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Abstract

The theoretical investigation of how spatial structure affects the evolution of so-

cial behavior has mostly been done under the assumption that parent-offspring

strategy transmission is perfect, i.e., for genetically transmitted traits, that muta-

tion is very weak or absent. Here, we investigate the evolution of social behavior

in structured populations under arbitrary mutation probabilities. We consider

populations of fixed size N , structured such that in the absence of selection, all

individuals have the same probability of reproducing or dying (neutral repro-

ductive values are the all same). Two types of individuals, A and B , correspond-

ing to two types of social behavior, are competiting; the fidelity of strategy trans-

mission from parent to offspring is tuned by a parameter µ. Social interactions

have a direct effect on individual fecundities. Under the assumption of small

phenotypic differences (weak selection), we provide a formula for the expected

frequency of type A individuals in the population, and deduce conditions for

the long-term success of one strategy against another. We then illustrate this

result with three common life-cycles (Wright-Fisher, Moran Birth-Death and

Moran Death-Birth), and specific population structures (graph-structured pop-

ulations). Qualitatively, we find that some life-cycles (Moran Birth-Death, Wright-

Fisher) prevent the evolution of altruistic behavior, confirming previous results

obtained with perfect strategy transmission. We also show that computing the

expected frequency of altruists on a regular graph may require knowing more

than just the graph’s size and degree.
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1 Introduction1

Most models on the evolution of social behavior in structured populations study2

the outcome of competition between individuals having different strategies and3

assume that strategy transmission from parents to their offspring is almost per-4

fect (i.e., when considering genetic transmission, that mutation is either vanish-5

ingly small or absent). This is for instance illustrated by the use of fixation prob-6

abilities to assess evolutionary success (e.g., Nowak et al., 2004; Nowak, 2006;7

Ohtsuki et al., 2006). Yet, mutation has been shown to affect the evolutionary8

fate of social behavior (Frank, 1997; Tarnita et al., 2009) and is, more generally,9

a potentially important evolutionary force. Here, we explore the role of imper-10

fect strategy transmission—genetic or cultural—from parents to offspring on the11

evolution of social behavior, when two types of individuals, with different social12

strategies, are competing. We are interested in evaluating the long-term success13

of one strategy over another.14

A population in which mutation is not close (or equal) to zero will spend a15

non-negligible time in mixed states (i.e., in states where both types of individ-16

uals are present), so instead of fixation probabilities, we need to consider long-17

term frequencies to assess evolutionary success (Tarnita et al., 2009; Wakano &18

Lehmann, 2014; Tarnita & Taylor, 2014). We will say that a strategy is favored19

by selection when its expected frequency is larger than what it would be in the20

absence of selection.21

In this study, we consider populations such that, in the absence of selection22

(when social interactions have no effect on fitness), all individuals have equal23

chances of reproducing, and equal chances of dying. In other words, in such a24
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population of size N , the neutral reproductive value of each site is 1/N (Taylor,25

1990; Maciejewski, 2014; Tarnita & Taylor, 2014). We provide a formula that gives26

the long-term frequency of a social strategy in any such population, for arbitrary27

mutation rates, and for any life-cycle (provided population size remains equal28

to N ). This formula is a function of the probabilities that pairs of individuals29

are identical by descent. These probabilities are obtained by solving a linear30

system of equations, and we present explicit solutions for population structures31

with a high level of symmetry (structures that we call “n-dimensional graphs”).32

We finally illustrate our results with widely used updating rules (Moran models,33

Wright-Fisher model) and specific population structures.34

2 Models and Methods35

Population structures36

We consider a population of fixed size N , where each individual inhabits a site37

corresponding to the node of a graph D; each site hosts exactly one individual.38

The edges of the graph, {di j }1≤i , j≤N , define where individuals can send their39

offspring to; we consider graphs D that are connected, i.e., such that following40

the edges of the graph, we can go from any node to any other node. Another41

graph, E , with the same nodes as graph D but with edges {ei j }1≤i , j≤N , defines42

the social interactions between the individuals; E can be the same graph as D,43

but does not have to be (Taylor et al., 2007a; Ohtsuki et al., 2007; Débarre et al.,44

2014). The edges of the two graphs can be weighted (i.e., di j and ei j can take45

any non-negative value) and directed (i.e., we can have di j 6= d j i or ei j 6= e j i for46

some sites i and j ). Finally, we denote by D and E the adjacency matrices of the47

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2016. ; https://doi.org/10.1101/082503doi: bioRxiv preprint 

https://doi.org/10.1101/082503
http://creativecommons.org/licenses/by/4.0/


dispersal and interaction graphs, respectively.48

Regular dispersal graphs In this study, we focus on dispersal graphs that are49

regular, i.e., such that for all sites i , the sum of the edges to i and the sum of the50

edges from i are both equal to ν:51

N∑
j=1

di j =
N∑

j=1
d j i = ν, (1)

where ν is called degree of the graph when the graph is unweighted. All the52

graphs depicted in the article satisfy eq. (1). Note that there is no specific con-53

straint on the interaction graph E .54

More detailed results are then obtained for regular graphs that display some55

level of symmetry, that we now describe:56

Transitive dispersal graphs A transitive graph is such that for any two nodes57

i and j of the graph, there is an isomorphism that maps i to j (Taylor et al.,58

2007a; ?); in other words, the graph looks the same from every node. In figure 1,59

graphs (b)–(e) are transitive.60

Transitive undirected dispersal graphs A graph is undirected if for any61

two nodes i and j , di j = d j i . In figure 1, graphs (b), (c), (e) are both transitive62

and undirected.63

“n-dimensional” dispersal graphs We call “n-dimensional graphs” tran-64

sitive graphs whose nodes can be relabelled with n-long indices, such that the65

graph is unchanged by circular permutation of the indices in each dimension.66
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Figure 1: Examples of regular graphs of size 12. The graphs on the first line are

unoriented and unweighted graphs of degree ν= 3; Graph (d) is oriented, graph (e)

is weighted. (a) is the Frucht graph, and has no symmetry. Graphs (b) and (d) are

one-dimensional, graphs (c) and (e) are two-dimensional (see main text).

The graphs can be directed and weighted. We denote by N the ensemble of67

node indices: N = {0, . . . , N1−1}×·· ·×{0, . . . , Nn−1}, with
∏n

k=1 Nn = N ; number-68

ing is done modulo Nk in dimension k. Then for all indices i , j and l of N , node69

labelling is such that for all edges (modulo the size of each dimension),70

di j = di+k, j+k . (2)

In figure 1, graphs (b) and (d) are 1-dimensional: we can label their nodes such71

that the adjacency matrices are circulant. Graphs (c) and (e) are 2-dimensional:72

the adjacency matrices are block-circulant, with each block being circulant. In73

1(c), one dimension corresponds to the angular position of a node (N1 = 6 posi-74

tions), and the other dimension to the radial position of a node (N2 = 2 positions,75
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inner or outer hexagon). In 2(e), one dimension corresponds to the horizontal76

position of a node (N1 = 4 positions) and the other to the vertical position of a77

node (N2 = 3 positions). Condition eq. (2) may sound strong, but is satisfied for78

the regular population structures classically studied, like stepping-stones (e.g.,79

cycle graphs, lattices), or island models (Taylor, 2010; Taylor et al., 2011).80

Types of individuals and social interactions81

There are two types (A and B) of individuals in the population, corresponding to82

two strategies of social behavior. There are no mixed strategies: an individual of83

type A plays strategy A, and individuals do not change strategies. The indicator84

variable Xi represents the type of the individual present at site i : Xi is equal to 185

if the individual at site i is of type A, and Xi is equal to 0 otherwise (Xi =1A(i )).86

A N -long vector X gathers the identities of all individuals in the population, and87

X is the population average of X (X =∑N
i=1 Xi /N ).88

Individuals in the population reproduce asexually. Fecundities are affected89

by social interactions, and are gathered in a N -long vector f . We assume that90

the genotype-phenotype map is such that the two types A and B are close in91

phenotype space: the individual living at site i expresses a phenotype δXi , with92

δ¿ 1 (a feature called “δ-weak selection” by Wild & Traulsen (2007)).93

An individual’s fecundity depends on its own phenotype and on its interac-94

tion neighborhood. Interaction neighborhoods are determined by the interac-95

tion graph E , and the effect of social interactions on fecundity are given by a96
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function φ. We assume that the baseline fecundity is φ(0,0) = 1, so that97

fi (X ,δ) =φ
(
δXi ,

∑
l

el iδXl

)
= 1+δ

(
Xi ∂(1)φ(0,0)+∑

l
el i Xl ∂(2)φ(0,0)

)
+O(δ2),

(3a)

where ∂(n)φ(0,0) represents the partial derivative of φ with respect to its nth ele-98

ment, evaluated at (0,0), and
∑

l refers to the sum
∑N

l=1. If we write b= ∂(2)φ(0,0)99

and −c= ∂(1)φ(0,0), then eq. (3a) becomes100

fi (X ,δ) = 1+δ
(
−cXi +b

∑
l

el i Xl

)
+O(δ2). (3b)

Our results are valid for any b and c, but throughout the article, we will consider101

the case where b > 0 and c > 0, so that type-A individuals are “altruists”, and102

we will seek to understand the impact of imperfect strategy transmission on the103

frequency of altruists. When δ = 0, all individuals in the population, whichever104

their type, have the same fecundity: the trait is then neutral.105

Reproduction and mutation106

The expected number of successful offspring established at site j at the next107

time step, descending from the individual who is living at site i at the current108

time step, is denoted by B j i ( f (X ,δ)), written B j i for simplicity. “Successful off-109

spring” of a focal individual means individuals who descend from this focal in-110

dividual and who are alive and established at the start of the next time step.111

Because there is exactly one individual per site, 0 ≤ B j i ≤ 1. Mutation among112

offspring occurs with probability µ, 0 < µ ≤ 1; when mutation occurs, the off-113
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spring are of type A with probability p and of type B otherwise (0 < p < 1). For114

instance, under this mutation scheme, the offspring of an individual of type A115

is also of type A with probability 1−µ+µp (Taylor et al., 2007b; Nowak et al.,116

2010; Tarnita & Taylor, 2014). The parameter p controls the asymmetry of muta-117

tion, and it is also the expected frequency of type-A individuals in the absence118

of selection (i.e., when δ= 0). Although we use the word “mutation”, which hints119

at a genetic transmission of the trait, this framework can also describe vertical120

cultural transmission, so µ does not have to be small. The mutation probability,121

however, cannot be zero; if it were, the all-A and all-B states would be absorb-122

ing: we would end up either with only type-A or only type-B individuals in the123

population, and we would not be able to define a stationary distribution of pop-124

ulation states—for similar reasons, p cannot be 0 nor 1.125

We denote by Di ( f (X ,δ)) (or Di for simplicity) the probability that the indi-126

vidual living at site i is dead at the beginning of the next time step, given that the127

population is currently in state X . This probability of death at site i can be ex-128

pressed as a function of the probabilities of birth and establishment of offspring129

at site i , summing over the locations j of the potential parents:130

Di =
N∑

j=1
Bi j . (4)

There is exactly one individual per site, so at a given site i , there can be at most131

one successfully established offspring at each time step, and 0 ≤ Di ≤ 1. On the132

other hand, the expected number of offspring of the parent currently living at133
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site i is 0 ≤∑N
j=1 B j i ≤ N . We denote by134

Wi =
N∑

j=1
B j i + (1−Di ) (5)

the expected contribution to the next time step of the individual living in site j :135

this includes this individual’s successful offspring, and the individual itself if it136

survived—a quantity that we can also refer to as “fitness”.137

Finally, we are considering population structures such that in the absence of138

selection (δ = 0), all individuals have the same probability of reproducing, and139

all individuals have the same probability of dying—meaning that all sites in the140

population have the same reproductive value 1/N (Taylor, 1990; Caswell, 2001;141

Maciejewski, 2014); this implies that for all sites i142

N∑
j=1

B j i ( f (X ,0)) = B∗ = Di ( f (X ,0)). (6)

Life-cycles143

Most of our results are derived without specifying a life-cycle (also called “up-144

dating rule”). In the Illustrations section, we will give specific examples using145

classical life-cycles: Moran models (Birth-Death and Death-Birth), with exactly146

one birth and one death during a time step, and the Wright-Fisher model, where147

all adults die and are replaced by new individuals at the end of a time step.148

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2016. ; https://doi.org/10.1101/082503doi: bioRxiv preprint 

https://doi.org/10.1101/082503
http://creativecommons.org/licenses/by/4.0/


3 Results149

Expected frequency of type-A individuals in the population150

We describe here the key steps of the computation of the expected frequency151

of type-A individuals in the population and refer the reader to Appendix A for152

mathematical details.153

The expected frequency of type-A individuals in the population, denoted by154

E
[

X
]
, can be computed from the stationary distribution of population states,155

considering what happens during one during step. We denote by Ω the set of156

all possible states of the population and by ξ(X ,δ,µ) the probability that the157

population is in state X , in a model with strength of selection (phenotype dif-158

ferences) δ and mutation probability µ (ξ is the stationary distribution of pop-159

ulation states). Given state X of the population, at the end of the time step, the160

state of the individual living at site i depends on whether it has survived dur-161

ing the time step (first term within the brackets of eq. (7)), and, if it has been162

replaced, on the type of the newly established offspring (second term within the163

brackets); we then take the expectation over all population states, and obtain:164

E
[

X
]= ∑

X∈Ω
1

N

N∑
i=1

[
(1−Di )Xi +

N∑
j=1

Bi j
(
X j (1−µ)+µp

)]
ξ(X ,δ,µ). (7)

This is the expected frequency of type-A individuals in the population. For in-165

stance, if we run a simulation of the model for a very long time, the average over166

time of the frequency of type-A individuals will provide an estimation of E
[

X
]
;167

this quantity does not depend on the initial state of the population.168

We then assume that selection is weak, i.e., δ is small, and write a first-order169
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expansion of eq. (7) that contains derivatives of ξ, Di and Bi j with respect to δ.170

For the last two, we further use the chain rule with the variables fk , which rep-171

resent the fecundity of the individual living at site k. In doing so, we let appear172

quantities that are the expectations of the state of pairs of sites when no selec-173

tion is acting (i.e., when δ= 0; we call these “neutral expectations” and ξ(X ,0,µ)174

is called neutral stationary distribution):175

P j k = ∑
X∈Ω

X j Xk ξ(X ,0,µ) = E0
[

X j Xk
]
. (8)

The fact that these neutral expectations appear in our equations does not176

mean that selection is initially not acting and then “turned on”: selection is act-177

ing all the time, but it is weak because phenotypic differences are small (δ¿ 1).178

At the first order in δ, we can ignore the effect of selection on the expected state179

of pairs of sites, and this is why we only need neutral expectations (eq. (8)).180

Eventually, we deduce that the expected frequency of individuals of type A181

in the population can be written as182

E
[

X
]≈ p + δ

µB∗

(
βb−γc

N

)
, (9)

with183

β= ∑
j ,k,l

(∑
i

(1−µ)∂ fkBi j −∂ fkD j

)
elk P j l +µ ∑

i , j ,k,l
∂ fkBi j elk p2, (10a)

γ= ∑
j ,k

(∑
i

(1−µ)∂ fkBi j −∂ fkD j

)
P j k +µ ∑

i , j ,k
∂ fkBi j p2, (10b)

with P as defined in eq. (8) and ∂ fk being a shorthand notation for ∂
∂ fk

∣∣∣
δ=0

. Eq. (9)184
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is an approximation at the first order in δ (we neglect terms in δ2 and higher). A185

weak mutation approximation of eq. (9) is presented in Appendix A.4.186

The formulas for β and γ (eq. (10a)-eq. (10b)) are still implicit, because we187

need to evaluate the Pi j terms, which we now do.188

Expected state of pairs of sites at neutrality189

We recall that Pi j , defined in eq. (8), is also the probability that both sites i and j190

are occupied by individuals of type A, at neutrality (i.e., when δ= 0). Under van-191

ishing mutation (µ→ 0), convenient connections can be made between identity192

in state and identity-by-descent (Cockerham & Weir, 1993; Rousset et al., 2000),193

and then with coalescence times (Slatkin, 1991, 1993; Rousset, 2004; Allen et al.,194

2012). Here as well, we can characterize Pi j in terms of probabilities of identity-195

by-descent, Qi j . Two individuals at sites i and j are said to be identical by de-196

scent (IBD) if they share a common ancestor and if no mutation occurred in197

their lineages since this common ancestor (Kimura & Crow, 1964, note though198

that the original definition is with an infinite allele model, where each mutation199

creates a new allele). If two individuals are IBD, then they are both of type A200

with probability p, the expected state of a single individual at neutrality. If two201

individuals are not IBD, then they are both of type A with probability p2. Sim-202

plifying, we obtain203

Pi j = p2 +Qi j p (1−p) (11)

(Allen & Nowak, 2014) (see Appendix B.1 for more details). Eq. (11) also valid204

when i = j . So we can work with IBD relationships.205

To find the probabilities of identity-by-descent, we first write the probability206

14
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that two individuals at sites i and j are IBD given the state X of the population at207

the previous time step, and then take the expectation of this conditional prob-208

ability. We can still do so without specifying the way the population is updated209

(using notation as in Allen et al. (2015)), and the resulting equation is presented210

in Appendix B.1, eq. (B.1). This equation can also be adapted to specific up-211

dating rules, as shown in the Illustrations section (details of the calculations are212

provided in Appendix B).213

Keeping in mind that Qi j = Q j i and that Qi i = 1, we then have to solve a214

linear system of N (N −1)/2 equations to obtain explicit formulas for all the Qi j215

terms, for any regular graph. More explicit formulas for Qi j can be found for216

regular graphs, and in particular for n-dimensional graphs, as we will see in the217

Illustrations section. Finally, we can gather all probabilities of identity by de-218

scent in a matrix Q.219

Back to the expected frequency of type-A individuals220

Using the relationship between the expected state of pairs of sites Pi j and prob-221

abilities of identity-by-descent Qi j (eq. (11)), we can rewrite eq. (9) as follows:222

223

E
[

X
]≈ p +δp(1−p)

µB∗ N

[
b

( ∑
j ,k,l

ekl ∂ flW j Q j k

)
−c

(∑
j ,k
∂ fkW j Q j k

)]
, (12)

where as before ∂ fk is a shorthand notation for ∂
∂ fk

∣∣∣
δ=0

; W j , the fitness of indi-224

vidual j , was defined in eq. (5).225

Interpretation For each focal individual at site k, we consider the influence226

that this individual can have on an identical-by-descent individual at site j (Q j k ).227
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The focal k can directly provide a benefit to j (bek j ) and hence affect j ’s fitness228

(∂ f jW j ), but k can also provide a benefit to another individual l (bekl ), and the229

resulting change of l ’s fecundity affects j ’s fitness (∂ flW j ). By paying the cost of230

being of type A (c), k affects its own fitness (∂ fkWk ) but also indirectly the fitness231

of j (∂ fkW j ).232

Structure parameter We say that a strategy is favored if its frequency at the233

mutation-selection-drift equilibrium is higher than what it would be in the ab-234

sence of selection. For type A, this translates into E
[

X
] > p . With eq. (12), this235

condition becomes236 ∑
j ,k,l ekl ∂ flW j Q j k∑

j ,k ∂ fkW j Q j k︸ ︷︷ ︸
κ

b−c> 0. (13)

Hence, a single parameter, κ, summarizes, for a given life-cycle, the structure237

of the population and the effect of mutation (Tarnita et al., 2009; Taylor & Ma-238

ciejewski, 2012); κ is interpreted as a scaled coefficient of relatedness, that in-239

cludes the effect of competition (Lehmann & Rousset, 2010).240

4 Illustrations241

Updating rules242

The results presented so far were valid for any updating rule, provided it is such243

that population size remains equal to N . We now express the expected frequency244

of type-A individuals for specific updating rules, commonly used in studies on245

the evolution of altruistic behavior in structured populations: the Moran model246

and the Wright-Fisher model. Under a Moran model (Moran, 1962), exactly one247
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individual dies and one individual reproduces during one time step; hence, at248

neutrality, B∗ = 1/N (B∗ was defined in eq. (6)). The order of the two events249

matters, so two updating rules are distinguished (Ohtsuki & Nowak, 2006; Oht-250

suki et al., 2006): Birth-Death and Death-Birth. In both cases, payoffs are com-251

puted at the start of each time step, before anything happens.252

Moran model, Birth-Death253

Any regular graph Under a Birth-Death (BD) updating, an individual j is cho-254

sen to reproduce with a probability equal to its relative fecundity in the popula-255

tion ( f j /
∑

l fl ); then its offspring disperses at random along the D graph, and so256

displaces another individual i with a probability d j i /ν, so that257

Bi j =
f j∑
l fl

d j i

ν
, and D j =

N∑
i=1

B j i =
∑

i fi di j

ν
∑

l fl
. (14)

Note that with this updating rule, the probability of dying D j depends on the258

composition of the population. With these probabilities of reproducing and dy-259

ing eq. (12) becomes, using the matrix notation,260

E
[

X
]≈ p +δp(1−p)

µ

[
b

(
1

N
Tr(E ·Q)− 1

Nν
Tr(E ·D ·Q)

)
−c

(
1− 1

Nν
Tr(D ·Q)

)]
,

(15)

where Tr(M) denotes the trace of a matrix M, i.e., the sum of its diagonal ele-261

ments. The factors of the benefits b and costs c contain direct (first terms) and262

indirect (second terms) effects. The term Tr(E ·Q)/N , associated to direct effects263

of a benefit b, is the average probability of identity by descent with a social inter-264

actant. It is discounted by the indirect effects Tr(E ·D ·Q)/(Nν), corresponding265
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to the effects of a change in fecundity of competitors; with this updating rule,266

competitors are one dispersal step away. Under a Birth-Death updating rule in-267

deed, the survival of an individual at site k is reduced if another individual j268

sends its offspring to site k, an event that occurs if the two are neighbors on269

the dispersal graph (d j k ). So the competition neighborhood is determined by D270

(Grafen & Archetti, 2008). Similarly, the direct cost of a social interaction is dis-271

counted by the effects on competitors (Tr(D ·Q)/(Nν)). We can further note that272

for all dispersal graphs, 1− 1
NνTr(D ·Q) ≥ 0, i.e., that costs are always costly. We273

will see below that benefits are not always beneficial (b’s factor can be negative).274

Probabilities of identity by descent With this updating rule, the probabil-275

ities of identity by descent satisfy, for any i and j 6= i ,276

Qi j = 1

2ν

∑
k

(
dk j Qki +dki Qk j

)
. (16)

(see Appendix B.2 for details on the derivation). For generic regular graphs, we277

have to solve a system of N (N −1)/2 equations to find the probabilities of iden-278

tity by descent.279

Transitive undirected graphs When the graph is transitive and undirected,280

probabilities of identity by descent verify281

Q =λM

(
IN − 1−µ

ν
D

)−1

, (17)

where IN is the identity matrix, and λM is such that Qi ,i = 1 for all i (the M index282

stands for “Moran”). In addition, we have 0 ≤ λM ≤ 1. With eq. (17), eq. (15)283
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simplifies into284

E
[

X
]≈ p +δp(1−p)

µ

[
b

( −µ
1−µ

Tr(E ·Q)

N
+ λM

1−µ
Tr(E)

N

)
−c

(
1− 1−λM

1−µ
)]

. (18)

The term Tr(E)/N corresponds to social interactions with oneself; it is usually285

considered as null in the case of pairwise interactions, but is not for common286

good type of interactions (when benefits are pooled and then redistributed). So287

unless interactions with oneself are strong (large Tr(E)/N ), the factor modulat-288

ing the effect of benefits b is negative, and as a result the expected frequency of289

altruists cannot be greater than what it would be in the absence of selection (i.e.,290

E
[

X
]≤ p.)291

Evaluating probabilities of identity by descent in transitive regular graphs292

still requires the inversion of a N by N matrix (eq. (17)), which can limit applica-293

tions. Results are simpler in graphs that match our definition of “n-dimensional294

graphs”; they depend on the dimensionality n of the graph and are presented in295

Appendix B.2.296

Moral model, Death-Birth297

Any regular graph Under a Death-Birth (DB) updating, the individual who is298

going to die is chosen first, uniformly at random (i is chosen with probability299

1/N ). Then, all individuals produce offspring, and one of them (one offspring of300

parent j wins with probability f j d j i /
∑

l fl dl i ) displaces the individual chosen301

to die. When di i 6= 0, one needs to clarify whether the individual chosen to die302

reproduces before dying or not; here we assume that this is the case, but some303
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alternative formulations do not. Under this updating rule, we have304

D j = 1

N
, and Bi j = 1

N

f j d j i∑
l fl dl i

. (19)

Using matrix notation, eq. (12) becomes305

E
[

X
]≈ p+δp(1−p)

µ

[
b

(
1

N
Tr(E ·Q)− 1

Nν2 Tr
(
E ·D ·DT ·Q

))−c

(
1− 1

Nν2 Tr
(
D ·DT ·Q

))]
,

(20)

where T denotes transposition. We can again identify direct and indirect effects306

of benefits and costs; the direct effects are the same as for the Birth-Death up-307

dating rule, but the indirect effects differ, reflecting the fact that competitors are308

now two dispersal steps away (Grafen & Archetti, 2008; Débarre et al., 2014). Un-309

der a Death-Birth updating rule indeed, individuals j and k are competing for310

a site i whose occupant has just been chosen to die if both j and k can send311

their offspring to i ; this depends on d j i dki , leading to the D · DT products in312

eq. (20). Again, we can also note that 1− 1
Nν2 Tr

(
D ·DT ·Q

)≥ 0, i.e., that the costs313

are indeed costly.314

Probabilities of identity by descent With the Death-Birth model as de-315

fined above, the system of equations for the probabilities of identity by descent316

at neutrality is the same as in eq. (16).317

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2016. ; https://doi.org/10.1101/082503doi: bioRxiv preprint 

https://doi.org/10.1101/082503
http://creativecommons.org/licenses/by/4.0/


Transitive undirected graphs When the graph is transitive and undirected,318

eq. (17) still holds and eq. (20) simplifies into319

E
[

X
]≈ p +δp(1−p)

µ

[
b

((−µ (2−µ)

(1−µ)2

)
Tr(E ·Q)

N
+ λM

1−µ
Tr(E ·D)

Nν
+ λM

(1−µ)2

Tr(E)

N

)
−c

(−µ (2−µ)

(1−µ)2 + λM

1−µ
Tr(D)

Nν
+ λM

(1−µ)2

)]
.

(21)

Wright-Fisher320

Under a Wright-Fisher model, generations are non-overlapping: all adults pro-321

duce offspring, then all adults die and the offspring disperse and compete for322

establishment, so that323

D j = 1, and Bi j =
f j d j i∑
l fl dl i

. (22)

In a Wright-Fisher model, at neutrality, B∗ = 1 (the entire population is renewed324

at each generation; in a Moran model we had B∗ = 1/N ); eq. (22) differing from325

its Moran Death-Birth equivalent (eq. (19)) by only a factor 1/N , we end up with326

the same equation as eq. (20) for the expected frequency of type-A individuals327

in the population. The difference between the Moran Death-Birth and Wright-328

Fisher life-cycles however lies in the evaluation of probabilities of identity by329

descent.330

Probabilities of identity by descent Under a Wright-Fisher model, the en-331

tire population is replaced, so the equation is different from the one obtained332

under a Moran model; probabilities of identity by descent of two different indi-333
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viduals satisfy (i 6= j )334

Qi j = (1−µ)2
∑
k,l

dki

ν

dl j

ν
Qkl . (23)

(see Appendix B.3 for details of the derivation.)335

Undirected transitive graphs When the dispersal graph is undirected (D =336

DT ) and transitive, the probabilities of identity by descent verify337

Q =λW F

(
IN − (1−µ)2

ν2 DD
)−1

, (24)

withλW F such that for all i , Qi i = 1, and the W F index stands for “Wright-Fisher”.338

With this, the expected frequency of type-A individuals becomes339

E
[

X
]≈ p +δp(1−p)

µ

[
b

(−µ (2−µ)

(1−µ)2

Tr(E ·Q)

N
+ λW F

(1−µ)2

Tr(E)

N

)
−c

(−µ (2−µ)

(1−µ)2 + λW F

(1−µ)2

)]
.

(25)

We can immediately see the difference with the Moran Death-Birth case (eq. (21)),340

caused by a different equation for the probabilities of identity by descent Q. Cru-341

cially missing in eq. (25) is the positive term λM
1−µ

Tr(E·D)
Nν : without it, the factor as-342

sociated to the benefits b is negative unless interactions with oneself (Tr(E)) are343

strong enough, as was the case with the Moran Birth-Death updating.344

As for the Moran model, evaluating probabilities of identity by descent in345

undirected transitive graphs (eq. (24)) involves the computation of the inverse346

of a N by N matrix. More explicit results can be obtained for “n-dimensional347

graphs”; they are presented in Appendix B.3.348
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Specific population structures349

All numerical examples given in this section are derived with b> 0 and c> 0, so350

type-A individuals can be called altruists.351

As an illustration, we explore the impact of mutation on the expected pro-352

portion of type-A individuals in graph-structured populations, in which the same353

graph defines dispersal and interactions among individuals (Lieberman et al.,354

2005; Hindersin & Traulsen, 2015; McAvoy & Hauert, 2015), so that E = D.355

Undirected transitive graphs When the graph undirected and transitive, the356

equations for the expected frequency of altruists (type-A individuals) can be fur-357

ther simplified as follows:358

Moran, Birth-Death

E
[

X
]≈ p +δp(1−p)

µ

[
b

( −µν
(1−µ)2 (1−λM )+ λM

1−µd11

)
−c

(
λM −µ

1−µ
)]

. (26)

Moran, Death-Birth

E
[

X
]≈ p +δp(1−p)

µ

[
b

(
−µ (2−µ)ν

(1−µ)3 (1−λM )+ λM

1−µ

∑
k d 2

1k

ν
+ λM

(1−µ)2 d11

)

−c

(−µ (2−µ)+λM

(1−µ)2

)
+ λM

(1−µ)

d11

ν

]
.

(27)

In both cases, λM is obtained from eq. (17). Under a Wright-Fisher updating,359

eq. (25) cannot be much further simplified.360
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Small graphs361

For regular graphs of small size, the probabilities of identity by descent can be362

calculated directly using eq. (16) (Moran model) or eq. (23) (Wright-Fisher). In363

figure 2, we show the value of E
[

X
]

on three regular graphs that have the same364

size (N = 12) and the same degree (ν = 3), and we consider three common life-365

cycles in populations of fixed size (Moran Death-Birth, Moran Birth-Death, Wright-366

Fisher). We compare the prediction based on eq. (9) (curves) to the outputs of367

stochastic simulations (points). For all life-cycles, increasing the mutation prob-368

abilityµmakes E
[

X
]

closer to its value at the mutation-drift equilibrium (p). The369

curves corresponding to different structures are almost undistinguishable under370

a Moran model (figures 2(a) and (b))—the curve corresponding to the graph with371

no symmetry (red, squares) being a bit less similar though). In the Wright-Fisher372

model (figure 2(c)) however, the effects of the three structures are clearly differ-373

ent, even when µ becomes very small: knowing only the size (N ) and degree (ν)374

of a regular graph is not enough in this case to precisely predict the expected375

frequency of altruists in the population.376

Large graphs: variations on a circle377

When the number of nodes gets larger, we have to concentrate on graphs with378

a high level of symmetry. Here we will consider 1-dimensional graphs (graphs379

whose nodes can be relabelled to satisfy eq. (2)) that are undirected, and hence380

that can be categorised as undirected transitive graphs. For simplicity, we can381

consider a circle graph, such that the nodes are arranged on a circle, and each382

node is connected to its two neighbors only. Here, we assume that the num-383
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Population structures
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Figure 2: Expected frequency of type-A individuals E
[

X
]
, depending on popu-

lation structure (legend on the first line), updating rule ((a): Moran Death-Birth,

(b): Moran Birth-Death, (c): Wright-Fisher), and mutation probability µ (horizontal

axis): Comparison between the theoretical prediction (curves) and the outcomes

of numerical simulations (points). The horizontal dotted gray line corresponds to

p, the expected frequency of type-A individuals when there is no selection (i.e.,

when δ= 0). Other parameters: δ=0.005, p = 1/2.

ber of nodes is infinite: N → ∞. As previously, a given node hosts exactly one384

individual (see figure 3(a)).385

Under a Moran model, using eq. (B.12b), we find for µ> 0386

λM =√
µ(2−µ), (28a)

and, although the quantity is not needed to compute E
[

X
]

under a Moran model,387

the probability of identity by descent between two neighbors on the circle is388
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given by389

QM = 1−√
(2−µ)µ

1−µ , (28b)

and we recover the formula presented in, e.g., Allen et al. (2012) (see Appendix B.2.4390

for details). This result is plotted in figure 3(c). We however need to note that the391

first-order approximation for E
[

X
]

fails when both µ → 0 and N → ∞: this is392

because the integral behind eq. (28a) does not converge when µ→ 0. Similarly,393

for instance, the first order approximation for the probability that two neighbors394

are identical by descent 1−µ(N −1), which was obtained by Taylor et al. (2007a),395

fails when N is too large compared to µ.396

The circle graph is too particular a graph for a Wright-Fisher updating. In-397

deed, while we find the same equation for λW F as for λM in this case (eq. (28a)),398

the probability of identity by descent between neighbors is equal to 0. This is399

because all individuals reproduce at each time step, and their offspring can only400

establish on the node on the left or on the right of their parent, so that related-401

ness cannot build up. We can however modify the graph to allow for establish-402

ment in the parent’s node: with probability (1−m) the offspring remain where403

the parent was, otherwise they move to the right or the left-hand side node (with404

probability m/2 for each; see figure 32(b)). In this case, we find the following405

probability of identity by descent between neighbors:406

QW F =
µ (2−µ)+2(1−µ)2m (1−m)−

√
µ (2−µ)

(
µ+2m (1−µ)

)(
2−µ−2m (1−µ)

)
2(1−µ)2m (1−m)

.

(29)

(See Appendix B.3.4 for details.) The result is plotted in figure 3(d) for different407

values of the emigration probability m.408
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(a) Circle graph (b) . . . with self-loops
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(d) Wright-Fisher updating
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Figure 3: Circle graphs, without (a) or with self-loops ((b); the weight of the self-

loop is 1−m), and Probability that two neighbors on the graph are identical by

descent, as function of the mutation probability µ, for the Moran updating on an

infinite circle graph (c), and for the Wright-Fisher updating on an infinite circle

graph with self loops (d). In (d), emigration probabilities m take values 0.5, 0.75,

0.9, 0.999 (increasingly lighted curves).

5 Discussion409

While most studies on the evolution of cooperation assume an almost perfect fi-410

delity of strategy transmission from parent to offspring, here, we explored the411

effect of arbitrary mutation on the evolution of social behavior in structured412

populations. We provide a formula (eq. (12)) that gives the expected frequency413

of a given strategy, for any life-cycle, any mutation probability, and that is valid414

in populations of fixed size that are such that the reproductive values of all sites415

are equal (i.e., when all individuals have the same fecundity, they all have the416
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same chance of actually reproducing). The formula depends on the probability417

of identity by descent of pairs of individuals, and we show how to compute those418

in general.419

Identity by descent and expected state of pairs of sites420

The effects of social interactions depend on the actual types of the individuals421

who interact. With imperfect strategy transmission from parents to their off-422

spring (µ > 0), common ancestry does not guarantee that two individuals are423

of the same type. The concept of identity by descent, as we use it in this arti-424

cle, adds to common ancestry the condition that no mutation has occured in425

the two individuals’ lineages since the common ancestor (Kimura & Crow, 1964;426

Taylor et al., 2007b), and hence garanties that the two individuals are of the same427

type. Two individuals that are not IBD can be treated independently, and we can428

hence relate the probability that the individuals at two sites i and j to their ex-429

pected state (eq. (11) and Allen & Nowak (2014)). Finally, equations with proba-430

bilities of identity by descent are much simpler than those for the expected state431

of pairs of sites.432

A structure parameter κ433

Tarnita et al. (2009) and Taylor & Maciejewski (2012) showed that, when so-434

cial interactions affect fecundities, there exists a parameter independent of the435

terms of the interaction matrix that summarizes the effects of population struc-436

ture (in terms of dispersal patterns and also of who interacts with whom) and437

depends on the rule chosen to update the population and on mutation; here we438

provide a generic formula for such a structure parameter. This parameter, κ, can439
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be interpreted as a scaled relatedness (Queller, 1994; Lehmann & Rousset, 2010),440

which includes the effect of competition. Eq. (13) provides a generic formula for441

κ, for any life-cycle and population structure (provided condition eq. (1) is sat-442

isfied).443

The actual value of the scaled relatedness κ depends on the life-cycle and444

on the mutation probability µ. First, κ includes competition (what we call “in-445

direct effects”), and the scale of competition depends on the life-cycle (Grafen446

& Archetti, 2008; Débarre et al., 2014). Second, even direct effects—and so even447

what is referred to as relatedness—do depend on the life-cycle and µ.448

Finally, there is a single structure parameter κ because social interactions449

only affect fecundity. Previous studies assuming vanishing or absent mutation450

have shown that the parameter will be different if social interactions instead451

influence survival (Nakamaru & Iwasa, 2006; Taylor, 2010) and that we need452

more than one parameter if social interactions affect both fecundity and sur-453

vival (Débarre et al., 2014).454

Updating rules and the evolution of altruism455

We illustrate our results with specific updating rules, with either exactly new in-456

dividual at each time step (Moran Birth-Death, Moran Death-Birth), or exactly457

N new individuals, i.e., the entire population being renewed at each time step458

(Wright-Fisher). Previous studies done under the assumption of vanishing mu-459

tation rates (and with undirected transitive dispersal graphs) found that updat-460

ing rules had a great impact on the evolution of altruism, and in particular, that461

selection did not favor altruism (benefits given to others exclusively) under a462

Wright-Fisher or Moran Birth-Death updating (the “cancellation result”; Taylor,463
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1992; Taylor et al., 2011; Ohtsuki et al., 2007; Lehmann et al., 2007); the result464

holds with imperfect strategy transmission as well. This is because the compe-465

tition radius (individuals one dispersal step away [D] with a Moran Birth-Death466

updating, individuals two dispersal steps away [D.D] with a Wright-Fisher up-467

dating) matches the radius on which identities by descent are computed (see468

eq. (17) and eq. (24)). On the other hand, under a Death-Birth updating, com-469

petition is against individuals two dispersal steps away, but identity by descent470

is computed using individuals one dispersal step away: competition is “diluted”,471

and altruism can be favored by selection. Again, note that the conclusions for472

the Moran model depend on which trait is affected by the social behavior: al-473

truism is favored under a Birth-Death updating if survival, instead of fecundity,474

is affected by social behavior (Nakamaru & Iwasa, 2006; Taylor, 2010; Débarre475

et al., 2014).476

Implications for adaptive dynamics477

Our results are obtained by considering the changes that occur during one time478

step from a given population state, chosen from the stationary distribution of479

population states—hence the phrase “long-term”, which differs from the use480

made by, for instance Van Cleve (2015), where it refers to a trait substitution481

sequence. Yet, our results can also be used in that context. The adaptive dy-482

namics framework describes evolution as a series of trait substitutions (Geritz483

et al., 1997; Champagnat et al., 2006; Champagnat & Lambert, 2007; Lehmann,484

2012; Lehmann & Rousset, 2014) and is based on the assumption that mutations485

are rare and incremental; in a finite population, trait evolution proceeds along486

a gradient of fixation probabilities. Computing those fixations probabilities can487

30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2016. ; https://doi.org/10.1101/082503doi: bioRxiv preprint 

https://doi.org/10.1101/082503
http://creativecommons.org/licenses/by/4.0/


be challenging in spatially structured populations.488

Yet, the existence of a single parameter (in this case, defined as σ = (κ−489

1)/(κ+1), Tarnita et al., 2009) to characterize population structure and update490

rules led to the extension of the adaptive dynamics framework to populations491

with arbitrary structure (Allen et al., 2013), the structure parameter however re-492

maining unspecified in general. Our formula for κ (eq. (13)) is valid for arbitrary493

mutation, so a fortiori for vanishing mutation probabilities, and can therefore be494

used to explicitly study adaptive dynamics in structured populations (provided495

the reproductive values of all sites are equal).496
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Appendix A

A Expected frequency of type-A individuals628

Conditional expectations629

We denote by E
[

Xi (t + 1)|X (t )
]

the expected state of the individual at site i at630

time t + 1, given that the population is in state X at time t . Because Xi is an631

indicator variable, E
[

Xi (t +1)|X (t )
]=P [Xi (t +1) = 1|X (t )]. Site i is occupied by632

an individual of type A at time t +1 if: i) it was occupied by an individual of type633

A at time t and this individual has not been replaced (i.e., has not died) between634

t and t + 1 (first term in eq. (A.1)), or ii) the individual has been replaced by a635

new one, whose parent was in site j at t ; in this case, either the parent was of636

type A and the offspring is not a mutant; or, whichever the type of the parent,637

the offspring is a mutant and mutated into type A (second term of eq. (A.1)):638

E
[

Xi (t +1)|X (t )
]= (1−Di )Xi +

∑
j

Bi j
(
X j (1−µ)+µp

)
. (A.1)

Unconditional expectations639

We now want to consider the long-term outcome of competition. We denote by640

ξ(X ,δ,µ) the probability that the population is in state X , given phenotype dif-641

ference δ between the two types and a mutation rate µ, and by Ω the ensemble642

of all possible population states. By definition, the expectation of the state of the643

population is given by E
[

X
]=∑

X∈Ω X ξ(X ,δ,µ).644

When the stationary distribution is reached (i.e., for very large t ), E
[

X (t +645

1)
] = E

[
X (t )

] = E
[

X
]
; we consider the population average of X , X = ∑

i Xi /N .646
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Appendix A

From eq. (A.1), we obtain647

E
[

X
]= ∑

X∈Ω

N∑
i=1

1

N

(
N∑

j=1
Bi j X j −Di Xi −µ

N∑
j=1

Bi j (X j −p)+Xi

)
ξ(X ,δ,µ),

which, after simplifications , becomes648

∑
X∈Ω

1

N

[
N∑

j=1

(∑
i

Bi j −D j

)
X j −µ

∑
i

∑
j

Bi j (X j −p)

]
ξ(X ,δ,µ) = 0. (A.2)

Weak selection approximation While eq. (A.2) is valid for any µ and δ, we now649

assume that δ, which scales the phenotype difference, is small, so that we can650

neglects terms of order δ2 and higher. We note that in the absence of selection651

(i.e., when the expressed phenotypes are identical, δ = 0), the expected state of652

a site j when the stationary distribution is reached is equal to the probability653

that a mutated offspring is of type A (i.e.,
∑

X∈Ω X jξ(X ,0,µ) = p; see section A.3654

below for more details). Using eq. (6) and the compact notation ∂δ to represent655

∂
∂δ

∣∣∣
δ=0

, a first-order expansion of eq. (A.2) yields, after simplifications:656

0 = δ

N

∑
X∈Ω

[∑
j

(∑
i
∂δBi j −∂δD j

)
X j −µ

∑
i

∑
j
∂δBi j (X j −p)

]
ξ(X ,0,µ)

− δµ

N

∑
X∈Ω

[∑
j

B∗ (X j −p)

]
∂δξ(X ,δ,µ) +O(δ2). (A.3a)
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Appendix A

Because ξ is a probability distribution,
∑

X∈Ω∂δξ(X ,δ,µ) = 0; reorganizing eq. (A.3a),657

we obtain658

∂δE
[

X
] = 1

µN B∗

( ∑
X∈Ω

[∑
j

(∑
i
∂δBi j −∂δD j

)
X j

]
ξ(X ,0,µ)

− ∑
X∈Ω

[
µ

∑
i , j
∂δBi j (X j −p)

]
ξ(X ,0,µ)

)
+O

(
δ

µB∗

)
. (A.3b)

We can now use the chain rule:659

∂δBi j =
N∑

k=0

∂Bi j

∂ fk

∣∣∣∣
δ=0

∂δfk , (A.4a)

∂δD j =
N∑

k=0

∂D j

∂ fk

∣∣∣∣
δ=0

∂δfk , (A.4b)

where the ∂δfk terms are computed using the definition of f presented in eq. (3b).660

We also denote by P j k the expected state of a pair of sites ( j ,k) evaluated when661

there are no social interactions (δ= 0):662

P j k = ∑
X∈Ω

X j Xkξ(X ,0,µ). (A.5)

Doing so, we realize that we can write eq. (A.3b) as663

∂δE
[

X
] = 1

µN B∗
(
βb−γc)+O

(
δ

µB∗

)
, (A.6)

with β and γ as defined in eq. (10).664

Plugging eq. (A.6) in the following equation665

E
[

X
]= p +δ∂δE

[
X

] +O(δ2), (A.7)
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Appendix A

we recover eq. (9).666

In the absence of selection (δ= 0)667

In the absence of selection, neither Di nor Bi j depend on the state of the popula-668

tion, because all individuals now have the same fecundity. Consequently, when669

δ= 0, and given that neutral reproductive values are all equal (eq. (6) in the main670

text),eq. (A.1) becomes671

E
[

Xi (t +1)|X (t )
]= (1−B∗)Xi +

∑
j

B 0
i j

(
X j (1−µ)

)+µpB∗. (A.8)

We now take the expectation of eq. (A.8) over the neutral distribution of states672

(ξ(X ,0,µ)); since B 0
i j does not depend on X , we have673

E0
[

Xi
]= (1−B∗)E0

[
Xi

]+∑
j

B 0
i j

(
E0

[
X j

]
(1−µ)

)+µpB∗, (A.9a)

and we obtain after simplifying674

E0
[

Xi
]= p. (A.9b)

Weak mutation675

Whenµ= 0, there is no stationary distribution of states, because the states X = 0676

and X = 1 (loss of type-A and loss of type-B individuals, respectively) are ab-677

sorbing. We can nevertheless extend ξ by continuity at µ= 0, so that ξ(X ,δ,0) =678

limµ→0 ξ(X ,δ,µ). Then, it does not matter whether we Taylor-expand ξ first in δ679

then in µ or first in µ and then in δ, and so we can consider µ¿ δ and δ¿ µ680
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Appendix A

(Tarnita & Taylor, 2014).681

Weak selection then weak mutation Starting from eq. (A.3a), a first order ex-682

pansion near µ= 0 yields683

0 = 1

N

∑
X∈Ω

∑
j

(∑
i
∂δBi j −∂δD j

)
X j∂µξ(X ,0,µ) − 1

N

∑
X∈Ω

∑
i , j
∂δBi j (X j −p)ξ(X ,0,0)

− 1

N

∑
X∈Ω

∑
j

B∗(X j −p)∂δξ(X ,δ,0) +O

(
δ

µ

)
+O(µ).

(A.10)

Here we have δ¿µ¿ 1. Notation ∂µ stands for ∂
∂µ

∣∣∣
µ=0

.684

Weak mutation then weak selection Starting from eq. (A.2), a first order ex-685

pansion near µ= 0 and then a first order expansion near δ= 0 yields686

0 = 1

N

∑
X∈Ω

∑
j

(∑
i
∂δBi j −∂δD j

)
X j∂µξ(X ,0,µ) − 1

N

∑
X∈Ω

∑
i , j
∂δBi j (X j −p)ξ(X ,0,0)

− 1

N

∑
X∈Ω

∑
j

B∗(X j −p)∂δξ(X ,δ,0) +O
(µ
δ

)
+O(δ).

(A.11)

Here we have µ¿ δ¿ 1.687

At the first orders, eq. (A.10) and eq. (A.11) are the same.688

When µ→ 0, the population is either in state X = 0 or in state X = 1, so689

ξ(1,δ,0) = 1−ξ(0,δ,0) = lim
µ→0

E
[

X
]
, (A.12a)
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and as a result690

∂δξ(1,δ,0) =−∂δξ(0,δ,0) . (A.12b)

In addition, when δ= 0,691

ξ(1,0,µ) = p. (A.12c)

So at the first orders, reorganizing eq. (A.10) (or equivalently eq. (A.11)), we ob-692

tain the following equation for the derivative with respect to δ of the expected693

state of the population when µ→ 0 (Tarnita & Taylor, 2014):694

∂δξ(1,δ,0) ≈ 1

B∗

[
1

N

∑
X∈Ω

∑
j

(∑
i
∂δBi j −∂δD j

)
X j∂µξ(X ,0,µ)

− 1

N
p(1−p)

∑
i , j

(
∂δBi j (1) −∂δBi j (0)

)]
.

(A.13)
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B Probabilities of identity by descent695

We first start by showing the link between the expected state of a pair of sites696

(Pi j ) and probabilities of identity by descent (Qi j ), for any life-cycle.697

Any life-cycle698

Notation699

To be able to consider any life-cycle, we use notation similar to what is used in700

Allen et al. (2015). At each time step, from 1 to N individuals are replaced, de-701

pending on the updating rule; R denotes the set of individuals that are replaced702

(i.e., the sites where an individual is replaced by another one). For each site i703

where a replacement happened (i ∈ R), α(i ) gives the index of the site where the704

parent of the new individual lived, while for individuals that were not replaced,705

∀i ∈ {1, . . . , N }\R,α(i ) = i 1. Finally, ρ(R,α) denotes the probability of the replace-706

ment event (R,α). In the absence of selection, this probability does not depend707

on the current state of the population.708

Expected state of a pair of sites709

Considering two different sites i and j , depending on the updating rule, at each710

time step, i) either none of the individuals are replaced—then they are both of711

type A if they already were [first term in eq. (B.1)], ii) either one of the individ-712

uals (i or j ) is replaced—then they are both of type A if the surviving individual713

is A and if either the parent of the other individual was of type A and no mu-714

1Here we extend the notation used in Allen et al. (2015), because in their study,α : R → {1, . . . , N }
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tation occurred, or the offspring mutated into type A whichever the type of its715

parent [second and third terms in eq. (B.1)]), or finally iii) both individuals are716

replaced—then the probability that both offspring are of type A is Pα(i )α( j )(1−µ+717

µp)2+2(p −Pα(i )α( j ))(1−µ+µp)(µp)+ (1−2p +Pα(i )α( j ))(µp)2, which simplifies718

into the fourth term in eq. (B.1)). We obtain the following equation:719

∀(i , j ) ∈ {1, . . . , N }2, i 6= j ,

Pi j =
∑
R,α

i∉R, j∉R

q(R,α)Pα(i )α( j )

+ ∑
R,α

i∉R, j∈R

q(R,α)
[
Pα(i )α( j )(1−µ)+pµp

]

+ ∑
R,α

i∈R, j∉R

q(R,α)
[
Pα(i )α( j )(1−µ)+pµp

]

+ ∑
R,α

i∈R, j∈R

q(R,α)
[
Pα(i )α( j )(1−µ)2 + (2−µ)µp2] .

(B.1)

Identity by descent720

Considering two different sites i and j , depending on the updating rule, at each721

time step, i) either none of the individuals are replaced—then they are identical722

by descent (IBD) if they already were [first term in eq. (B.1)], ii) either one of the723

individuals (i or j ) is replaced—then they are both IBD if the surviving individ-724

ual and the parent of the new individual were and no mutation occurred [second725

and third terms in eq. (B.1)]), or finally iii) both individuals are replaced—then726

then are IBD if their two parents were and no mutation occurred in either [fourth727
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term in eq. (B.1)]. We obtain the following equation:728

∀(i , j ) ∈ {1, . . . , N }2, i 6= j ,

Qi j =
∑
R,α

i∉R, j∉R

ρ(R,α)Qα(i )α( j ) +
∑
R,α

i∉R, j∈R

ρ(R,α)Qα(i )α( j )(1−µ)

+ ∑
R,α

i∈R, j∉R

ρ(R,α)Qα(i )α( j )(1−µ)+ ∑
R,α

i∈R, j∈R

ρ(R,α)Qα(i )α( j )(1−µ)2.

(B.2)

For all pairs i 6= j , eq. (B.1) and eq. (B.2) are equivalent when we set729

Qi j =
Pi j −p2

p(1−p)
, (B.3)

and eq. (B.3) is also valid when i = j (in this case Qi i = 1 and Pi i = p). So we can730

use the recursion on Q presented in eq. (B.2) together with eq. (B.3).731

Finally, while Qi j is an expectation over the stationary distribution of pop-732

ulation states, we also introduce the indicator variable qi j (t ), equal to 1 if, in a733

realization of the process, the individuals at sites i and j are IBD at time t . We734

also denote by Q the matrix gathering the Qi j terms.735

Moran model736

In a Moran model, exactly one individual died and one individual reproduces737

during one time step. Given a state X at time t , for i 6= j , probabilities of identity738

by descent verify739

E
[
qi j (t +1)|X (t )

]=qi j (t )

(
1− 2

N

)
+ 1−µ

N

∑
k

dk j qki (t )+dki qk j (t )

ν
. (B.4)
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Taking the expectation of this quantity over the stationary distribution of states,740

we obtain741

Qi j = 1−µ
2ν

∑
k

(
dk j Qki +dki Qk j

)
(i 6= j ), (B.5)

and Qi j = 1 when i = j . Eq. (B.5) is valid for any regular graph; all the Qi j terms742

can be found by solving a system of N (N −1)/2 equations (since Qi j =Q j i ). We743

can also write eq. (B.5) in matrix form:744

Q = 1−µ
2ν

(QD+DT Q)+L, (B.6)

where D is the adjacency matrix of the dispersal graph (with elements di j ), T
745

denotes transposition, and L is a diagonal matrix whose i th diagonal element is746

1−∑
k dki Qki /ν (i.e., such that Qi i = 1).747

Transitive undirected graphs748

When the dispersal graph is transitive, then all the elements on the diagonal of749

L are equal, so we can write L = λM IN , where IN is the N by N identity matrix.750

When the graph is also undirected, D = DT , and we also show by induction that751

DQ = QD (Grafen & Archetti, 2008).752

Let us assume without loss of generality that initially (t = 0) all individuals are753

IBD (qi j (0) = 1N N , where 1N N is the N -by-N matrix containing only ones) and754

of type B (X (0) = {0, . . . ,0}). Also, let us denote by ζ0(X , t ) the probability that755

the population is in state X at time t given that it was in state {0, . . . ,0} at time 0,756

and by Et
[]

expectations with respect to that distribution, at time t . Then from757
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eq. (B.4), since qi i = 1, and given that the graph is regular,758

E1
[
q
]= (

1− 2

N

)
1N N +2

1−µ
N

1N N +λ1IN , (B.7)

so759

D ·E1
[
q
]= (

1− 2

N

)
ν1N N +2

1−µ
N

ν1N N +λ1D = E1
[
q
] ·D. (B.8)

Then, assuming that D and Et
[
q
]

commute, and given that we assume D = DT ,760

Et+1
[
q
]= (

1− 2

N

)
Et

[
q
]+ 2(1−µ)

N
D ·Et

[
q
]+λt IN , (B.9)

so761

D ·Et+1
[
q
]= (

1− 2

N

)
D ·Et

[
q
]+ 2(1−µ)

N
D2 ·Et

[
q
]+λt D = Et+1

[
q
] ·D (B.10)

And so, when t →∞, we have D ·Q = Q ·D.762

Then with a transitive undirected dispersal graph, eq. (B.6), simplifies into763

Q = 1−µ
ν

D ·Q+λM IN , (B.11)

and so (for µ> 0),764

Q =λM

(
IN − 1−µ

ν
D

)−1

, (B.12a)
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with765

λM = 1((
IN − 1−µ

ν D
)−1

)
1,1

. (B.12b)

Eq. (B.11) also implies766

Q = (1−µ)2

ν2 D ·D ·Q+λM
1−µ
ν

D+λM IN . (B.13)

It is possible to find more explicit formulae when the graphs are transitive and767

when they are n-dimensional, and we do so for 1-D and 2-D graphs.768

One-dimensional graphs769

On a 1-D graph, numbering the different nodes modulo N , for all i and j , by770

definition of a 1-D graph, di j = d0, j−i = d̃ j−i , and as a result similar equalities771

hold for the expected states of pairs of sites: Qi j =Q0, j−i = Q̃ j−i . We can hence772

rewrite eq. (B.5) as follows, keeping in mind that Qi j =Q j i and that node num-773

bering is done modulo N :774

Qi j = Q̃ j−i =1−µ
2ν

∑
k

d0, j−kQ0,k−i +d0,i−kQ0, j−k (i 6= j )

=1−µ
2ν

∑
k

d0,k P0, j−i−k +d0,k P0, j−i+k [change of variables k ′ = j −k]

=1−µ
2ν

∑
k

d̃k P̃ j−i−k + d̃k P̃ j−i+k ,

so that775

Q̃l =
1−µ

2ν

(∑
k

d̃kQ̃l−k + d̃kQ̃l+k

)
+δlλM , (B.14)
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where δl = 1 when l ≡ 0 and δl = 0 otherwise, and λ is as defined in the previous776

section, i.e., such that Q̃0 = 1:777

λM = 1− 1−µ
ν

∑
k

d̃kQ̃k . (B.15)

(Recall that Q̃l = Q̃−l ).778

To solve for Q̃l , we can follow the same method as in Malécot (1975); Gandon779

& Rousset (1999) and use discrete Fourier transforms, defining the transforms of780

Q and of d as follows:781

Qq =
N−1∑
l=0

Q̃l exp

(
−ı

2πql

N

)
, (B.16a)

Dq =
N−1∑
l=0

d̃l exp

(
−ı

2πql

N

)
. (B.16b)

and in particular (ν being the degree of the dispersal graph)782

D0 =
∑

l
d̃l = ν. (B.16c)

We obtain783

Qq =λM +
N−1∑
l=0

[
1−µ

2ν

(∑
k

d̃kQ̃l−k + d̃kQ̃l+k

)]
exp

(
−ı

2πql

N

)
, (B.17a)

=λM + 1−µ
2ν

(
DqQq +D−qQq

)
. (B.17b)

Solving for Qq , we obtain784

Qq = λM

1− 1−µ
2ν

(
Dq +D−q

) . (B.17c)
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To recover Q̃, we now use an Inverse Discrete Fourier Transform785

Q̃r = 1

N

N−1∑
q=0

Qq exp

(
ı

2πqr

N

)
; (B.18)

combining eq. (B.17c) and eq. (B.18), we obtain786

Q̃r = 1

N

N−1∑
q=0

λM

1− 1−µ
2ν

(
Dq +D−q

) exp

(
ı

2πqr

N

)
. (B.19a)

When r = 0, we have Q̃0 = 1, so combining this with eq. (B.19a), we can now787

evaluate λ:788

λM = N∑N−1
q=0

1
1− 1−µ

2ν (Dq+D−q )

. (B.19b)

Finally, when the graph is not oriented, Dq =D−q .789

Two-dimensional graphs790

Similar calculations are done with two-dimensional graphs. Numbering is done791

modulo N1 for the first dimension, and modulo N2 for the second dimension792

(N1N2 = N ). The 2-D equivalent of eq. (B.14) is793

Q̃l1
l2

= 1−µ
2ν

N1−1∑
k1=0

N2−1∑
k2=0

(
d̃k1

k2

Q̃l1−k1
l2−k2

+ d̃k1
k2

Q̃l1+k1
l2+k2

)
+δl1

l2

λM , (B.20)

where δk1
k2

= 1 when (k1,k2) ≡ (0,0) (modulo N1 and N2), and δk1
k2

= 0 otherwise,794

and795

λM = 1− 1−µ
ν

N1−1∑
l1=0

N2−1∑
l2=0

d̃k1
k2

Q̃k1
k2

. (B.21)
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We then use 2-D Discrete Fourier Transforms:796

Qq1
q2
=

N1−1∑
l1=0

N2−1∑
l2=0

Q̃l1
l2

exp

(
−ı

2πq1l1

N1

)
exp

(
−ı

2πq2l2

N2

)
, (B.22a)

Dq1
q2
=

N1−1∑
l1=0

N2−1∑
l2=0

d̃l1
l2

exp

(
−ı

2πq1l1

N1

)
exp

(
−ı

2πq2l2

N2

)
, (B.22b)

and obtain797

Qq1
q2
=λM + 1−µ

2ν

(
Dq1

q2
+D−q1−q2

)
Pq1

q2
. (B.23a)

Solving for Qq1
q2

,798

Qq1
q2
= λM

1− 1−µ
2ν

(
D q1

q2 +D−q1−q2

) . (B.23b)

Finally, an Inverse Fourier Transform gives us Q̃r1
r2

:799

Q̃r1
r2
= 1

N

∑
q1,q2

λM

1− 1−µ
2ν

(
D q1

q2 +D−q1−q2

) exp

(
ı

2πq1r1

N1

)
exp

(
ı

2πq2r2

N2

)
, (B.23c)

with C such that P̃0
0
= p:800

λM = N∑
q1,q2

1

1− 1−µ
2ν

(
D

q1
q2
+D

−q1−q2

) . (B.23d)

And when the graph is undirected, D−q1−q2 =D q1
q2.801

51

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2016. ; https://doi.org/10.1101/082503doi: bioRxiv preprint 

https://doi.org/10.1101/082503
http://creativecommons.org/licenses/by/4.0/


Appendix B

Illustration: infinite circle802

On a circle graph (like in figure 3(a)), the Fourier transform of the dispersal dis-803

tance is804

Dq = 2 cos

(
2πq

N

)
. (B.24)

We can evaluate λM using eq. (B.19b),805

λM = N∑N−1
q=0

1

1−(1−µ)cos
(

2πq
N

) , (B.25a)

and when population size is infinite, this becomes806

λM = 1∫ 1
0

1
1−(1−µ)cos(2πx) dx

=√
µ(2−µ). (B.25b)

But we note that the integral does not converge whenµ→ 0. Finally, we compute807

probabilities of identity by descent using eq. (B.19a), and obtain eq. (28b) in the808

main text for neighbors on the the circle (q = 1).809

Wright-Fisher model810

In a Wright-Fisher model, all individuals are replaced at each time step. Given a811

state X at time t , for i 6= j , probabilities of identity by descent verify812

E
[
qi j (t +1)|X (t )

]=(1−µ)2
∑
k,l

dki dl j

ν2 qkl (t ). (B.26)
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Taking the expectation of this quantity over the stationary distribution of states,813

we obtain814

Qi j = (1−µ)2

ν2

∑
k,l

(
dki dl j Qkl

)
(i 6= j ), (B.27)

and Qi j = 1 when i = j . Eq. (B.27) is valid for any regular graph; all the Qi j terms815

can be found by solving a system of N (N −1)/2 equations (since Qi j =Q j i ). We816

can also write eq. (B.5) in matrix form:817

Q = (1−µ)2

ν2 (DT QD)+L, (B.28)

where D is the adjacency matrix of the dispersal graph (with elements di j ), T
818

denotes transposition, and L is a diagonal matrix whose i th diagonal element is819

such that Qi i = 1.820

Transitive undirected graphs821

When the dispersal graph is transitive, then all the elements on the diagonal of822

L are equal, so we can write L = λW F IN , where IN is the N by N identity matrix.823

Like in the case of a Moran updating, when the graph is also undirected, D = DT ,824

and we also show by induction that DQ = QD (Grafen & Archetti, 2008).825

Let us assume without loss of generality that initially (t = 0) all individuals are826

IBD (qi j (0) = 1N N , where 1N N is the N -by-N matrix containing only ones) and827

of type B (X (0) = {0, . . . ,0}). Also, let us denote by ζ0(X , t ) the probability that828

the population is in state X at time t given that it was in state {0, . . . ,0} at time 0,829

and by Et
[]

expectations with respect to that distribution, at time t . Then from830
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eq. (B.26), since qi i = 1, and given that the graph is regular,831

E1
[
q
]= (1−µ)2

ν2 1N N +λ1IN , (B.29)

so832

D ·E1
[
q
]= (1−µ)2

ν2 ν1N N +λ1D = E1
[
q
] ·D. (B.30)

Then, assuming that D and Et
[
q
]

commute, and given that we assume an undi-833

rected dispersal graph (D = DT ),834

Et+1
[
q
]= (1−µ)2

ν2 D ·D ·Et
[
q
]+λt IN , (B.31)

so835

D ·Et+1
[
q
]= (1−µ)2

ν2 D ·D ·D ·Et
[
q
]+λt D = Et+1

[
q
] ·D (B.32)

And so, when t →∞, we have D ·Q = Q ·D.836

Then with a transitive undirected dispersal graph, eq. (B.28), simplifies into837

Q = (1−µ)2

ν2 D ·D ·Q+λW F IN , (B.33)

and so (for µ> 0),838

Q =λW F

(
IN − (1−µ)2

ν2 DD
)−1

, (B.34a)
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with839

λW F = 1((
IN − (1−µ)2

ν2 DD
)−1

)
1,1

. (B.34b)

It is possible to find more explicit formulae when the graphs are transitive and840

when they are n-dimensional, and we do so for 1-D and 2-D graphs.841

One-dimensional graphs842

In a 1D graph, we can rewrite eq. (B.27) as follows, were Q̃m =Q0m (numbering843

being done modulo N ):844

Q̃m =


∑

k,l
d̃k d̃l

ν2 Q̃m−l+k (m 6= 0)

1 (m = 0).

(B.35)

Using a Discrete Fourier Transform (see eq. (B.16)), we obtain,845

Qq = (1−µ)2

ν2 DqD−qQq +λW F , (B.36a)

with846

λW F =1−∑
k,l

d̃k d̃l

ν2 Q̃−l+k . (B.36b)

Solving for Qq , we obtain847

Pq = λW F

1− (1−µ)2

ν2 DqD−q

. (B.36c)
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Then using an Inverse Fourier Transform to recover Q̃ (see eq. (B.18)), we obtain848

Q̃r = 1

N

N−1∑
q=0

λW F

1− (1−µ)2

ν2 DqD−q

exp

(
ı

2πqr

N

)
(B.37)

Noting that Q̃0 = 1, we can evaluate λ:849

λW F = N∑N−1
q=0

1

1− (1−µ)2

ν2 DqD−q

. (B.38)

Two-dimensional graphs850

Following the same method as previously, we obtain851

Q̃r1
r2
= 1

N

∑
q1,q2

λW F

1− (1−µ)2

ν2

(
D q1

q2D
−q1−q2

) exp

(
ı

2πq1r1

N1

)
exp

(
ı

2πq2r2

N2

)
, (B.39a)

with

λW F = N∑
q1,q2

1

1− (1−µ)2

ν2

(
D

q1
q2

D
−q1−q2

) . (B.39b)

Illustration: Circle graph with self-loops852

On a circle graph with self-loops (like in figure 3(b)), the Fourier transform of the853

dispersal distance is854

Dq = (1−m)+m cos

(
2πq

N

)
. (B.40)
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(Here ν = 1, while with the circle graph we had ν = 2; this does not matter for855

IBD). We can evaluate λW F using eq. (B.38),856

λW F = N∑N−1
q=0

1

1−(1−µ)2
(
(1−m)+m cos

(
2πq

N

))2

, (B.41a)

and when population size is infinite, this becomes857

λW F = 1∫ 1
0

1
1−(1−µ)2((1−m)+m cos(2πx))2 dx

,

= 2
√

(2−µ)µ(−µ−2(1−µ)m +2)(µ+2(1−µ)m)√
(2−µ)(−µ−2(1−µ)m +2)+√

µ(µ+2(1−µ)m)
,

(B.41b)

according to Mathematica (Wolfram Research, Inc., 2015) (isn’t this amazing?).858

Here as well, the integral does not converge when µ→ 0. Finally, we compute859

probabilities of identity by descent using eq. (B.39a), and obtain eq. (29) in the860

main text for neighbors on the the circle (q = 1).861
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C Derivatives of Bi j and D j for specific life-cycles862

Birth-Death updating863

With a Moran Birth-Death updating rule (see eq. (14)), the derivatives of Bi j and864

D j with respect to fk are865

∂Bi j

∂ fk

∣∣∣∣
δ=0

= d j i

ν

δ j ,k N −1

N 2 , (C.1a)

∂D j

∂ fk

∣∣∣∣
δ=0

= dk j

Nν
− 1

N 2 , (C.1b)

with866

δ j ,k =


1 when j = k,

0 otherwise.

(C.2)

Consequently,867

∂W j

∂ fk

∣∣∣∣
δ=0

= δ j ,k

N
− dk j

Nν
. (C.3)

Death-Birth updating868

With a Moran Death-Birth updating rule (see eq. (19)), the derivatives of Bi j and869

D j with respect to fk are given by the following equations:870

∂Bi j

∂ fk

∣∣∣∣
δ=0

= δk, j dkiν−d j i dki

Nν2 , (C.4a)

∂D j

∂ fk

∣∣∣∣
δ=0

= 0, (C.4b)
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with δk, j as defined in eq. (C.2). As a result,871

∂W j

∂ fk

∣∣∣∣
δ=0

= δk, j

N
−

N∑
i=1

d j i dki

N ν2 . (C.5)

Wright-Fisher updating872

With a Wright-Fisher updating rule (see eq. (22)), the derivatives of Bi j and D j873

with respect to fk are874

∂Bi j

∂ fk

∣∣∣∣
δ=0

= δk, j dkiν−d j i dki

ν2 , (C.6a)

∂D j

∂ fk

∣∣∣∣
δ=0

= 0. (C.6b)

with δk, j as defined in eq. (C.2). Finally,875

∂W j

∂ fk

∣∣∣∣
δ=0

= δk, j −
N∑

i=1

d j i dki

ν2 . (C.7)
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Figures876

Figure 1877
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Figure 1: Examples of regular graphs of size 12. The graphs on the first line are

unoriented and unweighted graphs of degree ν= 3; Graph (d) is oriented, graph (e)

is weighted. (a) is the Frucht graph, and has no symmetry. Graphs (b) and (d) are

one-dimensional, graphs (c) and (e) are two-dimensional (see main text).
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Figure 2878

Population structures
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(a) Death-Birth
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(c) Wright-Fisher
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Figure 2: Expected frequency of type-A individuals E
[

X
]
, depending on popu-

lation structure (legend on the first line), updating rule ((a): Moran Death-Birth,

(b): Moran Birth-Death, (c): Wright-Fisher), and mutation probability µ (horizontal

axis): Comparison between the theoretical prediction (curves) and the outcomes

of numerical simulations (points). The horizontal dotted gray line corresponds to

p, the expected frequency of type-A individuals when there is no selection (i.e.,

when δ= 0). Other parameters: δ=0.005, p = 1/2.
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Figure 3879
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Figure 3: Circle graphs, without (a) or with self-loops ((b); the weight of the self-

loop is 1−m), and Probability that two neighbors on the graph are identical by

descent, as function of the mutation probability µ, for the Moran updating on an

infinite circle graph (c), and for the Wright-Fisher updating on an infinite circle

graph with self loops (d). In (d), emigration probabilities m take values 0.5, 0.75,

0.9, 0.999 (increasingly lighted curves).
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