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Abstract

Scientists use high-dimensional measurement assays to detect and prioritize regions of strong
signal in a spatially organized domain. Examples include finding methylation enriched genomic
regions using microarrays and identifying active cortical areas using brain-imaging. The most
common procedure for detecting potential regions is to group together neighboring sites where
the signal passed a threshold. However, one needs to account for the selection bias induced by
this opportunistic procedure to avoid diminishing e↵ects when generalizing to a population.
In this paper, we present a model and a method that permit population inference for these de-
tected regions. In particular, we provide non-asymptotic point and confidence interval estimates
for mean e↵ect in the region, which account for the local selection bias and the non-stationary
covariance that is typical of these data. Such summaries allow researchers to better compare
regions of di↵erent sizes and di↵erent correlation structures. Inference is provided within a
conditional one-parameter exponential family for each region, with truncations that match the
constraints of selection. A secondary screening-and-adjustment step allows pruning the set of
detected regions, while controlling the false-coverage rate for the set of regions that are re-
ported. We illustrate the benefits of the method by applying it to detected genomic regions
with di↵ering DNA-methylation rates across tissue types. Our method is shown to provide
superior power compared to non-parametric approaches.

1 Introduction

Due to the advent of modern measurement technologies, several scientific fields are increasingly
relying on data-driven discovery. A prominent example is the success of high-throughput assays
such as microarrays and next generation sequencing in biology. While the original application of
these technologies depended on predefined biologically relevant measurement units, such as genes
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or singe nucleotide polymorphisms (SNPs), more recent applications attempt to use data to identify
and locate genomic regions of interest. Examples of such application include detection of copy num-
ber aberrations (Sebat et al., 2004), transcription binding sites (Zhang et al., 2008), di↵erentially
methylated regions (Ja↵e et al., 2012c), and active gene regulation elements (Song and Crawford,
2010). A data-driven approach is also common among neuroscientists, who search in imaging and
functional imaging data for regions that are a↵ected by variations in cognitive tasks (Friston et al.,
1994, Hagler et al., 2006, Woo et al., 2014).

As these technologies mature, the focus of statistical inference shifts from individuals to popula-
tions. Instead of searching for regions di↵erent from baseline in an individual sample, we instead
want to compare two or more populations (cancer versus normal, for example) to locate regions
of di↵erence. For population level inference, region detection methodology needs to account for
between-individual biological variability, which is often non-stationary, as well as for technical mea-
surement noise. Furthermore, sample size is usually small due to high technology and recruitment
costs, so variability in the estimates remains considerable. Searching for small regions of consistent
signal within such large noisy assays is therefore prune to false detections, if selection within the
noise is not properly accounted for. In contrast, the lost opportunity cost that can result from
being overly-conservative is equally concerning. Statistical inference therefore provides a rigorous
approach that can aid practitioners make informed decisions regarding resource allocation.

In the context of population inference, the most commonly applied approach is to compute marginal
p-values at each site, correct for multiplicity, and then combine contiguous significant sites into
regions. For example, publications in the high-profile biology journals have implemented these
homegrown ad-hoc analysis pipelines (Kundaje et al., 2015, Becker et al., 2011, Pacis et al., 2015,
Lister et al., 2013). However, there is no theoretical justification for extrapolating inferences from
the single sites to the region. In particular, using the average of the observed values at the selected
sites as an estimate for the region will result in a biased estimate; Kriegeskorte et al. (2009) coined
the term circular inference for such practices in neuroscience, highlighting the reuse of the same
information in the search and in the estimation. Furthermore, the power of such methods to detect
regions is limited by the power to detect at the individual site, which are noisier and require a-
priori stronger multiplicity corrections compared to regions. For example, a region consisting of
several almost-significant sites will be overlooked by such algorithms. Finally, there is no clear way
how to prioritize regions of di↵erent sizes and di↵erent correlation structures without more refined
statistical methods. Here we describe a general framework that permits statistical inference for
region detection in this context.

Although high-profile genomic publications have mostly ignored it, the statistical literature includes
several relevant publications to the challenge of providing valid inferential statements for regions
of interest within a large continuous map of statistics. Published methods di↵er in how they
summarize the initial information into a continuous map of statistics: smoothing or convolving
the measurements with a pre-specified kernel, forming point-wise Z maps, p-value maps (Pedersen
et al., 2012), or likelihood maps (Siegmund et al., 2011, Hansen et al., 2012). Regions of interest
can be identified from local maxima, by thresholding(Ja↵e et al., 2012c) or by segmentation based
on hidden Markov models (Kuan and Chiang, 2012) or likelihood (Zhang and Siegmund, 2012).
When the shape of the signal is known, for example in data related to transcription binding sites,
a map of scan-statistics can be surveyed for maxima (see Cai and Yuan, 2014, for asymptotic
analysis). Due to the large number of measurements this approach assume true signal locations
are well separated which permits the employment of multiplicity corrections for individual detected
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regions (Schwartzman et al., 2011, 2013, Sun et al., 2014). Non-parametric methods can use sample-
assignment permutation to simulate a non-parametric null distribution even for non-stationary data
from an unknown distribution (Ja↵e et al., 2012b, Hayasaka and Nichols, 2003).

However, current methods fail to address two important characteristics of the practical challenge.
The first is to form inferential statements regarding the e↵ect size, such as estimates and confidence
intervals. In genomics high-throughput data it is well known that unknown confounders can often
create many small di↵erences between the groups (Leek et al., 2010). These are not regions of
biological interest, yet can reach strong statistical significance in highly powered studies. Estimates
of e↵ect size rather than just p-value permit the practitioner to discern biological significance.
Technically, the problem of non-null inference requires stronger modeling assumptions and more
sophisticated methods for treating nuisance parameters compared to significance testing for a fully
specified null. Work on confidence intervals in large processes include Weinstein et al. (2013) for
individual points rather than regions, and Sommerfeld et al. (2015) for globally bounding the size
of the non-null set. We consider providing estimates of the e↵ect in biologically meaningful units
and quantification of the uncertainty in these estimates an important contribution.

The second challenge is non-stationarity: in most genomic signals, both the variance and the
auto-correlation change considerably along the genome. This behavior is due to di↵erent DNA
sequence composition(Bock et al., 2008, Benjamini and Speed, 2012), uneven marker coverage, and
other biomedical properties a↵ecting the DNA amplification procedures employed by the relevant
experimental protocols (Ja↵e et al., 2012a). Non-stationarity makes it harder to compare the
observed properties of the signal across regions: a region of k adjacent positive sites is more likely
to signal a true population di↵erence if probe correlation is small, but more likely to be caused by
chance variation if probe correlation is very high.

In this paper, we introduce a comprehensive approach for inference for region detection (IRD)
that produces selection-corrected p-values, estimators and confidence intervals for the population
e↵ect size. We focus on popular set of selection algorithms that, after preprocessing, apply a
threshold-and-merge approach to region detection: the map of statistics is thresholded at a given
level, and neighboring sites that pass the threshold are merged together. The key idea is to identify
for each potential region its selection event – the necessary and su�cient set of conditions on the
observed estimate vector that lead to detection of the region. For threshold-and-merge algorithms,
the selection event can be described as a set of coordinate-wise truncations. Basing inference on
the distribution of a test statistic conditional on the selection event, corrects the selection bias (Lee
et al., 2013, Fithian et al., 2014). Inference for each region is tailored for the local covariance in
the region. When further selection is needed downstream, standard family wise corrections can be
applied to the list of detected regions.

The paper is structured as follows. The rest of the introduction describes in more detail the
specific genomic signal – DNA-methylation – that will be used to demonstrate our method. In
Section 2 we present a model for the data generation and define threshold-and-merge selection. In
Section 3 we review the conditional approach to selective-inference, which enables the researcher to
analyze each selected region separately by adjusting the tests to the conditional distribution. When
the data is approximately multivariate normal, the conditional distribution follows a truncated
multivariate normal (TMN, Section 3.3). For an individual region, we describe sampling based
tests and interval estimates in Section 4. In Section 5 we return our focus to the set of selected
regions in the experiment, discussing a secondary adjustment that is needed if only a subset of the
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originally detected regions are reported. Sections 6 and 7 evaluate the performance of the method
on simulated and measured DNA-methylation data.

1.1 Motivating example: di↵erentially methylated regions (DNA)

Figure 1: Intervals for di↵erential methylation regions. Confidence intervals for the mean between-

tissue di↵erent for two candidates regions. Left: A nine-site region (dashed lines) in chromosome 4 and

its neighbors plotted by sample (top; tissues are colored and tissue means in bold). The mean-di↵erence

(points, bottom-left) considerably exceeds the threshold, and within group variance is small. Hence, the

estimated 90% confidence interval (blue) is relatively narrow and the estimate for ✓̂ = 0.535, close to the

observed mean. Right: A four-site region in chromosome 1 is close to the threshold and the samples do not

separate well to groups. Although the estimated mean is ✓̂ = 0.265, the estimated confidence interval for

the mean is not separated from 0. Data was collected by The Cancer Genome Atlas consortium (TCGA).

DNA methylation is a biochemical modification of DNA that does not change the actual sequence
and is inherited during mitosis. The process is widely studied because it is thought to play an
important role in cell development (Razin and Riggs, 1980) and cancer (Feinberg and Tycko, 2004).
The great majority of methylation events occurs when a methyl group attaches to CpG site (a
cytosine base followed by a guanine base along the chromosome). These potential methylation
sites are depleted in genome (less than 1% compared to GpC’s which are at 4%), and the density
in which they appear varies widely (Takai and Jones, 2002). The attachment and detachment
processes of the Methyl group are stochastic within each cell and can vary between the cells of
the biological sample. Current high-throughput technologies measure the proportion of cells in a
biological specimen that are methylated giving a value between 0 and 1 for each measured CpG site.
For example, the most widely used product, the Illumina Infinuim array, produces these proportion
measurement at about 450,000 sites (Bibikova et al., 2011).

Unlike the genomic sequence, methylation di↵ers across di↵erent tissues of the same individual,
changes with age, environmental impacts, and disease (Robertson, 2005). Of current interest is to

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2016. ; https://doi.org/10.1101/082321doi: bioRxiv preprint 

https://doi.org/10.1101/082321
http://creativecommons.org/licenses/by-nc-nd/4.0/


associate changes in methylation to biological outcomes such as development and disease. Reported
functionally relevant findings have been generally associated with genomic regions rather than
single CpG sites (Jaenisch and Bird, 2003, Lister et al., 2009, Aryee et al., 2014) thus our focus on
di↵erentially methylated regions (DMRs). Because DNA methylation is also susceptible to several
levels of stochastic variability (Hansen et al., 2012) statistical inference is necessary. Figure 1 shows
two examples for regions of di↵erence found by comparing samples from human colon and lung.
Our method estimates confidence intervals for the di↵erence in each of the regions.

Inference for DMRs needs to take into account the unknown but variable and often strong local
correlation between nearby methylation sites. The propensity for methylation is governed by many
local processes, and therefore neighboring methylation sites tend to be have similar methylation
proportions. These local influences are thought to be moderated through other local properties such
as the DNA attachment to packing proteins, its local chemical properties (Kuan et al., 2010), and the
local sequence composition (e.g. the proportion of G and C bases). Therefore, simple correlations
models based on the genomic distance between are not su�cient. One of our contributions is an
approach that accounts for the non-stationary nature of the data.

2 Model for the e↵ects of selection

In the following we introduce a model for the e↵ects of selection on regional descriptors. We begin
our description with a population model for individual probes and for the parameter describing the
regions, and only then discuss the observed statistic for each regions. We then specify the popu-
lar family of threshold-and-merge selection procedures, which we will analyze in this manuscript.
Keep in mind that practitioners typically think about these in the opposite direction: observed
summaries such as “average observed di↵erences in region” are natural descriptors for the region
e↵ect. Selection bias would typically be framed in terms of the expected decay of this observed
e↵ect toward zero when the analysis is repeated using the same region but a new set of samples.
The population model allows us to estimate and probabilistically bound this decay.

2.1 Population model

Suppose the collected data consists of n samples of D measurements each, Y
1

, ..., Yn. We model
the i’th sample as a random process composed of a mean e↵ect that is linear in known covariates
and an additive random individual e↵ect. Each sample is annotated by the covariate of interest
Xi 2 R,and by a vector of nuisance covariates Wi 2 Rp�1. Then the i’th observed vector is:

Yi = ⇥Xi + �Wi + "i, E["i] = 0, i = 1, ..., n.

Here ⇥ = (✓
1

, ..., ✓D)0 2 RD is the fixed process of interest, � 2 RD⇥p�1 are fixed nuisance
processes, and "i 2 RD captures both the individual sample e↵ect and any measurement noise.
"i can further be characterized by a positive-definite covariance matrix Cjj0 := E["i(j)"i(j0)], 1 
j, j0  D. In matrix notation, let Y = (Y 0

1

, ..., Y 0
n)

0 2 Rn⇥D be the matrix of measurements and
X = [(X

1

,W 0
1

), ..., (Xn,W
0
n)]

0 2 Rn⇥p be the design matrix organized so the covariate of interest is
in the first column.
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For a concrete example of our notation, consider a two-group design comparing samples from two
tissue-types. Each sample would be coded in a vector Yi 2 RD. Xi would code the tissue type, 1
for group A and 0 for group B. Wi can encode such demographic variables as age and gender, as
well as a bias term. Then ✓j would code for the mean di↵erence between groups on the j’th site.
We expect the ⇥ process ⇥ = (✓j)Dj=1

to be almost zero in most sites, and to deviate from zero in
short connected regions.

Regions of interest

We are interested in detecting and prioritizing regions of the measurement space that are short
relative to the size of the genome and for which values in ⇥ are large in absolute value. A region
of interest [ROIs] corresponds to a range a : b = (a, a + 1, ..., b) where ⇥a:b = (✓a, ✓a+1

, . . . , ✓b) is
large (or negatively large) compared to zero. A su�cient representation for an ROI is a triplet
r = (a, b, d), where a  b 2 1, ..., D are indices and d 2 {�,+} represents the direction of deviation
from 0. Depending on context, we would usually restrict our analysis to indices b, a that are not too
far apart. We code these restrictions into the set B of potential ROIs. Note that B would usually
still be very redundant, with many regions that are almost identical; in any run of the algorithm,
only a small subset of B will be selected for estimation.

Vector of estimators Z

Our inference procedures focus on a vector of point-wise unbiased normal estimators Z = ⇥̂. The
assumptions for Z are:

• Unbiasedness: E[Z] = ⇥.

• Estimable covariance: ⌃ := Cov(Z) is estimable, and the estimate ⌃̂ is independent of Z.

• Approximate local normality: For indices a  b that define a potential ROI, meaning (a, b,+)
or (a, b,�) are in B, vector Za�1:b+1

is approximately multivariate normal

Za�1:b+1

·⇠ N(⇥a�1:b+1

,⌃a�1:b+1

).

Here, ⇥a�1:b+1

,⌃a�1:b+1

are the Rb�a+3 vector and R(b�a+3)⇥(b�a+3) matrix subsets of ⇥
and ⌃ respectively.

Specifically, we can take Z to be the least-squares estimator for ⇥

Z = ⇥̂ :=
⇥
(X0

X)�1

X

0Y
⇤
1

. (1)

Then, with enough samples compared to covariates (n > p)1, the local covariance C = Cov("i) is
estimable from the linear model residuals, resulting in Ĉ. Furthermore, for each 1  j, j0  D,
Var(Zj) = (X0

X)�1

11

Var(✏·j) and Cov(Zj , Zj0) = (X0
X)�1

11

Cov(✏·j , ✏·j0). Hence,

⌃ = Cov(Z) = (X0
X)�1

11

C, and ⌃̂ = (X0
X)�1

11

Ĉ.

This is extendable to a two-group design where each group is allowed a di↵erent covariance.

1
Recall that p is the number of sample covariates – length{(Xi,Wi)} – which is typically small, not to be confused

with the size of the measurement vector D = length{Yi}.
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E↵ect size and population e↵ect size

A commonly used summary for the e↵ect size in a region is the area under the curve (AUC) of the
observed process, which is the sum of the estimated e↵ects in the region (Ja↵e et al., 2012b). To
decouple the region length and the magnitude of the di↵erence, we define the observed e↵ect size
as the average rather than the sum of the e↵ect:

Definition 1 The observed e↵ect size of region a : b is

t(Za:b) = Z̄a:b :=
1

b�a+1

bX

j=a

Zj .

We will associate the observed e↵ect size t(Za:b) for each potential region a : b with the population
parameter representing its unconditional mean

Definition 2 The e↵ect size of region a : b is

✓̄a:b :=
1

b�a+1

bX

j=a

✓j .

We prefer ✓̄a:b to AUC because it decouples two di↵erent sources of information: the region length
and the e↵ect magnitude. Because correlation varies across di↵erent regions, the region length does
not correspond monotonically to the amount of independent information. The size of the region,
together with the correlation structure, would nevertheless a↵ect the uncertainty of the estimates.
Finally note that since the AUC for (a, b,+) is (b � a + 1)✓̄a:b, any inference for ✓̄a:b can be easily
converted into inference for the AUC. The methods described here are easily extendible for other
linear statistics.

2.2 Selection

A common way to identify potential ROIs is to screen the map of statistics at some threshold,
and then merge sites that passed the screening into regions (Ja↵e et al., 2012b, Siegmund et al.,
2011, Schwartzman et al., 2013, Woo et al., 2014). This procedure ascertains a minimal biological
e↵ect-size in each site, while increasing statistical power to detect regions and controlling the com-
putational e↵ort. After preprocessing and smoothing the responses, these algorithms run a version
of the following steps:

1. Produce an unbiased vector of linear estimates ⇥̂ = Z.

2. Identify the set of indices exceeding a fixed threshold c, {j : Zj > c}. This is the excursion
set.

3. Merge adjacent features that pass the threshold into regions.

4. Filter (or split) regions that are too large.
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Figure 2: Cartoon of the statistical setup. The parameter vector of interest ⇥ (solid blue) is

unobserved; we observe an unbiased estimate vector Z (full red �s). The thresholds (dotted line) are at

c and �c, and the excursion set {j : Zj > c} is clustered into two regions. (No regions {j : Zj < �c}
are shown). Due to this selection, the two parameters to be estimated are ✓̄4:4 = ✓4 on the left and

✓̄a:b = avgbj=a(✓j), marked with a blue dashed line (here a = 8, b = 10). The observed e↵ect sizes (red

dashed line) are biased because of the selection. Our goal is to form confidence intervals for ✓̄4:4 and ✓̄8:10.

The procedure is illustrated in Figure 2. The output of such algorithms is a random set of (positive)
detected ROIs B̂+ that consists of ROIs (a, b,+) corresponding to the beginning and end indices of
positive excursion regions. Step 4 ascertains that B̂+ ⇢ B.

Comments:

• Typically, we are also interested in the similarly defined set of negative ROIs B̂�. For ease of
notation we deal only with B̂+, understanding that B̂� can be analyzed in the same way. It
is important to note that each region is selected either to the positive set or to the negative
set, and this choice will instruct the hypothesis test.

• Smoothing of the features and local adjustment of the thresholds can both be incorporated
within this framework – implicitly changing ⇥ into a smoothed version.

Distribution after selection

It is important to distinguish between inference for predefined regions based on previous biological
knowledge, for example exons or transcription start sites, and inference for regions detected with
the same data from which we will construct inferential statements. For a predefined region, the
linear estimator Z̄a:b is an unbiased estimator for ✓̄a:b, and its uncertainty can be assessed using
classical methods. Moreover, Z̄a:b would be approximately normal, so the sampling distribution of
Z̄a:b � ✓̄a:b would only depend on a single parameter for the variance. In particular, the correlation
between measurements would a↵ect the distribution of Z̄a:b only through this variance parameter
Var(✓̄a:b) = 1

0
a:b⌃1a:b, and can be accounted for in studentized intervals.

In contrast, when the ROI (a, b,+) is detected from the data, Z̄a:b becomes biased (Berk et al.,
2013, Fithian et al., 2014, Kriegeskorte et al., 2009). We will tend to observe extreme e↵ect sizes
compared to the true population mean. If (a, b,+) 2 B̂+, the observed e↵ect size Z̄a:b would always
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be greater than the threshold c. Furthermore, the distribution of Z̄a:b would be right-skewed, so
normal-based inference methods are no longer valid.

For non-stationary processes, evaluating the observed regions poses an even greater challenge. Due
to variation in the dependence structure, it is no longer straightforward to compare di↵erent regions
found on the same map. The bias and skewness depend not only on a single index of variance, but
rather on the local inter-dependence of Z in a neighborhood of a : b. In Figure 3, we study the
e↵ect of correlation on the bias and skewness in a simulated example; changes in correlation a↵ect
the bias, the spread and the skewness of the conditional distribution.

2.3 Inference goals

We can now restate our goal using the notation. For the set ofK detected regions B̂+ = (ak, bk,+)k=1,...,K ,

we would like to make valid inferential statements about each ✓̄a
k

:b
k

k = 1, ...,K that account for
the selection. These include:

1. a hypothesis test for H
1

: ✓̄a
k

:b
k

> 0 against the null H
0

: ✓̄a
k

:b
k

 0, and a high-precision
p-value for downstream multiplicity corrections;

2. an estimate for ✓̄a
k

:b
k

;

3. a confidence interval for ✓̄a
k

:b
k

.

We would also like to be able to prune the detected set B̂+ based on the hypotheses tests, while
continuing to control for the false coverage statements in the set.

3 Conditional approach to selective inference

Because we are only interested in inference for selected ROIs in B̂+, a correction for the selection
procedure is needed. Most such corrections are based on evaluating, ahead of selection, the potential
family of inferences. In hypothesis testing, this requires, essentially, to evaluate all potential ROIs
and transform them into a common distribution (usually by calculating the p-value). Instead, we
adapt here a solution proposed for meta-analysis and more recently in the context of regression
model selection problems (Lee et al., 2013, Fithian et al., 2014): adjust inference to hold for the
conditional distribution of the data given the selection event. First we review the premise of selective
inference, and then specify the selection event and selective distribution for region detection.

3.1 Selective inference framework

Recall that B denotes the set of potential ROIs, and the random set B̂+(Z) ⇢ B denotes the random
set of selected ROIs. Assume that for ROI r = (a, b,+) 2 B we associate a null hypothesis Hr

0

that will be evaluated if and only if r 2 B̂+. A hypothesis test controls for the selective error if
it controls for the probability of error given that the test was conducted. Formally, denote by
Ar = A

(a,b,+)

the event that r was selected for B̂+. Then:
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Figure 3: E↵ects of selection. A simulated example to illustrate the bias and skewness of selected

distributions with di↵erent correlation parameters. For D = 2 and c = 0.5, we simulate data from Z =

(Z1, Z2) ⇠ N ((0, 0) , (1, ⇢; ⇢, 1)) and consider only cases where the region 1 : 2 was selected. The top plots

show the distributions for ⇢ = 0 and ⇢ = 0.8, and the bottom plots show the (rescaled) distribution for the

observed e↵ect-size Z̄a:b for all data (left) versus the selected data (right). Although the ✓̄a:b is 0, Z̄a:b is

biased away from 0 (lower right panel); furthermore, each correlation regime shows a di↵erent bias and a

di↵erent distribution. Contrast this with the case of no selection (lower left panel), where there is no bias

and no e↵ect of correlation after rescaling.

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2016. ; https://doi.org/10.1101/082321doi: bioRxiv preprint 

https://doi.org/10.1101/082321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Definition 3 (Control of selective type 1 error, Fithian et al. 2014) The hypothesis test �r(Z) 2
{0, 1}, which returns 1 if the null is rejected and 0 otherwise, is said to control the selective type 1
error at level ↵ if

PF [�r(Z) = 1|Ar]  ↵ for any F 2 Hr
0

. (2)

In a frequentist interpretation, the relative long-term frequency of errors in the tests of r that are
carried out should be controlled at level ↵.

Selective confidence intervals can be defined in a similar manner. Denote by F the true distribution
of Z, so that F belongs to a model F . Associate with each r a functional ⌘r(F ) of the true
distribution of Z, and again let Ar be the event that the confidence interval Ir(Z) for ⌘r(F ) is
formed. Then Ir(Z) is a selective 1� ↵ confidence interval if:

P [⌘r(F ) 2 Ir(Z)|Ar] � 1� ↵ for any F 2 F .

Correcting the tests and intervals to hold over the selection criteria removes most biases that are
associated with hypothesis selection. If no additional selection is performed, the selective tests are
not susceptible to the “winner’s curse”, whereby the estimates of the selected parameters tend to
display over-optimistic results. If each individual test �r controls selective error at level ↵, then the
ratio of mean errors to mean selected is also less than ↵. In a similar manner, the proportion of
intervals not covering their parameter (False Coverage Rate, FCR) is controlled at ↵ (Fithian et al.,
2014, Weinstein et al., 2013). This strong individual criterion allows us to ignore the complicated
dependencies between the selection events; as long as the individual inference for the selected ROIs
is selection controlled, error is also controlled over the family.

Note however that when the researcher decides to report only a subset of the selected intervals or
hypotheses, a secondary multiplicity correction would be required. A likely scenario is reporting
only selective intervals that do not cover 0 (Benjamini and Yekutieli, 2005). The set of selective
p-values (or selective intervals) behaves like a standard hypothesis family, so usual family-wise or
false discovery corrections can be used. We discuss this further in Section 5.

3.2 Selection event in region detection

For region detection, we can identify the selection event Ar = A
(a,b,+)

(Z) as a coordinate-wise
truncation on coordinates of Z. Selection of (a, b,+) occurs only if all estimates within the region
to exceed the threshold. These are the internal conditions:

Za > c, Za+1

> c, ..., Zb > c. (3)

Furthermore, unless Za or Zb are on a boundary, the selection of (a, b,+) further requires external
conditions that do not allow the selection of a larger region, meaning:

Za�1

 c, Zb+1

 c. (4)
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3.3 Truncated multivariate normal distribution

Assume the observations are distributed approximately as a multivariate normal distribution Z ⇠
N(⇥,⌃) with ⌃ known. According to (2), to form selective tests or intervals based on a statistic
t
(a,b,+)

(Z) we need to characterize the conditional distribution of t
(a,b,+)

(Z) given the selection
event A

(a,b,+)

. We will sample the conditional vector to approximate the distribution of the func-
tional.

Conditioning the multivariate normal vector Z on the selection event results in coordinate-wise
truncated multivariate normal (TMN) vector with density

fZ | A
a,b

;⇥,⌃(z) =
exp{(z�⇥)0⌃�1(z�⇥)}R

A(a,b,+)
exp{(u�⇥)0⌃�1(u�⇥)}du

1(z 2 A
(a,b,+)

), (5)

where A
(a,b,+)

is seen as a subset of RD. The TMN distribution has been studied in many contexts,
including constructing instrumental variables(Lee, 1981), Bayesian inference (Pakman and Paninski,
2014), and lately post selection inference in regressions (Lee et al., 2013). In contrast to the usual
multivariate normal, linear functionals of the truncated normal cannot be described analytically
(Horrace, 2005). We will therefore resort to Monte Carlo methods for sampling TMN vectors, and
empirically estimate the functional distribution from this sample. Naively, one can sample from
this distribution using a rejection sampling algorithm: produce samples from the unconditional
multivariate normal density of Z, and reject samples that do not meet the criteria A

(a,b,+)

.

In the rest of this paper we assume we have e�cient samplers for the TMN distribution. There
are many publicly available samplers for this distribution, for example, in the R statistical package,
including rejection samplers, Gibbs samplers (Geweke, 1991) and Hamiltonian (Pakman and Panin-
ski, 2014) samplers. We use a Gibbs sampler included in the selective-inference package, because
it handles well extreme values. Sampling strategies are discussed in Appendix A.

For inferences of a specific index range, it is su�cient to focus on the coordinates of Z in the vicinity
of a : b. Coordinates outside the selection range a � 1 : b + 1 are neither restricted nor influence
t(Z) and can be ignored in the modeling process assuming the detected bumps are su�ciently
separated. Instead of modeling and sampling a D dimensional TMN, for each selected ROI of
length l we sample an l + 2 vector.

4 Inference for the e↵ect size

Here we describe in sampling based inference prodedures. First, we review the case where the null
hypothesis is specified by the full mean vector. Next, we propose a mapping from our parameter of
interest ✓̄ into the mean vector ⇥a�1:b+1

. For the internal mean, we use a linear mapping ⇥a:b = ✓̄ ·s
with the profile vector s. (In simulations, we find that the conditional distribution of the statistic
is not sensitive to small changes in s.) For the external mean ✓a�1

, ✓b+1

, we propose a conservative
choice of plugging in the observed values ✓̂a�1

= Za�1

, ✓̂b+1

= Zb+1

. With these choices, the
conditional distribution for each value of ¯theta is fully specified and sampling based tests can be
run. We di↵er the discussion of e�cient sampling strategies to Appendix A.

Notational remarks:
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1. Throughout the section we focus on a single selected region r = (a, b,+). In 4.2 we model
only the internal region, so ⇥ = ⇥a:b 2 Rb�a+1 and ⌃ = ⌃a:b 2 Rb�a+1⇥b�a+1. In 4.1, 4.3,
we model both external and internal regions, so ⇥ = ⇥a�1:b+1

and ⌃ = ⌃a�1:b+1

. We assume
here ⌃ is known, though in practice we will plug in estimates of ⌃.

2. When analyzing the positively detected regions B̂+, a region a : b is associated with a single
selection event (a, b,+). We therefore adopt the shorthand Aa:b = A

(a,b,+)

. Negatively
detected regions would be analyzed separately in a similar manner.

3. Because we are interested primarily in the e↵ects of di↵erent mean vectors ⇥ on the distribu-
tion of Z and t(Z) = Za:b, we use the shorthands

f
⇥

:= fZ |A
a:b;⇥,⌃, g

⇥;t := ft(Z) |A
a:b;⇥,⌃

for the TMN density with mean vector ⇥ and the univariate density of t(Z) : Z ⇠ f
⇥

.

4.1 Test for a full mean vector

Consider a vector Z that follows a TMN density f
⇥

, and suppose we want to test a strong (fully
specified) hypothesis H

0

: ⇥a:b = ⇥0

a:b for some ⇥0

a:b = (✓0a, ..., ✓
0

b ) against H1

: ⇥a:b � ⇥0

a:b. For the
test to be powerful against a shift in multiple coordinates, we consider the test

�↵(Z) = 1(t(Z) > q
1�↵),

where t is a non-negative linear combination t(Z) = ⌘0Z and q
1�↵ = q(1� ↵; ⌘, g

⇥

0
;t) is the 1� ↵

quantile of the distribution of t(Z) : Z ⇠ f
⇥

0 . A case in point is the strong null ⇥0

a:b = 0 = (0, ..., 0).
When ⌃ is known, the null distribution of t(Z) is fully specified even though its analytic form is
unknown. We can therefore sample from f

⇥

0 , and use this sample to empirically estimate g
⇥

0
;t and

specifically its 1� ↵ quantile as accurately as we need.

Explicitly, the algorithm would

1. Use a TMN sampler to generate a Monte Carlo sample from H
0

z

1

, ..., zN ⇠ f
⇥

0 .

2. Compute the statistic for each example t
1

, ..., tN , ti = t(zi).

3. Estimate the 1� ↵ quantile of t(Z) under H
0

from the bN(1� ↵)c order statistic of ti.

Furthermore, the p-value of the observed vector zobs can be estimated from the sample as

\p� value = P̂H0(t(Z) > t(zobs)) =
1

N

X
1(ti > t(zobs)).

In order to form intervals, we will also need two sided tests. A two sided test can be implemented by

setting �
(2)

↵ = 1(t(Z) < q↵ or t(Z) > q
1�↵) and estimating q↵, q1�↵ from the Monte Carlo sample.

Note that we match ↵ level one-sided tests with 1� 2↵ level intervals so that coverage would agree
for the null.
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4.2 A single parameter family for the mean

Confidence intervals for ✓̄ = 1

b�a+1

Pb
j=a ✓j require more care than the null tests, because even

after specifying ✓̄ the model has b� a ancillary degrees of freedom. Approaches to non-parametric
inference include plugging-in the maximal-likelihood values of the ancillary parameters for every
value of ✓̄ (profile-likelihood, see review in DiCiccio and Romano, 1988), or conditioning on the
ancillary directions in the data as in Lockhart et al. (2014), Lee et al. (2013). We take an approach
similar to the least favorable one-dimensional exponential family (Efron, 1985), in proposing a linear
trajectory from ✓̄ to the mean vector ⇥. Figure 4 shows the main steps of our approach.

We form the confidence interval by inverting a set of tests for the average parameter ✓̄. Recall that
a random interval I(Z) is a 1� 2↵ level confidence interval for ✓̄ if P

⇥

(✓̄(⇥) 2 I(Z)) � 1� 2↵ for
any ⇥. Given a family of 2↵ level two-sided tests for ✓̄ = ✓, the set of non-rejected parameter-values
forms a 1� 2↵ confidence set (Inversion lemma, Lehmann and Romano, 2005).

The family of tests we use are based on a one-dimensional sub-family of the TMN, produced by
the linear (or a�ne) mapping ⇥s : ✓ 7! ✓ · s, where vector s = (sa, ..., sb) 2 Rb�a+1

+

represents the
profile of the mean sj � 0 that is scaled linearly by ✓. For identifiability, we set 1

b�a+1

P
sj = 1.

For any value of ✓, we can define the distribution f
⇥s(✓) as follows:

f
⇥s(✓)(z) := fZ | A;⌃

(z;⇥s(✓)) =
�(z ; ✓ · s,⌃)R

A
a:b

�(u ; ✓ · s,⌃)du
1A(z),

At ✓ = 0, we get the strong null hypothesis ⇥ = 0. For other values of ✓ we get di↵erent TMN
distributions. Note that the condition 1

b�a+1

P
sj = 1 ascertains that ✓̄(⇥s(✓)) = ✓, because

⇥s(✓) = ✓ · s, and ✓̄(⇥s(✓)) =
1

b�a+1

Pb
j=a ✓sj = ✓ 1

b�a+1

P
sj .

We derive confidence intervals and point estimators for ✓̄ based on this one-parameter family f
⇥s(✓).

Each value of ✓̄ = ✓ identifies a specific mean vector (panel A), and a conditional distribution for the
vector Z and the statistic t(Z) (panels B, C). Therefore, for each value of ✓, we can construct the

two-sided test �(2)

✓,↵(Z) by following the recipe in 4.1. That is, we can sample from f
⇥s(✓), estimate

empirically the distribution and quantiles of t(Z) under this null, and reject if not q̂
1�↵ > t(Z) > q̂↵.

By repeating this process for a fine grid of ✓ values, we can invert the sequence of tests (panel D)
and get a high-resolution confidence set or interval I.

As a point estimator, we propose using

✓̂ = ✓ s.t. P✓(t(Z) > tobs) = 0.5.

This corresponds to the intersection of the median function q̂
0.5(✓) with tobs, and does not require

extra calculations when computing the confidence intervals. In Appendix A we show that tests for
any value of ✓ can be computed using a single Monte Carlo sample.

For the statistic tobs =
1

b�a+1

(1, ..., 1)0Za:b, we propose to use the profile:

s

⌃

= (b� a+ 1) · (1, ..., 1)0⌃a:b

(1, ..., 1)0⌃a:b(1, ..., 1)
,

which would vary the mean in each coordinate proportionally to the sum of the columns of the
covariance matrix. For the unconditional family parametrized by s

⌃

, tobs = 1

b�a+1

(1, ..., 1)0Za:b
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Figure 4: The inference algorithm. For the region 2 : 4 the plots show steps in the inference. The top

left displays the unconditional mean vectors ⇥s(✓) for 5 values of ✓. The profile used is s⌃. The top right

panel displays 6 examples from the Monte Carlo sample of the conditional density f⇥s(✓) = fZ|A;⇥(✓),⌃, color

coded by the value of ✓. Empirical CDFs are estimated for each value of ✓ (bottom left), and ↵/2, 1� ↵/2

quantiles extracted. The acceptance regions are inverted (bottom right) based on the observed statistic

(tobs) to generate a two-sided 1� ↵ interval. Plots based on a simulated region with a true mean e↵ect of

✓̄ = 0.14 and an observed e↵ect of t(Z) = Z̄a:b ⇡ 0.19. The true (known) covariance of Z is used.
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is the natural statistic for the exponential family, as well as the maximum likelihood estimator.
After truncation, this is still an exponential family with the same natural statistic, though it is no
longer the MLE2. An alternative profile is su = (1, ..., 1), which induces a uniform increase in the
coordinates of the region. In practice, we find that our methods are not sensitive to the particular
choice between these two profiles, as seen in Figure 5. Further discussion of the choice of the profile
in 4.2.1. Some readers may prefer to skip directly to 4.3.

4.2.1 Monotonicity and choice of profile

Although naively we would expect functionals of the distribution of t(Z) to increase as ⇥s(✓)
increases, this monotonicity property does not always hold. Monotonicity is an important prereq-
uisite for the method: measuring ✓ using t(Z) makes sense only if t(Z) indeed increases with ✓.
Furthermore, monotonicity guarantees that the acceptance region of the family of tests would be an
interval, simplifying the parameter searches. Indeed, for a non-truncated multivariate normal with
mean ✓ · s and s positive, the distribution of t(Z) is monotone increasing in every coordinate of ⇥
(and does not depend s). Unfortunately, after conditioning, monotonicity is no longer guaranteed
for a general profile vector s; for example, it is not always true that the mean E

⇥s(✓)[t(Z)] or the
quantiles functions will be increasing functions of ✓. See Figure 5. In the rest of this section we
identify conditions for monotonicity: in Lemma 1 we show that for every non-negative covariance,
using the profile s

⌃

/ (1, ..., 1)0⌃ ensures that E
⇥s(✓)[t(Z)] increases in ✓. This result is tailored for

the statistic t(Z) / (1, ..., 1)0. In Lemma 2, we identify a subset of the non-negative covariances and,
for each covariance, a set of profiles that ensure monotonicity for any non-negative statistic.

We denote by g✓;s,t the family of densities parametrized by ✓ of t(Z)|A, where Z ⇠ N(✓ · s,⌃).
The following lemma proves that for s = s

⌃

and t = (1, ..., 1)0Z, g✓;s,t is a monotone likelihood
ratio family in ✓. This is a consequence of identifying t(Z) as the natural statistic of the family in
Fithian et al. (2014).

Lemma 1 If g✓;s,t denotes the family densities for t(Z) with the scalar parameter ✓ as before, then

1. g✓;s⌃,t is a monotone likelihood ratio family.

2. E
⇥s⌃

[t(Z)] is an increasing function of ✓.

3. The confidence set for ✓ obtained by inverting two sided tests is an interval.

Properties 2,3 are direct consequences of the monotone likelihood ratio family property. We leave
the proof of 1 to the appendix.

The lemma further allows a classical approach to the problem of choosing the statistic after the
model. If we choose a specific deviation from 0, e.g. setting the profile to be uniform su = (1, ..., 1)0,
then the most e�cient statistic would be the exponential-family natural statistic t⇤(Z) / s

0
u⌃

�1.
Lemma 1 implies that t⇤(Z) would be monotone in ✓.

A stronger result of monotonicity of g✓;s,t can be derived from properties of the multivariate dis-
tribution f

⇥

if the covariance of Za:b belongs to a restrictive class of positive-covariance matrices.

2
Admittedly, we reverse here the usual flow of statistical modeling, by first choosing the statistic and only later

the model.
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Figure 5: Comparison of profiles vectors and covariances. conditional mean of t(Z) = Z̄1:3 as a

function of ✓ for di↵erent covariances (panels) and profiles (colors), with threshold c = 1. In all panels,

we use the following profiles: s⌃ / (1, 1, 1)0⌃ in black, su = (1, 1, 1) in red, s2 = (1.5, 0, 1.5) in blue, and

s1 = (3, 0, 0) in grey. In the top-left and bottom-right panels, su ⌘ s⌃). All covariances have unit variance,

and the number of correlated variables decrease from ⌃A (⇢ = 0.4 between every pair), through ⌃B (as

before but ⇢13 = 0), ⌃C (⇢12 = 0) and uncorrelated ⌃D. We observe method is not very sensitive to small

di↵erences in the profile, as s⌃, su give almost identical curves for ⌃B and ⌃C . The figure shows that

although s⌃ ensures E⇥s(✓)[t(Z)] strictly increases with ✓ (monotonicity, Lemma 1), monotonicity is not

guaranteed for s2 or s1. For ⌃C , s1 satisfies the conditions of Lemma 2 and displays monotonicity, whereas

s2 does not. When the covariance is iid, any non-negative profile satisfies Lemma 2. Under all covariances,

the curves for s1, s2 are greater than s⌃; this is a potential source for coverage error if s⌃ is used.
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Definition 4 An M-matrix is a positive-definite matrix in which all o↵-diagonal elements are non-
positive.

Lemma 2 Suppose ⌃�1 is an M-matrix, and the profile s can be written as a non-negative sum of
columns of ⌃, then g✓;s,t is a monotone likelihood ratio family.

The condition on Z is su�cient to show a strong enough association condition on Z (second-order
multivariate total positivity property, MTP-2) that continues to hold after conditioning. The lemma
is based on theory developed by Rinott and Scarsini (2006). The details of the proof are in the
appendix. In Figure 5

4.3 Choice of mean for the external constraints

For the distribution f
⇥

to be fully specified, we need to set values for the external mean parameters
✓a�1

, ✓b+1

. Although it is possible to arbitrarily assume ✓a�1

= ✓b+1

= 0, when the variance of
Za�1

and Zb+1

(⌃a�1,a�1

,⌃b+1,b+1

) are small, this could lead to a bad fit for the data and produce
ill-behaved intervals. Scaling the external mean with ✓ also produces artifacts when the Za�1

or
Zb+1

are strongly correlated with (Za, ..., Zb).

We recommend using the plug-estimators for ✓a�1

, ✓b+1

based on the observed values Za�1

, Zb+1

:

✓̂a�1

= Za�1

, ✓̂b+1

= Zb+1

.

Because selection is often weak for the external parameters, the plug-in estimators seem to do a
good job even as ⌃ decreases.

To summarize, an a�ne model for the mean is:

⇥a�1:b+1

(✓) = (Za�1

, 0, ..., 0, Zb+1

)0 + ✓ · s̃
⌃

, s̃

⌃

= (0, s
⌃

, 0)0.

4.4 Estimated covariance

When the number of samples is small, the estimation may be sensitive to the covariance that is used.
We therefore propose using an inflated estimate of the sample covariance in order to reduce the
probability of underestimating the variance of individual sites and of overestimating the correlation
between internal and external variables.

Call ⌃̂ the sample estimator for Cov(Z). Then the 1 + � diagonally inflated covariance is ⌃̂� is
defined as follows:

⌃̂�
jj0 =

(
(1 + �)⌃̂jj0 if j = j0

⌃̂jj0 otherwise.
(6)

5 Controlling false coverage on the set of intervals

When the threshold is selected liberally, the result of running the threshold-and-merge algorithm
is a large set of detected regions. If only a subset of these regions is reported, this selection could
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lead to low coverage properties over the selected set. In our framework, because the confidence
intervals are conditioned on the initial selection, the problem does not arise (Fithian et al., 2014).
However, if we use the new p-values (or intervals) to screen regions that are not separated from 0,
a secondary adjustment is needed.

In that case, an iterative algorithm built described in Benjamini and Yekutieli (2005) can be applied
to choose a second level inflation factor for the intervals, so that all intervals do not cover 0 and
FCR is maintained. At each iteration, the set of intervals is pruned so that only intervals separated
from 0 are kept in the set. Then, the BH procedure is run on the subset of p-values, selecting the
q-value threshold that controls the false discovery rate at ↵. Setting new confidence intervals at the
1� q level controls the rate of false coverage for the family of intervals. If any of the intervals cover
0 after the inflation, the set can be further pruned, and another BH algorithm run on the smaller
set. The requirements for the usual FDR assumptions to hold over a set of regions are discussed in
Schwartzman et al. (2013).

Computationally, we can reuse the sample for the p-values to fit any size of confidence interval.
Here is a review of the full algorithm:

1. Run a threshold-and-cluster algorithm to generate the bump candidates.

2. For each bump, test the selective hypothesis that the e↵ect is smaller than ` (typically, ` = 0).

3. Find the p-value for H
0

: ✓̄a:b  `.

4. Run the BH procedure on the (sorted) p-value list. Find a value q that controls the FDR at
level ↵.

5. For bump candidates that pass the criterion, form marginal confidence intervals with coverage
1� q. The sample from stage 2 can be reused for this purpose.

6 Simulation

We conducted two set of simulations to verify that the coverage properties of the confidence intervals
are robust to di↵erent scenarios and to investigate power. In both simulations, data was generated
from a two-group model. Detailed description of both simulations are found in Appendix C.

In the first set, we sampled repeatedly for the same region to study the coverage and power. We
sampled a D = 5 multivariate normal vector and selected for the region a = 2, b = 4. We varied
the number of samples, the covariance shapes, the true e↵ect size, the shape of the mean vector.
We used either the true covariance, or a covariance that was estimated from the data. Note that
increasing the number of samples reduces the variance of the Z vector, as well as improves the
estimation of the covariance.

In the second set, we sampled from longer (D=50) random non-stationary continuous processes,
with a random non-null di↵erence between the groups. Marginals followed either a normal or
logistic-transformed normals. For each simulation, we ran the threshold-and-merge procedure and
randomly selected one of the detected ROIs. We measured coverage properties for randomly selected
bump locations. The variance level of the samples and threshold were selected to be similar to those
in samples from DNA-methylation arrays shown in Section 7.
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Figure 6: Simulations Two sided 90% confidence intervals for repeated samples of 3-measurement bumps.

Columns di↵er by (✓,⌃), from left to right (0.15,⌃iid), (0.15,⌃cor), (0,⌃cor). On the top row ⌃ is known,

and the bottom ⌃ is estimated. For each regime, the runs are sorted by the observed statistic. The blue

horizontal line reflects the true mean; the dot represents observed mean tobs. Red dots reflect instances

were the true parameter was not covered.

Results

Representative results for both known and estimated covariances are shown in Figure 6, and the
coverage rate for Ccor is summarized in Figure 7 (left). For the known covariance, coverage rates
are approximately nominally correct under both covariance regimes, di↵erent group sizes and e↵ect
size. For the estimated covariance, coverage is less than the nominal rate, but the error decreases
as the number of samples increases. Note that although for n = 16 with estimated ⌃ the two-sided
coverage is almost correct, for ✓ = 0 the lower bound is too liberal. Figure 7 (right) plots the power
of the selective intervals, as the probability of not covering 0 with increasing true e↵ects ✓. We use
only the known ⌃ which gives accurate coverage statements.

The results from the continuous simulation are displayed in Table 6. For Normal data with the true
covariance, we get the expected coverage of 0.9 even though the true mean vector was misspecified.
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⌃ known ⌃̂ estimated
✓̄ na = 4 8 16 4 8 16

Coverage 0.91 0.90 0.91 0.79 0.87 0.90

Figure 7: Coverage and Power: On left, coverage probability of nominal ↵ = 0.9 confidence intervals

for di↵erent true e↵ect size ✓̄ (x-axis), group size (color), and estimation of covariance (line-type). Group

size a↵ects the variance of Z and, if ⌃ is estimated, the samples available for this estimation. We see that

coverage is approximately correct for the known covariance and for estimated covariance with na = 16.

Note that the profile used (s⌃) is not proportional to the true mean. On right, power is plotted for di↵erent

true e↵ect size (x-axis), group size (color), and known covariance type (⌃iid or ⌃cor). Power is computed

as the proportion of intervals not covering the null for non-zero true e↵ects. Results for estimated ⌃ not

shown, because coverage in-exact for small n’s. Each value is based on 250 repeats See simulation details

in Section 6. Overall average based on 5000 simulations (250 repeats ⇥ 20 values of ✓).

For the logistic-transformed normal data, we get conservative intervals, perhaps due to the short
tails. For the estimated ⌃, accuracy of coverage depends on the number of samples; increased
sample size allows better estimates of ⌃ estimate. Still, for 10+ 10 samples the algorithm seems to
give approximately correct coverage.

Normal Logistic
Samples per group 40 20 10 5 40 20 10 5
⌃ Known 0.913 0.905 0.907 0.900 0.955 0.942 0.924 0.908
⌃̂ Estimated 0.897 0.887 0.870 0.821 0.949 0.926 0.911 0.820

Table 1: Coverage of ↵ = 0.9 confidence interval for continuous process data. Values based on 1000
repeats. Variance in estimators decreases linearly with number of samples.
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7 DNA methylation data

The inference was run on detected regions analysing healthy human samples across two di↵erent
tissues. Our dataset consists of methylation measurements for 36 tissue samples using the Illumina
450K array. Data was acquired from The Cancer Genome Atlas (TCGA).

We run two analyses of the data:

• The two-tissue analysis compares 19 lung samples with 17 colon samples. We expect many
true di↵erences between the two groups.

• For the one-tissue data, we randomly partitioned the 19 lung samples into two groups of 9
and 10 samples. Group-di↵erence found on the one-tissue data are considered false-positive.

On each dataset, we detected ROIs using a fixed threshold (c = 0.1) to produce a list of candidate
regions. For detection, we used the bumphunter (v1.10.0) package (Irizarry et al.). For each
detected ROI, we produced a selective p-value and formed a 90% selective confidence interval for
mean between-group di↵erence. The sample estimator of ⌃ was used for inference. Regions whose
intervals overlapped 0 were pruned and intervals readjusted using (a) BH procedure to control FCR
as discussed in Section 5 or (b) Bonferroni procedure to control family-wise probability of non-
coverage. The samples were not smoothed or preprocessed. We did not allow regions to include
sites separated by more than 5000 bps. The analysis was implemented in R. The TMN distribution
was sampled using a C-compiled version of the selective-inference sampler, accelerated by tilting.
For comparison, we produced p-values for the same set of detected ROIs using the family-wise error
correction using permutations (Ja↵e et al., 2012b) as implemented in bumphunter. All candidate
regions were ranked by area, and compared to the strongest regions found in a null distribution
that assumes random assignment to groups. The FWE corrected p-value was set to the proportion
of permuted datasets in which a superior region was found.

Results

The summary results for the two tissue and the one tissue data are summarized in Table 2. The
selective inference method displays a much greater sensitivity than the permutation level, while
giving little in terms of specificity. For the two tissue design, selective inference calls 89% of the
found regions to be significantly di↵erent from 0 at the 0.05 BH adjusted level, and 63% for an
FWE of 0.05. This compares to 0.07% for the permutation based FWE at 0.05. Examples for
regions detected by selective inference and not by permutation FWE are shown in Figure 8.

For the one tissue design, the nominal coverage of the intervals is conservative (3% of regions are
rejected at the 0.05 level). No region is significant after multiplicity corrections with either method.
If no covariance inflation is used (� = 0), 5.5% of the regions are rejected at the 0.05 level, and 11
regions pass the BH procedure.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2016. ; https://doi.org/10.1101/082321doi: bioRxiv preprint 

https://doi.org/10.1101/082321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Permutation Selective
Regions found FWE < ↵

2

p < ↵
2

pBonf < ↵
2

pBH < ↵
2

Two tissue 58298 46 (.07%) 51840 (89%) 36846 (63%) 51636 (89%)
One tissue 1578 0 48 (3%) 0 0

Table 2: Number of regions detected on the two-tissue and one-tissue designs, for one-sided ↵/2 = 0.05

tests. Data in the one-tissue were split randomly into two groups, so we consider all detections to be false

positives. Estimated covariance ⌃̂� were used with � = 0.15.

Figure 8: Examples undetected by non-parametrics. Two example regions that are detected using

our method, but not detected using the non-parametric FWE approach at ↵ = 0.05 level. On left is a

10-site region from chromosome 19: we estimate ✓̂ = 0.375 with interval Î = [0.35, 0.4] and pBH < 10�10;

non-parametric FWE was 0.06. On right is a 9-site region from chromosome 22: we estimate ✓̂ = 0.345

with interval Î = [0.32, 0.375] and pBH < 10�10; non-parametric FWE was 0.1. Data is from TCGA; see

details in text.

8 Discussion

In this paper we present a method of generating selection corrected p-values, estimates and confi-
dence intervals for the e↵ect size of individual regions detected from the same data. The method
allows for non-stationary individual processes, as each region is evaluated according to its own co-
variance. For a two group design under non-negative correlation, the nominal coverage of the tests
and lower-bounds of the intervals are shown to hold when the covariance is known or the number
of samples per group is moderate (group size � 16). For genomic data sets, we show that the
method has considerably better power than non-parametric alternatives, and the resulting intervals
are often short enough to aid decision making. In the following we discuss further
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Setting the threshold

The threshold c has considerable sway over the size and the number of regions detected. For the
method to be e↵ective requires a reasonable threshold: setting it too high will “condition away”
all the information at the selection stage, and very little information will be used for the inference.
Setting the threshold too low will allow many regions to pass, requiring stronger multiplicity correc-
tions to control the family-wise error rates. Exploring this tradeo↵ via a higher-criticism (Donoho
and Jin, 2008) type approach may be an interesting extension.

More generally, the assumption that c is determined before the analysis can probably be relaxed, as
the threshold is only very weakly dependent on any individual region. In particular, data-dependent
thresholds computed far from the selected region (e.g. on di↵erent chromosomes) would have similar
properties; a possible algorithm is then to compute a threshold for each chromosome based on data
from all other chromosomes. Robust function of the data such as the median or non-extremal
quantile based thresholds should also give good results. See Weinstein et al. (2013) for an adaptive
threshold in univariate selection.

Region size information

A related question is how to integrate the information regarding the size of the region. The methods
we propose do not directly use information regarding the size of the detected region, as this informa-
tion is conditioned away. Instead, inference is based only on the distance between the observations
and the threshold: if the observed values are su�ciently close to the threshold, the p-values will be
large; if they are farther away, p-values will be small. Discarding the size of the region is perhaps
counterintuitive. Hypothetically, we may detect a large enough region (with P (Aa:b) small enough)
to be significant regardless of the e↵ects of selection, but still get selective p-value that are large. In
practice, however, this is unlikely; both the probability of the event Aa:b and the selective p-value
become smaller as the size of the unconditional mean vector (⇥a:b) increases. Long regions would
usually be detected because the mean was larger than 0 in most of the region. This would usually
also manifest in smaller p-values and less uncertainty in the confidence interval.

Reintegrating the probability of detection can increase power, but would require a di↵erent mecha-
nism to control for selection. We may be able to recover the probability of selection from the Monte
Carlo sample. It is tempting to reintegrate this information into the inference: under a strong null
(⇥a:b = 0), the likelihood of the data is the product of these two probabilities. The caveat, of
course, is that the p-values associated with region size – P (Aa:b) – are not corrected for selection.
Hence, we are back to the problem we wanted to initially solve.

Di↵erence between our approach and pivot-based methods

The methods we propose are di↵erent from the exact pivot-based inference advocated by, for exam-
ple, ? and ?. These advocate conditioning not only on the selection event, but also on the subspace
orthogonal to the statistic of interest. Essentially, all but the one-dimension statistic t(Z) are con-
ditioned away, leaving a well-specified single-parameter conditional distribution to evaluate. The
model is elegant, in that it produces an exact p-value and intervals, without requiring sampling or
plugging in nuisance parameters. However, we found that the fully-conditional approach had very
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little power separate true e↵ects from nulls, and resulted in very large intervals. Specifically, after
the conditioning, inference is conducted within a single segment {Za:b+↵(1, ..., 1)}↵; if the estimate
of any of the points in the region is very close to the threshold, the will be no separation and the
p-value obtained would be high. In contrast, our method is not sensitive to having individual points
which are close to the threshold, because it aggregates outcomes over the set Z :

Pb
a Zi  t. We

pay a price in having an inexact method that leans on sampling and a misspecified choice of mean
vector.

Additional applications and future work

The importance of accurate regional inference inference extends from only genomics. Indeed, the
threshold-and-merge region detection algorithm is extremely common in neuroscience for the analy-
sis of fMRI data, where it is known as cluster inference. The standard parametric methods used for
cluster inference rely on approximations for extreme sets in stationary gaussian processes (Friston
et al., 1994). Recently, the high-profile study of (Eklund et al., 2016) showed these methods to
be too liberal by testing them on manufactured null; also, the distribution of detections was not
uniform along the brain suggesting the process was non-stationary. The alternative o↵ered were
non-parametric permutations of subject assignment (Hayasaka et al., 2004), similar to those used
in Section 7. As we observe, these non-parametric methods can be grossly over-conservative in
their model, in particular when multiple regions are detected. Adapting our method for functional
data may allow a powerful parametric model that relaxes the stationarity and strong thresholding
requirements, without sacrificing power.

More work is required to expand the scope of the algorithm for these additional applications. In
particular, the method needs to work well for larger regions and smaller samples. Currently, for
larger regions, sampling becomes harder due to increased sensitivity of the initial parameter and to
the mixing time of the Gibbs sampler. Solutions for these problems include more robust sampling
algorithms and convergence decisions. Perhaps, for larger regions, approximations of t(Z)|A can
replace Monte Carlo methods.

Furthermore, local covariance estimates might require too many samples to stabilize, and rigorous
methods should be employed to deal with the unknown covariances. Using the truncated multivari-
ate t instead of multivariate normal would account for the uncertainty in estimating the variances;
however, the correlation structure also has uncertainty which we currently do not take into account.
We suggest in (6) an inflation parameter to give a conservative estimate of the correlation, leaving
to the user the choice of �. It is more likely that for each application, specific models for covari-
ance estimation can be developed. In genomics, external annotation including probe-distance and
sequence composition can give a prior model for shrinkage.
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A Appendix: Accelerated sampling

Recall that we parameterize the truncated multivariate normal family with a single mean parameter
✓ that linearly determines the mean vector. The distributions corresponding to di↵erent values of ✓
form a single parameter exponential family; this implies that importance weighting can e�ciently
convert a sample for f✓0 into a sample for f✓1 . We detail here the algorithm. This is an expansion
of the ideas described in the appendix of (Fithian et al., 2014).

Suppose we have a Monte Carlo sample z

1

, ...zn ⇠ f✓0 and we would like to estimate of E[g(Z)] for
Z ⇠ f✓1 . Then the importance sampling estimate of E✓1 [g(Z)] is

Ê✓1 [g(Z)] =
X

wi(zi)g(zi)

where

wi /
f✓1(zi)

f✓0(zi)
,

X
wi = 1.

The importance estimator is unbiased. With a careful choice of ✓
0

it may enjoy lower variance
per sample-size compared to Monte Carlo estimates from f✓1 (Owen, 2013). Nevertheless, for our
application the primary gain is the ability to invert tests for numerous values of ✓ using a single
sample.

The exponential tilting principle (Siegmund, 1976) recognizes that for single-parameter exponential
families, the importance weights w

1

, ..., wn can be calculated without explicitly calculating the
normalizing constant for the destination density f✓1 . We develop here the explicit form for the
TMN densities parameterized by a linear mean shift.

The TMN density (5) is written in full as:

fZ | A
a:b;⇥,⌃(z) =

�(z ; ⇥,⌃)R
A

a:b
�(u ; ⇥,⌃)du

I(z 2 Aa:b).

with the mean vector parameterized linearly in ✓

µ(✓) = µ
0

+ ✓ · s. (7)

As described above, we take
µ
0

= (Zobs
a�1

, 0, 0, ..., 0, Zobs
b+1

)

and a profile s e.g. s = 1

b�a (0, 1, 1, ..., 1, 0).

We can expand this density to exponential family form:

fZ | A
a:b;⌃

(z; ✓) = exp
�
z⌃�1µ(✓) + h(z)� g(✓)

 
1A(z),

=exp
�
z⌃�1µ

0

+ ✓z⌃�1

s+ h(z)� g(✓)
 
1A(z)

where h(z) = � 1

2

(z⌃�1

z) does not depend on ✓, and g(✓) = � 1

2

µ(✓)0⌃�1µ(✓)�
R
A
�(u, µ(✓),⌃)du

is the normalizing constant. Therefore, the likelihood ratio for an example z 2 A depends on the
covariance-corrected shape

f✓1
f✓0

(z) = w̃i(z) = d✓0✓1 exp {(✓1 � ✓
0

)z0s̃} , s̃ = ⌃�1

s
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Figure 9: Example of how to extract confidence intervals from a reference density. We generate a sample

from a reference density (and mean parameter ✓) for which the observed statistic tobs = 0.358 (red vertical

line) is in the bulk of the distribution. The sample can then be tilted - reweighed - to generate other

distributions within the same parametric family. The tilted distribution giving the lower bound of the

confidence interval is plotted in the center. This is the most left-tilted distribution for which P (T > tobs) �
↵/2. The distribution for the upper-bound is plotted on the right.

where the factor d✓0✓1 = exp{g(✓
0

)� g(✓
1

)} does not depend on z. Instead of computing d✓0✓1 the
weights for a given Monte Carlo sample w̃

1

(z
1

), ..., w̃n(zn) can be normalized

wi(zi) =
w̃i(zi)Pn

j=1

w̃j(zj)
=

exp {(✓
1

� ✓
0

)z0is̃}P
j exp

�
(✓

1

� ✓
0

)z0j s̃
 

to meet both conditions of empirical importance sampling weights.

A.1 Tilting for tests and intervals

The main speed-up in tilting arrises from the ability to use a single sample from f✓0 to identify
the acceptance region for any ✓. This is particularly useful because our method for estimating
confidence intervals requires building many individual tests for a dense grid of ✓ values. The main
computational load comes from sampling the TMN under the constraint; tilting allows us to perform
this task only once, for a convenient value of ✓, and extract all tests from this sample.

Computing the p-value for the null hypothesis H
0

: ✓  0 against a one-sided alternative H
1

: ✓ > 0.
To estimate the probability under the null of getting a value greater than tobs, or

p-value
0

= E✓=0

[g(Z)] = P✓=0

[t(Z) � tobs],

we use the quantile of the ’tilted’ empirical distribution

ˆp-value
0

=
X

i:t(z
i

)>t
obs

exp{�✓
0

z

0
is̃}Pn

j=1

exp{�✓
0

z

0
j s̃}

.
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For a two sided test of H
0

: ✓ = ✓
1

, as required for two-sided intervals, we use g̃(Z) = 2⇤min(t(Z) �
tobs, 1� t(Z)  tobs). The test rejects ✓ = ✓

1

if E✓=✓1 [g̃(Z)] < ↵.

Note that it is not necessary that the statistic t(z) coincide with the su�cient statistic z

0
s̃ of

the exponential family. Although the su�cient statistic introduces the most powerful tests, other
linear statistics may be more robust to deviations from the mean model. In the case were a di↵erent
statistic is preferred, the reweighing of the Monte Carlo samples might not be completely correlated
to the statistic.

A.2 Choosing ✓
0

Heuristically, we prefer a ✓
0

for which tobs is a likely outcome, with enough samples on both sides of
tobs. In the extreme case, to identify any p-value in (0, 1) via tilting requires that 0  P̂✓0(t(Z) >
tobs)  1, meaning we have at least one sample at each side of tobs. The variance of an importance
sample is

P
w2

i (fi�E[fi])2 (Owen, 2013, ch 9, pg 9), so a more equal distribution of weights would
lead to better variances., a likely choice for ✓

0

would often mean the selection criterion is not very
strong, so that the samplers for ✓

0

would be relatively e�cient.

For choosing ✓
0

under a truncation at c, one candidate choice is to use the unbiased estimator if
there were no selection ✓

0

= tobs. We require the empirical 0.2 < p̂✓0 < 0.8. If this value fails
we run a linear search for ✓

0

values between tobs and 0 until we find a successful value. Due to
selection against small values of Z, tobs is an upward biased estimator of ✓; when variances are
small, the sampler might need a better starting point for ✓

0

, so multiple starting points can be
explored.

B Appendix: Proofs and Examples

Lemma 1

Let g
⇥(✓;s) := g

⇥(✓) denote the family densities for t(Z) with a scale single parameter ✓. Then

1. g
⇥(✓;s⌃)

is a monotone likelihood ratio family

2. E[t(Z)] is an increasing function of ✓

3. The confidence set for ✓ obtained by inverting two sided tests is an interval.

Proof

We recall the exponential family form of f
⇥(✓;s⌃)

:

fZ | A[a,b];⌃(z; ✓) = exp
�
z⌃�1µ(✓) + h(z)� g(✓)

 
1A(z), (8)

= exp
�
z⌃�1(✓⌃(1, ..., 1) + h(z)� g(✓)

 
1A(z) (9)

= exp {✓z(1, ..., 1) + h(z)� g(✓)} 1A(z) (10)
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where h(z) = � 1

2

(z⌃�1

z) does not depend on ✓, and g(✓) = � 1

2

µ(✓)0⌃�1µ(✓)�
R
A
�(u, µ(✓),⌃)du

is the normalizing constant.

Next note that the density in g
⇥

(x) for a particular value corresponds to integrating over the
intersection of the hyper-plane

P
Z = z with the conditional set A. Within this hyperplane, the

value of the statistic is fixed z

0(1, ..., 1) = x so

g✓(x) =

Z

A
x

exp{h(z)} exp {✓x� g(✓)} dz.

Because the expression exp {✓x� g(✓)} is fixed within Ax, it can be moved outside the integral.
Defining

H(x) =

Z

A
x

exp{h(z)}dz,

we get the exponential family structure in

g✓(x) = H(x) exp {✓x� g(✓)} .

Therefore, the likelihood ratio for a value t(z) = x can be written as

g✓2(x)

g✓1(x)
=

H(x) exp {✓
2

x� g(✓
2

)}
H(x) exp {✓

1

x� g(✓
1

)} = exp{(✓
2

� ✓
1

)x� g(✓
2

)� g(✓
1

)},

a strictly increasing function of x.

Lemma 2

We use results from Rinott and Scarsini (2006) for multivariate normals to identify the following
conditions on ⌃ and s:

1. ⌃�1 is an M-matrix, meaning all o↵-diagonal elements are non-positive. (In particular, ⌃
must be non-negative).

2. s lies in the cone C
⌃

of non-negative linear combinations of columns of ⌃

C
⌃

= {µ 2 Rd : µ0⌃�1 � 0} = {µ 2 Rd : there exists a � 0 s.t. µ = a

0⌃}.

Note that for ⌃ = I, any non-negative profile would be in C
⌃

(indeed, we see that all profiles
produce a monotone curve for an iid covariance, see Figure 5). The condition is su�cient, but
not necessary; even if ⌃ is not an M-matrix, there might still be specific (profile,statistic) pairs for
which monotonicity will hold, as discussed in Lemma 1. However, there will be no profile for which
any statistic will be monotone.

Let g
⇥(✓);s be the family of densities of t(Z)|A parametrized by ✓, where Z ⇠ N(✓ · s,⌃). If ⌃�1 is

an M-matrix, and the profile s can be written as a non-negative sum of columns of ⌃,
then g

⇥(✓;s) is a monotone likelihood ratio family.
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Proof

Consider random vectors Z and Z 0 where Z ⇠ N(✓ · s,⌃) and Z 0 ⇠ N(✓0 · s,⌃) for some ✓0 > ✓.
The lemma identifies a su�cient condition for Z 0|A being stochastically larger (�st) than Z|A.
Stochastic ordering implies that for any positive functional �, E[�(Z 0)|A] � E[�(Z)|A], and in
particular for a positive statistic t(), E[t(Z 0)|A] � E[t(Z)|A] and the quantile functions of t(Z)|A
are similarly ordered.

The key to the proof is moving from an ordering of Z and Z 0 into an ordering of the conditional
vectors [Z|A] and [Z 0|A], (interpreted as [Z|Z 2 A] and [Z 0|Z 0 2 A]). For rectangular sets A,
the stronger notion of ordering total positivity is maintained through the conditioning. We review
here the main results of Rinott and Scarsini (2006); proofs and an extended discussion of the cited
properties are found there.

• For multivariate densities f , g, the relation f �TP g (total positivity) implies that h(x) :=
g(x)/f(x) is increasing in any coordinate-wise increase in x. [Lemma 2.2, a]

• If X �TP Y , then X is also stochastically greater than Y , implying E[�(X)]  E[�(Y )]for
any nondecreasing function � [Proposition 2.4]. If X �TP X then X is said to be multivariate
total positive of order 2 or MTP

2

.

• For a rectangular set A, X �TP Y implies [X|X 2 A] �TP [Y |Y 2 A] [Theorem 2.5, a special
condition of Remark 2.6 (i)] Note that conditioning by thresholding individual coordinates
would always result in a rectangular set A.

• A multivariate normal Z with an invertible covariance matrix ⌃ is MTP2 if and only if ⌃�1

is an M-matrix. [2.15]

• If for some µ 2 Rd we have Z �TP Z + µ, then Z is MTP
2

. [Thm 3.2]

• For Z that is MTP
2

, we have Z �TP Z + µ i↵ µ 2 C
⌃

[Thm 3.2]

Therefore, under the assumptions regarding ⌃, Z is MTP �2. Call µ = Z 0�Z, then µ = (✓0�✓) ·s
so µ 2 C

⌃

i↵ s 2 C
⌃

. Therefore, the conditions su�ce for Z �TP Z 0. This further implies
[Z|A] �TP [Z 0|A] and E[�(Z)|A]  E[�(Z 0)|A].

C Appendix: Simulation Details

Details of the two simulation studies are described below.

Experiment 1

In the first set of experiments, we tested coverage probability of 1�2↵ = 0.9 confidence intervals by
repeatedly sampling the same set of variables, keeping only those data-vectors for which all locations
passed the selection threshold. We sample data vectors of length D = 5, selecting for the positive
region r = (2, 4,+) spanning the vector. Data was generated from the multivariate normal with
mean bump-heights of ✓̄ = 0, 0.02, ..., 0.4. For the true mean vector we used ⇥ = (✓

1

, ✓̄, ✓̄, ✓̄, ✓
5

) with
✓
1

= ✓
5

= 0, ✓̄/2. Sample size was n
1

= n
2

= 4, 8, 16; increased sample size reduces the variance
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of Z and, for unknown covariance, increases the accuracy of ⌃̂. The data was generated using two
covariance matrices for the samples: a correlated Ccor and an uncorrelated Ciid,

Ccor =

0

BBBB@

0.04 0.02 0.006 0 0
0.02 0.04 0.016 0 0
0.006 0.016 0.03 0 0
0 0 0 0.04 0.01
0 0 0 0.01 0.03

1

CCCCA
, Ciid =

0

BBBB@

0.04 0 0 0 0
0 0.04 0 0 0
0 0 0.04 0 0
0 0 0 0.04 0
0 0 0 0 0.04

1

CCCCA
.

In both matrices, �2 = 0.04 was chosen to reflect the average observed within-group variance in the
DNA-methylation data.

The following results are based on a tilting algorithm using n = 12000 samples from the reference
distribution. The confidence interval estimation was repeated N = 2000 times for ✓̄ = 0 and
N = 250 each value ✓̄ > 0. We repeated each experiment three times, using (a) the true covariance,
(b) the sample covariance ⌃̂, and (c) the inflated covariance ⌃̂� with � = 0.15, see (6). We used the
profile s

ˆ

⌃

in all experiments: under the known iid covariance, this corresponds to the true shape of
the mean; in other cases the profile doesn’t match the shape of the true mean.

Experiment 2

Data was generated in the following way:

1. The (untransformed) mean process for group A µA was generated by sampling D=50 data
points from an iid N(0, 1) process, and convolving with the 1-dimensional kernel Kµ =
(0.1, 0.2, 0.4, 0.2, 0.1). The mean di↵erence process µ� was generated by sampling iid N(0,�2

� )
and convolving with K

1

. The mean for group B µB = µA + µ�.

2. For each sample we added noise "i = ("i
1

, ..., "i
50

) by concatenating noise from two correlation
regimes:

• For ("i
1

, ..., "iD/2), iid N(0, 1) samples were smoothed by convolving each vector with

K" = (0.05, 0.1, 0.15, 0.4, 0.15, 0.1, 0.05). This resulted in correlated noise with E["ij ] =
0,Var["ij ] = �2

" = kK"k2 = 0.23.

• For ("iD/2+1

, ..., "iD), iid noise was sampled from N(0,�2

") with no smoothing.

3. Noise was added to each sample so that Y i = µA + 1(i 2 B) · µ� + "i.

4. For the transformed data, each sample Y i was transformed coordinate-wise with the logistic
function logistic(y) = exp(y)

1+exp(y) . For the transformed data, a population of N = 10000 samples
was generated, and the mean vector and covariance matrix for each group were estimated
empirically from the samples.

5. Multiple subsamples of n = 40, 20, 10, 5 were taken from each group.
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