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Abstract 23 

ChIP-seq probes genome-wide localization of DNA-associated proteins. To mitigate technical 24 

biases ChIP-seq read densities are normalized to read densities obtained by a control. Our 25 

statistical framework “normR” achieves a sensitive normalization by accounting for the effect 26 

of putative protein-bound regions on the overall read statistics. Here, we demonstrate 27 

normR’s suitability in three studies: (i) calling enrichment for high (H3K4me3) and low 28 

(H3K36me3) signal-to-ratio data; (ii) identifying two previously undescribed H3K27me3 and 29 

H3K9me3 heterochromatic regimes of broad and peak enrichment; and (iii) calling 30 

differential H3K4me3 or H3K27me3-enrichment between HepG2 hepatocarcinoma cells and 31 

primary human Hepatocytes. normR is readily available on 32 

http://bioconductor.org/packages/normr 33 
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Introduction 35 

Chromatin Immunoprecipitation followed by high-throughput sequencing (ChIP-seq; Johnson 36 

et al. 2007) is a widely used method for the genome-wide localization of DNA-associated 37 

proteins, such as transcription factors or histone modifications. In brief, after crosslinking 38 

with formaldehyde the chromatin is sheared and the resulting chromatin fragments are 39 

enriched by immunoprecipitation for the protein of interest. The precipitate is reverse-40 

crosslinked to obtain DNA fragments, which are amplified and then sequenced. The reads 41 

generated in this way are then aligned to a reference genome and genomic loci bound by the 42 

protein are inferred by an accumulation of sequencing reads. Due to the genome-wide 43 

scalability and cost-efficiency of ChIP-seq, hundreds of distinct proteins and their 44 

modifications have been assayed to study underlying mechanisms of molecular function in 45 

different cell types (ENCODE Project Consortium 2012; Roadmap Epigenomics Consortium 46 

et al. 2015). Consequently, a huge resource of protein location information is available to be 47 

readily integrated into studies at hand. 48 

ChIP-seq data are used to characterize transcription factor binding sites (Thomas-Chollier et 49 

al. 2012), chromatin landscapes (Mammana and Chung 2015; Perner et al. 2014) or functional 50 

elements, like enhancers (Heintzman et al. 2007; 2009). Specifically, most ChIP-seq 51 

experiments aim to study protein binding sites in the context of gene regulation. For example, 52 

the lineage-specific binding of transcription factors orchestrates differentiation pathways 53 

(Tsankov et al. 2015). Furthermore, ChIP-seq signals of histone modifications are predictive 54 

for promoter activity (Karlić et al. 2010) and enhancer competence (Bonn et al. 2012). 55 

The identification of regions bound by a protein of interest requires the discrimination of 56 

enrichment against background. Intuitively, a high number of ChIP sequencing reads should 57 

map to protein-bound regions, where the average number of reads in these regions depends on 58 

the “binding mode” of the protein of interest. For example, transcription factors and certain 59 

histone modifications, such as H3K4me3, are characterized by a localized read accumulation 60 
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with a high signal-to-noise ratio (Sims et al. 2014). Some histone modifications, such as 61 

H3K9me3, H3K27me3, and H3K36me3 are characterized by a more delocalized read 62 

accumulation with a substantially lower signal-to-noise ratio. 63 

Technical biases introduced during the ChIP-seq procedure lead to accumulation of reads in 64 

regions that are devoid of the protein (Vega et al. 2009; Jain et al. 2015; Meyer and Liu 2014). 65 

These biases arise by copy number variations, sequencing biases, mapping ambiguities, and 66 

the chromatin structure (Vega et al. 2009; Flensburg et al. 2014). These biases are also 67 

discernable in control experiments, i.e. they can be accounted for by comparing the ChIP read 68 

coverage to a control experiment without specific enrichment, such as the input chromatin to 69 

the ChIP. 70 

The comparison of the read counts in the ChIP to those in the control requires normalization 71 

to account for, both, the differences in the sequencing depth, and the effects of enrichment by 72 

the ChIP. Ideally, such a normalization should yield a normalization factor that corrects the 73 

average ratio between ChIP- and control read counts in background regions (Liang and Keles 74 

2012; Xu et al. 2010; Diaz et al. 2012). Thus, a proper normalization requires the identity of 75 

background regions. On the other hand, the discrimination of enriched and background 76 

regions requires normalization itself – normalization and discrimination of enrichment against 77 

background are two faces of the same coin. 78 

Earlier approaches estimate the normalization factor either by the ratio of sequencing depths 79 

(e.g. MACS (Zhang et al. 2008) and DFilter (Kumar et al. 2013)), by the ratio of ChIP- and 80 

control read counts summed over ad hoc chosen background regions with fixed width (e.g. 81 

CisGenome (Ji et al. 2008), SPP (Kharchenko et al. 2008) and MUSIC (Harmanci et al. 82 

2014)), or by identifying background regions and their width using a data-driven approach 83 

(e.g. NCIS (Liang and Keles 2012) or SES (Diaz et al. 2012)). After normalization these 84 

approaches identify enriched regions and equate them to protein binding sites or 85 

modifications. All these approaches discriminate a single signal regime from the background. 86 

However, a qualitative separation of this signal regime, e.g. into moderately and highly 87 
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enriched regimes, could distinguish genomic loci that are bound by the protein in only a 88 

subpopulation of cells in the sample from those that are bound in the majority of cells in the 89 

sample. Those analyses of ChIP-seq sample heterogeneity cannot be performed using existing 90 

methods. 91 

The discrimination of signal against background is not only required to determine protein 92 

binding sites it is also required for identifying regions that are differentially bound in two 93 

conditions, e.g. control and disease. Most approaches (e.g. MACS (Zhang et al. 2008)) aimed 94 

at identifying differentially bound regions concentrate on the modeling of condition-specific 95 

exclusive enrichment. In addition, other methods (Xu et al. 2008; Allhoff et al. 2014; Heinig 96 

et al. 2015) employ a three-state Hidden Markov Model to additionally identify condition-97 

specific changes of signal within regions of concurrent ChIP enrichment. Therein, a 98 

computationally intensive training is done to learn a hidden state representation of the data. 99 

Consequently, the regional ChIP read coverage is “interpolated”/”smoothed” based on the 100 

read coverage in adjacent genomic loci. This data abstraction sacrifices a statistically sound 101 

null hypothesis. 102 

Here, we describe a data-driven robust and broadly applicable approach for simultaneous 103 

normalization and difference calling in ChIP-seq data called normR (recursive acronym: 104 

“normR obeys regime mixture rules”). normR models ChIP- and control read counts by a 105 

binomial mixture model. One component models the background, while one or more other 106 

components model the signal. As a proof of principle, normR is applied in three scenarios: 107 

Firstly, we show that normR achieves robust enrichment calling for both high (H3K4me3) 108 

and low (H3K36me3) signal-to-noise ratio ChIP-seq data. High specificity and sensitivity of 109 

normR is confirmed by functional outputs like gene expression and DNA methylation state. 110 

Secondly, we use normR to characterize two previously undetectable enrichment regimes for 111 

H3K27me3 and H3K9me3 in hepatocarcinoma HepG2 cells. Finally, the translational normR 112 

approach is shown to confidently call differences between primary human hepatocytes and 113 

HepG2 cells for both high (H3K4me3) and low (H3K27me3) signal-to-noise ratio histone 114 
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modification ChIP-seq data. Here, we uncover potential epigenetic alterations introduced by 115 

the cancer-associated immortalization of primary liver cells. Thus, normR is a versatile tool 116 

that can identify enriched regions, distinct enrichment regimes and differences between 117 

conditions using a simple binomial mixture model and robust statistics.  118 

Results 119 

The normR Framework 120 

During a ChIP experiment antibodies are used to enrich chromatin fragments carrying the 121 

protein of interest from a population of fragments obtained by sonication of chromatin. These 122 

antibodies bind preferentially but not exclusively to protein-DNA complexes. Hence, ChIP 123 

only enriches rather than selects protein containing chromatin fragments. Bearing this in mind, 124 

ChIP can be envisioned as a sampling process where the probability to draw a fragment 125 

depends on the presence or absence of the protein. If present, the probability is high, if absent, 126 

the probability is lower but not zero. The spatial distribution of the fragments sampled in this 127 

way is then estimated by mapping the sequenced ends (reads) of these fragments to the 128 

reference genome. 129 

To infer regions bound by a protein of interest the read densities obtained by ChIP-seq 130 

experiment are compared to the corresponding counts obtained by a control experiment e.g. 131 

by sequencing the sonicated chromatin (input). A region should be called “enriched by the 132 

ChIP” only if the number of reads from the ChIP is sufficiently greater than that expected 133 

relative to the control. Such an approach addresses a number of systematic biases, like copy 134 

number variations, sequencing biases, mapping ambiguities and chromatin structure (Vega et 135 

al. 2009; Meyer and Liu 2014; Flensburg et al. 2014). To this end, a proper normalization of 136 

the read count densities is essential: For example, if we sequence twice as many reads in the 137 

ChIP than in the control, the read counts per region in the ChIP should be greater than in the 138 

control. In the absence of enrichment by the ChIP, we expect twice as many reads per region 139 

in the ChIP than in the control. In the presence of enrichment by the ChIP, the read counts in 140 
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the region associated with the protein should be much higher than in the control, but what 141 

happens to the read counts in the remaining regions? 142 

Sequencing the ChIP and control libraries is a multinomial sampling process, which induces 143 

dependencies between the regions. As the total number of reads obtained from one 144 

sequencing run is fixed and finite, the increase of reads in some regions due to ChIP 145 

enrichment leads to a decrease in remaining regions, i.e. background regions 𝐵. Returning to 146 

our example, this implies that the number of reads in non-enriched regions in the ChIP should 147 

be less than twice the number from the control. In particular, the normalization factor 𝑐𝐵 is 148 

less than two which relates the number of reads in ChIP-seq 𝑠𝑖 to the ones in control 𝑟𝑖 by 149 

𝑠𝑖 ≈ 𝑐𝐵 × 𝑟𝑖 for background regions 𝑖 ∈ 𝐵. 𝑐𝐵  depends on the average enrichment achieved 150 

by the ChIP and the number of enriched regions — it  shrinks as, both, the number of 151 

enriched regions and the level of enrichment in these regions increases.  Critically, 𝑐𝐵  is 152 

required to define a statistically sound Null hypothesis for testing whether the observed ChIP 153 

read counts are sufficiently greater than expected given the control. Moreover, the more 154 

regions are enriched, the lower the signal-to-noise ratio becomes at a fixed sequencing depth 155 

(Sims et al. 2014). The estimation of 𝑐𝐵 requires the identity of background regions, albeit the 156 

identification of the background requires normalization itself. Thus, ChIP-seq normalization 157 

and the identification of enriched regions are two sides of the same problem. 158 

To tackle this problem we model the read counts from the ChIP and control by a binomial 159 

mixture model (Methods; Figure 1). In its simplest incarnation we use two components, i.e. 160 

background and enriched, to normalize and call enrichment over the control (referred to as 161 

“enrichR”). The model has in total three free parameters, i.e. 𝜃𝐵, 𝜃𝐸  and 𝜋𝐵 . 𝜃𝐵  and 162 

𝜃𝐸represent the expected fraction of reads in the ChIP over the sum of reads from ChIP and 163 

control per region for the background and the enriched regions, respectively. 𝜋𝐵  is the 164 

proportion of regions that belong to the background 𝜋𝐵 (the proportion of regions that are 165 

enriched is simply  𝜋𝐸 = 1 − 𝜋𝐵 ). Given this model we derive the following likelihood 166 

function: 167 
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ℒ = ∏ (
𝑠𝑖 + 𝑟𝑖

𝑠𝑖
) (𝜋𝐵 × 𝜃𝐵

𝑠𝑖 × (1 − 𝜃𝐵)𝑟𝑖 + (1 − 𝜋𝐵) × 𝜃𝐸
𝑠𝑖 × (1 − 𝜃𝐸)𝑟𝑖)

𝑖

, 

where 𝑠𝑖 (𝑟𝑖) corresponds to the number of reads in the ChIP (control) for regions 𝑖 = 1, … , 𝑛. 168 

We fit these parameters using the expectation-maximization algorithm (Dempster et al. 1977) 169 

on the closed form solution (Methods). From the discussion above we expect that  𝜃𝐵 ≤170 

𝑁𝐶ℎ𝐼𝑃

𝑁𝐶ℎ𝐼𝑃+𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙
= 𝜃∗, where 𝑁𝐶ℎ𝐼𝑃 (𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙) is the total number of reads in the ChIP (control) 171 

and 𝜃∗  denotes the expected fraction of reads from ChIP-seq taking into account only 172 

sequencing depth. Equality holds only in case of no enrichment, or 𝜋𝐵 = 1. The last implicit 173 

“parameter” is the definition of regions. We use non-overlapping fixed width regions because 174 

it is robust and appropriate for most downstream analyses (Ernst and Kellis 2012; Nair et al. 175 

2014; Ramírez et al. 2014; Mammana and Chung 2015). 176 

 177 

Figure 1. The normR Framework. Reads in control 𝑟 and ChIP 𝑠 are modeled as a binomial 178 

mixture model with multiple components. Here, two components model the expected fraction 179 

of reads in the ChIP over the sum of reads from ChIP and control per region for background 180 

𝜃𝐵 and the enriched 𝜃𝐸. By accounting for the effect of ChIP enrichment on the background 181 

read statistics a statistical sound Null hypothesis is formed. 182 

The identification of enriched regions across the genome is based on the fitted model: Given 183 

the control read count, the ChIP read count in each region is compared to the expected read 184 
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count under the fitted background model. Using a binomial test statistically significant 185 

deviations from the background model are recovered. The null distribution of p-values from a 186 

binomial test is discrete and impedes the correction for multiple testing. By filtering out low 187 

power tests (i.e. low count regions) with the T method (Dialsingh et al. 2015), the p-value 188 

distribution becomes more uniform and the p-values can be adjusted for multiple testing. 189 

Filtered p-values are then transformed to q-values (Storey 2002). Enriched regions are 190 

reported if they fall below a user-specified threshold. 191 

In addition to enrichR, we provide two augmented realizations of normR (Methods): (i) 192 

“regimeR” models multiple enrichment components defined by 𝜃𝐸𝑗
 with 𝑗 = 1, . . , 𝑚  to 193 

identify ChIP enrichment regimes; and (ii) “diffR” models the expected fraction of reads in a 194 

depleted (control-enriched) component defined by 𝜃𝐷  in addition to 𝜃𝐵  and 𝜃𝐸  yielding a 195 

direct comparison of two ChIP experiments. After assessing significance against 𝜃𝐵  every 196 

region is assigned to a component by Maximum a posteriori assignment. 197 

Based on the fitted binomial mixture model the normalized ChIP signal 𝑒𝑖 is calculated by 198 

dividing the read counts from ChIP-seq by those from the control scaled by the normR 199 

enrichment factor 𝑓 =  
𝜃𝐸

1−𝜃𝐸
× 

1−𝜃𝐵

𝜃𝐵
. To account for noise in low power regions, we 200 

regularize 𝑒𝑖 by adding pseudocounts to the number of ChIP-seq and Input-seq reads resulting 201 

in 202 

𝑒𝑖 =
ln (

𝑠𝑖 +  𝛼𝑠
𝑟𝑖 +  𝛼r

×
αr
αs

) 

ln (𝑓)
 

where α𝑥 =
∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖×𝑖 𝑥

∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖𝑖

 represents the average read count for 𝑥 given the normR-fitted 203 

background model. 204 

We have implemented normR in C++ and R (R Core Team 2015). normR is available 205 

on Bioconductor at http://bioconductor.org/packages/normr. 206 

Enrichment Calling in Low and High Signal-To-Noise Ratio Settings with 207 
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enrichR in Primary Human Hepatocytes 208 

To illustrate the enrichment calling based on a robust background estimation, we applied 209 

enrichR to two ChIP-seq experiments against H3K4me3 and H3K36me3 in primary human 210 

hepatocytes. H3K4me3 correlates with promoter activity and DNA-hypomethylation (Ooi et 211 

al. 2007; Long et al. 2013; Hu et al. 2009) and exhibits a high signal-to-noise ratio 212 

(Supplemental Fig. 1). H3K36me3 represents a lower signal-to-noise characteristics 213 

(Supplemental Fig. 1) and is associated to transcriptional elongation in the body of 214 

transcribed genes (Kim et al. 2007) as well as DNA-hypermethylation (Baubec et al. 2015). 215 

We performed enrichR analyses on the ChIP-seq data against Input-seq (Methods). The 216 

enrichment calls by enrichR were compared to peaks called by six popular peak calling tools 217 

ChIP-seq data: MACS2 (Feng et al. 2012), DFilter (Kumar et al. 2013), CisGenome (Ji et al. 218 

2008), SPP (Kharchenko et al. 2008), BCP (Xing et al. 2012) and MUSIC (Harmanci et al. 219 

2014). 220 

As a first assessment, we inspected the coverage and enrichment/peak calls for H3K4me3 and 221 

H3K36me3 ChIP-seq in the vicinity of the Glucose-6-Phosphate Isomerase gene (GPI, Figure 222 

2A) — a housekeeping gene that is highly expressed in all cell types (Eisenberg and Levanon 223 

2013). GPI was also expressed in primary human hepatocytes as measured by RNA-seq and 224 

showed a characteristic chromatin signature of transcription, i.e. H3K4me3 and H3K36me3 in 225 

the promoter and the gene body, respectively. All tested methods identified these 226 

characteristic enrichments at the GPI locus. Moreover, the promoter of the WTIP gene was 227 

detected as H3K4me3-enriched by all methods. Together with the measured shallow coverage 228 

of RNA-seq reads along its gene body this indicated that WTIP is expressed suggesting a 229 

genuine H3K36me3 enrichment in its gene body. Interestingly, this minute H3K36me3 230 

enrichment was exclusively recovered by enrichR.  231 

Genome-wide enrichR called H3K4me3-enrichment in 142,451 500 base-pair (bp) regions in 232 

primary human hepatocytes, corresponding to 45,522 consecutive regions representing ~3% 233 

of the mappable genome (71.2Mb). The identified regions were characterized by low levels of 234 
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DNA methylation (Figure 2B), in line with the idea that H3K4me3 represses DNA 235 

methylation (Ooi et al. 2007; Long et al. 2013; Hu et al. 2009). Furthermore, H3K4me3-236 

enriched regions recovered by enrichR showed a higher density of CAGE-tags than the 237 

background (Figure 2C) indicating that they serve as active transcriptional start sites (TSSs) 238 

in this cell type. In fact, enrichR H3K4me3-enriched regions showed a statistically significant 239 

overlap with annotated TSSs (odds-ratio = 25.04, Fisher’s signed exact test, P ≤  0.001, 240 

Supplemental Table 1). Together these observations support that enrichR identifies bona fide 241 

H3K4me3-enriched regions.  242 

 243 

Figure 2. Enrichment Calling in Low and High Signal-To-Noise Ratio Settings with 244 

enrichR in Primary Human Hepatocytes. (A) Input (grey), H3K4me3 (green, high signal-245 

to-noise ratio), H3K36me3 (rose, low signal-to-noise ratio) and RNA-seq (black) barplots 246 

indicate coverage proximal to the human Glucose-6-Phosphate Isomerase (GPI, yellow 247 

overlay) locus on chromosome 19 in Primary Human Hepatocytes (PHH). Enrichment calls 248 

are indicated as colored boxes below respective tracks for enrichR, DFilter, MACS2, 249 

CisGenome’s SeqPeak and SPP. The  WTIP gene (blue overlay) had detectable H3K4me3 250 

enrichment at its promoter and minute H3K36me3 is recovered solely by enrichR. (B-C) 251 

enrichR H3K4me3-enriched regions were DNA-hypomethylated (B) and expressed as 252 

measured by CAGE (C). (D-E) enrichR H3K36me3-enriched regions were DNA-253 

hypermethylated (D) and expressed as measured by RNA-seq (E). 254 

The comparison of enrichR enriched regions to MACS2, DFilter, CisGenome, SPP, BCP and 255 

MUSIC peaks revealed a substantial overlap at 𝐹𝐷𝑅 = 0.1 indicating that for H3K4me3 in 256 

this dataset all six methods work well, although in terms of covered bp DFilter (39.8Mb) and 257 
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CisGenome (38.7Mb) called almost two-fold fewer regions than the other tools 258 

(mean=65.3Mb; Supplemental Note, Supplemental Fig. 2A, Supplemental Table 2). 259 

For H3K36me3 enrichR identified 559,560 1 kilo base-pair (kb) windows as enriched, 260 

corresponding to 85,293 consecutive regions representing ~20% of the mappable genome 261 

(599.6Mb). H3K36me3-enriched regions recovered by enrichR showed high levels of DNA 262 

methylation (Figure 2D), in line with the observation that H3K36me3 recruits DNMT3B 263 

leading to de novo DNA methylation (Baubec et al. 2015). Furthermore, these regions showed 264 

significantly higher RNA-seq read coverage than background regions (Wilcoxon-signed-rank 265 

test P ≤  0.001, Figure 2E), in line with the idea that H3K36me3 covers the gene body of 266 

transcribed genes (Kim et al. 2007). Furthermore, enrichR H3K36me3-enriched regions 267 

showed a statistically significant overlap with annotated transcripts (odds-ratio = 17.06, 268 

Fisher’s signed exact test, P ≤  0.001, Supplemental Table 1). These results support that 269 

enrichR also identifies bona fide H3K36me3-enriched regions. 270 

When compared to enrichR results, far less H3K36me3-enriched regions were reported by 271 

MACS2 (407.7Mb), BCP (396.5Mb), MUSIC (402.3Mb) and by especially DFilter (87.8Mb), 272 

SPP (25.1Mb) and CisGenome (36.4Mb), even when configured for detection in low signal-273 

to-noise ratio settings (Methods). Almost all of these regions (MACS2: 399.1Mb; 97.9%, 274 

DFilter: 87.8Mb; 100%; CisGenome: 36.4Mb; 100%; SPP:24.2Mb; 96.7%; BCP:386.8Mb; 275 

97.6%; MUSIC:382.6Mb; 95.1%) were recovered by enrichR which leads to very few 276 

exclusive regions for the benchmark methods (Supplemental Fig. 2B). Regions called 277 

exclusively by enrichR (93.6Mb; 16.7%) were characterized by a median distance of >2kb to 278 

peaks recovered by other methods (Supplemental Fig. 2C). Furthermore, these regions 279 

showed significantly higher DNA-methylation levels and transcriptional activity than 280 

background regions suggesting once more a genuine H3K36me3 enrichment (Wilcoxon-281 

signed-rank test P ≤  0.001, Supplemental Fig. 2D-E). 282 

Next, we studied accuracy of H3K36me3-enrichment peak calls.  Because there is no 283 

genome-wide ChIP-seq benchmark set on-hand, we defined a gold standard for each method 284 
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based on a consensus vote among the six remaining tools (Kinkley et al. 2016) (Supplemental 285 

Note): At FDR 0.1 DFilter and CisGenome achieved both highest precision (1.00), while 286 

enrichR had the highest recall (0.997) and BCP had the highest F2-score (0.631; Supplemental 287 

Table 2). enrichR which called almost all regions of the five tools combined had a recall-288 

weighted F2-score of 0.533 compensating its menial precision (0.186) at q-value ≤ 0.1 with 289 

a superior recall. In fact, enrichR has the highest precision at recall ≤ 0.9 indicating that the 290 

consensus vote defined gold standard does not contain many enrichR-exclusive regions at 291 

q-value ≤ 0.1 (Supplemental Fig. 3).  In a second assessment, we studied the validity of 292 

tool-specific regions, i.e. the peak calls not represented in the gold standard. To this end we 293 

defined a unified gold standard of H3K36me3-enrichment, i.e. the union of seven tool-294 

specific gold standards, and seven sets of tool-specific regions (Supplemental Note). For all 295 

methods, the unified gold standard exhibited a significantly higher enrichment (fold change 296 

over Input) than tool-specific regions for enrichR, MACS2, SPP, BCP and MUSIC 297 

(Wilcoxon-signed-rank test; P ≤  0.01; Supplemental Fig. 2F). Among these, enrichR had 298 

the most tool-specific regions (205,064; 36.6%) and showed significantly higher enrichment 299 

as well as read coverage than background regions (Supplemental Fig. 2G). Furthermore, 300 

enrichR-specific regions were remote from unified gold standard regions (median=14Mb; 301 

Supplemental Figure 2H) and, yet, still overrepresented in annotated gene bodies (odds-ratio 302 

= 13; Supplemental Table 1).  303 

Some ChIP-seq peak callers perform worse when the sequencing depth in the ChIP library is 304 

reduced (Teytelman et al. 2013). To show the robustness of enrichR, we used the unified gold 305 

standard to benchmark all assessed tools on an in silico down sampled sequencing library 306 

(Supplemental Note). enrichR and MACS2 called >90% of the gold standard at 50% (30%) of 307 

the original H3K4me3 (H3K36me3) sequencing depth (Supplemental Fig. 4) suggesting that 308 

both methods are specific in even shallow sequenced ChIP libraries. 309 

ChIP-seq coverage normalization based on bona-fide background regions is also done by 310 

NCIS (Liang and Keles 2012). For H3K36me3 NCIS estimated a normalization factor that 311 
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was ~1.5-fold smaller than 𝜃∗ and enrichR’s 𝜃𝐵 was ~2-fold smaller than 𝜃∗ (Supplemental 312 

Fig. 5, Supplemental Table 3). Thus, enrichR achieved a normalization almost equivalent to 313 

NCIS, despite using a different model. 314 

Enrichment Regime Identification in H3K27me3 and H3K9me3 in HepG2 315 

cells with regimeR. 316 

Hither to discussed was the applicability of normR to a well-studied problem: the 317 

discrimination of enrichment against background. Here, we turn to a problem for which we 318 

had found to best of our knowledge no precedent in the literature: the discrimination of 319 

moderate enrichment from high enrichment. We can easily address this problem by increasing 320 

the number of foreground components in normR from one single component to multiple 321 

components (Methods). We refer to this approach as regimeR: In the case of two foreground 322 

components, regimeR disriminates a peak regime (high enrichment) and a broad regime 323 

(moderate enrichment) over the background. We applied regimeR to H3K9me3 and 324 

H3K27me3 ChIP-seq data from the hepatocarcinoma cell line HepG2 over the control. 325 

Figure 3A depicts a representative region on Human chromosome 19 harbouring active and 326 

repressed genes. regimeR segmented the ChIP-seq enrichment into broad and peak regions. 327 

For example, three H3K9me3 peaks flanked by moderate enrichment were detected by 328 

regimeR at the 3’-ends of ZNF546 and ZNF780A/B. Similarly, a H3K27me3-peak within a 329 

H3K27me3-broad domain was identified by regimeR at the “Fc Fragment Of IgG Binding 330 

Protein” gene promoter. 331 

For H3K9me3, 14.7% of the HepG2 epigenome got classified into 202,390 broad (47.8%; 332 

𝜇ChIP counts = 11.27; 𝜃𝐹1
= 0.39) and 221,741 peak regions (52.2%;  𝜇ChIP counts = 23.75; 333 

𝜃𝐹2
= 0.70 ; Figure 3B). Both H3K9me3-broad and –peak regions showed a statistically 334 

significant overlap with repetitive DNA elements (Wilcoxon-signed-rank test; P ≤  0.001; 335 

Figure 3C, Supplemental Fig. 6A), which is a reported feature of H3K9me3 marked 336 

constitutive heterochromatin (Wang et al. 2016). Moreover, H3K9me3-peak regions showed 337 



Page 15 of 40 

 

significantly higher levels of ZNF274 than background and H3K9me3-broad regions 338 

(Wilcoxon-signed-rank test; P ≤  0.001  , Figure 3D), in line with the idea that ZNF274 339 

recruits the H3K9 methyltransferase SETDB1 (Frietze et al. 2010). Thus H3K9me3-peak 340 

regions may coincide with nucleation sites for heterochromatin assembly at genomic repeat 341 

elements. 342 

 343 

Figure 3. H3K27me3 and H3K9me3 Enrichment Regime Identification in HepG2 cells 344 

with regimeR. (A) Input (grey), H3K9me3 (blue) , H3K27me3 (orange) and RNA-seq 345 

(black) coverage around a ZNF cluster on chromosome 19 in HepG2 cells. Individual 346 

regimeR-computed regimes are displayed as boxes below respective tracks. The 5’-ends of 347 

ZNF genes are marked with high H3K9me3 enrichment (yellow overlay) and the promoter of 348 

FCGBP is marked by a H3K27me3 peak within a broad H3K27me3 domain (green overlay). 349 

(B) regimeR identifies broad and peak H3K9me3 enrichment. (C-D) H3K9me3 peaks are 350 

significantly enriched for repeats (C) and ZNF274 ChIP-seq reads (D) as compared to both 351 

background and broad regions. (E)  regimeR identifies broad and peak H3K27me3 352 

enrichment. (F-G) H3K27me3 peaks have significantly greater CpG odds (F) and EZH2 353 

binding (G) as compared to background and broad regions. 354 

For H3K27me3, regimeR called 42.4% of the HepG2 epigenome H3K27me3-enriched 355 

(1,221,850 1kb regions) and subdivided this into 940,753 broad (77%,  𝜇ChIP counts = 12.03; 356 

𝜃𝐹1
= 0.46) and 281,097 peak regions (23%, 𝜇ChIP counts = 29.62; 𝜃𝐹1

= 0.68 Figure 3E). 357 

H3K27me3 covered three times more of the genome than H3K9me3, yet, with a lower 358 
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fraction of peak regions than in H3K9me3. Moreover, the vast majority H3K9me3 and 359 

H3K27me3 regimes were mutually exclusive in HepG2 cells (Supplemental Fig. 6B). 360 

H3K27me3-peak regions were characterized by a higher CpG odds ratio (CpG-content 361 

corrected for GC content) than both broad or background regions (Figure 3F, Supplemental 362 

Fig. 6C). In conjunction with an elevated conservation (Supplemental Fig. 6D) and a 363 

statistically significant overlap with annotated TSSs (Fisher’s signed exact test; P ≤  0.001; 364 

odds ratio = 1.98; Supplemental Table 4) this reaffirms that the TSSs targeted for peak 365 

H3K27me3 levels are high CpG promoters (Saxonov et al. 2006). Similar to H3K9me3-peak 366 

regions, H3K27me3-peak regions were significantly enriched for the enzyme that catalyzes 367 

the modification, i.e. EZH2 (Müller et al. 2002; Kuzmichev et al. 2002; Cao et al. 2002; 368 

Czermin et al. 2002) (Wilcoxon signed-rank test; P ≤  0.001, Figure 3G). Together these 369 

observations suggest that H3K27me3-broad and -peak regions show distinct characteristics 370 

with respect to CpG content, localization and EZH2 levels. 371 

The observation that both H3K9me3- and H3K27me3-peak regions were associated with 372 

significantly higher levels of their catalyst than broad- and background regions indicates that 373 

they correspond to nucleation sites for heterochromatin assembly. In line with this 374 

observation we found that most H3K9me3-peak regions are either embedded in an H3K9me3 375 

broad domain (43.4%) or at the border of a broad domain (35.1%). The vast majority of 376 

H3K27me3-peak regions were embedded in an H3K27me3 broad domain (82.8%) where both 377 

regimes showed elevated conservation (Supplemental Fig. 6D). On the contrary, H3K9me3-378 

peaks were less conserved than broad regions further supporting aforementioned idea that 379 

repetitive elements recruit the H3K9me3 methyltransferase. 380 

Difference Calling in Primary Human Hepatocytes and HepG2 cells with 381 

diffR. 382 

In addition to discriminating enrichment from background, another important task consists of 383 

identifying epigenetic alterations between conditions, e.g. healthy versus diseased or between 384 
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cell-types. normR can address this problem by calling differential enrichment between ChIP-385 

seq experiments from two conditions, referred to as “diffR”. We applied diffR to H3K4me3 386 

and H3K27me3 ChIP-seq data from primary human hepatocytes (PHH) and the 387 

hepatocarcinoma cell line HepG2 (Methods). We compared the diffR results to those obtained 388 

by calling mutually exclusive enrichment with enrichR on the two conditions separately, 389 

referred to as “enrichR-compare”. Additionally, we compared diffR results to three existing 390 

tools, namely ChIPDiff (Xu et al. 2008), histoneHMM (Heinig et al. 2015) and ODIN 391 

(Allhoff et al. 2014). 392 

Visual inspection of a 50kb region on chromosome 19 confirmed that most 393 

H3K4me3/K27me3-enriched regions were common between HepG2 and PHH (Figure 4A). 394 

However, some enrichment was cell-type specific and was called by all methods, e.g. HepG2-395 

specific H3K27me3-enrichment upstream of E2F2. However, differences in the histone 396 

modification level within mutually enriched regions were apparent, e.g. the increase in 397 

H3K4me3-enrichment at the E2F2 promoter in HepG2 could be identified by diffR, ChIPDiff 398 

and ODIN. E2F transcription factors are important regulators of the cell cycle (Sardet et al. 399 

1995; Sylvestre et al. 2007; Ramboer et al. 2014). E2F2 is expressed in HepG2 but not in 400 

PHH suggesting that the induction of E2F2 might be linked to the much higher proliferative 401 

potential in HepG2 cells than in PHH. Further downstream of E2F2, enrichR identified a 402 

H3K27me3-differentially enriched domain accompanied by an emerging H3K4me3 peak in 403 

HepG2 cells. Thus, the induction of E2F2 in HepG2 may be explained by the opening of an 404 

enhancer at this region supported by reported binding of RNA polymerase 2 and CTCF in 405 

HepG2 cells (ENCODE Project Consortium 2012). 406 
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Figure 4. Difference Calling on H3K4me3 and H3K27me3 in Primary Human 408 

Hepatocytes (PHH) and HepG2 cells with diffR. (A) Input (grey), H3K4me3 (green), 409 

H3K27me3 (orange) and RNA-seq (black) coverage around E2F Transcription Factor 2 410 

promoter (E2F2, yellow overlay) locus in Primary Human Hepatocytes (PHH) and HepG2 411 

cells. A region ~40kb upstream of the E2F2 promoter shows significant differential 412 

enrichment for H3K4me3 and H3K27me3 (pink overlay). enrichR-computed enriched regions 413 

displayed as boxes below to respective. Differentially enriched regions are displayed as red 414 

(HepG2 conditional) or blue (PHH conditional) boxes for diffR, ChIPDiff, histoneHMM and 415 

ODIN. (B,C) diffR recovers conditional differences in H3K4me3 (B) and H3K27me3 (C) 416 

enrichments that cover transcriptional start sites (TSSs) driving genes functioning in cell 417 

metabolism and development (wordclouds right panel). (D,E) enrichR-compare identifies 418 

H3K4me3 (D) and H3K27me3 (E) mutually exclusive enrichment between PHH and HepG2 419 

cells, but can not detect differences in histone modification level.(Right panels) diffR regions 420 

fall into enrichR-compare called regions of mutually exclusive enrichment but also resolve 421 

significant differences in ChIP-seq signal not detected by enrichR-compare. 422 

For H3K4me3, diffR recovered 59,288 500bp regions (14Mb) as being differentially enriched 423 

between HepG2 and PHH (Figure 4B). Of these, 27,913 regions had a higher enrichment in 424 

HepG2 which overlapped 10,268 TSSs driving genes mainly related to the DNA replication 425 

and cell division. 31,375 PHH-specific H3K4me3 regions upregulated 9,496 TSSs of genes 426 

associated with liver function (P450 pathway) and tissue characteristics (keratinization, cell 427 

adhesion) absent in the HepG2 cell line. For H3K27me3, diffR reported 800,073 1kb regions 428 

(800Mb) as differentially H3K27me3-enriched (Figure 4C). Out of these 215,466 revealed 429 

HepG2-specific repression at 11,836 TSSs of genes regulating morphogenesis and cell-cell 430 

signaling. On the other hand, the 584,607 PHH-specific regions repressed 10,902 TSSs of 431 

genes functioning in cell fate commitment and immune response. Taken together, diffR 432 

uncovered functional differences related to immortalization of liver cells solely based on two 433 

ChIP-seq experiments. 434 

Another normR approach can detect conditional differences by calling individual ChIP-seq 435 

enrichment over control for each condition and then identify mutually exclusive enrichment, 436 

referred to as “enrichR-compare”. We used this approach to benchmark results obtained from 437 

diffR. Genome-wide H3K4me3 enrichR-compare analysis revealed that most enriched 500bp 438 
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regions were common in HepG2 and PHH (101,989, Figure 4D), while 26,858 were HepG2- 439 

and 67,320 PHH-specific. As expected, the comparison to enrichR-compare also revealed that 440 

by a majority diffR difference calls were either mutual exclusive enrichment or changes in the 441 

level of enrichment (Figure 4D, Supplemental Table 5). For H3K27me3, enrichR-compare 442 

revealed that most H3K27me3-enriched regions were common in HepG2 and PHH (892,254, 443 

Figure 4E), while 294,138 were HepG2- and 784,721 were PHH-specific. Again, diffR was 444 

very specific in capturing both mutual exclusive enrichment and changes in the level of 445 

enrichment (Figure 4E), However, we observed a discrepancy in sensitivity: 58.6% (44%) of 446 

the H3K4me3 (H3K27me3) mutually exclusive regions were not called by diffR leading to 447 

contradictory results (Supplemental Fig. 7A,B;  Supplemental Table 5). Interestingly, most of 448 

the discrepancies were attributed to a more strict P-value filter to eliminate low power (i.e. 449 

low count) regions in the two-sided binomial test in diffR (Methods). By applying the diffR 450 

P-value filter to enrichR-compare, results became substantially more concordant , e.g. 2.99% 451 

(319) false negatives for H3K4me3 in HepG2 cells (Supplemental Fig. 7 C,D, Supplemental 452 

Table 5). 453 

In addition, some discrepancies between diffR and enrichR-compare may be attributed to 454 

Copy Number Variations (CNVs) in HepG2 cells which are prevalent in immortalized cell 455 

types (Conrad et al. 2010; Shirley et al. 2012). To alleviate this problem we ran diffR on 456 

HepG2 and PHH Input tracks with 20 and 50kb windows (Supplemental Fig. 8). Assuming 457 

that there are no CNVs in the PHH data, diffR recovered 91% of 6,487 windows 458 

(odds-ratio=112.7) which overlap 80 annotated amplifications in HepG2 (ENCODE Project 459 

Consortium 2012) (13% of genome; median(𝑙𝑒𝑛𝑔𝑡ℎ)=163kb). Nevertheless, diffR failed to 460 

detect 88% of 249 windows ( odds-ratio=40.8 ) that overlap 170 annotated very short 461 

heterozygous and homozygous deletions (6% of genome; median(𝑙𝑒𝑛𝑔𝑡ℎ)=9kb). Despite this, 462 

the discrepancies between enrichR-compare and diffR were partially removed when filtering 463 

results for diffR called CNVs (Supplemental Fig. 7E,F, Supplemental Table 5) to a similar 464 

extend than filtering for experimentally validated CNVs (Supplemental Fig.7G,H, 465 
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Supplemental Table 5). 466 

Next, we compared genome-wide diffR results to those obtained from ChIPDiff, 467 

histoneHMM and ODIN. To this end we once more defined a gold standard based among a 468 

consensus vote among the tools (Supplemental Note): ChIPDiff was most precise (𝜇Precision =469 

0.70) and diffR had the highest recall (𝜇Recall = 0.80 ) together with the best F1-scores 470 

(𝜇F1-score = 0.50; Supplemental Table 6). A unified gold standard of all tool-specific gold 471 

standards revealed that most tool-specific regions were called by diffR (28.9Mb) and ODIN 472 

(25.4Mb) for H3K4me3 and by ODIN (701.7Mb) and histoneHMM (689.1Mb) for 473 

H3K27me3 (Supplemental Table 7). Turning to absolute fold changes, the unified gold 474 

standard showed highest levels together with diffR, ChIPDiff and histoneHMM 475 

(Supplemental Fig. 9A,B). In terms of read coverage, diffR- and ODIN-specific regions had 476 

highest counts (Supplemental Fig. 9C,D). In conclusion, diffR identified conditional 477 

differences for, both, H3K4me3 and H3K27me3 which were supported by a good classifier 478 

performance, a high absolute fold change as well as an inference-adequate read coverage 479 

eliminating low power regions.  480 

Discussion 481 

In summary, we present an extendable methodology called “normR” that enables the 482 

extensive analysis of ChIP-seq data in epigenetic studies (Fig. 5). By modeling foreground 483 

and background jointly, normalization and enrichment calling are performed simultaneously. 484 

The implicit modeling of the effect of enrichment on the overall read statistics increases the 485 

sensitivity in detecting shallow differences in ChIP enrichment even in low signal-to-noise 486 

ratio data. Furthermore, we demonstrated the suitability of the normR approach for the 487 

identification of distinct epigenetic enrichment regimes in hepatocarcinoma cells and the 488 

quantification of conditional epigenetic differences between hepatocarcinoma cells and their 489 

tissue-of-origin. We envision how normR enrichment calling augments today’s epigenetic 490 

analyses ranging from clustering (Nair et al. 2014) to visualization (Ramírez et al. 2014). 491 
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 492 

Figure 5. The normR Approach: A Robust and Broadly Applicable Methodology for 493 

Normalization and Difference Calling in ChIP-seq Data. The translational normR 494 

methodology allows for the calling of ChIP enrichment over a user-specified control, the 495 

identification of distinct ChIP enrichment regimes and the quantification of differences in 496 

ChIP signal level between two conditions. 497 

Firstly we used normR to call enrichment in high (H3K4me3) and low (H3K36me3) signal-498 

to-noise ratio ChIP-seq data, referred to as “enrichR”. Auxiliary information such as DNA 499 

methylation and expression supported the enrichR-based classification. Given the difficulty 500 

inherent in the ill-defined problem represented by ChIP-seq analysis we introduce a novel 501 

binary classifier statistic that defines a gold standard based on a consensus vote among seven 502 

published ChIP-seq peak callers. Our findings indicated that enrichR performs equally well as 503 

previously described approaches in ChIP-seq tracks with high signal-to-noise-ratio such as 504 

H3K4me3. Furthermore, enrichR outperformed existing tools in the detection of low levels of 505 

genuine enrichment in low signal-to-noise ratio data such as H3K36me3. We attribute the 506 

superior performance in the latter scenario to our sensitive normalization technique which 507 

accounts not only for varying sequencing depth but specifically addresses the effect of ChIP 508 

enrichment on the overall read statistics. The sensitive enrichR approach is an asset in future 509 

studies on epigenetic signatures and segmentations. 510 

Secondly normR was used to facilitate the discrimination of peak- and broad-regions against 511 

background in a single analysis, referred to as “regimeR”. The analysis of H3K9me3 and 512 

H3K27me3 in HepG2 cells revealed that there exist distinct characteristics of peak- and broad 513 

regions in these heterochromatic marks. Specifically, H3K9me3 peaks were enriched for 514 
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ZNF274 at repetitive elements. High enrichment of H3K9me3 at these sites can be explained 515 

by the recruitment of the H3K9 methyltransferase SETDB1 by ZNF274 (Frietze et al. 2010). 516 

H3K27me3 peaks were found within broad H3K27me3 domains at conserved CpG-dense 517 

regions bound by EZH2, supporting the idea of CpG-enriched polycomb recruitment sites 518 

(Tanay et al. 2007). Taken together, our regimeR-based study suggests that H3K9me3 and 519 

H3K27me3 peaks correspond to nucleation sites for heterochromatin assembly. In the future, 520 

regimeR will prove useful in studies of heterogeneity in cellular epigenetic  markings to 521 

identify regions of promiscuous protein binding. 522 

Finally we presented normR for the direct comparison of two ChIP-seq experiments, referred 523 

to as “diffR”. Our diffR-based comparison of H3K4me3 and heterochromatic H3K27me3 524 

between HepG2 cells and PHH revealed conditional differences associated to cell function 525 

and immortalization, e.g. a potential E2F2 enhancer region made accessible in HepG2 cells. 526 

Interestingly, H3K27me3 covered a smaller fraction of the HepG2 genome as compared to 527 

PHH. Using a statistic of mutually exclusive enrichment by enrichR-compare and consensus 528 

votes among previously developed difference callers, we showed that diffR performs 529 

outstandingly in the detection of conditional differences in ChIP-seq data. Furthermore, we 530 

could show that diffR’s accuracy can be increased by incorporation of CNV information, as 531 

measured experimentally or by using diffR on two Input experiments. In the future, a more 532 

principled approach of the joint modelling of conditional ChIP-seq tracks together with their 533 

control is desirable. 534 

Taken together normR proved as a versatile and sensitive toolbox for the discrimination of 535 

enrichment against background (“enrichR”), the unprecedented detection of enrichment 536 

regimes such as peaks and broad enrichment (“regimeR”) and the direct quantification of 537 

differences between two conditions (“diffR”). We anticipate that normR will be applied to all 538 

enrichment based sequencing technologies like MeDIP-seq and HiC. In fact, a derivate of 539 

normR has recently been used to identify co-localizing histone modifications in a novel 540 

reChIP-seq data set (Kinkley et al. 2016) where the background estimation is complicated by 541 
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the presence of enrichment in the control experiment. In the future, an automated 542 

determination of the number of enrichment components in the normR model will be adjuvant 543 

in studying epigenomic heterogeneity in conjunction with recently reported single cell ChIP-544 

seq data (Rotem et al. 2015).  545 

Methods 546 

The normR Methods 547 

Given two vectors of integers 𝑟 (control) and 𝑠 (treatment) of identical length 𝑛, we model the 548 

read counts from the ChIP and control by a binomial 𝑚-mixture model:  549 

𝑘𝑖 ~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋) 

𝑁𝑖 = 𝑠𝑖 + 𝑟𝑖 | 𝑘𝑖 = 𝑗 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑗 , 𝜃𝑗) 

with 𝑖 = 1, . . , 𝑛 and ∑ 𝜋𝑗 = 1; 𝜋𝑗 ∈ [0,1]; 𝑗 = 1, . . , 𝑚. Given this model, normR follows a 550 

two step procedure: (i) The mixture model is fit by expectation maximization (EM; (Dempster 551 

et al. 1977)) using the likelihood function,  552 

ℒ = 𝑃(𝑠𝑖, 𝑟𝑖|𝜋, 𝜃, 𝑁𝑖) = ∏ (
𝑁𝑖

𝑠𝑖
) ∑ 𝜋𝑗 × 𝜃𝑗

𝑠𝑖 × (1 − 𝜃𝑗)
𝑟𝑖

𝑚

𝑗=1

𝑛

𝑖=1

; 

and (ii) each entry (𝑟𝑖 , 𝑠𝑖) is tested for significance against a fitted background to component 553 

to label enriched regions. 554 

In a preprocessing stage, the vectors 𝑟 and 𝑠 are filtered for entries where 𝑟 = 𝑠 = 0 because 555 

no assertion about their enrichment state can be made. Secondly, a map of unique (𝑟, 𝑠) tuples 556 

is created to reduce the number of computations needed which improves runtime substantially. 557 

In the first mode fitting step, the EM is initialized with 𝜋 sampled from 𝑈(0,1) and 𝜃 sampled 558 

from 𝑈(0.001, 𝜃*). Upon convergence with 𝜀 ≤ 0.001, an enrichment factor (average fold 559 

enrichment) 𝑓𝑗 =
𝜃𝑗

1−𝜃𝑗
∗

1−𝜃𝐵

𝜃𝐵
  is computed for each mixture component j ≠ B, where 𝜃𝐵 the 560 

smallest of  {𝜃1, … , 𝜃𝑚} (the closest to  𝜃∗) in the case of enrichment (difference) calling. The 561 
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EM is run 10 times per default to find the fit with greatest ℒ. In the second step, every (𝑟𝑖, 𝑠𝑖) 562 

is tested for significance against the background component. Resulting P-values are filtered 563 

using the T method (Dialsingh et al. 2015) (P-value threshold 0.0001 per default) to take into 564 

account the discreteness of P-values for a correct estimation of the proportion of true null 565 

hypotheses. T-filtered P-values are transformed to q-values for FDR correction (Storey 2002). 566 

Additionally, a normalized enrichment 𝑒i  is calculated for every entry (𝑟, 𝑠)𝑖  with 𝑒i =567 

ln(
𝑠𝑖+ 𝛼𝑠
𝑟𝑖+ 𝛼r

×
αr
αs

) 

ln (𝑓𝑗)
 where  αr =

∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖×𝑖 𝑟i

∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖𝑖

 and α𝑠 =
∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖×𝑖 si

∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖𝑖

 represent a model 568 

specific pseudo count for control and treatment, respectively. The normalized enrichment can 569 

be written to bigWig or bedGraph format for convenient display in a genome browser of 570 

choice, e.g. UCSC genome browser (Speir et al. 2016)  or Integrative Genomics Viewer 571 

(Robinson et al. 2011). 572 

In the case of enrichment calling two components (background, enrichment) are fit with the 573 

enrichR subroutine of the normR package. Herein, the background model 𝜃𝐵  is set to the 574 

mixture component with smallest 𝜃. For difference calling, three components (background, 575 

control enriched, treatment enriched) are fit with the diffR subroutine for 𝑟 (condition 1) and s 576 

(condition 2) counts. The background model is set to 𝜃𝐵 closest to θ*. The diffR T method 577 

uses the maximal threshold estimated from P-values for 𝜃𝐵 fit for either (𝑟, 𝑠) or the label-578 

switched (𝑠, 𝑟) . For regime calling, the regimeR subroutine fits an arbitrary number of 579 

components representing background plus a fixed number of enrichment regimes. Identically 580 

to enrichment calling, the background model is set to the mixture component with smallest 𝜃. 581 

In a second step, every significantly enriched bin passing the P-value filter (see above) is 582 

assigned to an enrichment regime by Maximum A Posteriori. 583 

Note that by nature the binomial mixture model assumes the independence between regions 584 

which is valid for a sufficiently large bin size (i.e. fragment length). Consequently, the usage 585 

of a binomial mixture model improves computational runtime. The normR algorithm is 586 

implemented in C++ and R. A ready-to-use R-package can be obtained from 587 
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http://bioconductor.org/packages/normr where also a tutorial on use cases can be found.  588 

ChIP-seq in primary human hepatocytes and HepG2 cells 589 

HepG2 cells and human hepatocytes, obtained from donors after written consent by tissue 590 

resection and perfusion (Godoy et al. 2013), have been fixed in for 5 minutes in 1% 591 

formaldehyde. Formaldehyde has been quenched using 125 mM glycine and cells have been 592 

washed in PBS, pelleted and snap-frozen in liquid nitrogen. Five (human hepatocytes) to ten 593 

(HepG2) million cells have been processed for chromatin preparation, using the NEXSON 594 

protocol, as previously described (Arrigoni et al. 2016). After chromatin sonication, samples 595 

have been quality controlled to check chromatin recovery and fragment size distribution as 596 

previously described.  597 

Prior ChIP, chromatin has been diluted 1:2 in the ChIP buffer H from the Diagenode Auto 598 

histone ChIP-seq kit (C01010022), supplemented with protease inhibitor cocktail. Chromatin 599 

from 100,000 to 500,000 cells has been incubated with one microgram of the following 600 

antibodies: H3K4me3 (C15410003), H3K36me3 (C15410192), H3K9me3 (C15410193), 601 

H3K27me3 (C15410195), all from Diagenode. ChIP has been performed using the automated 602 

platform SX-8G IP-Star (Diagenode), with the following parameters: “indirect ChIP”, 200 µl 603 

ChIP volume, 14 hours of antibody incubation, 4 hours of beads incubation, and 5 minutes 604 

beads washes. After the DNA elution from the beads, samples were collected, RNaseA-605 

treated, de-proteinized and decrosslinked overnight at 65 °C. Input samples have been 606 

prepared by taking 1% of the starting chromatin before ChIP and by decrosslinking it together 607 

with the ChIP samples. DNA has been manually purified using the Qiagen minElute columns. 608 

Libraries from 2 to 10 ng of purified DNA have been prepared using the NEBNext Ultra 609 

DNA library preparation kit (NEB, E7370S) following manufacturer’s instruction and 610 

skipping the size selection. Libraries have been sequenced paired-end, with a read length of 611 

50 bp, on an Illumina HiSeq 2500 (version 3 chemistry). 612 
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RNA-seq in primary human hepatocytes and HepG2 cells 613 

Trizol extration was used for preparation of Total RNA according to the manufacturer’s 614 

guidelines and as described in (Lappalainen et al. 2013). An Agilent Bioanalyzer (Agilent, 615 

Santa Clara, USA) was used to check RNA integrity following the manufacturer’s guidelines.  616 

Strand-specific sequencing libraries for mRNA and total-RNA were constructed for the 617 

HepG2 cells and human hepatocytes using the TruSeq stranded Total RNA kit (Illumina Inc, 618 

San Diego, USA) starting from 500 ng of the total RNA of the samples. Illumina HiSeq2000 619 

was used to perform the sequencing (101-nucleotide paired-end reads for each library) 620 

resulting in the creation of about 100 million reads per library. 621 

The reads were aligned to the NCBI 37.1 version of human genome using TopHat v2.0.11  622 

(Kim et al. 2013) in the settings “--library-type fr-firststrand” and “ --b2-very-sensitive”.  623 

Reads mapping to genes were counted using htseq-count from HTSeq-0.6.1p1 (Anders et al. 624 

2015) in '-f bam -s reverse -m union -a 20' setting. Annotation file for running htseq-count 625 

was downloaded from GENCODE release 19 (GRCh37.p13). 626 

Quantification of reads 627 

Paired-end reads from Input, H3K4me3, H3K27me3, H3K36me3 and H3K9me3 ChIP-seq for 628 

primary human hepatocytes and HepG2 cells were mapped with bwa (version 0.6.2) against 629 

hg19. Fragment coverage tracks for browser display were generated with deepTools (Ramírez 630 

et al. 2016) in 25 bp windows (-bs 25) considering only first reads in a properly mapped pair 631 

(--samFlag 66) with a mapping quality of at least 20 (--MinMappingQuality 20) and 632 

normalized to the effective genome size (--normalizeTo1x 2451960000): 633 

bamCoverage –bam in.bam –o out.bw -of bigwig -bs 25 \ 634 

  --samFlag 66 --minMappingQuality 20 --normalizeTo1x 2451960000 635 

For enrichment and peak calling, only regions on regular autosomes (chr1-chr22; 2.9Gb) were 636 

used: 637 

require(GenomeInfoDb) 638 
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genome <- fetchExtendedChromInfoFromUCSC(“hg19”) 639 

genome <- genome[which(!genome$circular &    640 

                 genome$SequenceRole=="assembled-molecule"), 1:2] 641 

genome <- genome[grep("X|Y|M", genome[, 1], invert=T), ] 642 

 643 

require(GenomicRanges) 644 

genome.gr <- GRanges( 645 

  seqnames = genome[, 1],  646 

  ranges = IRanges(start = 1, end = genome[, 2]),    647 

  seqinfo = Seqinfo( 648 

    seqnames = genome[,1],  649 

    seqlengths = genome[,2], 650 

    genome = “hg19”)) 651 

  ) 652 

} 653 

For paired end data, we considered only reads with a mapping quality of at least 20 654 

(mapqual=20). We regarded midpoints of properly mapped fragments (midpoint = TRUE) 655 

that were non-duplicated (filteredFlag=1024) and within 100 to 220 bp in length 656 

(tlenFilter=c(100,220)) in 500 (1,000) bp windows for H3K4me3 (H3K27me3/K36me3/ 657 

K9me3) with normR’s countConfigPairedEnd function: 658 

require(normr) 659 

countConfig <- countConfigPairedEnd( 660 

  binsize = 500, #1000 661 

  mapqual = 20,  662 

  midpoint = TRUE,  663 

  filteredFlag = 1024, 664 

  tlenFilter = c(100,220) 665 

  shift = 0 666 

) 667 

HepG2 CAGE data was downloaded from GSM849335 (Djebali et al. 2012). Primary human 668 

hepatocyte CAGE data was downloaded from CAGE 669 

http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.hCAGE/Hepatocyte%2670 

52c%2520donor2.CNhs12349.11603-120I1.hg19.nobarcode.bam (Fantom5 (FANTOM 671 

Consortium and the RIKEN PMI and CLST (DGT) et al. 2014)) Reads with mapping quality 672 

of at least 20 were counted with bamsignals (http://bioconductor.org/packages/bamsignals): 673 

require(bamsignals) 674 



Page 29 of 40 

 

cage <- bamProfile( 675 

  bampath = “Cage.bam”, 676 

  gr = genome.gr,  677 

  binsize = 500, #1000  678 

  mapqual = 20 679 

) 680 

EZH2 ChIP-seq alignments (GSM1003576) and the respective control alignment 681 

(GSM733780) were downloaded from the UCSC encode repository ((ENCODE Project 682 

Consortium 2012) 683 

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/). For these 684 

single end data, we shifted reads by 100 bp in 3’ direction (shift=100) and counted in 500 685 

(1,000) bp bins: 686 

countConfig <- countConfigSingleEnd( 687 

  binsize = 500, #1000 688 

  mapqual = 20,  689 

  filteredFlag = 1024, 690 

  shift = 100 691 

) 692 

Enrichment calling with enrichR 693 

Read counts in H3K4me3 and H3K36me3 were modeled with 2 components in enrichR and 694 

the fitted background components were used for significance tests. Bins with q-value ≤ 0.05 695 

(H3K4me3) and q-value ≤ 0.1  (H3K27me3/K36me3/K9me3) were called enriched and 696 

exported to bed tracks for display: 697 

enrichment <- enrichR( 698 

  treatment = “ChIP.bam”,  699 

  control = “Input.bam”,  700 

  genome = genome, 701 

  countConfig = countConfig,  702 

  procs = 24 703 

) 704 

exportR( 705 

  x = enrichment,  706 

  filename = “enriched.bed”,  707 

  type = “bed”,  708 

  fdr = 0.05 #0.1 709 
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) 710 

DNA-methylation in primary human hepatocytes and HepG2 cells 711 

For whole-genome bisulfite sequencing we produced two types of NGS libraries to achieve 712 

even read coverage. Firstly, we used 100ng of DNA with the TruSeq DNA methylation kit 713 

(Illumina, San Diego, USA) according to the manufacturer’s protocol. The second type was 714 

done as previously described (Kinkley et al. 2016). Briefly, 2 µg of DNA were sheared using 715 

a Bioruptor NGS device (Diagenode, Liege, Belgium) and cleaned-up using Ampure beads 716 

XP (Beckman Coulter, Brea, USA). Then samples were subjected to end-repair, A-tailing and 717 

adaptor ligation steps using components of the TruSeq DNA PCR-Free Library Preparation 718 

Kit (Illumina).  After bisulfite conversion involving the Zymo Gold kit (Zymo, Irvine, USA) 719 

the libraries were PCR amplified for 10-12 cycles. The amplified libraries were purified using 720 

Ampure beads XP and sequenced on three lanes of V3 paired-end flow cells (2x 100bp). 721 

Reads were mapped using BWA (Li and Durbin 2010)and methylation levels were called 722 

with Bis-SNP37 (Liu et al. 2011). 723 

Beta values were calculated for each bin and weighted by coverage and number of CpGs 𝑀 in 724 

that region: 𝛽 =
∑ 𝑅𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡𝑗

𝑀
𝑗=0 ∗𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑𝑗

∑ 𝑅𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡𝑗
𝑀
𝑗=0

. Only regions with at least 2 CpGs 725 

covered by reads were reported. 726 

Transcription Start Site Definition 727 

54,763 promoters (extend 750bp down- and upstream of TSS) of 54,849 GENCODE genes 728 

(Harrow et al. 2012) obtained by using GenomicFeatures R package (Lawrence et al. 2013): 729 

require(GenomicFeatures) 730 

gencode <- loadDb("data/gencode.v19.annotation.transcriptDb.sqlite") 731 

genes <- genes(gencode) 732 

proms <- unique(promoters(genes, upstream=750, downstream=750)) 733 

MACS, DFilter, CisGenome, SPP, BCP and MUSIC Peak Calling  734 

Peaks were called with MACS2 (Feng et al. 2012) (v2.1.0.20150731), DFilter (Kumar et al. 735 
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2013) (v1.6), CisGenome (Ji et al. 2008), SPP (Kharchenko et al. 2008), BCP (Xing et al. 736 

2012) (v1.1) and MUSIC (Harmanci et al. 2014). A FDR threshold of 0.1 was used. To 737 

compare called peaks by above methods to enrichR called regions, overlap of peaks with 500 738 

bp (1,000 bp) windows was calculated for H3K4me3 (H3K36me3). See Supplemental Note 739 

for details. 740 

Normalization Factor Comparison with NCIS 741 

NCIS (Liang and Keles 2012) was run in R to calculate the normalization factor for 742 

comparison to enrichR’s normalization factor: 743 

require(NCIS) 744 

ncis <- NCIS( 745 

  chip.data = “ChIP.bed”,  746 

  input.data = “Control.bed”,  747 

  data.type = "BED",  748 

  chr.vec = genome[,1],  749 

  chr.len.vec = genome[,2] 750 

) 751 

ncis.norm <- ncis$est 752 

Regime calling with regimeR 753 

Read counts in H3K27me3 and H3K9me3 in HepG2 cells were modeled in regimeR with 3 754 

components (background, moderate enrichment, high enrichment). Bins with FDR q-value ≤755 

0.1 were called enriched and assigned to an enrichment component by Maximum A Posteriori 756 

and exported to bed using normR’s exportR function: 757 

regimes <- regimeR( 758 

  treatment = “ChIP.bam”,  759 

  control = “Input.bam”,  760 

  genome = genome, 761 

  models = 3, 762 

  countConfig = countConfig,  763 

  procs = 24 764 

) 765 

exportR( 766 

  x = regimes,  767 

  filename = “regimes.bed”,  768 
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  type = “bed”,  769 

  fdr = 0.05 #0.1 770 

) 771 

Difference calling with diffR 772 

Read counts in H3K4me3 and H3K27me3 in primary human hepatocytes (control) and 773 

HepG2 cells (treatment) were modeled in diffR with 3 components (background/no difference, 774 

treatment-enriched, control-enriched) and the mixture component with 𝜃𝑗  closest to θ*  was 775 

used as background for a two-sided significance test. Bins with q-value ≤ 0.05 (0.1) for 776 

H3K4me3 (H3K27me3) were called differentially enriched and assigned to treatment or 777 

control by Maximum A Posteriori.  778 

diffs <- diffR( 779 

  treatment = “ChIP1.bam”,  780 

  control = “ChIP2.bam”,  781 

  genome = genome, 782 

  countConfig = countConfig,  783 

  procs = 24 784 

) 785 

exportR( 786 

  x = diffs,  787 

  filename = “differences.bed”,  788 

  type = “bed”,  789 

  fdr = 0.05 #0.1 790 

) 791 

To analyze differentially enriched regions for precision and recall, mutually exclusive 792 

enrichment in control (treatment) was obtained by considering enrichR() calls present only in 793 

control (treatment) with respect to treatment (control). For a fair comparison, only significant 794 

regions with a posterior of ≥ 0.50 were considered. 795 

Gene Ontology Analysis 796 

We used topGO (Aibar et al. 2015) on gene ontology “Biological Process” (BP) with 797 

algorithms “classic” (algorithm=”classic”) and “elim” (algorithm=”elim”) for statistics “fisher” 798 

(statistic=”fisher”) and “ks” (statistic=”ks”) for GENCODE gene IDs mapped to Ensembl 799 
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gene IDs. The “ks” statistic allows for supplying a score for each entity. We used the diffR 800 

calculated q-value as score. We retained only top 1,000 (n=1000) GO terms ordered by “elim” 801 

algorithm and ranked by “classic” algorithm calculated P-values: 802 

require(topGO) 803 

 804 

#get GO annotated Ensembl Genes 805 

go2ensembl <- annFUN.org(ontology, mapping="org.Hs.eg.db", ID="ensembl") 806 

 807 

#get GENCODE genes and filter these for the ones in gene universe 808 

gencode <- loadDb("data/gencode.v19.annotation.transcriptDb.sqlite") 809 

gene.universe <- intersect( 810 

  unique(GenomicFeatures::genes(gencode)$genes),    811 

  unique(unlist(go2ensembl)) 812 

) 813 

 814 

#set diffR pvalue as score for differentially modified TSSs 815 

idx <- gene.universe %in% diffTSSs 816 

allGenes <- 1-as.integer(idx) 817 

names(allGenes) <- gene.universe 818 

allGenes[idx] <- pvals[diffTSSs %in% gene.universe] 819 

goData <- new("topGOdata", 820 

  description="diffR differential TSS histone marking study (scored)", 821 

  ontology=”BP”,  822 

  allGenes=allGenes, geneSel=function(p) { return(p <= 0.05) }, 823 

  annot=annFUN.GO2genes, GO2genes=go2ensembl, #GO mapping for ensembl IDs 824 

  nodeSize=10 825 

) 826 

 827 

#testing  828 

resultFisher <- runTest(goData, algorithm="classic", statistic="fisher") 829 

resultKS <- runTest(goData, algorithm="classic", statistic="ks") 830 

resultKS.elim <- runTest(goData, algorithm="elim", statistic="ks") 831 

 832 

#compile results 833 

resDf <- GenTable(goData,  834 

  classicFisher = resultFisher,  835 

  classicKS = resultKS, 836 

  elimKS = resultKS.elim, 837 

  orderBy ="elimKS", 838 

  ranksOf = "classicFisher",  839 

  topNodes=1000 840 



Page 34 of 40 

 

) 841 

ChIPDiff, histoneHMM and ODIN Difference 842 

Differences for H3K4me3 (H3K27me3) between Hepatocytes and HepG2 cells were called 843 

with ChIPDiff (Xu et al. 2008), histoneHMM (v1.6) (Heinig et al. 2015) and ODIN (v0.4) 844 

(Allhoff et al. 2014). A FDR threshold of 0.1 was used.  To compare called peaks by above 845 

methods to diffR called regions, overlap of peaks with 500 bp (1,000 bp) windows was 846 

calculated for H3K4me3 (H3K27me3). See Supplemental Note for details. 847 

HepG2 Genotyping 848 

HepG2 genotype information for hg19 was generated by ENCODE/HudsonAlpha 849 

(GSM999286) and downloaded from UCSC (http://hgdownload.cse.ucsc.edu/goldenPath 850 

/hg19/encodeDCC/wgEncodeHaibGenotype/wgEncodeHaibGenotypeHepg2RegionsRep1.be851 

dLogR.gz). 852 

Data Access 853 

H3K4me3, H3K9me3, H3K27me3, H3K36me3 ChIP-seq and Input data for primary 854 

human hepatocytes have been deposited at the “European Genome-Phenome 855 

Archive” under the accession EGAS00001002080. H3K4me3, H3K9me3, H3K27me3, 856 

H3K36me3 ChIP-seq and Input data for HepG2 have been deposited at the European 857 

Nucleotide Archive under the accession PRJEB7356. 858 
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