Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Contamination as a major factor in poor Illumina assembly of microbial isolate genomes

Haeyoung Jeong, Jae-Goo Pan, Seung-Hwan Park
doi: https://doi.org/10.1101/081885
Haeyoung Jeong
1Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
2Biosystems and Bioengineering Program, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: hyjeong@kribb.re.kr
Jae-Goo Pan
1Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Seung-Hwan Park
1Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
2Biosystems and Bioengineering Program, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

The nonhybrid hierarchical assembly of PacBio long reads is becoming the most preferred method for obtaining genomes for microbial isolates. On the other hand, among massive numbers of Illumina sequencing reads produced, there is a slim chance of re-evaluating failed microbial genome assembly (high contig number, large total contig size, and/or the presence of low-depth contigs). We generated Illumina-type test datasets with various levels of sequencing error, pretreatment (trimming and error correction), repetitive sequences, contamination, and ploidy from both simulated and real sequencing data and applied k-mer abundance analysis to quickly detect possible diagnostic signatures of poor assemblies. Contamination was the only factor leading to poor assemblies for the test dataset derived from haploid microbial genomes, resulting in an extraordinary peak within low-frequency k-mer range. When thirteen Illumina sequencing reads of microbes belonging to genera Bacillus or Paenibacillus from a single multiplexed run were subjected to a k-mer abundance analysis, all three samples leading to poor assemblies showed peculiar patterns of contamination. Read depth distribution along the contig length indicated that all problematic assemblies suffered from too many contigs with low average read coverage, where 1% to 15% of total reads were mapped to low-coverage contigs. We found that subsampling or filtering out reads having rare k-mers could efficiently remove low-level contaminants and greatly improve the de novo assemblies. An analysis of 16S rRNA genes recruited from reads or contigs and the application of read classification tools originally designed for metagenome analyses can help identify the source of a contamination. The unexpected presence of proteobacterial reads across multiple samples, which had no relevance to our lab environment, implies that such prevalent contamination might have occurred after the DNA preparation step, probably at the place where sequencing service was provided.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 19, 2016.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Contamination as a major factor in poor Illumina assembly of microbial isolate genomes
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Contamination as a major factor in poor Illumina assembly of microbial isolate genomes
Haeyoung Jeong, Jae-Goo Pan, Seung-Hwan Park
bioRxiv 081885; doi: https://doi.org/10.1101/081885
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Contamination as a major factor in poor Illumina assembly of microbial isolate genomes
Haeyoung Jeong, Jae-Goo Pan, Seung-Hwan Park
bioRxiv 081885; doi: https://doi.org/10.1101/081885

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3585)
  • Biochemistry (7539)
  • Bioengineering (5494)
  • Bioinformatics (20724)
  • Biophysics (10292)
  • Cancer Biology (7946)
  • Cell Biology (11609)
  • Clinical Trials (138)
  • Developmental Biology (6584)
  • Ecology (10161)
  • Epidemiology (2065)
  • Evolutionary Biology (13573)
  • Genetics (9511)
  • Genomics (12811)
  • Immunology (7900)
  • Microbiology (19490)
  • Molecular Biology (7632)
  • Neuroscience (41969)
  • Paleontology (307)
  • Pathology (1254)
  • Pharmacology and Toxicology (2189)
  • Physiology (3258)
  • Plant Biology (7017)
  • Scientific Communication and Education (1293)
  • Synthetic Biology (1946)
  • Systems Biology (5417)
  • Zoology (1112)