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Abstract	 	
Modern	systems	biology	requires	extensive,	carefully	curated	measurements	of	cellular	
components	in	response	to	different	environmental	conditions.	While	high-throughput	
methods	have	made	transcriptomics	and	proteomics	datasets	widely	accessible	and	relatively	
economical	to	generate,	systematic	measurements	of	both	mRNA	and	protein	abundances		
under	a	wide	range	of	different	conditions	are	still	relatively	rare.	Here	we	present	a	detailed,	
genome-wide	transcriptomics	and	proteomics	dataset	of	E.	coli	grown	under	34	different	
conditions.	Additionally,	we	provide	measurements	of	doubling	times	and	in-vivo	metabolic	
fluxes	through	the	central	carbon	metabolism.	We	manipulate	concentrations	of	sodium	and	
magnesium	in	the	growth	media,	and	we	consider	four	different	carbon	sources	glucose,	
gluconate,	lactate,	and	glycerol.	Moreover,	samples	are	taken	both	in	exponential	and	
stationary	phase,	and	we	include	two	extensive	time-courses,	with	multiple	samples	taken	
between	3	hours	and	2	weeks.	We	find	that	exponential-phase	samples	systematically	differ	
from	stationary-phase	samples,	in	particular	at	the	level	of	mRNA.	Regulatory	responses	to	
different	carbon	sources	or	salt	stresses	are	more	moderate,	but	we	find	numerous	
differentially	expressed	genes	for	growth	on	gluconate	and	under	salt	and	magnesium	stress.	
Our	data	set	provides	a	rich	resource	for	future	computational	modeling	of	E.	coli	gene	
regulation,	transcription,	and	translation.		
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Introduction	
	
A	goal	of	systems	biology	has	been	to	understand	how	phenotype	originates	from	genotype.	
The	phenotype	of	a	cell	is	determined	by	complex	regulation	of	metabolism,	gene	expression,	
and	cell	signaling.	Understanding	the	connection	between	phenotype	and	genotype	is	crucial	to	
understanding	disease	and	for	engineering	biology1.	Computational	models	are	particularly	well	
suited	to	studying	this	problem,	as	they	can	synthesize	and	organize	diverse	and	complex	data	
in	a	predictive	framework,	but	detailed	experimental	studies	including	many	samples	are	
needed	to	understand	interactions	between	different	types	of	omics	data2.	Much	effort	is	
currently	being	spent	on	understanding	how	to	best	integrate	information	collected	about	
multiple	cellular	subsystems	that	is	derived	from	different	types	of	high-throughput	
measurements.	For	example,	there	are	many	proposed	approaches	for	relating	gene	expression	
and	protein	abundances,	focusing	on	integrative,	whole-cell	models2–5.		
	
Given	the	growing	interest	in	integrative	modeling	approaches,	there	is	a	pressing	need	for	high	
quality	genome-scale	data	that	is	comparable	across	cellular	subsystems	and	reflects	many	
different	external	conditions.	E.	coli	is	an	ideal	organism	to	study	genome-wide,	multi-level	
regulatory	effects	of	external	conditions,	since	it	is	well	adapted	to	the	laboratory	environment6	
and	was	one	of	the	first	organisms	studied	at	the	whole-genome	level7.	There	have	been	a	
number	of	studies	of	the	E.	coli	transcriptome	and/or	proteome	in	response	to	different	growth	
conditions.	For	example,	in	cells	growing	at	high	density,	expression	of	most	amino	acid	
biosynthesis	genes	is	down-regulated	and	expression	of	chaperones	is	up-regulated,	suggesting	
stresses	that	these	cells	experience8.	Exposure	of	E.	coli	to	reduced	temperature	leads	to	
changes	in	gene-expression	patterns	consistent	with	reduced	metabolism	and	growth9.	Under	
long-term	glucose	starvation,	mRNAs	are	generally	down-regulated	while	the	protein	response	
is	more	varied10.	Specifically,	the	copy	numbers	of	proteins	involved	in	energy-intensive	
processes	decline	whereas	those	of	proteins	involved	in	nutrient	metabolism	remain	constant,	
likely	to	provide	the	cell	with	the	ability	to	jump-start	metabolism	when	nutrients	become	
available	again.	A	few	other	larger-scale	studies	have	measured	mRNA	and/or	protein	
abundances	under	multiple	conditions11–14.	
	
Here,	we	provide	a	systematic	analysis	of	E.	coli	gene	expression	under	a	wide	variety	of	
different	conditions.	We	measure	both	mRNA	and	protein	abundances,	at	exponential	and	
stationary	phases,	for	growth	conditions	including	different	carbon	sources	and	different	salt	
stresses.	We	find	that	mRNAs	and	proteins	display	divergent	responses	to	the	different	growth	
conditions.	Further,	growth	phase	yields	more	systematic	differences	in	gene	expression	than	
does	either	carbon	source	or	salt	stress,	though	this	effect	is	more	pronounced	in	mRNAs	than	
in	proteins.	We	expect	that	our	data	set	will	provide	a	rich	resource	for	future	modeling	work.		

	

Results	

Experimental	design	and	data	collection	
We	grew	multiple	cultures	of	E.	coli	REL606,	from	the	same	stock,	under	a	variety	of	different	
growth	conditions.	We	measured	RNA	abundances	under	all	conditions	and	matching	protein	
abundances	for	approximately	2/3	of	the	conditions	(Figure	1	and	Supplementary	Table	S1).	We	
also	measured	central	metabolic	fluxes	for	a	subset	of	conditions	using	glucose	as	carbon	
source.	Results	from	one	of	these	conditions,	long-term	glucose	starvation,	have	been	
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presented	previously10.	Conditions	not	previously	described	include	one	additional	starvation	
experiment,	using	glycerol	instead	of	glucose	as	carbon	source,	exponential	and	stationary	
phase	cultures	using	either	gluconate	or	lactate	as	carbon	source,	and	conditions	varying	Mg2+	
and	Na+	concentrations.		
	
Measurements	of	RNA	and	protein	abundances	were	carried	out	as	previously	described10.	All	
resulting	data	sets	were	checked	for	quality,	normalized,	and	log-transformed.	Our	final	data	
set	consisted	of	152	RNA	samples,	105	protein	samples,	and	65	flux	samples	(Supplementary	
Table	S1).	59	of	the	flux	samples	are	associated	with	high	Mg2+	and	high	Na+	experiments.	
	
Our	raw	RNA-seq	and	protein	data	covers	4196	distinct	mRNAs	and	proteins,	and	our	flux	data	
covers	13	different	metabolic	reactions.	All	raw	data	files	are	available	in	appropriate	
repositories	(see	Methods	for	details),	and	final	processed	data	are	available	as	Supplementary	
Tables	S2,	S3,	and	S4.	
	
Finally,	we	measured	doubling	times	in	exponential	phase	for	all	experimental	conditions	
(Supplementary	Table	S5).	We	found	that	doubling	times	varied	between	50	and	100	minutes	
among	the	various	conditions	(Figure	2).	Growth	was	the	fastest	when	glucose	was	used	as	
carbon	source	and	the	slowest	when	the	carbon	source	was	lactose.	Growth	was	also	reduced	
for	high	Na+	concentrations	and	very	high	or	low	Mg2+	concentrations.	Surprisingly,	we	found	a	
broad	range	of	Mg2+	concentrations	(0.02mM	to	200mM)	in	which	growth	rate	remained	
virtually	unchanged	(Figure	2).	
	
Broad	trends	of	gene	expression	differ	between	mRNA	and	proteins	
To	identify	broad	trends	of	gene	expression	among	the	different	growth	conditions,	we	
performed	hierarchical	clustering	on	both	mRNA	and	protein	abundances	(Figures	3	and	4).	For	
mRNA,	we	found	that	differences	in	gene	expression	were	primarily	driven	by	the	growth	phase	
(exponential	vs.	stationary/late	stationary).	Nearly	all	exponential	samples	clustered	together	in	
one	group,	separate	from	the	vast	majority	of	stationary	and	late-stationary	samples	(Figure	3).	
Mg2+	levels,	Na+	levels,	and	carbon	source	had	less	influence	on	the	clustering	results.	Results	
were	different	for	protein	abundances	(Figure	4),	where	growth	phase	had	little	effect	on	the	
clustering	and	instead	samples	seemed	to	group	together	by	Na+	levels	and	carbon	source.	
	
To	quantify	the	clustering	patterns	of	mRNA	and	protein	abundances,	we	defined	a	metric	that	
measured	how	strongly	clustered	a	given	variable	of	the	growth	environment	(growth	phase,	
Mg2+	level,	Na+	level,	carbon	source)	was	relative	to	the	random	expectation	of	no	clustering.	
For	each	variable,	we	calculated	the	mean	cophenetic	distance	between	all	pairs	corresponding	
to	the	same	condition	(e.g.,	for	growth	phase,	all	pairs	sampled	at	exponential	phase	and	all	
pairs	sampled	at	stationary/late	stationary	phase).	The	cophenetic	distance	is	defined	as	the	
height	of	the	dendrogram	produced	by	the	hierarchical	clustering	from	the	two	selected	leafs	
to	the	point	where	the	two	branches	merge,	and	it	is	widely	used	to	quantify	how	closely	
related	any	two	leafs	are	in	a	clustering	dendogram15,16.	We	generated	null	distributions	of	
cophenetic	distances	under	the	assumption	of	no	clustering	by	resampling	mean	cophenetic	
distances	from	dendograms	with	reshuffled	leaf	assignments,	and	we	then	converted	each	
observed	mean	cophenetic	distance	into	a	z-score	using	the	mean	and	variance	of	the	
corresponding	null	distribution.	Thus,	we	carried	out	a	non-parametric,	random	permutation	
test	where	we	determined	the	null-distribution	of	our	test	statistic	by	resampling.	A	z-score	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 23, 2017. ; https://doi.org/10.1101/082032doi: bioRxiv preprint 

https://doi.org/10.1101/082032


	 4	

below	−1.96	indicates	that	the	mRNA	or	protein	abundances	are	clustered	significantly	by	the	
corresponding	variable.	

We	found	that	mRNA	abundances	were	significantly	clustered	by	growth	phase,	with	a	z-score	
of	−30.98,	and	by	Mg2+	level,	with	a	z-score	of	−3.21	(Table	1).	The	z-scores	for	Na+	level	and	
carbon	source	were	−1.89	and	1.21,	respectively,	which	are	not	significantly	different	from	
zero.	Moreover,	when	we	calculated	a	z-score	for	batch	number,	we	found	that	batch	effects	
did	not	significantly	influenced	mRNA	abundances,	with	z	=	−1.43.	Batch	numbers	represent	
cultures	grown	at	the	same	time,	in	parallel.		

For	protein	abundances,	the	variable	carbon	source	was	significantly	clustered,	with	a	z-score	of	
−2.79,	and	the	other	variables	Na+	levels,	growth	phase,	and	Mg2+	levels	were	not	significantly	
clustered,	with	z	scores	of	−1.74,	−1.27,	and	−0.5,	respectively	(Table	1).	Batch	number	had	a	z-
score	of	−20.54,	which	implies	that	there	were	strong	batch	effects	present	in	the	protein	data.	
In	general,	batch	effects	may	represent	fluctuations	in	incubator	temperatures,	slight	
differences	in	growth	medium	composition	or	water	quality,	effects	of	reviving	the	initial	
inoculum	of	cells,	or	effects	of	sample	preparation	and	analysis,	among	other	possibilities.	Here,	
since	batch	effects	were	so	pronounced	in	the	proteomics	data	and	not	in	the	mRNA	data,	we	
suspect	that	they	were	primarily	caused	by	proteomics	sample	preparation	and	analysis.	

In	summary,	mRNA	abundances	were	clustered	by	growth	phase	and	Mg2+	levels,	whereas	
protein	abundances	were	clustered	by	carbon	source.	Protein	abundances	were	also	strongly	
influenced	by	batch	effects,	unlike	the	mRNA	data	(Table	1,	Supplementary	Table	S6,	S7).	

Identification	of	differentially	expressed	genes	
We	next	asked	under	which	conditions	and	to	what	extent	RNA	and	protein	expression	were	
altered.	To	identify	differentially	expressed	mRNAs	and	proteins,	we	used	DESeq217.	Since	a	
detailed	comparison	of	exponential	vs.	stationary	phase	has	been	published	previously	for	the	
glucose	time-course	experiment10,	here	we	focused	on	differences	among	ion	concentrations	or	
carbon	sources	within	either	exponential	or	stationary	phase.	
 
For	each	growth	phase,	we	defined	the	base	level	reference	condition	to	be	growth	in	glucose	
with	5	mM	Na+	and	0.8	mM	Mg2+.	This	is	the	baseline	formulation	of	media	used	in	the	glucose	
time-course	samples10.	We	then	compared	RNA	and	protein	abundances	between	this	
reference	condition	and	the	alternative	conditions	(different	carbon	sources,	elevated	Na+,	and	
elevated	or	reduced	Mg2+)	separately	for	each	growth	phase	(Supplementary	Table	S8).	
	
We	defined	significantly	differentially	expressed	genes	as	those	whose	abundance	had	at	least	a	
two-fold	change	(log2	fold	change	>	1)	between	the	reference	condition	and	a	chosen	
experimental	condition,	at	a	false-discovery-rate	(FDR)	corrected	P	value	<	0.05.	We	found	that	
the	number	of	significantly	differentially	expressed	mRNAs	and	proteins	varied	substantially	
between	exponential	and	stationary	phase	and	between	mRNAs	and	proteins	(Figure	5	and		
(Supplementary	Table	S9).	In	general,	there	were	fewer	differentially	expressed	genes	in	
stationary	phase	than	in	exponential	phase.	Further,	protein	abundances	showed	the	most	
differential	regulation	for	high	Na+	and	for	the	carbon	sources	glycerol	and	lactate,	whereas	
mRNA	showed	the	most	differential	regulation	for	high	Na+	levels	in	stationary	phase,	and	for	
low	Mg2+	levels	and	for	the	carbon	sources	glycerol	and	lactate	in	exponential	phase	(Figure	5).	
	
Next,	we	asked	how	much	overlap	there	was	among	differentially	expressed	genes	between	the	
various	growth	conditions.	To	simplify	this	analysis,	we	did	not	distinguish	between	up-	or	
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down-regulated	genes,	and	we	combined	low	and	high	Mg2+	into	one	group	“Mg	stress”	and	
glycerol,	lactate,	and	gluconate	into	one	group	“carbon	source”.	(Note	that	differentially	
expressed	genes	were	still	identified	for	individual	conditions,	as	described	above,	and	were	
combined	into	“Mg	stress”	and	“carbon	source”	only	for	the	final	comparison.)	At	the	mRNA	
level,	there	was	some	overlap	(21.7%)	between	carbon	source	and	Mg2+	stress	in	exponential	
phase.	All	other	overlaps	where	minimal,	~5%	or	less	(Figure	6).	At	the	protein	level,	there	was	
overlap	between	Na+	stress	and	carbon	source	(15.6%	in	exponential	phase,	10.7%	in	stationary	
phase),	while	all	other	overlaps	were	also	minimal,	~5%	or	less	(Figure	6).	
	
We	also	identified	significantly	altered	biological	pathways	and	molecular	activities	of	gene	
products	(Supplementary	Table	S10).	We	used	the	Kyoto	Encyclopedia	of	Genes	and	Genomes	
(KEGG)18	for	biological	pathways	and	annotations	from	the	Gene	Ontology	(GO)	Consortium	for	
molecular	functions19.	Figure	7	and	Supplementary	Figure	1	show	the	top	5	significantly	altered	
biological	pathways	(as	defined	in	the	KEGG	database)	and	molecular	functions	(as	defined	by	
GO	annotations)	under	different	conditions,	respectively,	as	determined	by	DAVID20.	In	all	
cases,	we	used	a	cutoff	of	0.05	on	false-discovery-rate	(FDR)-corrected	P	values	to	identify	
significant	annotations.	We	found	numerous	significantly	altered	KEGG	pathways	(Figure	7)	
molecular	functions	(Supplementary	Figure	S1). 

In	addition	to	identifying	altered	pathways	and	molecular	activities,	we	identified	the	individual,	
most	highly	differentially	expressed	genes	associated	with	specific	pathways	and/or	functions	
(Supplementary	Figures	S2–S33).	As	an	example,	the	differentially	expressed	mRNAs	associated	
with	significantly	altered	KEGG	pathways	under	high	Mg2+	concentrations	in	exponential	phase	
are	shown	in	Figure	8A.	Three	pathways	are	significantly	altered;	sulfur	metabolism	and	
nitrogen	metabolism	are	mostly	up-regulated	and	flagellar	assembly	is	mostly	down-regulated.	
Changes	in	sulfur	metabolism	in	this	condition	might	reflect	a	linked	increased	in	the	
concentration	of	sulfate	(SO4

2–),	as	this	was	the	counterion	in	the	salt	that	was	added	to	
increase	Mg2+	levels.	By	contrast,	using	lactate	instead	of	glucose	as	carbon	source	caused	up-
regulation	of	pyruvate	metabolism,	citrate	cycle,	and	carbon	metabolism	at	the	protein	level	in	
exponential	phase	(Figure	8B).	
	
Finally,	we	asked	to	what	extent	differentially	expressed	genes	might	be	determined	by	
bacterial	growth	rate,	as	measured	by	doubling	time.	We	repeated	our	DeSeq2	analyses	but	
included	in	our	design	formula	a	term	representing	the	doubling	time	(see	Methods).	We	found	
that	in	general,	differences	in	these	analyses	are	small;	the	most	significantly	changed	genes	
when	not	controlling	for	doubling	time	are	the	most	significantly	changed	genes	when	
controlling	for	doubling	time	(Supplementary	Table	S9).	One	major	exception	were	protein	
abundances	in	response	to	different	carbon	sources.	In	this	scenario,	many	new	genes	
appeared	when	controlling	for	doubling	time,	both	in	terms	of	the	relative	proportion	of	genes	
found	and	in	terms	of	absolute	numbers	(Supplementary	Figure	S34,	Supplementary	Table	S11).	
We	identified	the	significantly	altered	pathways	associated	specifically	with	those	genes,	and	
we	found	that	the	top	hits	were	related	to	biosynthesis	in	both	exponential	and	stationary	
growth	phases	(Supplementary	Table	12).	
	
Metabolic	flux	ratios	under	salt	stress	
For	the	high	sodium	and	high	magnesium	experiments,	we	also	determined	metabolic	flux	
through	central	metabolism	by	analyzing	13C	incorporation	into	protein-bound	amino	acids.	We	
here	analyzed	only	flux	samples	taken	in	exponential	phase,	since	stationary-phase	samples	
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have	an	unclear	interpretation10.	For	each	condition,	flux	samples	were	analyzed	in	triplicate	
(except	one,	which	was	analyzed	in	duplicate	only),	and	13	different	flux	ratios	were	measured	
for	each	sample.	The	flux	ratios	were	then	averaged	across	replicates	(Supplementary	Figure	
S35).	We	saw	no	significant	changes	in	flux	ratios	with	increasing	Na+	(linear	regression,	all	P	>	
0.05	after	FDR	correction,	Supplementary	Table	S13).	Results	were	similar	for	Mg2+.	Due	to	the	
wide	range	of	Mg2+	concentrations	considered,	we	regressed	flux	ratios	against	log-transformed	
Mg2+	concentrations.	Again,	we	saw	no	significant	changes	in	any	flux	ratio	with	increasing	Mg2+	
(linear	regression,	all	P	>	0.05	after	FDR	correction,	Supplementary	Table	S13).	
	
We	also	asked	whether	the	flux	ratios	changed	with	doubling	time	rather	than	with	ion	
concentration,	since	doubling	time	is	not	necessarily	monotonic	in	ion	concentration	(Figure	
2B).	For	this	analysis,	we	pooled	all	flux	measurements	and	plotted	flux	ratios	against	doubling	
times	(Figure	9).	Again,	we	saw	no	significant	relationship	between	flux	ratios	and	doubling	
time	after	FDR	correction	(Supplementary	Table	S14).	However,	we	note	that	the	branches	
erythrose-4-phosphate	from	pentose-5-phosphate	and	pyruvate	from	malate	(upper	bound)	
showed	a	significant	relationship	before	correction	for	multiple	testing	(P	=	0.026	and	P	=	0.018,	
respectively,	Supplementary	Table	S14),	both	driven	by	one	outlying	data	point	for	the	slowest-
growing	condition,	at	300	mM	Na+.	
	

Discussion	
	
We	studied	the	regulatory	response	of	E.	coli	under	a	wide	variety	of	different	growth	
conditions.	The	experimental	conditions	we	considered	include	four	different	carbon	sources,	
different	levels	of	Na+	and	Mg2+	stress,	and	growth	into	deep	stationary	phase,	up	to	two	weeks	
post	inoculation.	We	found	that	gene	regulation	changes	the	most	with	respect	to	growth	
phase;	in	general,	the	exponential	phase	under	one	condition	is	more	similar	to	the	exponential	
phase	under	another	condition	than	to	the	stationary	phase	under	the	same	condition.	Further,	
we	found	little	overlap	in	differentially	expressed	genes	under	different	growth	conditions.	
Finally,	we	found	that	the	ratios	of	fluxes	through	alternative	branches	within	central	
metabolism	remained	approximately	constant	under	salt	stress,	despite	substantial	changes	in	
doubling	times.		
	
Our	data	provides	a	comprehensive	picture	of	E.	coli	in	terms	of	number,	range,	and	depth	of	
different	stresses,	comparable	and	complementary	to	other	recently	published	datasets.	For	
example,	Schmidt	et	al.12	considered	22	unique	conditions	and	measured	abundances	of	>2300	
proteins.	mRNA	abundances	were	not	measured.	Soufi	et	al.11	considered	10	unique	conditions	
and	also	measured	abundances	of	>2300	proteins.	They	were	interested	primarily	in	up-	and	
down-regulated	proteins	under	different	ethanol	stresses,	and	they	found	down-regulation	of	
genes	associated	with	ribosomes	and	protein	biosynthesis	during	ethanol	stress.	Such	genes	
were	similarly	down-regulated	in	our	study	during	stress	induced	by	high	Na+	concentrations.	
Lewis	et	al.13	considered	only	3	different	carbon	sources	but	measured	mRNA	and	protein	
abundances	in	different	strains	adapted	to	these	growth	conditions.	Finally,	Lewis	et	al.14	
compiled	a	database	of	213	mRNA	expression	profiles	covering	70	unique	conditions,	including	
different	carbon	sources,	terminal	electron	acceptor,	growth	phase,	and	genotype.	In	
comparison,	we	considered	34	unique	conditions,	measured	152	mRNA	expression	profiles,	105	
protein	expression	profiles,	and	59	flux	profiles,	and	used	the	exact	same	E.	coli	genotype	
throughout.	
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Similar	to	our	prior	study10,	we	observed	clear	trends	in	the	differential	expression	of	mRNAs	
and	proteins.	In	particular,	we	had	reported	previously10	that	mRNAs	are	widely	down-
regulated	in	stationary	phase	whereas	only	select	proteins	are	down-regulated.	Consistent	with	
that	observation,	we	found	here	that	mRNAs	were	significantly	and	strongly	clustered	by	
growth	phase	(z	=	−30.98)	whereas	proteins	were	not	(z	=	−1.27).	By	contrast,	at	the	protein	
level	we	saw	significant	clustering	by	carbon	source	(z	=	−2.79),	which	we	did	not	see	at	the	
mRNA	level.	More	specifically,	we	had	found	earlier10	that	energy-intensive	processes	were	
down-regulated	and	stress-response	proteins	up-regulated	in	stationary	phase.	Similarly,	we	
observed	here	that	high	Na+	stress	conditions	also	led	to	the	down-regulation	of	energy-
intensive	processes.		
	
A	number	of	genes	and	pathways	that	we	found	to	be	influenced	by	treatment	conditions	are	
consistent	with	prior	knowledge	from	the	literature.	For	instance,	we	found	that	increasing	the	
concentration	of	Na+	and	Mg2+	decreased	transcription	of	the	flagellar	genes	during	exponential	
growth,	as	seen	previously21.	We	also	found	that	high	concentrations	of	Mg2+	induce	an	
increase	in	mRNA	expression	of	sulfur	and	nitrogen	transport	proteins,	and	an	increase	in	the	
enzymes	necessary	to	produce	the	siderophore	enterobactin	(necessary	for	obtaining	iron	from	
the	environment).	These	regulatory	changes	could	be	due	to	the	high	Mg2+	concentrations	
interfering	with	the	bacterial	membrane	potential,	and	thereby	inhibiting	cotransporters	that	
are	coupled	to	this	gradient.	This	effect	has	been	previously	described	for	iron22.	High	Na+	
concentrations	also	significantly	reduced	the	expression	of	a	large	number	of	proteins,	mostly	
either	involved	in	the	biosynthesis	of	amino	acids	or	components	of	the	ribosome.	These	
changes	may	simply	reflect	stress	induced	by	the	high	Na+	concentrations	used	in	these	
experiments.	
	
Altering	the	carbon	source,	as	well,	provided	predictable	changes	in	gene	expression.		For	
instance,	providing	glycerol	as	the	sole	carbon	source	instead	of	glucose	increases	expression	of	
glpX,	part	of	the	glp	operon,	which	is	involved	in	glycerol	uptake23.	Gluconate	as	a	carbon	
source	increases	expression	of	genes	from	the	gnt	and	idn	operons,	both	involved	in	gluconate	
metabolism24,25.	Finally,	using	lactate	as	a	carbon	source	induces	the	expression	of	lldD	(lctD),	a	
gene	required	for	lactate	utilization	in	E.	coli26.	
	
Large-scale,	high-throughput	gene-expression	studies	are	frequently	confounded	by	batch	
effects	that	can	give	rise	to	incorrect	conclusions	if	they	are	not	accounted	for27.	We	saw	such	
effects	in	our	study	as	well.	In	our	data,	the	batch	number	indicates	bacterial	samples	that	were	
grown	at	the	same	time.	Not	unexpectedly,	our	data	showed	significant	clustering	by	batch	
number	in	the	protein	data,	though	not	in	the	mRNA	data	(z	scores	of	−20.54	and	−1.43,	
respectively).	Batch	effects	are	not	inherently	a	problem,	as	long	as	one	is	aware	of	their	
existence	and	analyzes	data	accordingly.	Here,	in	our	differential	expression	analysis,	we	
corrected	for	batch	effects	by	including	batch	as	a	distinct	variable	in	the	DESeq	model	(see	
Methods),	as	recommended	by	the	DeSeq2	manual28.	How	to	best	correct	for	batch	effects	is	a	
topic	of	ongoing	investigations,	and	increasingly	sophisticated	methods	are	being	developed	to	
separate	batch	effects	from	real	signal29–32.	In	particular,	a	recently	developed	semi-supervised	
normalization	pipeline	could	be	used	to	further	investigate	batch	effects	in	this	and	other	
datasets33.	
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Given	the	many	cellular	changes	observed	in	mRNA	and	protein	levels,	we	turned	to	13C	labeling	
techniques10,34,35	to	examine	the	extent	to	which	these	changes	affected	the	relative	flux	of	
metabolites	through	different	central	metabolic	pathway	branch	points	during	exponential	
growth.	For	this	work,	we	concentrated	upon	growth	on	glucose	during	Na+	and	Mg2+	stresses.	
Across	these	conditions,	growth	rates	change	over	nearly	a	two-fold	range,	with	the	doubling	
time	changing	from	approximately	50	to	95	minutes.	In	particular,	both	high	Na+	and	high	Mg2+	
levels	reduced	growth	by	a	third.	Despite	this	substantial	effect	on	growth,	we	observed	no	
significant	changes	in	the	relative	flux	through	different	reactions	in	central	metabolism.	The	
only	exception	was	a	potential	decrease	in	pentose-5-phosphate	pathway	use	and	increase	in	
flow	through	malic	enzyme	at	300	mM	Na+.	The	general	picture,	however,	was	that	
homeostasis	in	central	metabolism	was	sufficient	to	ward	off	significant	changes	in	relative	
pathway	use	despite	large	changes	in	overall	growth	rate	and	the	pools	of	mRNA	and	proteins.	
	
In	summary,	our	study	provides	a	large	and	comprehensive	dataset	for	investigating	the	gene-
regulatory	response	of	E.	coli	under	different	growth	conditions,	both	at	the	mRNA	and	the	
protein	level.	We	found	systematic	differences	in	gene-expression	response	between	
exponential	and	stationary	phase,	and	between	mRNAs	and	proteins.	Our	dataset	provides	a	
rich	resource	for	future	modeling	of	E.	coli	metabolism.	
	

Materials	and	Methods	
	
Our	experimental	approach	was	identical	to	the	one	used	in	our	prior	work	on	glucose	
starvation10.	In	particular,	growth	and	harvesting	of	E.	coli	B	REL606	cell	pellets	for	the	
multiomic	analysis	was	performed	as	previously	described10.	Similarly,	after	sample	collection,	
RNA-seq,	mass-spec	proteomics,	and	metabolic	flux	analysis	were	performed	as	previously	
described10.	For	completeness,	we	here	reproduce	our	complete	protocol.	

Cell	Growth	
E.	coli	B	REL606	was	inoculated	from	a	freezer	stock	into	10	ml	of	Davis	Minimal	medium	
supplemented	with	2	μg/l	thiamine	(DM)36	and	limiting	glucose	at	500	mg/l	(DM500)	in	a	50	ml	
Erlenmeyer	flask.	This	culture	was	incubated	at	37°C	with	120	r.p.m.	orbital	shaking	over	a	
diameter	of	1".	After	overnight	growth,	500	µl	of	the	culture	was	diluted	into	50	ml	of	
prewarmed	DM500	in	a	250	ml	flask	and	grown	for	an	additional	24	h	under	the	same	
conditions.	On	the	day	of	the	experiment,	500	μl	of	this	preconditioned	culture	was	added	to	
ten	250	ml	flasks,	each	containing	50	ml	DM500,	to	initiate	the	experiment.		At	each	time	point,	
aliquots	of	these	cultures	were	removed	as	necessary	to	harvest	a	constant	number	of	cells	
given	the	changes	in	cell	density	over	the	growth	curve.	Each	sample	was	pelleted	by	
centrifugation,	washed	with	sterile	saline	(0.85%	(w/v)	NaCl),	and	then	spun	down	again.	After	
removing	the	supernatant,	the	resulting	cell	pellet	was	flash	frozen	using	liquid	nitrogen	and	
stored	at	–80°C.	Each	of	the	three	biological	replicates	was	performed	on	a	separate	day.	
Samples	for	each	type	of	cell	composition	measurement	were	taken	from	the	same	batch	of	
flasks,	except	for	those	used	for	flux	analysis,	which	were	grown	separately	in	[U-13C]	glucose.		
For	tests	of	different	carbon	sources,	the	Davis	Minimal	(DM)	medium	used	was	supplemented	
with	0.5	g/L	of	the	specified	compound	(glycerol,	lactate,	or	gluconate)	instead	of	glucose.	Mg2+	
concentrations	were	varied	by	changing	the	amount	of	MgSO4	added	to	DM	media	from	the	
concentration	of	0.83	mM	that	is	normally	present.	For	tests	of	different	Na+	concentrations,	
NaCl	was	added	to	achieve	the	final	concentration.	The	base	recipe	for	DM	already	contains	~5	
mM	Na+	due	to	the	inclusion	of	sodium	citrate,	so	95	mM	NaCl	was	added	for	the	100	mM	Na+	
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condition,	for	example.	Exponential-phase	samples	were	taken	during	growth	when	the	OD600	
reached	20-60%	of	the	maximum	achieved	after	saturating	growth.	Stationary	phase	samples	
were	collected	20-24	hours	after	the	corresponding	exponential	sample.	The	exact	sampling	
times	for	each	condition	are	provided	in	Supplementary	Table	S1.	
	
For	OD600	measurements,	cultures	were	grown	separately	from	the	main	batches	used	for	
harvesting	cells	but	under	identical	conditions.	The	OD600	(absorbance	at	600	nm)	of	a	sample	
removed	from	the	culture	at	each	time	point	was	measured	relative	to	a	sterile	DM500	glucose	
blank.	Doubling	times	were	estimated	from	these	OD600	measurements.	Specifically,	the	
logarithms	of	all	OD600	values	in	the	exponential	part	of	each	growth	curve,	defined	as	when	
OD600	values	were	between	0.05	and	0.75	times	the	maximum	observed	OD600	at	stationary	
phase,	were	fit	to	a	linear	model	with	respect	to	time.	Doubling	times	were	calculated	as	loge2	
divided	by	the	fit	slope	for	each	biological	replicate	separately.	Means	and	confidence	intervals	
were	calculated	from	three	replicate	growth	curves	for	all	conditions	except	for	gluconate	and	
lactate,	which	had	measurements	for	only	two	replicates.	

RNA-seq	
Total	RNA	was	isolated	from	cell	pellets	using	the	RNAsnap	method37.	After	extraction,	RNA	was	
ethanol	precipitated	and	resuspended	in	100	µl	H2O.	Each	sample	was	then	DNase	treated	and	
purified	using	the	on-column	method	for	the	Zymo	Clean	&	Concentrator-25	(Zymo	Research).	
RNA	concentrations	were	determined	throughout	the	purification	procedure	using	a	Qubit	2.0	
fluorometer	(Life	Technologies).	DNase-treated	total	RNA	(≤5	µg)	was	then	processed	with	the	
Gram-negative	bacteria	RiboZero	rRNA	removal	kit	(Epicentre).	After	rRNA	depletion,	each	
sample	was	ethanol	precipitated	and	resuspended	in	H2O	again.	A	fraction	of	the	RNA	was	then	
fragmented	to	~250	bp	using	the	NEBNext	Magnesium	RNA	Fragmentation	Module	(New	
England	Biolabs).	After	fragmentation,	RNA	was	ethanol	precipitated,	resuspended	in	20	µl	H2O,	
and	phosphorylated	using	T4	polynucleotide	kinase	(New	England	Biolabs).	After	another	
ethanol	precipitation	cleanup	step,	sequencing	library	preparation	was	performed	using	the	
Multiplex	Compatible	NEBNext	Small	RNA	Library	Prep	Set	for	Illumina	(New	England	Biolabs).	
Samples	were	ethanol	precipitated	again	after	library	preparation	and	separated	on	a	4%	
agarose	gel.	All	DNA	fragments	greater	than	100	bp	were	excised	from	the	gel	and	isolated	
using	the	Zymoclean	Gel	DNA	Recovery	kit	(Zymo	Research).	Libraries	were	sequenced	using	an	
Illumina	HiSeq	2500	at	the	Genomic	Sequencing	and	Analysis	Facility	(GSAF)	at	the	University	of	
Texas	at	Austin	to	generate	2×101-base	paired-end	reads.	
	
For	RNA-seq	analysis,	we	implemented	a	custom	analysis	pipeline	using	the	REL606	Escherichia	
coli	B	genome	(GenBank:NC_012967.1)	as	the	reference	sequence38.	We	updated	annotations	
of	sRNAs	in	this	genome	sequence	using	the	Rfam	11.0	database39.	Prior	to	mapping,	we	
trimmed	adapter	sequences	from	Illumina	reads	using	Flexbar	2.3140.	Mapping	was	carried	out	
in	single-end	mode	using	Bowtie2	2.2.5	with	the	–k	1	option	to	achieve	one	unique	mapping	
location	per	read41.	The	raw	number	of	reads	mapping	to	each	gene	were	counted	using	HTSeq	
0.6.042.	Exact	details	for	the	full	computational	pipeline	are	available	at	
https://github.com/marcottelab/AG3C_starvation_tc		

Proteomics	
E.	coli	cell	pellets	were	resuspended	in	50	mM	Tris-HCl	pH	8.0,	10	mM	DTT.		2,2,2-
trifluoroethanol	(Sigma)	was	added	to	50%	(v/v)	final	concentration	and	samples	were	
incubated	at	56°C	for	45	min.	Following	incubation,	iodoacetamide	was	added	to	a	
concentration	of	25	mM	and	samples	were	incubated	at	room	temperature	in	the	dark	for	30	
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min.	Samples	were	diluted	10-fold	with	2	mM	CaCl2,	50	mM	Tris-HCl,	pH	8.0.	Samples	were	
digested	with	trypsin	(Pierce)	at	37°C	for	5	h.	Digestion	was	quenched	by	adding	formic	acid	to	
1%	(v/v).	Tryptic	peptides	were	filtered	through	Amicon	Ultra	30	kD	spin	filtration	columns	and	
bound,	washed,	and	eluted	from	HyperSep	C18	SpinTips	(Thermo	Scientific).	Eluted	peptides	
were	dried	by	speed-vac	and	resuspended	in	Buffer	C	(5%	acetonitrile,	0.1%	formic	acid)	for	
analysis	by	LC-MS/MS.	
	
For	LC-MS/MS	analysis,	peptides	were	subjected	to	separation	by	C18	reverse	phase	
chromatography	on	a	Dionex	Ultimate	3000	RSLCnano	UHPLC	system	(Thermo	Scientific).		
Peptides	were	loaded	onto	an	Acclaim	C18	PepMap	RSLC	column	(Dionex;	Thermo	Scientific)	
and	eluted	using	a	5-40%	acetonitrile	gradient	over	250	min	at	300	nl/min	flow	rate.	Eluted	
peptides	were	directly	injected	into	an	Orbitrap	Elite	mass	spectrometer	(Thermo	Scientific)	by	
nano-electrospray	and	subject	to	data-dependent	tandem	mass	spectrometry,	with	full	
precursor	ion	scans	(MS1)	collected	at	60,0000	resolution.		Monoisotopic	precursor	selection	
and	charge-state	screening	were	enabled,	with	ions	of	charge	>+1	selected	for	collision-induced	
dissociation	(CID).		Up	to	20	fragmentation	scans	(MS2)	were	collected	per	MS1.	Dynamic	
exclusion	was	active	with	45	s	exclusion	for	ions	selected	twice	within	a	30	s	window.	
	
Spectra	were	searched	against	an	E.	coli	strain	REL606	protein	sequence	database	and	common	
contaminant	proteins	(MaxQuant	using	SEQUEST	(Proteome	Discoverer	1.4;	Thermo	Scientific).	
Fully-tryptic	peptides	were	considered,	with	up	to	two	missed	cleavages.		Tolerances	of	10	ppm	
(MS1)	and	0.5	Da	(MS2),	carbamidomethylation	of	cysteine	as	static	modification,	and	oxidized	
methionine	as	dynamic	modification	were	used.		High-confidence	peptide-spectral	matches	
(PSMs)	were	filtered	at	<1%	false	discovery	rate	determined	by	Percolator	(Proteome	
Discoverer	1.4;	Thermo	Scientific).		

Flux	analysis	
Flux	ratios	were	obtained	from	the	samples	grown	with	13C	labeled	glucose,	using	methods	
previously	described43,44.	Cell	pellets	were	resuspended	in	200	ml	of	6	N	HCl,	hydrolyzed	at	
105°C	overnight,	and	dried	at	95°C	for	up	to	24	h.	To	the	hydrolyzed	cell	material	we	added	40	
ml	of	dimethylformamide	(DMF)	and	gently	mixed	until	a	“light	straw”	color	was	obtained.	The	
DMF	resuspension	was	transferred	to	a	GC-MS	vial	with	plastic	insert	and	40	ml	of	N-tert-
butyldimethylsilyl-N-methyltrifluoroacetamide	with	1%	tert-butyldimethyl-chlorosilane	(v/v);	
vials	were	capped	and	baked	at	85°C	for	2	h,	and	samples	were	analyzed	within	2	days	of	
derivitization.	
	
Analysis	of	derivitized	samples	was	performed	on	a	Shimadzu	QP2010	Plus	GC-MS	(Columbia,	
MD)	with	autosampler.	The	GC-MS	protocol	included:	1	mL	of	sample	injected	with	1:10	split	
mode	at	230°C;	an	oven	gradient	of	160°C	for	1	min,	ramp	to	310°C	at	20°C/min,	and	hold	at	
310°C	for	0.5	min;	and	flow	rate	was	1	mL/min	in	helium.	A	total	of	five	runs	were	performed	
for	each	sample:	a	blank	injection	of	DMF	to	waste,	a	blank	injection	of	DMF	to	the	column,	and	
three	technical	replicates	of	each	vial.	Flux	inference	was	performed	using	the	FiatFlux	
software35,44.	

Normalization	and	quality	control	of	RNA	and	protein	counts	
Our	raw	input	data	consisted	of	RNA	and	protein	counts.	Protein	counts	can	be	fractional,	
because	some	peptide	spectra	cannot	be	uniquely	mapped	to	a	single	protein,	so	they	are	
equally	divided	amongst	these	proteins.	We	rounded	all	protein	counts	to	the	nearest	integer	
for	subsequent	analysis.	We	set	the	counts	of	all	unobserved	proteins	to	zero.	For	RNA,	we	only	
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analyzed	the	counts	of	reads	that	overlapped	annotated	protein	coding	genes,	i.e.,	reads	
mapping	to	mRNAs.	This	resulted	in	4196	matching	mRNA	and	protein	counts	for	each	sample.	
Subsequently,	all	mRNA	and	protein	counts	were	analyzed	in	the	same	manner.	
		
We	next	performed	quality	control,	by	checking	replicates	of	the	same	condition	for	
consistency.	For	all	pairs	of	replicate	samples,	we	made	histograms	of	the	log-differences	of	
RNA	or	protein	counts.	If	the	two	samples	differ	only	by	experimental	noise,	i.e.,	by	random	
measurement	error	that	causes	unbiased	variation	in	the	counts	of	individual	RNAs	or	proteins,	
then	the	resulting	histogram	should	have	a	mode	at	0	and	be	approximately	bell-shaped.	If	a	
sample	consistently	shows	deviations	from	this	expectation	when	compared	to	other	samples,	
then	there	are	likely	systematic	problems	with	this	sample.	We	tested	the	quality	of	our	mRNA	
and	protein	samples	by	looking	the	similarity	between	samples	collected	in	similar	conditions	
but	from	different	batches	whenever	possible,	i.e.,	whenever	we	have	at	least	3	replicates.	Out	
of	152	mRNA	samples	we	found	only	two	samples	(samples	MURI_091	and	MURI_130,	
Supplementary	Table	S1)	that	seemed	to	deviate	from	their	biological	replicas.	Among	105	
protein	samples	we	found	no	major	deviation	between	biological	replicas.	Because	of	this	
broad	consistency	among	all	samples	for	the	same	growth	conditions,	we	keep	all	samples	for	
subsequent	analysis.	
	
After	quality	control,	we	normalized	read	counts	using	size-factors	calculated	via	DESeq217.	
Because	we	had	many	mRNAs	and	proteins	with	counts	of	zero	at	some	condition,	we	added	
pseudo-counts	of	+1	to	all	counts	before	calculating	size	factors.	We	then	used	those	size	
factors	to	normalize	the	original	raw	counts	(i.e.,	without	pseudo-counts).	

Clustering	
We	clustered	normalized	mRNA	and	protein	counts	based	on	their	Euclidian	distance,	using	the	
complete	linkage	method	implemented	in	the	flashclust45	package,	which	is	a	faster	
implementation	of	the	hclust	function	in	R.	This	method	defines	the	cluster	distance	
between	two	clusters	as	the	maximum	distance	between	their	individual	components46.	At	
every	stage	of	the	clustering	process,	the	two	closest	clusters	are	merged	into	the	next	bigger	
cluster.	The	final	outcome	of	this	process	is	a	dendogram	that	measures	the	closeness	of	
different	samples	to	each	other.	
	
To	assess	whether	the	clustering	process	significantly	grouped	similar	samples	together,	we	
employed	a	reshuffling	test.	For	any	category	that	we	tested	for	significant	clustering	(e.g.,	
carbon	source,	Na	stress,	or	batch	number),	we	calculated	the	mean	cophenetic	distance	in	the	
clustering	dendogram	between	all	pairs	belonging	to	the	same	level	of	the	categorical	variable	
tested	(e.g.,	same	carbon	source).	We	then	repeatedly	reshuffled	the	labeling	within	each	
category	and	recalculated	the	mean	cophenetic	distance	each	time.	Finally,	we	calculated	z	
scores	of	the	original	cophenetic	distance	relative	to	the	distribution	of	reshuffled	values.		
	

Identifying	differentially	expressed	genes	
We	used	DESeq217	to	identify	differentially	expressed	mRNAs	and	proteins	across	conditions.	
We	used	two	reference	conditions	in	our	comparisons,	one	for	exponential	phase	and	one	for	
stationary	phase.	The	reference	conditions	always	had	glucose	as	carbon	source	and	base	Na+	
and	Mg2+	concentrations.	We	did	not	compare	exponential	phase	to	stationary	phase	samples,	
since	this	comparison	was	done	in	depth	previously10	for	samples	grown	on	glucose	and	with	
base	Na+	and	Mg2+	concentrations.	
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We	corrected	for	possible	batch	effects	by	including	batch	number	as	a	predictor	variable	in	the	
design	formula	of	DESeq2.	In	general,	our	design	formula	was	~batch_number + 
variable_of_interest,	where	variable_of_interest	was	either	a	categorical	
variable	representing	the	carbons	source	or	growth	phase	(exponential	or	stationary)	or	a	
quantitative	variable	representing	Na+	level	or	Mg2+	level.	In	analyses	controlling	for	growth	
rate	in	addition	to	batch	effects,	our	design	formula	was	~batch_number + 
doubling_time + variable_of_interest. 
	
We	considered	genes	as	differentially	expressed	between	two	conditions	if	their	log2	fold	
change	was	>	1	and	their	FDR-corrected	P	value	<	0.05.	We	subsequently	annotated	
differentially	expressed	genes	with	DAVID20	version	6.8	Beta	released	in	May	2016.	We	
considered	both	KEGG	pathways18	and	GO	annotations19.	
	

Statistical	analysis	and	data	availability	
All	statistical	analyses	were	performed	in	R.	All	processed	data	and	analysis	scripts	are	available	
on	github:	https://github.com/umutcaglar/ecoli_multiple_growth_conditions	
Raw	Illumina	read	data	and	processed	files	of	read	counts	per	gene	and	normalized	expression	
levels	per	gene	have	been	deposited	in	the	NCBI	GEO	database47		(accession	GSE67402	for	the	
glucose	time-course	previously	published10,	accession	GSE94117	for	all	other	experiments).	The	
mass	spectrometry	proteomics	data	have	been	deposited	to	the	ProteomeXchange	Consortium	
via	the	PRIDE	partner	repository48	(accession	PXD002140	for	the	glucose	time-course	previously	
published10,	accession	PXD005721	for	all	other	experiments).	Raw	GC-MS	data	for	flux	
measurements	have	been	deposited	on	the	Texas	Data	Repository	Dataverse	at	
http://dx.doi.org/10.18738/T8/UG3TUR.	
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Figures	
	

	
	
Figure	1:	Experimental	setup.	We	performed	seven	different	experiments	in	which	we	varied	
the	duration	of	growth	and	the	temporal	density	of	sampling,	the	carbon	source,	and	ion	
concentrations.	For	each	experimental	condition,	bacteria	were	grown	in	three	biological	
replicates.	Conditions	that	are	listed	multiple	times	represent	independent	replicates	of	those	
conditions.	We	subsequently	performed	whole-transcriptome	RNA-Seq	for	all	experimental	
conditions	and	mass-spec	proteomics	for	the	majority	of	them.	(No	proteomics	was	performed	
for	the	low-magnesium	experiment.)	We	considered	four	different	carbon	sources:	glucose,	
glycerol,	gluconate,	and	lactate;	we	also	considered	high	sodium	and	both	low	and	high	
magnesium	levels.	For	the	time-course	and	carbon-source	experiments,	we	used	base-level	Na+	
(5	mM)	and	Mg2+	(0.8	mM)	throughout	(indicated	by	[*]	in	the	sodium	and	magnesium	
experiments).	 
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Figure	2:	Doubling	times	under	various	growth	conditions.	We	measured	doubling	times	under	
exponential	phase	for	all	growth	conditions.	The	red	points	and	dashed	orange	lines	represent	
the	doubling	time	at	the	base	condition	(glucose,	5	mM	Na+,	0.8	mM	Mg2+).	Doubling	times	
were	measured	in	triplicates	and	error	bars	represents	95%	confidence	intervals	of	the	mean.	
(A)	Doubling	times	with	respect	to	carbon	sources.	(B)	Doubling	times	with	respect	to	Mg2+	
concentrations.	(C)	Doubling	times	with	respect	to	Na+	concentrations.		

0

25

50

75

100

125

glucose glycerol lactate gluconate
Carbon sources

D
ou

bl
in

g 
tim

e 
(m

in
)

A

0

25

50

75

100

125

0.01 0.10 1.00 10.00 100.00
Mg Concentration mM

D
ou

bl
in

g 
tim

e 
(m

in
)

B

0

25

50

75

100

125

0 100 200 300
Na Concentration mM

D
ou

bl
in

g 
tim

e 
(m

in
)

C



	 20	

	
	

	

	
Figure	3:	Clustering	of	mRNA	abundances.	The	heatmap	shows	4196	mRNA	abundances	for	
each	of	152	samples,	clustered	both	by	similarity	across	genes	and	by	similarity	across	samples.	
The	growth	conditions	for	each	sample	are	indicated	by	the	color	coding	along	the	top	of	the	
heatmap;	the	color	coding	is	defined	in	the	legend	at	the	bottom.		
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Figure	4:	Clustering	of	protein	abundances.	The	heatmap	shows	4196	protein	abundances	for	
each	of	105	samples,	clustered	both	by	similarity	across	genes	and	by	similarity	across	samples.	
The	growth	conditions	for	each	sample	are	indicated	by	the	color	coding	along	the	top	of	the	
heatmap;	the	color	coding	is	defined	in	the	legend	at	the	bottom.	 	
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Figure	5.	Number	of	differentially	expressed	genes	under	different	conditions.	We	separately	
analyzed	mRNA	and	protein	abundances,	each	for	both	exponential	and	stationary	growth	
phase.	In	all	four	cases,	gene	expression	levels	were	compared	to	the	corresponding	condition	
with	glucose	as	carbon	source	and	baseline	sodium	and	magnesium	levels.	Differentially	
expressed	genes	were	defined	has	having	at	least	a	two-fold	change	relative	to	baseline	and	a	
false-discovery	rate	<0.05.	Carbon	sources	are	abbreviated	as	follows:	“Gly”:	glycerol,	“Glc”:		
gluconate,	“Lac”:	lactate.	
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Figure	6:	Overlap	of	differentially	expressed	genes	among	conditions.	For	all	differentially	
expressed	genes	(identified	as	in	Figure	5),	we	determined	to	what	extent	they	were	unique	to	
specific	conditions	or	appeared	in	multiple	conditions.	For	simplicity,	we	here	lumped	all	
carbon-source	experiments,	all	sodium	experiments,	and	all	magnesium	experiments	into	one	
group	each.	Overall,	we	found	relatively	little	overlap	in	the	differentially	expressed	genes	
among	these	conditions.	(A)	mRNA,	exponential	phase.	(B)	protein,	exponential	phase.	(C)	
mRNA,	stationary	phase.	(D)	protein,	stationary	phase.	
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Figure	7:	Significantly	differentially	expressed	KEGG	pathways.	For	each	condition,	we	show	
the	top-5	differentially	expressed	KEGG	pathways	as	determined	by	either	mRNA	or	protein	
abundances.	Empty	boxes	indicate	that	no	differentially	expressed	pathways	were	found.	The	
arrows	next	to	pathway	names	indicate	the	proportion	of	up-	and	down-regulated	genes	
among	the	significantly	differentially	expressed	genes	in	this	pathway.	One	up	arrow	indicates	
that	60%	or	more	of	the	genes	are	up-regulated,	two	arrows	correspond	to	80%	or	more	genes,	
and	three	arrows	correspond	to	95%	or	more	genes	being	up-regulated.	Similarly,	down	arrows	
indicate	the	proportion	of	down-regulated	genes.	(A)	Exponential	phase.	(B)	Stationary	phase.		
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Figure	8:	Examples	of	significantly	differentially	expressed	KEGG	pathways	and	associated	
genes.	The	top	differentially	expressed	KEGG	pathways	are	shown	along	the	y	axis,	and	the	
relative	fold	change	of	the	corresponding	genes	is	shown	along	the	x	axis.	For	each	KEGG	
pathway,	we	show	up	to	10	of	the	most	significantly	changing	genes.	(A)	Differentially	
expressed	mRNAs	under	high	Mg2+	levels	in	exponential	phase	against	the	control	of	samples	at	
base	Mg2+	level	in	exponential	phase.	(B)	Differentially	expressed	proteins	under	lactate	as	
carbon	source	in	exponential	phase	against	the	control	of	samples	with	glucose	as	carbon	
source	in	exponential	phase.	Significant	changes	for	all	conditions	are	shown	in	Supplementary	
Figures	2–33.	
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Figure	9:	Flux	ratios	versus	doubling	times.	13	different	flux	ratios	were	measured	for	varying	
Na+	and	Mg2+	concentrations	(Supplementary	Figure	34).	Here,	these	flux	ratios	are	shown	as	a	
function	of	the	corresponding	doubling	times.	The	specific	fluxes	considered	and	their	
shorthand	labels	as	used	here	are	defined	in	Ref.	35.	There	was	no	significant	association	
between	any	of	the	flux	ratios	and	doubling	time	after	correction	for	multiple	testing	
(Supplementary	Table	14).	
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Tables	
	
Table	1:	Clustering	of	mRNA	and	protein	abundances	by	different	growth	conditions.	The	z	
scores	represent	mean	cophenetic	distances	between	all	pairs	of	conditions	with	the	same	
label,	normalized	by	the	distribution	of	mean	distances	obtained	after	randomly	reshuffling	
condition	labels.	The	overall	z	score	tests	for	significant	clustering	within	a	given	variable,	and	
the	individual	z	score	tests	for	significant	clustering	within	a	given	condition.	Significant	
clustering	(defined	as	|z|>2)	is	indicated	with	a	*.	The	z-scores	of	individual	batches	are	
provided	in	Supplementary	Tables	S6	and	S7.	

mRNA	
Variable	 Overall	z	score	 		 Condition	 z	score	 		 #	samples	

Growth	phase	 −30.98	 *	 Exponential	 −15.49	 *	 79	
Stationary	 -0.94	 		 63	

Late	stationary	 −2.9	 *	 10	
Carbon	source	 1.21	 	 Glucose	 1.19	 	 115	

Glycerol	 −0.48	 	 25	
Lactate	 −1.93	 	 6	

Gluconate	 −0.46	 	 6	
Mg	Level	 −3.21	 *	 Low	Mg2+	 0.38	 		 36	

Base	Mg2+	 −2.21	 *	 92	
High	Mg2+	 −0.97	 	 24	

Na	Level	 −1.89	 	 Base	Na+	 −1.83	 	 136	
High	Na+	 1.15	 	 16	

Batch	number	 −1.43	 	 		 		 		 		
	 	 	 	 	 	 	
	 	 	 	 	 	 	

Protein	
Variable	 Overall	z	score	 		 Condition	 z	score	 		 #	samples	

Growth	phase	 −1.27	 	 Exponential	 −0.82	 	 56	
Stationary	 0.23	 		 37	

Late	stationary	 −0.08	 		 12	
Carbon	source	 −2.79	 *	 Glucose	 −2.33	 *	 66	

Glycerol	 1.35	 	 27	
Lactate	 −2.73	 *	 6	

Gluconate	 −2.63	 *	 6	
Mg	Level	 −0.50	 	 Low	Mg2+	 0.85	 		 6	

Base	Mg2+	 −0.44	 		 87	
High	Mg2+	 −0.42	 	 12	

Na	Level	 −1.74	 	 Base	Na+	 −0.94	 	 94	
High	Na+	 −5.61	 *	 11	

Batch	number	 −20.54	 *	 		 		 		 		
	

	


