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Abstract

Motivation: Different ChIP-seq peak callers often produce different output results
from the same input. Since different peak callers are known to produce differentially
enriched peaks with a large variance in peak length distribution and total peak count,
accurately annotating peak lists with their nearest genes can be an arduous process.
Functional genomic annotation of histone modification ChIP-seq data can be a
particularly challenging task, as chromatin marks that have inherently broad peaks with
a diffuse range of signal enrichment (e.g., H3K9me1, H3K27me3) differ significantly
from narrow peaks that exhibit a compact and localized enrichment pattern (e.g.,
H3K4me3, H3K9ac). In addition, varying degrees of tissue-dependent broadness of an
epigenetic mark can make it difficult to accurately and reliably link sequencing data to
biological function. Thus, there exists an unmet need to develop a software program
that can precisely tailor the computational analysis of a ChIP-seq dataset to the specific
peak coordinates of the data and its surrounding genomic features.

Results: geneXtendeR optimizes the functional annotation of ChIP-seq peaks by
exploring relative differences in annotating ChIP-seq peak sets to variable-length gene
bodies. In contrast to prior techniques, geneXtendeR considers peak annotations
beyond just the closest gene, allowing users to investigate peak summary statistics for
the first-closest gene, second-closest gene, ..., nth-closest gene whilst ranking the output
according to biologically relevant events and iteratively comparing the fidelity of
peak-to-gene overlap across a user-defined range of upstream and downstream extensions
on the original boundaries of each gene’s coordinates. We tested geneXtendeR on 547
human transcription factor ChIP-seq ENCODE datasets and 198 human histone
modification ChIP-seq ENCODE datasets, providing the analysis results as case studies.

Availability: The geneXtendeR R/Bioconductor package (including detailed
introductory vignettes) is available under the GPL-3 Open Source license and is freely
available to download from Bioconductor at:
https://bioconductor.org/packages/geneXtendeR/
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Author summary

geneXtendeR makes functional annotation of ChIP-seq data more robust and precise,
regardless of peak variability attributable to parameter tuning or peak caller
algorithmic differences. Since different ChIP-seq peak callers produce differentially
enriched peaks with large variance in peak length distribution and total peak count,
annotating peak lists with their nearest genes can often be a noisy process where an
adjacent second or third-closest gene may constitute a more viable biological candidate,
e.g., during cases of linked genes that are located close to each other. As such, the goal
of geneXtendeR is to robustly link differentially enriched peaks with their respective
genes, thereby aiding experimental follow-up and validation in designing primers for a
set of prospective gene candidates during qPCR.

Introduction 1

The field of epigenetic research studies the process by which heritable changes in gene 2

expression occur without underlying alterations in the DNA sequence. Epigenetics plays 3

a key role in human biology, and dysregulation in epigenetic processes is associated with 4

the pathogenesis of cancer and many other diseases. Epigenetic mechanisms have been 5

demonstrated to be necessary for biological programs important for a variety of health 6

and disease outcomes. Understanding the impact of epigenetic architecture on the 7

accessibility of gene promoters and its effect on gene expression patterns is therefore 8

critical for linking chromatin biology to clinical indications. One way to measure such 9

events involves investigating histone modifications, namely post-translational 10

modifications to histones (referred to as chromatin marks) that regulate gene expression 11

by organizing the genome into active regions of euchromatin, where DNA is accessible 12

for transcription, or inactive heterochromatin regions, where DNA is more compact and 13

less accessible for transcription [1]. 14

Chromatin marks come in a variety of different shapes and sizes, ranging from the 15

extremely broad to the extremely narrow [2–6]. This spectrum depends on a number of 16

biological factors ranging from qualitative characteristics such as tissue-type [7] to 17

temporal aspects such as developmental stage [8]. Depending on the peak caller used, 18

computational factors such as the variance observed in peak coordinate positions (peak 19

start, peak end) – both in terms of length distribution of peaks as well as the total 20

number of peaks called – is an issue that persists even when samples are run at identical 21

default parameter values [9, 10]. This variance becomes a factor when annotating peak 22

lists genome-wide with their nearest genes as peaks can be shifted in genomic position 23

(towards 5’ or 3’ end) or be of different lengths, depending on the peak caller employed. 24

In total, the combined effect of these factors exerts a unique influence over the 25

functional annotation and understanding of genomic variability, which ultimately 26

complicates the study of epigenetic regulation of biological function. 27

Prior software in the ChIP-seq functional annotation arena (e.g., ANNOVAR [11], 28

ChIPpeakAnno [12], ChIPseeker [13], HOMER [14], and BEDTools [15]) has focused 29

exclusively on distance-minimizing algorithms between peaks and the transcriptional 30

start site (TSS) regions of their nearest genes. In contrast, geneXtendeR significantly 31

expands this definition to include n-dimensional annotation, whereby a user can 32

investigate second-closest, third-closest, . . . , nth-closest genes to any given peak (or set 33

of peaks), thereby focusing on and prioritizing the biology over simply the raw numbers 34

(in base pairs). Detailed expositions of these new methods and their implications on the 35

interpretation of results from data analyses are presented as case studies in the 36

geneXtendeR package vignette. 37
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Materials and methods 38

Algorithms and implementation 39

The key algorithm in the geneXtendeR R/Bioconductor package is the extension 40

algorithm, implemented in the C programming language for performance and efficiency. 41

The process of “extending” refers to performing sequential iterative gene-feature 42

overlaps after adding to the gene-span a user-specified region upstream of the start of 43

the gene model and a fixed (500 bp) region downstream of the gene, resulting in 44

assigning to a gene the features that do not physically overlap with it but are 45

sufficiently close. This process is repeated multiple times across a range of extension 46

parameters set by the user and a series of visualizations are returned as output to help 47

users hone in on the optimal functional annotation. This is in contrast to most past and 48

present epigenetic analyses, in both ChIP-seq [16] and ATAC-seq [17] studies, that 49

ad-hoc assign gene body definitions (e.g., assigning a default 2 kbp as the cutoff for 50

gene-proximal peaks) before mapping the peaks to genomic features. Fig. 2 shows why 51

such a practice may be limiting. 52

From a performance standpoint, the extension algorithm is optimized to handle the 53

computational complexity inherent to performing compute-intensive n-dimensional 54

annotation. This ultimately aids in efficiently capturing cis-regulatory and 55

proximal-promoter element relationships between ChIP-seq peaks and the genes they 56

are (dys-)regulating, as described in further detail in the vignette. All of geneXtendeR’s 57

source code is implemented in the C and R programming languages and shipped within 58

a standalone R/Bioconductor package release that is publicly available for download 59

from either Bioconductor or Github. Within its codebase, geneXtendeR leverages the 60

AnnotationDbi [18], BiocStyle [19], data.table [20], dplyr [21], GO.db [22], 61

networkD3 [23], RColorBrewer [24], rtracklayer [25], SnowballC [26], testthat [27], 62

tm [28], and wordcloud [29] libraries. 63

Biological Workflow 64

Fig 1 summarizes the key steps of a sample workflow. For an end-to-end example of a 65

comprehensive biological workflow and case-study, please refer to the vignette. 66
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Fig 1. Sample biological workflow. Sample biological workflow using geneXtendeR
in combination with existing statistical software to evaluate the role of ChIP-seq peak
significance during functional annotation tasks (see description of hotspotPlot()
function in package vignette). It is not uncommon for significant peaks to be located
thousands of base pairs away from their nearest genes, suggesting that sequences under
these respective peaks may further be extracted and analyzed for the presence of known
regulatory elements or repeats (e.g., using software programs like TRANSFAC,
MEME/JASPAR, or RepeatMasker) or for investigating potential enhancer effects.

Results 67

First, we tested geneXtendeR on all publicly available transcription factor and histone 68

modification ChIP-seq datasets in ENCODE. After downloading and analyzing data 69

from the ENCODE ChIP-seq Experiment Matrix (hg19) [30], our large-scale analysis 70

(Fig. 2) indicated that ChIP-seq peaks do not concentrate within any specific upstream 71

extension (e.g., 2000 bp) of their nearest protein-coding genes. This observation that 72

ChIP-seq peaks drop off gradually with genomic distance from the start of a gene (first 73

exon) suggests that there is no good general guideline cutoff for capturing proximal 74

histone modifications (e.g., prior studies [16,17] have used 2000 bp) or transcription 75

factor binding peaks. There are still hundreds of peak clusters that reside in 76

proximal-promoter regions that are 2000-3000 bp away from their nearest 77

protein-coding genes and in distal regions beyond 3 kbp, making ad-hoc decisions like 2 78

kbp cutoffs too general to be of broad utility across specific use cases. When applying 79

geneXtendeR to both proximal and distal transcription factor (TF) binding peaks for all 80

cell types, we observed some cell type-dependent and TF-dependent peak aggregation 81

dynamics in intervals ranging from 0 to 10 kbp (Fig 3). Similarly, examining distal 82

peaks in representative plots of different chromatin marks in different cell types 83

indicated that peaks indeed aggregate in a cell type and chromatin mark-dependent 84

manner (Fig 4). S1 Appendix and S2 Appendix provide downloads to the complete 85

compendium of all proximal/distal datasets analyzed from ENCODE. 86
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Fig 2. ENCODE ChIP-seq datasets. Large-scale computational geneXtendeR
analysis using hg19 reference genome of 198 histone modification and 547 transcription
factor ChIP-seq datasets from ENCODE. To make data directly comparable to each
other, the y-axis represents a normalized count of peak clusters (number of peak
clusters in a specific interval divided by the total number of peak clusters across all 0-10
kbp intervals for a given chromatin mark or TF), where a peak cluster is defined as a
genomic locus harboring at least 5 overlapping peaks. The x-axis, which is segmented
into 20 discrete regions (“1” = 0-500 bp interval, “2” = 500-1000 bp interval, ..., “20” =
9500-10000 bp interval), represents a genomic distance (in bp) of the closest
protein-coding gene to each respective peak cluster. A steady decline in peak cluster
count at further upstream intervals is detected for all (broad and narrow) chromatin
marks as well as transcription factors, i.e., peak clusters do not congregate proximally
within any specific region of intervals (e.g., 0-2000 bp) of their respective protein-coding
genes, as there is a large number of peak clusters that reside further upstream of their
nearest gene. For instance, in the 9500-10000 bp interval alone, there are 1043 peak
clusters for the H2AFZ chromatin mark, 569 peak clusters for the H3K4me1 chromatin
mark, and 716 peak clusters across all transcription factor ChIP-seq datasets. However,
there are certainly exceptions like the H3K9me1 chromatin mark, which has only 1 peak
cluster in the 7000-7500 bp interval (see the big dip at x-axis=15 in the right-hand
panel) and only 7 peak clusters in the 9500-10000 bp interval (see S1 Appendix and S2
Appendix for reproducible code and data).

We then focused our attention on using geneXtendeR to perform an end-to-end 87

analysis of a published histone modification ChIP-seq dataset [31] deposited in the Gene 88

Expression Omnibus under accession number GSE83979. At the peak-calling stage 89

(Fig 1) we ran two different peak callers (SICER [32] and CisGenome [33]) producing 90

two highly variable peak length profiles even at default run parameters S1 Fig. Despite 91

the stark difference in peak profiles, geneXtendeR consistently identified the same top 92

two gene candidates, highlighting its utility for robust functional annotation even in the 93

face of extreme peak variability. Details are discussed in the package vignette. 94

We followed up this computational analysis by performing n-dimensional annotation 95

of the GSE83979 dataset to provide an expanded view of the gene neighborhood around 96

each individual peak – effectively annotating every peak n times (once for the closest 97

gene, once for the second-closest gene, etc.) and grouping the results into a tabular 98

summary format. We show in the vignette how the second-closest gene may be a 99

preferable candidate for experimental follow-up/validation, especially if the first-closest 100

gene is putative/predicted, while the second-closest gene is known to play a role in a 101

similar biological process based on previously published literature. 102
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Fig 3. ENCODE TF analysis. Running geneXtendeR on 547 human transcription
factor (TF) ChIP-seq datasets obtained from ENCODE shows that many peaks tend to
reside within 500 bp upstream of their respective protein-coding genes yet, depending
on the identity of the transcription factor (e.g., EP300) and the specific cell type (e.g.,
K562), there may be more or less peaks located further upstream and, therefore, a
generalized upstream cutoff is not applicable.

Discussion 103

The cell-type and TF/chromatin mark-specific complexity apparent in Fig. 3 and Fig. 4 104

motivated the design and implementation of user-friendly functions that can calculate 105

ratios of statistically significant peaks to total peaks in various genomic intervals (see 106

hotspotPlot() documentation in geneXtendeR vignette). Similarly, users can transform 107

peaks into merged peaks (see peaksMerge()). geneXtendeR also allows users to explore 108

gene ontology differences at various extensions (see diffGO()) as interactive network 109

graphics (see makeNetwork()) or word clouds (see makeWordCloud()). Furthermore, 110

users can investigate mean (average) peak lengths within any genomic interval (see 111

meanPeakLengthPlot()), showing how average peak broadness can change at different 112

upstream extensions, or examine the variance of peak lengths within a specific genomic 113

interval (see peakLengthBoxplot()). It is also possible to examine unique genes and 114

their associated ChIP-seq peaks between any two upstream extension levels (see 115

distinct()). For example, Fig. 5 displays all unique genes (and their respective gene 116

ontologies) that are associated with peaks located between 2-3 kbp across the genome. 117

geneXtendeR also allows users to examine the distribution of peak lengths across the 118

entire peak set (see allPeakLengths()), a function that is useful for visualizing the length 119

distribution of all peaks from a peak caller. These functions (and more) are all explored 120

in detail within the package vignette. After a user has explored the peak coordinates 121

data using these functions to determine the optimal alignment of peaks to a GTF file, 122

the peaks file can be functionally annotated with the annotate() function or one of its 123

counterparts (gene annotate() or annotate n()) for n-dimensional annotation. 124
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We have successfully applied geneXtendeR during the analysis of a histone 125

modification ChIP-seq study investigating the neuroepigenetics of alcohol addiction [34], 126

where geneXtendeR was used to determine an optimal upstream extension cutoff for 127

H3K9me1 enrichment (a commonly studied broad peak) in rat brain tissue based on line 128

plots of both significant peaks and total peaks. This analysis helped us to identify, 129

functionally annotate, and experimentally validate synaptotagmin 1 (Syt1) as a key 130

mediator in alcohol addiction and dependence [34]. This analysis is explored in detail in 131

the package vignette. Taken together, geneXtendeR’s functions are designed to be used 132

as an integral part of a broader biological workflow (Fig. 1). 133

Fig 4. ENCODE histone modification analysis. Running geneXtendeR on 198
human histone modification ChIP-seq distal peak datasets obtained from ENCODE
reveals that most distal peaks are not congregating within any specific upstream region
of their respective protein-coding genes (here we define “distal” as only those peaks that
are more than 2000 bp away from their nearest gene). Additional comprehensive
analyses (see S1 Appendix and S2 Appendix) were run for proximal peaks (≤ 2000 bp)
as well as the complete set of peaks (proximal + distal) from all 198 histone
modification ChIP-seq datasets, and similar patterns were observed.
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Fig 5. Genome-wide network analysis of peak subsets in promoter regions.
All unique genes (and their respective gene ontologies (GO)) that are associated with
peaks located in promoter-proximal regions between 2-3 kbp genome-wide. Put another
way, these are all gene-GO pairs associated with peaks that are distinct between 2000
and 3000 bp upstream extensions across the genome. Orange color denotes gene names,
purple color denotes GO terms. A user can hover the mouse cursor over any given node
to display its respective label directly within RStudio. Likewise, users can dynamically
drag and re-organize the spatial orientation of nodes, as well as zoom-in and out of
them for visual clarity.

Conclusion 134

We present an R/Bioconductor package, geneXtendeR, that goes beyond the typical 135

nearest-to-gene analyses commonplace to most standard computational ChIP-seq 136

workflows. geneXtendeR offers n-dimensional functional annotation and the ability to 137

investigate the effect of variable-length gene bodies when mapping peaks to genomic 138

features, thereby serving as a next-generation model of peak annotation to nearby 139

features in modern bioinformatics workflows. geneXtendeR therefore represents a 140

critical first step towards tailoring the functional annotation of a ChIP-seq peak dataset 141

according to the details of the peak coordinates (chromosome number, peak start 142

position, peak end position) and their surrounding genomic features. 143
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Supporting information 144

S1 Fig. SICER vs. CisGenome peak length distribution differences for 145

GSE83979. Violin plot showing the differences in peak length distributions of the 146

same ChIP-seq data (available through the Gene Expression Omnibus database, 147

accession identifier GSE83979) analyzed with two separate peak callers (SICER and 148

CisGenome) – despite significant differences in peak lengths generated by the two 149

callers (i.e., peak variability), geneXtendeR’s gene annotate() function can still robustly 150

call top gene candidates consistently, as explained in the geneXtendeR package vignette. 151

S1 Appendix. geneXtendeR analysis on 547 human TF ChIP-seq 152

ENCODE datasets. Files available here: 153

https://github.com/Bohdan-Khomtchouk/ENCODE_TF_geneXtendeR_analysis 154

S2 Appendix. geneXtendeR analysis on 198 human histone modification 155

ChIP-seq ENCODE datasets. Files available here: 156

https://github.com/Bohdan-Khomtchouk/ENCODE_histone_geneXtendeR_analysis 157
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