	genes	(Figure	2b	shows	the	larger	of	these	two).	Moreover,	drought	eGxE	are	209 

statistically	over-represented	in	five	small	sub-communities	comprised	of	between	10	and	210 

100	members	(Figure	3b),	while	cold	eGxE	genes	are	clustered	in	a	few	large	communities	211 

(Figure	3a).	The	membership	of	eGxE	genes	in	sub-communities	of	differing	size	212 
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recapitulates	our	earlier	result:	cold	eGxE	genes	tend	to	be	functionally	connected	to	many	213 

other	genes,	while	genes	involved	in	drought	response	tend	to	be	in	peripheral	network	214 

positions.		215 

To	test	the	hypothesis	that	the	sub-communities	with	diverging	patterns	of	216 

expression	eGxE	reflect	natural	variation	in	function,	we	took	the	genes	in	the	two	sub-217 

communities	with	the	most	overrepresentation	in	cold	and	in	drought	response	and	tested	218 

for	enrichment	of	gene	ontology	(GO)	annotations.	We	found	116	significant	GO	terms	219 

enriched	in	the	most	over-represented	cold	eGxE	sub-community.	The	top	seven	terms	220 

were	all	related	to	photosynthesis	and	related	processes,	and	the	next	two	terms	were	for	221 

response	to	abiotic	stimulus	and	response	to	cold	(Table	S3).	Altered	primary	metabolism	222 

is	frequently	observed	during	cold	acclimation,	in	part	due	to	the	accumulation	of	sugars	as	223 

cryoprotectants	(29,	30),	so	this	eGxE	may	reflect	that	some	of	the	sampled	accessions	224 

modify	metabolism	during	cold	response	to	a	different	degree	than	do	other	accessions.	We	225 

found	89	significant	GO	terms	enriched	in	the	most	over-represented	drought	eGxE	sub-226 

community.	The	top	term	and	many	of	the	subsequent	terms	were	for	immune	and	defense	227 

responses	(Table	S4;	many	genes,	particularly	kinases,	annotated	as	immune	and	defense	228 

responses	also	show	responses	to	abiotic	stress	(31)).	Previously,	we	found	that	drought	229 

eGxE	genes	showed	very	few	significant	functional	enrichments	using	a	genome-wide	test	230 

for	statistical	enrichment	(23),	suggesting	that	the	network-informed	approach	used	here	231 

may	afford	additional	statistical	power	to	detect	functional	patterns	in	these	high-232 

dimensional	datasets.	233 

	234 

The	evolution	of	gene	expression	response	to	the	environment	235 

Previously,	we	demonstrated	an	important	role	of	cis-regulatory	variants	236 

underlying	diversity	of	environmental	response	among	natural	genotypes	of	Arabidopsis	237 

(24).	Natural	variation	in	response	to	drought	showed	different	genomic	patterns	than	did	238 

natural	variation	in	response	to	cold,	suggesting	that	natural	selection	may	affect	different	239 

parts	of	the	transcriptional	regulatory	networks	for	these	two	complex	traits.		Specifically,	240 

the	proximal	promoters	of	genes	showing	eGxE	for	drought	had	significantly	higher	241 

nucleotide	diversity	and	significantly	higher	among-genotype	variation	in	key	drought-242 

responsive	promoter	motifs	(abscisic	acid	responsive	elements,	ABREs)	when	compared	to	243 
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genome	averages	(24).		These	earlier	observations	for	eGxE	drought	genes	are	consistent	244 

with	the	results	presented	here:	drought	eGxE	genes	are	in	smaller	modules	and	are	245 

relatively	lowly	connected	to	other	genes,	suggesting	that	genetic	variation	in	expression	246 

response	to	the	environment	is	controlled	locally,	possibly	by	a	large	number	of	cis-acting	247 

variants.	This	architecture	may	permit	functionally	diverse	modules	to	act	independently	248 

from	one	another,	i.e.	showing	environmental	response	in	only	some	genotypes	(32).	Our	249 

results	may	also	explain	why	expression	QTL	(eQTL)	studies	of	drought	response	identify	a	250 

preponderance	of	cis-	acting	eQTL	and	few	trans-	eQTL	(33,	34).		251 

Collectively,	these	observations	suggest	two,	non-exclusive,	hypotheses	for	how	252 

natural	populations	of	plants	adapt	to	variation	in	soil	water	content.	First,	diverse	253 

populations	and	species	acclimate	to	transient	soil	drying	stress	in	diverse	ways	--	via	254 

changes	in	growth,	transpiration,	leaf	area-volume	ratios,	timing	of	reproduction,	cell	wall	255 

composition,	and	synthesis	of	various	osmoprotectants	and	chaperonins,	to	name	but	a	few	256 

(35).	In	this	model,	the	modular	regulatory	architecture	observed	here	reflects	functionally	257 

different	transcriptional	modules	driving	these	different	physiological	responses.	The	258 

extent	to	which	such	physiological	alterations	are	under	independent	or	common	genetic	259 

control	is	presently	unknown.	Second,	because	most	plants	likely	experience	fluctuations	in	260 

water	availability	on	a	daily	or	seasonal	basis	(36-38),	plants	must	maintain	some	degree	of	261 

physiological	response	to	drying.	Conditionally-active	regulatory	alleles	may	therefore	262 

allow	for	fine-tuning	of	response	because	they	could	provide	fitness	benefits	in	one	263 

environment	without	deleterious	consequences	in	second	environment	(“yield-drag”;	264 

(39)).	Indeed,	cis-acting	eGxE	variants	for	drought	response	are	predominantly	variance-265 

changing	(i.e.	conditionally	neutral	or	differentially	sensitive	to	conditions)	rather	than	266 

direction-changing	(33).	Moreover,	the	vast	majority	of	QTL	showing	GxE	in	studies	of	267 

abiotic	stress	are	also	conditionally	neutral,	or	show	differential	sensitivity	to	268 

environmental	cues	(17).		269 

Nucleotide	diversity	in	the	proximal	promoters	of	cold	eGxE	genes	is	also	elevated	270 

but,	in	contrast	to	drought	genes,	not	to	a	degree	that	is	statistically	significant	compared	to	271 

genome	averages	(24).		The	promoters	of	cold	eGxE	genes	exhibit	lower	among-genotype	272 

turnover	of	known	cold-responsive	motifs	compared	to	genome	averages	(specifically,	the	273 

c-repeat	binding	factor/dehydration	responsive	elements,	CRT/DREs).	Along	with	our	274 
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observation	that	cold	eGxE	genes	are	highly	connected	in	the	transcriptional	regulatory	275 

network,	these	patterns	of	sequence	diversity	suggest	that	the	transcriptional	control	of	276 

eGxE	for	cold	acclimation	is	driven	by	genetic	variants	in	upstream	regulatory	features,	277 

such	as	transcription	factors.	Natural	variants	in	transcription	factors	are	expected	to	have	278 

larger	mutational	effect	size	due	to	the	regulatory	influence	of	these	proteins	on	279 

downstream	genes.	280 

It	is	currently	unknown	what	drives	the	apparent	difference	in	the	genetic	281 

architecture	of	natural	variation	in	response	to	drought	compared	to	response	to	cold.	282 

While	daily	or	seasonal	drying	stress	is	likely	experienced	by	A.	thaliana	plants	to	some	283 

degree	across	the	species	range,	severe	cold	stress	is	likely	only	experienced	by	284 

populations	at	higher	latitudes	or	altitudes.		A	recent	study	demonstrated	that	multiple,	285 

apparently	independent,	loss	of	function	mutations	in	key	transcriptional	regulators	of	286 

cold-responsive	genes	are	associated	with	geographic	variation	in	winter	temperature	287 

across	the	range	of	A.	thaliana	(40).	The	activity	of	these	CBF	transcription	factors	shows	a	288 

strong	positive	correlation	with	the	capacity	of	A.	thaliana	natural	accessions	to	acclimate	289 

to	cold	(22,	41,	42).	Perhaps	cold-associated	selective	gradients	involve	sharp	transitions	290 

(along	spatial	and	climatic	gradients)	in	optimal	phenotypes,	with	only	a	few	fitness	optima	291 

for	cold	tolerance	–	manifested	as	cold-tolerant,	functionally	CBF	versus	cold-intolerant,	292 

non-functional	CBF	accessions.	By	contrast,	drought	tolerance	may	be	subject	to	smoother,	293 

more	gradual	selective	gradients,	for	which	many	smaller-effect	variants	allow	fine-tuning	294 

of	response.	295 

	296 

Conclusions	297 

Our	results	suggest	that	topological	relationships	among	genes	in	transcriptional	298 

regulatory	networks	affect	how	natural	populations	adapt	to	the	multivariate	environment.	299 

A	promising	extension	of	our	approach	is	to	link	information	regarding	the	topological	300 

features	of	a	given	gene	–	its	connectivity,	in	the	case	presented	here,	as	well	as	its	301 

membership	in	particular	functional	modules	–	with	information	associating	genetic	302 

variants	with	phenotype	from	genetic	mapping.	Such	a	combined	analysis	could	clarify	how	303 

putatively	functional	variants	identified	via	association	mapping	result	in	phenotypic	304 

variation	via	cellular	and	physiological	mechanisms	(43).	305 
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From	an	applied	perspective,	understanding	how	natural	variation	affects	306 

transcriptional	regulatory	networks	may	inform	decisions	about	how	to	improve	307 

agricultural	performance	in	challenging	environments.	We	note	that	breeding	for	improved	308 

performance	under	soil	drying	has	been	quite	challenging	(44);	our	results	suggest	that	309 

targeting	specific	physiological	mechanisms	by	manipulating	genes	at	the	“tips”	of	310 

regulatory	networks,	shown	herein	to	exhibit	drought	eGxE,	may	be	a	more	fruitful	strategy	311 

than	targeting	central	regulatory	molecules	which	may	exhibit	undesirable	pleiotropic	312 

effects	(“yield	drag;”	e.g.	(45)).		313 

	314 

Methods	315 

Co-expression	and	regulatory	networks	316 

We	used	two	published	datasets	on	gene	expression	interactions	in	in	Arabidopsis	thaliana.	317 

The	first	dataset	was	global	(i.e.	genome-wide	and	not	restricted	to	certain	functions	or	318 

pathways).	We	used	the	global	co-expression	network	and	86	subcomponent	genome-wide	319 

gene	coexpression	networks	created	by	(25).	The	authors	first	obtained	7,105	publicly	320 

available	ATH1	Affymetrix	microarray	samples	and	applied	a	thresholding	algorithm	321 

(random	matrix	theory)	to	generate	a	global	network	containing	3,297	nodes	and	129,134	322 

edges.	These	nodes	represent	16%	of	Arabidopsis	genes	on	the	ATH1.		323 

	324 

A	complication	from	this	approach	arises	because	of	interactions	between	genotype,	325 

expression	networks	and	environment	(including	ontogeny,	tissue,	or	cell	type;	(46)).	Thus	326 

a	prior	step	of	partitioning	expression	data	may	help	to	account	for	some	of	this	327 

heterogeneity	and	better	reveal	co-expression	networks.	Through	k-means	partitioning,	328 

Feltus	et	al.	(25)	generated	86	gene	interaction	layers	(GILs),	i.e.	86	smaller,	non-global	329 

networks,	that	together	included	19,588	genes,	which	represents	95%	of	Arabidopsis	genes	330 

on	the	ATH1.	331 

	332 

Data:	transcriptomic	responses	to	cold	and	drought	stress	333 

We	used	two	published	studies	on	natural	variation	in	transcriptomic	response	to	cold	(22)	334 

and	drought	(23).	Both	studies	used	the	ATH1	microarray	to	estimate	genome-wide	335 

transcript	abundance.	Each	study	subjected	a	diverse	panel	of	9	(22)	or	17	(23)	natural	336 
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accessions	to	a	cold	or	drought	treatment,	respectively.	Lasky	et	al.	(2014)	re-analyzed	the	337 

Hannah	et	al.	dataset	to	match	the	analyses	by	Des	Marais	et	al.	In	brief,	those	authors	338 

modeled	transcript	abundance	using	factorial	ANOVA	including	Accession	(i.e.	Genotype),	339 

Treatment,	and	their	interaction	and	identified	significantly	differentially	expressed	gene	340 

models	at	pFDR	of	0.05.	341 

	342 

Network	Methods	343 

We	quantified	the	degree	to	which	a	gene	was	central	using	four	standard	network	metrics,	344 

1.)	degree	(raw	number	of	connections),	2.)	closeness	centrality	(the	inverse	of	the	average	345 

shortest	path	between	the	focal	gene	and	all	other	genes	in	the	network),	3.)	betweenness	346 

centrality	(number	of	shortest	paths	between	all	pairs	of	nodes	in	the	network,	which	pass	347 

through	the	focal	node),	and	4.)	eigenvector	centrality.		Eigenvector	centrality,	which	is	348 

closely	related	to	Google's	PageRank	algorithm	(47)	measures	a	node's	centrality	based	on	349 

both	the	node's	own	position	in	the	network	and	the	position	of	that	node's	neighbors	in	350 

the	network.		More	specifically,	a	node's	eigenvector	centrality	will	be	proportional	to	the	351 

average	centralities	of	its	neighbors	(26)	352 

	353 

To	identify	community	structure	and	assign	genes	to	communities,	we	used	the	leading	354 

eigenvalue	algorithm.			Our	goal	was	to	determine	whether	there	are	groups	of	genes,	355 

which	are	more	connected	to	each	other	than	they	are	to	other	genes,	referred	to	as	356 

community	detection	(48).	A	variety	of	methods	exist	for	performing	community	detection,	357 

but	we	selected	the	leading	eigenvalue	approach	because	it	is	computationally	efficient	on	358 

large	networks.		Briefly,	the	adjacency	matrix	of	the	network	is	corrected	based	on	the	359 

expected	number	of	edges	in	a	random	graph,	using	the	configuration	model,	then	the	360 

distribution	of	eigenvalues	and	the	loading	of	nodes	onto	eigenvectors	can	be	used	to	1.)	361 

determine	whether	evidence	exists	for	the	presence	of	modular	communities	and	2.)	362 

assuming	such	structure	exists,	assign	genes	to	communities,	see	Newman	2006	for	more	363 

details.		All	of	the	analyses,	i.e.	calculation	of	centrality	measures	and	community	detection,	364 

was	performed	using	the	R	package	igraph	v.1.0.1	(28).	365 

	366 

Enrichment	analyses	367 
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We	tested	whether	genes	with	multiple	types	of	expression	response	to	abiotic	stress	368 

exhibited	non-random	network	metrics.	We	also	tested	whether	genes	exhibiting	high	Fst	369 

exhibited	non-random	network	metrics.	Determining	whether	a	gene	has	a	higher	value	for	370 

any	of	these	metrics	is	not	appropriate	for	parametric	stats.		Therefore,	we	conducted	371 

permutations	to	generate	null	expectations.	The	natural	accessions	used	in	this	study	all	372 

show	varying	degrees	of	sequence	divergence	and	gene	gain/loss	as	compared	to	the	373 

reference	Col-0	genome,	which	was	used	to	generate	the	microarrays	used	in	these	374 

experiments.	This	variance	could	generate	spurious	“gene-by-environment	interaction”	for	375 

gene	expression.	We	therefore	used	a	strict	filtering	scheme	to	exclude	genes	that	had	376 

polymorphisms	in	ATH1	probe	sites	(23).	In	order	to	assess	the	biological	function	of	377 

regulatory	communities,	we	first	identified	communities	containing	the	greatest	378 

proportion	of	GxE	genes	for	each	abiotic	stressor.	We	then	tested	gene	ontology	(GO)	term	379 

enrichment	in	each	of	these	communities	(AgriGO).	380 
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	502 

Figure	Legends	503 

Figure	1	–	Expression	GxE	genes	are	non-randomly	distributed	in	the	Arabidopsis	gene	504 

regulatory	network.	As	a	group,	eGxE	genes	in	drought	conditions	have	significantly	lower	505 

degree	(A)	and	eigenvector	centrality	(C)	than	do	genomic	controls.	As	a	group,	eGxE	genes	506 

in	cold	condition	have	significantly	higher	degree	(B)	and	eigenvector	centrality	(D)	than	507 

do	genomic	controls.	The	solid	line	represents	the	median,	colored	boxes	indicate	the	inter-508 

quartile	range,	and	whiskers	mark	the	entire	range	of	the	data.	509 

	510 

Figure	2	–	Graphical	representation	of	two	sub-communities	of	the	Arabidopsis	gene	511 

regulatory	network	showing	the	sub-community	with	the	highest	over-representation	of	512 

cold	eGxE	genes	(A)	and	the	sub-community	with	the	highest	over-representation	of	513 

drought	eGxE	genes	(B).	Colored	circles	indicate	genes	showing	significant	eGxE	at	514 

pFDR=0.05	from	(23,	24).	515 

	516 

Figure	3	–	Cold	(A)	and	drought	(B)	eGxE	genes	have	different	distributions	across	sub-517 

communities	of	the	gene	regulatory	network.	Cold	eGxE	genes	are	overrepresented	in	two	518 
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large	sub-communities,	each	containing	over	400	total	genes.	Five	smaller	sub-519 

communities	(<100	genes)	are	enriched	for	drought	eGxE	genes.	The	vertical	axis	is	the	520 

difference	between	the	observed	and	expected	number	of	eGXE	genes	in	the	community,	521 

relative	to	the	total	number	of	genes	in	the	community.	Each	sub-community	in	the	analysis	522 

is	shown	with	a	circle	(only	subcommunities	with	ten	or	more	genes	are	included).	Green	523 

circles	indicate	sub-communities	in	which	eGxE	genes	are	significantly	overrepresented,	524 

while	orange	circles	represent	subcommunities	with	significant	underrepresentation	of	525 

eGxE	genes	(Fisher’s	exact	test;	FDR=0.05).		526 

 	527 
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