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Grow with the flow: a latitudinal cline in physiology is
associated with more variable precipitation in Erythranthe

cardinalis

Abstract

Local adaptation is commonly observed in nature: organisms perform well in their natal

environment, but poorly outside it. Correlations between traits and latitude, or latitudinal

clines, are among the most common pieces of evidence for local adaptation, but identifying

the traits under selection and the selective agents is challenging. Here, we investigated

a latitudinal cline in growth and photosynthesis across 16 populations of the perennial

herb Erythranthe cardinalis (Phrymaceae). Using machine learning methods, we identify

interannual variation in precipitation as a likely selective agent: Southern populations

from more variable environments had higher photosynthetic rates and grew faster. We

hypothesize that selection may favor a more annualized life history – grow now rather than

save for next year – in environments where severe droughts occur more often. Thus our

study provides insight into how species may adapt if Mediterranean climates become more

variable due to climate change.

Introduction

Local adaptation has been documented within numerous species; populations generally1

have higher fitness in their native environment, but perform poorly outside it (Schluter,2

2000; Leimu and Fischer, 2008; Hereford, 2009). However, the prevalance of local adapta-3

tion remains difficult to assess because researchers rarely test for local adaptation unless4

there are obvious phenotypic or environmental differences (but see Hereford and Winn5

2008). When local adaptation occurs, it frequently leads to clines in both phenotypes and6
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allele frequencies when selection varies over environmental gradients (Huxley, 1938; Endler,7

1977; Barton, 1999). Phenotypic differences between populations along a cline often have8

a genetic basis and can be studied in a common garden (Turesson, 1922; Clausen et al.,9

1940; Hiesey et al., 1942). Despite a long history of studying local adaptation and clines,10

it remains challenging to identify exactly which traits are under selection and which differ11

for nonadaptive reasons. In particular, the role that physiological differences play in local12

adaptation is poorly understood, despite the fact that physiology is frequently assumed to13

explain adaptation to the abiotic environment. A related problem is identifying which of14

the myriad and often covarying aspects of the environment cause spatially varying selective15

pressures.16

When populations are locally adapted, reaction norms for fitness will cross, such that local17

genotypes have higher fitness than foreign genotypes and rank orders change across envi-18

ronments (Kawecki and Ebert, 2004). The traits that underlie local adaptation, however,19

need not mirror this pattern. Populations can have fixed genetic differences conferring20

trait values that are adaptive at home but neutral or maladaptive away. Alternatively,21

the ability to plastically respond to a particular environment or the magnitude of response22

to an environment could be adaptive. We distinguish between these patterns of adaptive23

trait differences by referring to ‘genetic variation’ in trait means and ‘genetic variation in24

plasticity’, respectively. Genetic variation in plasticity is synonymous with genotype-by-25

environment interactions, or simply (G×E). Genetic variation in trait means and plasticity26

are both involved in adaptation. For example, genetic variation in photoperiod responses27

(Blackman et al., 2011) and developmental rate (Stinchcombe et al., 2004) allow organisms28

to properly time their life history with the local environment. Conversely, sun and shade29

plants do not have intrinsically higher or lower rates of carbon assimilation, but rather,30

genetic variation in plasticity cause sun plants to assimilate more under high light and31

shade plants under low light (Givnish, 1988). In plants especially, we know little about the32

prevalence and adaptive significance of variation in fundamental physiological traits like33
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photosynthesis and their impact on plant performance (Flood et al., 2011).34

A basic approach to identify candidate traits underlying local adaptation is to find asso-35

ciations between traits and environments. Either genetic variation in trait means and/or36

plasticity should vary clinally along environmental gradients. Indeed, clines in ecologically37

important traits are widespread in nature (Endler, 1977) and often adaptive, but in most38

cases the selective agent is unknown. For example, in Drosophila numerous latitudinal39

clines exist for traits like thermal tolerance (Hoffmann et al., 2002), body size (Coyne and40

Beecham (1987) and references therein), and life history (Schmidt et al., 2005). Some41

Drosophila clines have evolved multiple times (Oakeshott et al. (1982); Huey et al. (2000),42

see also Bradshaw and Holzapfel (2001)) or shifted in response to climate change (Umina43

et al., 2005), evincing climatic adaptation. Similarly, plant species exhibit latitudinal clines44

in traits like flowering time (Stinchcombe et al., 2004), cyanogenesis (Kooyers and Olsen,45

2012), leaf morphology (Hopkins et al., 2008; Stock et al., 2014), and drought resistance46

(Kooyers et al., 2015) that likely relate to climatic variation.47

Despite the fact that latitudinal clines have been studied for a long time, latitude per se48

cannot be a selective agent. Latitude may be strongly correlated with one or two key49

climatic variables, such as temperature, precipitation, or growing degree-days. Latitude50

may also correlate with the strength of biotic interactions (Schemske et al., 2009) or other51

nonclimatic aspects of the environment, though as we explain below, we do not yet have52

compelling data that these are important in our study system. Hence, we focus on whether53

latitude could be an effective proxy for an underlying climatic driver, in which case we54

would expect a yet stronger relationship between traits and the key climatic variable(s)55

driving selection. Alternatively, latitude may be more strongly related to traits than any56

single climatic variable for at least two reasons. First, latitude may be correlated with57

several climatic agents of selection that are individually weak, but add up to a strong58

latitudinal cline. Alternatively, gene flow among neighbouring populations could smooth59

out local climatic effects, since alleles will experience selection across populations linked60
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by migration (Slatkin, 1978; Paul et al., 2011; Hadfield, 2016). We refer to this as the61

‘climatic neighborhood’. For example, in mountainous regions average temperature at62

a given latitude varies widely, but in aggregate, a lower latitude set of populations will63

experience warmer climate than a higher latitude one. Thus, any particular low latitude64

population would be warm-adapted, even if it was located in a cooler (e.g. high elevation)65

site. Because many climatic factors vary latitudinally, and which climatic factors vary66

latitudinally changes over the earth’s surface (e.g. coastal vs. continental), dissecting the67

evolution of latitudinal clines across many species will help identify generalities, such as68

whether thermal tolerance maxima or seasonal timing is more important (Bradshaw and69

Holzapfel, 2008), and whether local or regional climate shapes selective pressures.70

In this study, we investigated two major questions: 1) whether genetic variation in physi-71

ological trait means or plasticity corresponds with latitude; and 2) what climatic factor(s)72

could plausibly be responsible for latitudinal clines. Within question 2, we tested three73

hypotheses outlined in the previous paragraph: latitudinal clines are explained by a single74

dominant climatic factor, multiple climatic factors, or the climatic neighborhood expe-75

rienced by nearby population connected through gene flow. These hypotheses are not76

mutually exclusive since, for example, single or multiple factors in a climatic neighborhood77

may lead to latitudinal clines. We focused on climate because climate often determines78

where species are found and also can exert strong selection on populations within species.79

We acknowledge that other abiotic and biotic factors could contribute to selection and80

the overall pattern of local adaptation. Furthermore, there is a compelling need to know81

how populations are (or are not) locally adapted to climate so as to predict how they will82

respond to climate change (Aitken and Whitlock, 2013).83

We examined these questions in Erythranthe cardinalis (formerly Mimulus cardinalis [Ne-84

som 2014]) because linking physiological traits to potentially complex patterns of local85

adaptation requires integrating multiple lines of evidence from comparative, experimental,86

and genomic studies under both lab and field conditions. Many classic and contemporary87

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2017. ; https://doi.org/10.1101/080952doi: bioRxiv preprint 

https://doi.org/10.1101/080952


studies of local adaptation use Mimulus sensu lato species because of their natural his-88

tory, easy propagation, and genetic/genomic resources (Clausen et al., 1940; Hiesey et al.,89

1971; Bradshaw and Schemske, 2003; Wu et al., 2008; Lowry and Willis, 2010; Wright90

et al., 2013). Yet, there is a deficiency of links between local adaptation and physiologi-91

cal mechanisms (Angert, 2006; Angert et al., 2008; Wu et al., 2010; Wright et al., 2013).92

We measured genetic variation in trait means and plasticity in response to temperature93

and drought among 16 populations distributed over 10.7°of latitude. We found a latitudi-94

nal cline of trait means in photosynthesis and growth, but little evidence for variation in95

plasticity. Interannual variation in precipitation and temperature are associated with this96

axis of variation, suggesting that climatic variance rather than mean may be an important97

driver of local adaptation in E. cardinalis. The climatic neighborhoods around populations98

explained trait variation better than local climate, indicating that latitudinal clines may be99

common because latitude integrates effects of selection on populations connected through100

gene flow. We place these findings in the context of life history theory and consider future101

directions in the Discussion.102

Material and Methods103

Data and annotated source code to reproduce these analyses and manuscript are available104

on GitHub (https://github.com/cdmuir/card-cline).105

Population Selection106

E. cardinalis is a perennial forb native to the Western US (California and Oregon). It is107

predomintantly outcrossing, self-compatible, and pollinated primarily by hummingbirds.108

We used 16 populations from throughout the range of E. cardinalis (Table 1). These109

populations were intentionally chosen to span much of the climatic range of the species110
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based on all known occurrences (see below). Seeds were collected in the field from mature,111

undehisced fruit left open for 2-4 weeks to dry, then stored at room temperature. To112

control for maternal effects, we grew a large number of field-derived seeds in the greenhouse113

and generated seed families for this experiment by haphazardly crossing individuals from114

the same population. We selected seed families to maximize the number of field-derived115

individuals represented. Thus, we used seeds from 154 greenhouse-derived seed families,116

4–12 (mean = 9.6, median = 12) families per population.117

Table 1: Latitude, longitude, and elevation (mas = meters above seal level) of 16 focal
populations used in this study.

Name Latitude Longtiude Elevation (mas)

Hauser Creek 32.657 -116.532 799
Cottonwood Creek 32.609 -116.7 267
Sweetwater River 32.9 -116.585 1180
Grade Road Palomar 33.314 -116.871 1577
Whitewater Canyon 33.994 -116.665 705
Mill Creek 34.077 -116.873 2050
West Fork Mojave River 34.284 -117.378 1120
North Fork Middle Tule River 36.201 -118.651 1314
Paradise Creek 36.518 -118.759 926
Redwood Creek 36.691 -118.91 1727
Wawona 37.541 -119.649 1224
Rainbow Creek 37.819 -120.007 876
Middle Yuba River 39.397 -121.082 455
Little Jamison Creek 39.743 -120.704 1603
Deep Creek 41.668 -123.11 707
Rock Creek 43.374 -122.957 326

Plant propagation118

On 14 April, 2014, 3-5 seeds per family were sown directly on sand (Quikrete Play Sand,119

Georgia, USA) watered to field capacity in RLC4 Ray Leach cone-tainers placed in RL98120

98-well trays (Stuewe & Sons, Inc., Oregon, USA). We used pure sand because E. cardinalis121
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typically grows in sandy, riparian soils (A. Angert, pers. obs.). Two jumbo-sized cotton122

balls at the bottom of cone-tainers prevented sand from washing out. Cone-tainers sat in123

medium-sized flow trays (FLOWTMD, Stuewe & Sons, Inc., Oregon, USA) to continuously124

bottom-water plants during germination in greenhouses at the University British Columbia125

campus in Vancouver, Canada (49°15’ N, 123°15’ W). Misters thoroughly wetted the top of126

the sand every two hours during the day. Most seeds germinated between 1 and 2 weeks,127

but we allowed 3 weeks before transferring seedlings to growth chambers. We recorded128

germination daily between one to two weeks after sowing, and every 2-3 days thereafter.129

On 5 May (21 days after sowing), we transferred seedlings to one of two growth chambers130

(Model E-15 Conviron, Manitoba, Canada). We thinned seedlings to one plant per cone-131

tainer, leaving the center-most plant. 702 of 768 (91.4%) had plants that could be used132

in the experiment. We allowed one week at constant, non stressful conditions (day: 20℃,133

night: 16℃) for plants to acclimate to growth chambers before starting treatments. The134

initial size of seedlings, measured as the length of the first true leaves, did not differ between135

populations, families, or treatments (Table S1).136

Temperature and drought treatments137

We imposed four treatments, a fully-factorial cross of two temperature levels and two138

watering levels. The temperature levels closely simulated an average growing season at the139

thermal extremes of the species range, which we designate as Hot and Cool treatments.140

Watering levels contrasted a perennial and seasonal stream, which we refer to as Well-141

watered and Drought treatments. A detailed description of treatments is provided in the142

Supplemental Materials and Methods and summarized in Fig 1. Because growth chambers143

cannot be subdivided, one chamber was assigned to the Hot treatment level and another144

to the Cool treatment level. Within each chamber, there were two Well-watered blocks145

and two Drought blocks. The photosynthetically active radiation in both chambers was146
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approximately 400 µmol quanta m−2 s−1 and set to a 16:8 light:dark cycle to simulate147

summer growing conditions. The growth chambers did not control humidity, but because148

of watering and high plant transpiration rates, the relative humidity was quite high in both149

temperature levels (data not shown). Lower humidity would have made the drought more150

severe, but low soil moisture is stressful in and of itself. The total number of plants in151

each treatment was: ncool,dry = 169; ncool,ww = 174; nhot,dry = 176; nhot,ww = 183. Each152

population had 8–12 individuals per treatment level (mean = 11, median = 11).153

Key treatments and measurements
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Figure 1: Overview of experimental treatments and timing of key trait measurements. All
plants germinated within 21 days of sowing. At that time, we began temperature treatments
(left axis), simulating a typical June-August weather pattern at Hot (red) and Cool (blue) sites.
The bold lines track the average daily temperatures. Within each day, there was a maximum
daytime temperature (top of translucent polygons) and minimum nighttime temperature (bot-
tom of translucent polygons). The drought treatment commenced later by ramping down the
frequency of bottom-watering episodes (dashed black line; right axis), while watering frequency
was maintained in the control treatment (solid black line). Grey boxes on the bottom of the
plot outline the period of key measurements described in the Material and Methods.
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Trait measurements154

We measured five traits in response to temperature and watering treatments (Table 2).155

Table 2: Key traits measured in this study.

Trait Units

Days to germination day
Leaf expansion rate mm day−1

Stem elongation rate cm day−1

Photosynthetic rate µmol CO2 m−2 s−1

Mortality probability of death

Days to germination We tested for population variation in germination rate, measured156

as Days to Germination, using a lognormal survival model fit using the survreg function157

in the R package survival version 2.38 (Therneau, 2015). We treated Population as a fixed158

effect and Family as random effect using a Γ frailty function. Statistical significance of the159

Population effect was determined using analysis of deviance. Note that, unlike other traits160

discussed below, we did not include Block, Treatment, or Population × Treatment inter-161

actions because during germination plants had not been placed into blocks and treatments162

had not yet been applied.163

Growth rate: leaf expansion and stem elongation We measured growth rate dur-164

ing two phases: leaf expansion and stem elongation. Growth measurements were taken165

during the early vegetative stage. We censused leaf length twice per week shortly after166

the emergence of true leaves from 12 May – 12 June (28–59 days after sowing), resulting167

in 10 measurements. We ceased measuring leaf length once it appeared to asymptote and168

growth shifted to stem elongation. We also censused plant height on 7 occasions (twice169

per week) between 29 May and 20 June (45 to 67 days after sowing) until plants began170

to initiate floral buds. Thus all growth measurements occured during the vegetative, pre-171
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reproductive phase. Both leaf expansion and stem elongation were modelled separately172

as second-order polynomials. We used empirical Bayes’ estimates of growth for each indi-173

vidual plant from linear mixed-effects models fit with the R package lme4 version 1.1-12174

(Bates et al., 2015).175

Photosynthesis During the week of 10 to 16 June (57 to 63 days after sowing), we176

measured daytime photosynthetic rate on a subset of 329 plants evenly spread between177

treatments and families within populations. The youngest, fully-expanded leaf acclimated178

for 3 minutes to reach steady state in a 6-cm2 chamber of a LI-COR 6400XT Portable Pho-179

tosynthesis System (LI-COR Biosciences, Lincoln, Nebraska). We made all measurements180

at ambient light (400 µmol m−2 s−1 of photosynthetically active radiation), atmospheric181

CO2 (400 ppm), temperature, and moderate relative humidity. All measurements were182

taken between 9:00 AM and 5:00 PM (3 hours after lights turned on and 5 hours before183

lights turned off). During this period, we suspended normal day-to-day temperature fluc-184

tuations and set daytime temperatures to the average for that period (Cool: 26.5°; Hot:185

36.1°) so that all plants within a temperature level could be measured under the same con-186

ditions. We measured photosynthesis after dry down had progressed to assess differences187

in photosynthetic responses to drought.188

Mortality We assayed mortality during twice-weekly growth measurements. We ana-189

lyzed the probability of surviving until the end of the experiment as a function of popula-190

tion, treatment, and their interactions using a Generalized Linear Mixed Model (GLMM)191

assuming binomially distributed errors. We included Family and Block as random effects.192

We assessed significance of fixed effects using Type-II Analysis of Deviance with Wald χ2
193

tests in the R package car (Fox and Weisberg, 2011).194
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Genetic variation in trait means and plasticity195

For all traits (Table 2) except germination (see above), we tested for Population, Treatment196

(Temperature, Water, and Temperature × Water), and Population × Treatment interac-197

tions (Population × Temperature, Population ×Water, and Population × Temperature ×198

Water). We interpreted significant Population effects to indicate genetic variation in trait199

means and Population × Treatment interactions to indicate genetic variation in plastic-200

ity. As mentioned above, we used survival and GLMM models for germination rate and201

mortality, respectively. For all other traits, we used mixed model ANOVAs with Family202

and Block included as random factors. We fit models using restricted maximum likelihood203

in lmer, a function in the R package lme4 (Bates et al., 2015). We determined significant204

fixed effect terms using a step-wise backward elimination procedure implemented with the205

step function in the R package lmerTest version 2.0-32 (Kuznetsova et al., 2016). We used206

Satterthwaite’s approximation to calculate denominator degrees of freedom for F -tests.207

We also included days to germination as a covariate in growth analyses. To ensure that208

Population and Treatment effects were specific to a particular growth phase, we included209

germination day as a covariate in leaf expansion and stem elongation analyses.210

Failure to detect a significant effect could be the result of Type-2 error, so we complemented211

step-wise ANOVA (see above) by comparing effect sizes calculated in the full model. The212

full model contains all main effects, two-way interactions (Population × Temperature,213

Population × Water), a three-way interaction (Population × Temperature × Water), and214

random effects. For linear mixed-effects models (leaf expansion, stem elongation, and pho-215

tosynthesis) we used mean-squared error as a measure of effect size; for GLMM (mortality)216

we used χ2 as a measure of effect size. We did not include germination rate because no217

Population × Treatment effects were estimated. The difference in effect size of Population218

versus Population × Treatment is:219
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∆Effect SizePop−(Pop×Trt) = Effect SizePop − Effect SizePop×Trt

We calculated ∆Effect SizePop−(Pop×Trt) for all two- and three-way Population × Treat-220

ment interactions for each trait. To determine whether ∆Effect SizePop−(Pop×Trt) was sig-221

nificantly different than 0, we calculated 95% confidence intervals using 1000 parametric222

bootstrap samples simulated from fitted models. If the 95% confidence interval for a given223

∆Effect SizePop−(Pop×Trt), was greater than zero then we concluded that the Population224

effect size was significantly larger than the Population × Treatment effect size, and vice225

versa if the confidence internval was less than zero. If the confidence spanned zero, then226

the effect sizes are not significantly different.227

Principal components of germination, growth, and photosynthesis228

For each single-trait model above, we extracted the Population coefficient (factoring out229

Treatment and other effects). The multivariate distribution of these coefficients was then230

summarized using principal components analysis. The first principal component of these231

traits (TraitPC1) loaded positively with germination, growth, and photostynthetic rate,232

therefore we define this as a phenotypic axis delineating fast to slow growth.233

Identifying putative selective agents234

Latitudinal clines are common, but it is often difficult to ascribe this variation to a par-235

ticular selective agent. To reiterate, we tested three non-mutually exclusive hypotheses236

about how such latitudinal clines emerge: 1) one or two climatic variables explain latitudi-237

nal trait variation; 2) latitude is a proxy for multiple climatic factors that together shape238

trait variation; and 3) latitude integrates selection in a broader climatic neighborhood. We239

found that a population’s position along TraitPC1 correlated strongly with the latitude of240
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origin (see Results) and next used Random Forest regression (Liaw and Wiener, 2002) to241

identify putative climatic factors underlying trait-latitude associations in E. cardinalis. We242

reasoned that if we identified a single climatic factor that explained more trait variation243

than latitude, then this would suggest that factor is a key selective agent underlying the244

latitudinal cline (Hypothesis 1). On the other hand, if multiple climatic factors together245

are necessary to explain trait variation, then this would suggest that many climatic factors246

together have imposed selection for the latitudinal cline (Hypothesis 2). We hereafter refer247

to factors identified in this analysis as ‘Climate-TraitPC1’ variables.248

To test Hypothesis 3 about climatic neighborhoods driving selection, we directly competed249

local with neighborhood climate. The logic is that if the climatic analysis can identify250

candidate climatic factors important for local adaptation, then stronger correlations with251

neighbourhood climate would suggest a role for gene flow. We used the immediate collection252

location for local climate. For climate neighborhoods, we sampled climate at 1000 random253

points (at 90-m resolution) within a 62-km radius buffer around the collection and took the254

average. We chose this buffer radius based on population genetic structure, as inferred from255

≈25,000 restriction-site associated SNPs among 49 populations from across the range (Paul256

et al., In review). Spatial autocorrelation in allele frequencies persists for 62 km. However257

radii of 10 km2 and 100 km2 resulted in similar outcomes (data not shown). Since E.258

cardinalis is found exclusively in riparian areas, we only selected points along streams using259

the National Hydrogeoraphy Dataset (United States Geological Survey, 2015). Climatic260

means and variances (see below) were weighted by their climatic suitability as determined261

using a multimodel ensemble average of ecological niche models (Angert et al., 2016).262

In addition to competing local and neighborhood climate, we compared the univariate263

correlation between local and neighborhood climate with TraitPC1 and Latitude using264

paired t-tests. We adjusted degrees of freedom to account for the fact that many climatic265

factors are highly correlated and not independent. Specifically, we calculated the effective266

number of independent climatic factors (Meff) using the formula Meff = 1 + (M − 1)(1 −267
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Var(λ)/M) (Chevrud, 2001), where M is the original number of climatic factors and λ are268

the eigenvalues of the correlation matrix of all climatic factors.269

To help eliminate potentially spurious correlations between TraitPC1 and climate, we tested270

for overlap between climatic variables that best predict latitude of all E. cardinalis occur-271

rence records (see detail below), not just the 16 focal populations. We refer to these climatic272

factors as ‘Climate-Latitude’ variables. The logic is that climatic factors associated with273

both TraitPC1 and latitude for all populations are more likely to be important selective274

agents than climatic factors that happen to correlate with TraitPC1 but do not covary with275

latitude throughout the E. cardinalis range. If a climatic factor is driving the latitudinal276

cline in TraitPC1, then we expect that climatic factor will correlate strongly with lati-277

tude of occurrence localities. Therefore, we did not consider Climate-TraitPC1 variables278

to be candidate selective agents unless the same or very similar variable was found in the279

Climate-Latitude analysis. However, we do not interpret potential selective agents iden-280

tified in Climate-Latitude analyses alone, because the goal was to explain the latitudinal281

clines in traits, not all aspects of climate that vary with latitude.282

We selected Climate-Latitude and Climate-TraitPC1 variables independently using Vari-283

able Selection Using Random Forest (VSURF) algorithm in the R package VSURF version284

1.0.3 (Genuer et al., 2016). Random Forest regression is useful for cases like ours when285

the number of potential predictors is similar to or greater than the number of observations286

(‘high p, low n’ problem). VSURF is a multistep algorithm that progressively retains or287

eliminates variables based on their importance over regression trees in the forest. Variable288

importance is defined as the average amount a climate variable reduces mean-squared er-289

ror in the predicted response (TraitPC1 or Latitude), compared to a randomly permuted290

dataset, across all trees in the random forest (see Genuer et al. [2015] for further detail).291

Hence, VSURF automatically eliminates unimportant and redundant variables based on292

the data without having to arbitrarily choose among colinear climate variables before the293

analysis. We kept only variables selected for prediction, the most stringent criterion. We294
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visually depict how we selected climatic variables in Fig 2.295

For Climate-Latitude analyses, we compiled a representative set of 356 recent (since 2000)296

known E. cardinalis occurrences from a comprehensive set of herbarium records and an297

exhaustive field survey in 2010-11 (Angert et al., 2016). These occurrences were thinned298

by 50% to correct for uneven sampling. For both Climate-TraitPC1 analyses (16 focal299

populations) and Climate-Latitude (many populations), we used a 90-m digital elevation300

model from HydroSHEDS (Lehner et al., 2006) to extract elevation. Monthly interpolated301

climate layers were calculated using ClimateWNA version 5.30 (Wang et al., 2012), which302

accurately downscales climate data specifically for the rugged topography of western North303

America. For each occurence, we calculated bioclimatic variables using the biovars function304

in the R package dismo version 1.1-1 (Hijmans et al., 2016). We included 24 climatic305

factors, 9 from ClimateWNA and 15 bioclimatic variables (Table S2). The bioclimatic306

variables included all permutations of two climatic factors, temperature and precipitation,307

and six temporal scales (annual average, coldest quarter, warmest quarter, wettest quarter,308

driest quarter, or seasonality) as well as mean diurnal range, isothermality, and annual309

temperature range. For each variable, we calculated both a 30-year normal by averaging310

annual values between 1981 and 2010 and 30-year coefficient of variation, a standardized311

metric of interannual climatic variation. Temperatures were converted to Kelvin to be312

on a ratio scale appropriate for calculating the coefficient of variation (CV). In total, the313

VSURF algorithm selected among 96 climate variables: 24 climatic factors × 2 types (30-314

year average and CV) × 2 spatial scales (local and neighborhood).315
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Results316

A coordinated latitudinal cline in germination, growth, and photosynthe-317

sis318

There are strong genetically-based trait differences in time to germination, growth, and319

photosynthetic rate among populations of E. cardinalis, as evidenced by large and signif-320

icant population effects for these traits (Table 3). A single principal component captured321

71.6 % of the trait variation among populations, defining an axis of variation from fast to322

slow growth. A population’s position along this axis strongly covaried with its latitude of323

origin; southern populations grew faster than northern populations (Fig 3). There were324

similar latitudinal clines for individual traits underlying PC1 (Figures S1 to S4).325

Table 3: Summary of Population, Treatment, and Population × Treatment effects. We used
different statistical modeling for the diverse traits assayed – glmer: generalized linear mixed
model using the R package lme4 (Bates et al., 2015); lmer: linear mixed model using the
R package lme4 (Bates et al., 2015); survreg: survival regression using the R package sur-
vival (Therneau, 2015). Note that temperature and water treatments were imposed after
germination, hence are not applicable to this trait. Complete analysis of variance/deviance
tables for each trait are available in the Supporting Information. Key to statistical significance:
*P < 0.05; ** P < 0.01; *** P < 0.001

Trait Germination Leaf expansion Stem elongation Photosynthesis Mortality
Statistical model survreg lmer lmer lmer glmer

Population *** *** *** ***
Temperature NA *** *** ** ***
Water NA * ***
Pop × Temp NA *
Pop × Water NA *
Temp × Water NA ***
Pop × Temp × Water NA
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Little evidence for variation in plasticity326

In contrast to the genetic variation in trait means described above, we found little evidence327

of G×E in E. cardinalis. There were only two statistically significant Population × Treat-328

ment interactions (Table 3, Fig. S5), but these were not strong compared to Population329

and Temperature effects. Otherwise, populations responded similarly to treatments: faster330

growth in the hot treatment, slower growth in the dry treatment, and high mortality in331

the hot, dry treatment (Table 3). Complete ANOVA tables are available in the Supporting332

Information (Tables S3 to S6).333

The effect size of Population was significantly larger than that for Population × Treat-334

ment interactions (Fig. S6) in most cases. For leaf expansion, Population had a signifi-335

cantly larger effect size than Population × Treatment interactions in 2 of 3 comparisons336

(Fig. S6A). For stem elongation (Fig. S6B) and mortality (Fig. S6D), Population effect337

sizes were significantly larger than all Population × Treatment interactions. For Photosyn-338

thesis, Population and Population × Treatment effect sizes were not significantly different339

(Fig. S6C), presumably because we had a smaller sample size.340

Neighborhood climatic variability best explains latitudinal cline341

Interannual variation in climate averaged over each populations’s climatic neighborhood342

correlated most strongly with trait variation and latitude of E. cardinalis occurrences343

(Fig. 4, Table S7). All 16 Climate-Latitude and 3 Climate-TraitPC1 variables were neigh-344

borhood rather than local variables (Fig. 4). In fact, neighborhood climate almost always345

correlated better with TraitPC1 and Latitude than local climate (Fig. 5). On average,346

neighborhood Climate-TraitPC1 correlation coefficients were 0.16 higher than correlations347

with local-scale climate variables (paired t-test, t = 7.87, d.f. = 33.6, P = 3.94 × 10−9).348

Likewise, neighborhood Climate-Latitude correlation coefficients were 0.13 higher than349
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those for local-scale climate (paired t-test, t = 6.71, d.f. = 36.8, P = 7.22× 10−8). Among350

Climate-Latitude and Climate-TraitPC1 variables, neighborhood climatic variability over351

30 years (1981–2010) in either winter precipitation (bio16σ) and/or temperature (bio11σ)352

are the strongest candidates to explain the latitudinal cline in E. cardinalis (see Table S2353

for a key to climate variable abbreviations). Note that the coefficient of variation of a354

climatic factor is subscripted with σ whereas the mean is subscripted with µ. More specif-355

ically, greater winter precipitation variability and lower winter temperature variability are356

associated with Southern latitudes and higher TraitPC1 values (Fig. 6A,B). Neighborhood357

interannual variation in winter precipitation (bio16σ) was the most important Climate-358

Latitude variable (Fig. 4A). However, neighborhood bio16σ did not overlap with Climate-359

TraitPC1 variables (Fig. 4B). We nevertheless consider it a plausible candidate for two360

reasons. First, neighborhood bio16σ correlated strongly with TraitPC1 (Fig. 6A). Second,361

one of the most important Climate-TraitPC1 variables (neighborhood bio15σ; Fig. 6B,C)362

is very similar to bio16σ. In Mediterranean climates like California, most precipitation363

occurs in the wettest quarter (winter), so years with low winter precipitation also have364

low precipitation seasonality. Hence, highly variable year-to-year winter precipitation at365

lower latitude (Fig. 6D) is closely associated with large swings in precipitation seasonality366

(Fig. 6C).367

Interannual variation in temperature of the coldest quarter (neighborhood bio11σ) is an-368

other plausible candidate because it was the only variable in both Climate-Latitude and369

Climate-TraitPC1 analyses (Fig. 4). Neighborhood bio11σ explained more variation in370

TraitPC1 than latitude (latitude r2 = 0.55 vs. bio11σ r
2 = 0.6; Fig. S7), whereas neigh-371

borhood bio16σ did slightly worse (bio16σ r
2 = 0.49). Models using bio15σ or bio11σ to372

predict TraitPC1 also had significantly lower Akaike Information Criteria (AIC) than the373

latitude model (AIC of different models – bio15σ: 48.5; bio11σ: 52.4; latitude: 54.5). The374

best two-factor model including both neighborhood bio15σ and bio11σ did not significantly375

improve explanatory power (r2 = 0.71, AIC= 49.2). In summary, either variation in precip-376
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itation or temperature seasonality may be important selective agents, but there is no strong377

evidence that they are both important. The most important Climate-TraitPC1 variable,378

neighborhood variation in mean diurnal range (bio2σ; Fig. 4B) did not have any obvious379

similarity to Climate-Latitude variables. Given the large number of potential associations,380

we therefore think this may be a spuriously strong relationship.381

Discussion382

We found evidence for one of two common signatures of local adaptation in the perennial383

herb Erythranthe cardinalis. Latitudinal clines in germination rate, photosynthesis, and384

growth suggest adaptive differentiation in important physiological traits of the species.385

However, we caution that these are candidate adaptive traits and that we cannot yet rule386

out nonadaptive demographic processes such as a recent range expansion toward higher lat-387

itude (Paul et al., In review; Sheth and Angert, 2017). In contrast, we found little evidence388

for variation in plasticity to temperature or drought. Due to low replication within families,389

we did not have power to assess within-population genotype-by-environment interactions,390

which may be present. As we discuss below, low variation in plasticity among popula-391

tions may indicate that some dimensions of the fundamental abiotic niche are relatively392

conserved. Note that statistical power to detect significant plasticity is lower than that393

for differences in trait means, but the effect size of variation in plasticity was significantly394

less than that for trait means in most cases (Fig. S6). Finally, our results suggest that395

neighborhood-scale climate and interannual variation are more important selective agents396

than local averages. In the paragraphs that follow, we tie these results into the broader397

threads of evolutionary theory that might help explain why variation in physiological trait398

means changes clinally, whereas plastic responses to temperature and drought are relatively399

static. One caveat to bear in mind is that we are limited by the size of the climate grid400

(≈ 90 m2) and therefore unable to detect very fine-scale local adaptation.401
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Evolutionary theory indicates that the shape of fitness tradeoffs, demography, and gene flow402

can constrain adaptation (Levins, 1968; Ronce and Kirkpatrick, 2001; Lenormand, 2002)403

and hence the type of variation maintained within species. Specifically, adaptive variation404

can be maintained by spatially varying selection if tradeoffs are not too strong, demography405

is symmetric, and/or maladaptive gene flow is low. Strong tradeoffs can prevent local406

adaptation in spatially variable environments because selection favors habitat specialists407

that track a specific habitat regardless of its frequency in the environment (Levins, 1968).408

For example, a riparian specialist may experience similar selection in rivers of high rainfall409

regions and deserts, even though the habitat is much rarer in the latter. In E. cardinalis we410

found substantial genetically based variation among populations along a phenotypic axis411

from fast to slow growth that varied over a large spatial scale (Fig. 3). If this variation412

is adaptive, it suggests one of several possibilities to investigate in the future: the fitness413

tradeoff between low versus high latitude environments is not too strong nor swamped414

by demographic asymmetry or maladaptive gene flow. That is, alleles favoured at one415

latitude are not strongly selected against when they flow to another population, allowing416

locally adaptive genetic variation to be maintained by spatially heterogeneous selection.417

We also know from previous work that population size does not vary strongly with latitude418

(Angert, unpub. data). Gene flow appears to be high, but attenuates at broad spatial419

scales, especially between southern (< 35°N) and northern portions of the range (Paul420

et al., In review).421

Nevertheless, local gene flow from similar environments may shape how selection varies422

with latitude. Theory predicts that populations will not be perfectly adapted to their423

immediate habitat when there is gene flow from surrounding populations with different424

optima (Lenormand, 2002). With spatial heterogeneity and gene flow, traits will not covary425

perfectly with the local optimum (Slatkin, 1978; Paul et al., 2011; Hadfield, 2016), but426

should instead better match the average environment experienced by nearby populations427

connected through gene flow, which we refer to as the climatic neighborhood. Gene flow428
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and spatial heterogeneity may therefore be important in maintaining genetic variation429

(Yeaman and Jarvis, 2006). As this hypothesis predicts, climatic neighborhoods (62-km430

buffer around populations) correlated with traits and latitude of occurrences better than431

local climate (Fig. 4). We interpret this as suggestive evidence that gene flow between432

neighboring E. cardinalis populations shapes selection – populations are locally adapted to433

prevailing climate in their neighborhood, but perhaps not perfectly adapted to their local434

climate. This may not greatly constrain local adaptation because local and neighborhood435

climate values were generally similar in E. cardinalis populations (Fig. 5), at least at the436

resolution of ClimateWNA (90 m2). Therefore, we would predict in reciprocal transplants437

that populations whose local climate is farther from their neighborhood average would be438

less well adapted than those close to their neighborhood average.439

It is reasonable to predict that southern populations, which appear to experience more440

frequent drought years (see below), might have physiological adaptations to respond to441

drought stress to survive and grow in drier soil. We found little evidence for this type of442

drought tolerance; all populations responded to drought and temperature similarly (Ta-443

ble 3). Plants grew faster in the Hot treatment, but there was little effect of drought on444

growth. Rather, the effects of drought took longer to materialize but resulted in high mor-445

tality, especially in the Hot treatment. However, there was no differential mortality among446

populations in this treatment. Although our results indicate that this axis of the species447

niche may be constrained, plants have multiple ways to resist drought through both toler-448

ance and escape (Ludlow, 1989; Kooyers, 2015). Next, we consider why drought tolerance449

may less important in local adaptation than a form of escape for this species.450

We hypothesize that tolerance to dry soil may be constrained by a combination of strong451

fitness tradeoffs, demographic asymmetry, and gene flow. Soil moisture in riparian habitats452

where E. cardinalis lives is highly heterogeneous at very small spatial scales (several me-453

ters). Plants in the stream never have to tolerate drought whereas plants only a few meters454

away may experience extreme drought since there is little direct precipitation during the455
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growing season in Mediterranean climates of western North America. We hypothesize that456

alleles confering greater drought tolerance may be quite costly in well-watered soils, and457

vice versa, leading to strong fitness tradeoffs. Such tradeoffs would promote specialization458

to one soil moisture or another, thereby inhibiting the evolution of broad environmental tol-459

erance within a population. Demography and gene flow may reinforce niche conservatism.460

A new mutant with increased drought tolerance that could survive at the resource-poor461

margin of a population would likely be demographically overwhelmed by the larger census462

populations that can be maintained in higher-resource environments. Infrequent wet years463

may also produce most seeds, so selection is weighted towards alleles that have high fit-464

ness in the wet environment, even if dry years are more frequent (Templeton and Levin,465

1979; Brown and Venable, 1986). However, demographic asymmetry should equally hin-466

der the evolution of both drought tolerance and escape, so it should not explain why one467

mechanism evolves but not the other. Finally, gene flow, which is generally high among468

E. cardinalis populations within the same ecoregion (Paul et al., In review), will thwart469

local adaptation and reinforce specialization. Thus, the spatial grain of the environment,470

demographic asymmetry, and gene flow may conspire to constrain local adaptation along471

this environmental axis. Consistent with this hypothesis, recent record-setting droughts472

have caused the decline or even local extinction of some natural populations of E. cardinalis473

(Sheth and Angert, 2017).474

In sum, these results indicate that genetic differences in physiology and growth are better475

candidates than plastic responses to temperature and drought as mediators of local adap-476

tation to climate in E. cardinalis. Next, we would like to understand why variation in477

these particular traits may be adaptive. We argue that temporally more variable environ-478

ments, as experienced by southern populations, select for a more ‘annualized’ life-history479

strategy, a form of drought escape. Demographic observations in natural populations of E.480

cardinalis reveal that southern populations tend to flower earlier at a smaller size, while481

northern populations invest more in vegetative growth (Sheth and Angert, 2017). In this482
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experiment, the fastest growing plants began producing flowers in ∼ 60 days (data not483

shown), suggesting that rapid vegetative develop may likewise affect flowering time. The484

association between position along the ‘fast-slow’ continuum and associated traits in E.485

cardinalis is similar to interspecific relationships between growth, functional traits, and486

life history (Adler et al., 2014; Salguero-Gómez et al., 2016). However, we cannot exclude487

unexplored factors (e.g. edaphic conditions, competitors, pollinators, etc.) which may also488

contribute to the latitudinal cline.489

Greater investment in aboveground growth, as opposed to belowground storage for future490

seasons, may be favoured in climates with more frequent drought years, but maladaptive491

in climates with more consistent precipitation. In a stable environment where winter492

survivorship is assured in most years, failure to store resources may reduce lifetime fitness.493

But for perennial herbs in Mediterranean climates, a dry winter (rainy season) can kill the494

rhizomes (underground stems that store nutrients for future growth) before emergence or495

aboveground stems before flowering. If drought years occur frequently enough, selection496

may favour the fast-growing strategy because there is no advantage to storage if drought497

kills plants before flowering. Considering life-history strategy as a continuum from no498

storage (annual) to lots of storage (perennial), we hypothesize that the optimal allocation to499

aboveground growth is more ‘annualized’ in southern climates that have greater interannual500

variation in precipitation.This is a form of drought escape in that plants are investing more501

reproduction in the present to avoid possible drought in subsequent years, but is distinct502

from classic drought escape syndromes in which plants speed up development early in the503

season before the onset of drought.504

The hypothesis that greater precipitation variability selects for an annualized life history is505

tentative, but consistent with theory and data from other species. Life history theory shows506

that less variable environments are one factor that favours the evolution of perenniality507

(Stearns, 1976; Iwasa and Cohen, 1989; Friedman and Rubin, 2015). Populations of the508

perennial Plantago asiatica show a similar latitudinal cline in growth and allocation to509
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storage (Sawada et al., 1994) but attribute the cline to variation in growing season length.510

There are also life history clines in the closely related species E. guttata, but the underlying511

traits and climatic drivers are quite different. Annual E. guttata flower sooner and produce512

fewer stolons in response to climates with shorter seasons and more intense summer drought513

(Lowry and Willis, 2010; Friedman et al., 2015; Kooyers et al., 2015). In contrast, there are514

no truly annual (monocarpic and semelparous) populations of E. cardinalis. Rather, our515

hypothesis states that climatic variability selects on quantitative variation in allocation to516

growth versus storage.517

In summary, we found evidence for a coordinated latitudinal cline in germination rate,518

photosynthesis, and growth, suggesting local adaptation. We therefore predict to find dif-519

ferent optima for these traits in different climates. We did not find evidence that the520

relative performance of populations shifts with temperature or watering regime, suggesting521

relatively little variation in plasticity. Exploratory analysis implicate that more variable522

precipitation regimes at lower latitude could drive much of the latitudinal cline, though523

other climatic factors could also contribute. Interestingly, the climatic neighborhood may524

shape selective pressures more than local climate. In the future, we will use field exper-525

iments to test whether greater variation in precipitation selects for faster growth and if526

selection on temperature/drought responses does not vary among populations. By doing527

so, we aim to understand why certain physiological and developmental mechanisms, but528

not others, contribute to local adaptation.529
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Bates, D., M. Mächler, B. Bolker, and S. Walker, 2015. Fitting linear mixed-effects545

models using lme4. Journal of Statistical Software 67:1–48. URL http://CRAN.R-546

project.org/package=lme4. R package version 1.1-7.547

Blackman, B. K., S. D. Michaels, and L. H. Rieseberg, 2011. Connecting the sun to548

flowering in sunflower adaptation. Molecular Ecology 20:3503–3512.549

Bradshaw, H. and D. W. Schemske, 2003. Allele substitution at a flower colour locus550

produces a pollinator shift in monkeyflowers. Nature 426:176–178.551

Bradshaw, W. and C. Holzapfel, 2008. Genetic response to rapid climate change: it’s552

seasonal timing that matters. Molecular ecology 17:157–166.553

Bradshaw, W. E. and C. M. Holzapfel, 2001. Genetic shift in photoperiodic response corre-554

lated with global warming. Proceedings of the National Academy of Sciences 98:14509–555

14511.556

Brown, J. S. and D. L. Venable, 1986. Evolutionary ecology of seed-bank annuals in557

temporally varying environments. The American Naturalist 127:31–47.558

26

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2017. ; https://doi.org/10.1101/080952doi: bioRxiv preprint 

https://doi.org/10.1101/080952


Chevrud, J., 2001. A simple correction for multiple comparisons in interval mapping genome559

scans. Heredity 87:52–58.560

Clausen, J., D. Keck, and W. Hiesey, 1940. Experimental studies on the nature of species.561

I. The effects of varied environments on western American plants, vol. 520. Carnegie562

Institution of Washington, Washington, D.C.563

Cleveland, W. S., E. Grosse, and W. M. Shyu, 1992. Local regression models. Statistical564

models in S Pp. 309–376.565

Coyne, J. A. and E. Beecham, 1987. Heritability of two morphological characters within566

and among natural populations of Drosophila melanogaster. Genetics 117:727–737. URL567

http://www.genetics.org/content/117/4/727.568

Endler, J., 1977. Geographic variation, clines, and speciation. Princeton University Press,569

Princeton, NJ.570

Flood, P. J., J. Harbinson, and M. G. M. Aarts, 2011. Natural genetic variation in plant571

photosynthesis. Trends in Plant Science 16:327–335.572

Fox, J. and S. Weisberg, 2011. An R Companion to Applied Regression. Second ed. Sage,573

Thousand Oaks CA.574

Friedman, J. and M. J. Rubin, 2015. All in good time: Understanding annual and perennial575

strategies in plants. American Journal of Botany 102:497–499.576

Friedman, J., A. D. Twyford, J. H. Willis, and B. K. Blackman, 2015. The extent and577

genetic basis of phenotypic divergence in life history traits in Mimulus guttatus. Molecular578

Ecology 24:111–122.579

Genuer, R., J.-M. Poggi, and C. Tuleau-Malot, 2015. VSURF: An R package for variable580

selection using random forests. The R Journal 7:19–33.581

———, 2016. VSURF: Variable Selection Using Random Forests. URL http://CRAN.R-582

27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2017. ; https://doi.org/10.1101/080952doi: bioRxiv preprint 

https://doi.org/10.1101/080952


project.org/package=VSURF. R package version 1.0.3.583

Gilbert, P., 2014. Brief User’s Guide: Dynamic Systems Estimation. URL http://cran.r-584

project.org/web/packages/dse/vignettes/dse-guide.pdf.585

Givnish, T. J., 1988. Adaptation to sun and shade: a whole-plant perspective. Functional586

Plant Biology 15:63–92.587

Hadfield, J. D., 2010. Mcmc methods for multi-response generalized linear mixed mod-588

els: The MCMCglmm R package. Journal of Statistical Software 33:1–22. URL589

http://www.jstatsoft.org/v33/i02/.590

———, 2016. The spatial scale of local adaptation in a stochastic environment. Ecology591

Letters 19:780–788.592

Hereford, J., 2009. A quantitative survey of local adaptation and fitness trade-offs. The593

American Naturalist 173:579–588.594

Hereford, J. and A. A. Winn, 2008. Limits to local adaptation in six populations of the595

annual plant Diodia teres. New Phytologist 178:888–896.596

Hiesey, W., M. Nobs, and O. Björkman, 1971. Experimental studies on the nature of597

species. V. Biosystematics, genetics, and physiological ecology of the Erythranthe section598

of Mimulus, vol. 628. Carnegie Institution of Washington, Washington, D.C.599

Hiesey, W. M., J. Clausen, and D. D. Keck, 1942. Relations between climate and intraspe-600

cific variation in plants. American Naturalist Pp. 5–22.601

Hijmans, R. J., S. Phillips, J. Leathwick, and J. Elith, 2016. dismo: Species distribution602

modeling. URL http://CRAN.R-project.org/package=dismo. R package version 1.1-1.603

Hoffmann, A. A., A. Anderson, and R. Hallas, 2002. Opposing clines for high and low604

temperature resistance in Drosophila melanogaster. Ecology Letters 5:614–618.605

Hopkins, R., J. Schmitt, and J. R. Stinchcombe, 2008. A latitudinal cline and response to606

28

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2017. ; https://doi.org/10.1101/080952doi: bioRxiv preprint 

https://doi.org/10.1101/080952


vernalization in leaf angle and morphology in Arabidopsis thaliana (Brassicaceae). New607

Phytologist 179:155–164.608

Huey, R. B., G. W. Gilchrist, M. L. Carlson, D. Berrigan, and L. Serra, 2000. Rapid609

evolution of a geographic cline in size in an introduced fly. Science 287:308–309.610

Huxley, J. S., 1938. Clines: an auxiliary taxonomic principle. Nature 142:219–220.611

Iwasa, Y. and D. Cohen, 1989. Optimal growth schedule of a perennial plant. American612

Naturalist 133:480–505.613

Kawecki, T. J. and D. Ebert, 2004. Conceptual issues in local adaptation. Ecology Letters614

7:1225–1241.615

Kooyers, N. J., 2015. The evolution of drought escape and avoidance in natural herbaceous616

populations. Plant Science 234:155–162.617

Kooyers, N. J., A. B. Greenlee, J. M. Colicchio, M. Oh, and B. K. Blackman, 2015. Repli-618

cate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought619

stress in annual Mimulus guttatus. New Phytologist 206:152–165.620

Kooyers, N. J. and K. M. Olsen, 2012. Rapid evolution of an adaptive cyanogenesis cline621

in introduced north american white clover (Trifolium repens L.). Molecular Ecology622

21:2455–2468.623

Kuznetsova, A., P. Bruun Brockhoff, and R. Haubo Bojesen Christensen, 2016.624

lmerTest: Tests in Linear Mixed Effects Models. URL http://CRAN.R-625

project.org/package=lmerTest. R package version 2.0-32.626

Lehner, B., K. Verdin, and A. Jarvis, 2006. HydroSHEDS technical documentation. World627

Wildlife Fund, Washington, D.C. URL www.worldwildlife.org/hydrosheds.628

Leimu, R. and M. Fischer, 2008. A meta-analysis of local adaptation in plants. PLoS One629

3:e4010–e4010.630

29

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2017. ; https://doi.org/10.1101/080952doi: bioRxiv preprint 

https://doi.org/10.1101/080952


Lenormand, T., 2002. Gene flow and the limits to natural selection. Trends in Ecology &631

Evolution 17:183–189.632

Levins, R., 1968. Evolution in changing environments: some theoretical explorations.633

Princeton University Press, Princeton, New Jersey.634

Liaw, A. and M. Wiener, 2002. Classification and regression by randomforest. R News635

2:18–22. URL http://CRAN.R-project.org/doc/Rnews/.636

Lowry, D. B. and J. H. Willis, 2010. A widespread chromosomal inversion polymorphism637

contributes to a major life-history transition, local adaptation, and reproductive isola-638

tion. PLoS biology 8:2227.639

Ludlow, M. M., 1989. Strategies of response to water stress. Pp. 269–281, in K. H. Kreeb,640

H. Richter, and T. M. Hinckley, eds. Structural and functional responses to environmental641

stresses. SPB Academic, The Hague, The Netherlands.642

Nesom, G. L., 2014. Taxonomy of Erythranthe sect. Erythranthe (phrymaceae). Phytoneu-643

ron 31:1–41.644

Oakeshott, J., J. Gibson, P. Anderson, W. Knibb, D. Anderson, and G. Chambers, 1982.645

Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila646

melanogaster on different continents. Evolution Pp. 86–96.647

Paul, J. R., T. L. Parchman, B. Econopouly, C. A. Buerkle, and A. L. Angert, In review.648

Population genomics and range limits: diversity and differentiation across the geographic649

range of Mimulus cardinalis (Phyrmaceae) .650

Paul, J. R., S. N. Sheth, and A. L. Angert, 2011. Quantifying the impact of gene flow651

on phenotype-environment mismatch: A demonstration with the scarlet monkeyflower652

Mimulus cardinalis. The American Naturalist 178:S62–S79.653

Pfaff, B., 2008. VAR, SVAR and SVEC models: Implementation within R package vars.654

Journal of Statistical Software 27:1–32.655

30

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2017. ; https://doi.org/10.1101/080952doi: bioRxiv preprint 

https://doi.org/10.1101/080952


Ronce, O. and M. Kirkpatrick, 2001. When sources become sinks: migrational meltdown656

in heterogeneous habitats. Evolution 55:1520–1531.657
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Figure 2: Overview of method for identifying putative climatic selective agents underlying
latitudinal cline. We looked for climate variables that explained both the latitude of 356 E.
cardinalis occurrences (‘Climate-Latitude variables’) and traits (‘Climate-Trait variables’). For
Climate-Latitude variables we extracted climate data from recent occurrences located through-
out California and Oregon, USA (shown in map). For Climate-Trait variables, we extracted
climatic data for the 16 focal populations. For both analyses, we extracted local and neighbor-
hood climate. Local climate refers to climate only from where a population was collected (xi,0).
Neighborhood climate was calculated as the average over 1000 points in a 62-km radius cli-
matic neighborhood (xi,1, xi,2, . . . ), but only along stream habitats as E. cardinalis is riparian.
We identified climatic factors that most strongly predicted latitude of occurrences (Climate-
Latitude variables) and traits (Climate-Trait variables), as shown for hypothetical data in plots
at the bottom of the figure.
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Figure 3: Trait variation, from fast to slow growth, is closely associated with latitude. Each
point is a population’s latitude of origin (x-axis) and position along the slow to fast growth axis
(y-axis), defined as Principal Component 1 of four traits (see Material and Methods). The line
and 95% confidence intervals were estimated using linear regression.
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Figure 4: Climatic variation integrated over climatic neighborhood is closely correlated with
latitude of E. cardinalis and trait variation. A. Using Random Forest regression, we identified
16 climatic variables significantly (high importance) associated with latitude of E. cardinalis
occurrences. B. Only one of of the most important Climate-Latitude variables (in bold) was
among the most important Climate-TraitPC1 variables. Variable importance is defined as
the average amount a climate variable reduces mean-squared error in the predicted response
(TraitPC1 or Latitude), compared to a randomly permuted dataset, across all trees in the
random forest (see Genuer et al. [2015] for further detail). Note that the Importance values
in A and B are not comparable because the dependent variables (Latitude and Trait PC1,
respectively) are on different scales. Climatic variables (left of A; right of B) are defined by
four qualities: Climatic factor – Temperature (Temp), Precipitation (Prec), Heating degree-
days (Heating), Snow (precipitation as snow); Temporal scale – Annual, Coldest quarter (Cold
Quar), Warmest Quarter (Warm Quar), Wettest quarter (Wet Quar), Driest Quarter (Dry
Quar), or Seasonality; Type – 30-year average (Avg.) or coefficient of variation (Var.); Spatial
scale – local or 62-km radius climatic neighborhood.
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Figure 5: Neighborhood climate predicts TraitPC1 (‘Climate-trait’, panel A) and Latitude of
occurences (‘Climate-latitude’, panel B) better than local climate. Each point is the absolute
value of the Pearson correlation coefficient (|r|) between TraitPC1 (A) or latitude (B) for 24
climatic factors, for which we used both the 30-year mean (closed circles) and coefficient of
variation (open circles). Most points lie above the 1:1 line, indicating stronger correlations with
neighborhood compared to local climate. Neighborhood climate was integrated over a 62-km
radius around focal populations (see text for further detail).
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Figure 6: Variation in precipitation is correlated with TraitPC1 and latitude. A. Greater values
of TraitPC1 are associated with greater interannual variation in precipitation of the wettest quar-
ter. This was the most important Climate-Latitude variable, but not among the most important
Climate-TraitPC1 variables. B. However, a closely related parameter, interannaul variation in
precipitation seasonality, was among the most important Climate-TraitPC1 variables. C. Across
focal populations, variation in precipitation of the wettest quarter and seasonality are closely
correlated. D. Southern populations of E. cardinalis experience much greater interannual vari-
ationi in precipitation. In all panels, we report climatic neighborhood values (see Material and
Methods). Regression lines, 95% confidence intervals, and coefficients of determination (R2)
were calculated using linear regression.
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Table S1: Initial size of seedlings did not vary among Populations, Families, or Treatments.
We used a censored Gaussian model of initial size at the outset of the experiment (longest
leaf length of the first true leaves). The model was censored because we could not accurately
measure leaves less than 0.25 mm with digital callipers (217 of 702, 30.9%, were too small).
We fit models using a Bayesian MCMC method implemented using the MCMCglmm function
with default priors in the R package MCMCglmm version 2.17 (Hadfield, 2010). We estimated
the posterior distribution from 1000 samples of an MCMC chain run for 105 steps after a 104

step burn-in. We used step-wise backward elimination procedure to find the best-supported
model according to Deviance Information Criterion (DIC).

Model Random DIC

Population + Water + Temperature +
Population:Water +
Population:Temperature +
Water:Temperature +
Population:Water:Temperature

Family 1638

Population + Water + Temperature +
Population:Water +
Population:Temperature +
Water:Temperature

Family 1605.2

Population + Water + Temperature +
Population:Water +
Population:Temperature

Family 1603.4

Population + Water + Temperature +
Population:Water +
Water:Temperature

Family 1577.5

Population + Water + Temperature +
Population:Temperature +
Water:Temperature

Family 1579.9

Population + Water + Temperature +
Population:Water

Family 1577.3

Population + Water + Temperature +
Water:Temperature

Family 1550.5

Population + Water + Temperature Family 1549.3
Population + Water Family 1541.7
Population + Temperature Family 1546.8
Water + Temperature Family 1551.1
Population Family 1541.9
Water Family 1543.9
- Family 1541.7
- - 1538.3
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Table S2: Climatic variables used

Abbreviation Climate variable

DD 0 degree-days below 0℃(chilling degree-days)
DD5 degree-days above 5℃(growing degree-days)
DD 18 degree-days below 18℃(heating degree-days)
DD18 degree-days above 18℃(cooling degree-days)
NFFD number of frost-free days
PAS precipitation as snow (mm) between August in previous year and July

in current
Eref Hargreaves reference evaporation (mm)
CMD Hargreaves climatic moisture deficit (mm)
RH mean annual relative humidity
bio1 annual mean temperature
bio2 mean diurnal range (mean of monthly (max temp - min temp))
bio3 isothermality (bio2/bio7) (* 100)
bio4 temperature seasonality (standard deviation *100)
bio5 max temperature of warmest month
bio6 min temperature of coldest month
bio7 temperature annual range (bio5-bio6)
bio8 mean temperature of wettest quarter
bio9 mean temperature of driest quarter
bio10 mean temperature of warmest quarter
bio11 mean temperature of coldest quarter
bio12 annual precipitation
bio15 precipitation seasonality (coefficient of variation)
bio16 precipitation of wettest quarter
bio17 precipitation of driest quarter
bio18 precipitation of warmest quarter
bio19 precipitation of coldest quarter
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Table S3: Analysis of varianace (ANOVA) table on leaf expansion rate (LER) using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random effects. Abbreviations:
SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees of
freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Day to Germination 12.12 12.12 1 637 35.21 4.9 ×10−9

Population 22.22 1.48 15 118 4.3 2.5 ×10−6

Temperature 80.42 80.42 1 5 233.61 2.6 ×10−5

Water 4.1 4.1 1 5 11.92 0.019
Temperature ×Water 0.03 0.03 1 4 0.07 0.801
Population × Temperature 2.76 0.18 15 547 0.53 0.925
Population ×Water 9.66 0.64 15 562 1.87 0.024
Population × Temperature ×Water 4.11 0.27 15 530 0.78 0.700

Table S4: Analysis of varianace (ANOVA) table on stem elongation rate (SER) using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random effects. Abbreviations:
SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees of
freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Day to Germination 3.6 3.6 1 662 21.1 5.1 ×10−6

Population 12 0.8 15 113 4.7 5.8 ×10−7

Temperature 12.4 12.4 1 6 72.8 1.5 ×10−4

Water 0.6 0.6 1 5 3.7 0.113
Temperature ×Water 0.9 0.9 1 4 5.2 0.093
Population × Temperature 3.6 0.2 15 549 1.4 0.126
Population ×Water 2.8 0.2 15 536 1.1 0.330
Population × Temperature ×Water 1.5 0.1 15 518 0.6 0.874
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Table S5: Analysis of varianace (ANOVA) table on photosynthetic rate using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random effects. Abbrevia-
tions: SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees
of freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Population 347.7 23.2 15 78 3.02 7.5 ×10−4

Temperature 134.1 134.1 1 6 17.46 6.4 ×10−3

Water 51 51 1 4 6.64 0.066
Temperature ×Water 0.7 0.7 1 3 0.09 0.781
Population × Temperature 218.6 14.6 15 263 1.9 0.024
Population ×Water 87.7 5.8 15 233 0.76 0.724
Population × Temperature ×Water 91.4 6.1 15 208 0.79 0.686

Table S6: Analysis of deviance table on the probability of mortality by the end of the experiment
using Type-II Wald χ2 tests in the R package car (Fox and Weisberg, 2011). Family and Block
were included as random effects. Abbreviations: df = degrees of freedom

χ2 df P -value

Population 32 31 0.419
Temperature 31.8 6 1.8 ×10−5

Water 69.2 12 4.6 ×10−10

Temperature ×Water 20.7 1 5.3 ×10−6

Population × Temperature 5.6 15 0.985
Population ×Water 8.6 15 0.897
Population × Temperature ×Water 0.2 15 1.000
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Table S7: Important climatic variables predicting latitude of E. cardinalis populations
(‘Climate-Latitude’) and the first principal component of traits measured in a common gar-
den (‘Climate-TraitPC1’). Local climatic variables were measured from the exact location of
collection; neighborhood climatic variables were averaged from a 62-km neighborhood around
population (see Material and Methods). Importance and significance were determined using
the variable selection using random forests (VSURF) algorithm (see Material and Methods).
Climatic variables are described in Table S2. µ signifies the mean of the climate variables from
1981–2010; σ indicates coeffiecient of variation among years.

Climate-Latitude variables Climate-TraitPC1 variables

Precipitation of wettest quarter (σ, neighborhood) Mean diurnal range (σ, neighborhood)
Annual precipitation (µ, neighborhood) Mean temperature of coldest quarter (σ, neighborhood)
Precipitation of wettest quarter (µ, neighborhood) Precipitation seasonality (σ, neighborhood)
Mean temperature of coldest quarter (σ, neighborhood)
Annual precipitation (σ, neighborhood)
Precipitation of driest quarter (µ, neighborhood)
Precipitation of coldest quarter (σ, neighborhood)
Hargreaves climatic moisture deficit (µ, neighborhood)
Precipitation of warmest quarter (µ, neighborhood)
Precipitation seasonality (µ, neighborhood)
Precipitation of warmest quarter (σ, neighborhood)
Heating degree-days (σ, neighborhood)
Precipitation of driest quarter (σ, neighborhood)
Number of frost-free days (σ, neighborhood)
Mean temperature of wettest quarter (σ, neighborhood)
Precipitation as snow (σ, neighborhood)
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Supporting Figures712
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Figure S1: Southern populations germinate faster. Each point is a population of E. cardinalis
showing its latitude of origin (x-axis) and model-predicted days to germination in days under
growth chamber conditions (see Material and Methods). Bars around each point are 95%
confidence intervals. Predicted time to germination and confidence intervals are based on
survival regression (see Materials and Materials). The line is the linear regression of log(model-
predicated days to germination) ∼ latitude. The P -value of the regression is given in the upper
left corner.
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Figure S2: Southern populations grow faster. Each point is a population of E. cardinalis
showing its latitude of origin (x-axis) and model-predicted leaf expansion rate during the rosette
phase. Bars around each point are 95% confidence intervals. Predicted leaf expansion rate based
least-square mean estimates and confidence intervals were calculated from linear mixed-effects
models (see Materials and Materials). The line is the linear regression of model-predicated leaf
expansion rate ∼ latitude. The P -value of the regression is given in the upper right corner.
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Figure S3: Southern populations grow faster. Each point is a population of E. cardinalis
showing its latitude of origin (x-axis) and model-predicted stem elongation rate. Bars around
each point are 95% confidence intervals. Predicted stem elongation rate based least-square
mean estimates and confidence intervals were calculated from linear mixed-effects models (see
Materials and Materials). The line is the linear regression of model-predicated stem elongation
rate ∼ latitude. The P -value of the regression is given in the upper right corner.
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Figure S4: Southern populations photosynthesize faster. Each point is a population of E.
cardinalis showing its latitude of origin (x-axis) and model-predicted instantaneous photosyn-
thetic rate. Bars around each point are 95% confidence intervals. Predicted photosynthetic
rates based least-square mean estimates and confidence intervals were calculated from linear
mixed-effects models (see Materials and Materials). The line is the linear regression of model-
predicated photosynthetic rate ∼ latitude. The P -value of the regression is given in the upper
right corner.
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Figure S5: Reaction norms signify little Population × Treatment interactions. For all panels,
black lines represent population-level reaction norms from Wet to Dry in the Cool temperature
treatment (dashed black lines) and Hot temperature treatment (solid black lines); gray lines
represent reaction norms from Cool to Hot in the Wet treatment (solid gray lines) and Dry
treatment (dashed gray lines). The responses shown are (A) leaf expansion rate, (B) stem
elongation rate, (C) photosynthesis, and (D) survivorship (= 1 - mortality).
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A. Leaf expansion
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Figure S6: Population effect sizes are usually larger than Population × Treatment effect sizes.
In each panel, we plot estimated effect size (points) and 95% confidence intervals (lines) inferred
using parametric bootstrap (see Materials and Methods). At the top, we plot the effect sizes of
Population (‘Pop’), two-way interactions between Population and Temperature (‘Pop × Temp’)
or Water (‘Pop × Water’), and the three-way interaction between Population, Temperature,
and Water (‘Pop × Temp × Water’). Below that we plot the difference in the Population
minus the Population × Treatment effect size (e.g. ‘Pop - (Pop × Temp)’). When confidence
intervals do no overlap zero (dashed line), this means that Population has a significantly greater
effect size than the interaction. Effect sizes were measured using unstandarized mean square
error for linear mixed-effects models (leaf expansion, stem elongation, and photosynthesis) and
χ2 for GLMM (mortality). Hence, the effect size values are not comparable between different
traits.
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Figure S7: Trait variation, from fast to slow growth, is closely associated with neighborhood
variation in temperature of the coldest quarter (bio11σ) Each point is a population coefficient of
variation in bio11 averaged over a 62-km climatic neighborhood (x-axis) and position along the
slow to fast growth axis (y-axis), defined as Principal Component 1 of four traits (see Material
and Methods). The line and 95% confidence intervals were estimated using linear regression.
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Supporting Material and Methods713

Temperature treatments714

We simulated typical growing season (June 1 - August 15) air temperatures at the two most715

thermally divergent focal sites in our study, Whitewater Canyon (WWC, Hot) and Little716

Jameson (LIJ, Cool). We downloaded daily interpolated mean, minimum, and maximum717

air temperature from 13 years (2000-2012) at both sites from ClimateWNA (Wang et al.,718

2012). This range was chosen because seeds used in the experiment were collected around719

2012, thus their presence in that location at that time suggests that populations were able720

to persist there for at least some years before collection. Monthly temperatures from Cli-721

mateWNA are highly correlated with the air temperature recorded from data loggers in722

the field at these sites (A. Angert, unpub. data). Hence, the ClimateWNA temperature723

profiles are similar to actual thermal regimes experienced by E. cardinalis in nature. We724

simulated realistic temperature regimes by calculating the mean temperature trend from725

June to August using LOESS (Cleveland et al., 1992). The residuals were highly autocor-726

related at both sites (warmer than average days are typically followed by more warm days)727

and there was strong correlation (r = 0.65) between sites (warm days in WWC were also728

warm in LIJ). The ‘VARselect’ function in the vars package for R (Pfaff, 2008) indicated729

that a lag two Vector Autoregression (VAR(2)) model best captured the within-site auto-730

correlation as well as between-site correlation in residuals. We fit and simulated from the731

VAR(2) model using the package dse (Gilbert, 2014) in R. Simulated data closely resem-732

bled the autocorrelation and between-site correlation of the actual data. From simulated733

mean temperature, we next selected minimum and maximum daily temperatures. Mean,734

min, and max temperature were highly correlated at both sites. We chose min and max735

temperatures using site-specific fitted linear models between mean, max, and min tem-736

perature, with additional variation given by normally distributed random deviates with737

variance equal to the residual variance of the linear models. For each day, the nighttime738
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(22:00 - 6:00) chamber temperature was set to the simulated minimum temperature. Dur-739

ing the middle of the day, temperature was set to the simulated maximum temperature,740

with a variable period of transition between min and max so that the average temperature741

was equal the simulated mean temperature.742

Watering treatments743

For watering treatments, we simulated two extreme types of streams where E. cardinalis744

grows. In the well-watered treatment, we simulated a large stream that never goes dry745

during the summer growing season. In the drought treatment, we simulated a small stream746

that has ample flow at the beginning of the season due to rain and snow melt, but gradually747

dries down through the summer. In both treatments, plants were bottom-watered using748

water chilled to 7.5℃. Plants in the well-watered treatment were fully saturated every two749

hours during the day. Watering in the drought treatment gradually declined from every750

two hours to every day between May 20 (36 days after sowing) and 10 June (57 days after751

sowing). Simultaneously, the amount of bottom-watering per flood decreased, such that752

only the bottom of the cone-tainers were wetted by the end of the experiment.753
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