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Cell growth and division are processes vital to the proliferation and development of life. Coordination
between these two processes has been recognized for decades in a variety of organisms. In the
budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse
correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior
to cell division commitment. Beyond this point, cells are presumed to complete S/G2/M at similar
rates and in a size-independent manner. As such, studies of dependence between growth and division
have focused on G1. Moreover, coordination between growth and division has commonly been
analyzed within the cycle of a single cell without accounting for correlations in growth and division
characteristics between cycles of related cells. In a comprehensive analysis of three published time-
lapse microscopy datasets, we analyze both intra- and inter-cycle dependencies between growth and
division, revisiting assumptions about the coordination between these two processes. Interestingly,
we find evidence (1) that S/G2/M durations are systematically longer in daughters than in mothers,
(2) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies,
and, (3) in contrast with recent bacterial studies, of negative dependencies between size at birth
and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to
uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in
sugar-poor environments. Our analysis highlights the need for experimentalists and modelers to
account for new sources of cell-to-cell variation in growth and division, and our model provides a
formal statistical framework for the continued study of dependencies between biological processes.

I. INTRODUCTION

Cell division and cell growth are processes fundamental to all life, and their dysregulation is common in diseases like
cancer. In the budding yeast Saccharomyces cerevisiae, cell division is known to be coordinated with cell growth [1–6]
(reviewed in [7]). This dependence between growth and division is most noticeable in daughter cells that, owing to
the asymmetric manner of budding yeast division, are born smaller than their mothers (Figure 1). Consequently,
daughters undergo longer G1 phases to reach a ‘critical size’ at START, the point of cell-cycle commitment [8, 9].
Generally, a correlation has been observed between the birth mass of a cell and its time spent in G1, with smaller
cells at birth taking longer to complete G1. This ‘size control’ is important for the maintenance of a consistent size
distribution in the cell population from generation to generation (size homeostasis).
Studies of coordination between growth and division in budding yeast have focused primarily on G1. Indeed, after

having reached a sufficient and roughly similar size, both mother and daughter cells are presumed to proceed through
the S, G2, and M phases at similar rates [9, 10]. These tenets of the traditional model of budding yeast size control
set certain expectations for S/G2/M duration: (1) G1 duration is size-dependent, while S/G2/M duration is size-
independent, and (2) S/G2/M duration is roughly constant from cell to cell. Assuming a consistent single-cell growth
rate across cells, these tenets are sufficient to maintain a consistent size distribution in the population. Recent studies
in bacteria have revealed an alternative size control model by which cells add a relatively constant amount of volume
over the cell cycle, regardless of their birth size [11–13]. Recent time-lapse microscopy datasets tracking characteristics
of individual cells provide evidence with which to test these models and further characterize coordination between
growth and division in budding yeast.
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FIG. 1: A diagram of the haploid budding yeast cell cycle. The process of cell division begins at the top of the diagram and
proceeds clockwise. Cell division consists of four phases: G1, S, G2, and M; the latter two have been merged since classical
studies demonstrate that they largely overlap in yeast. Along the outer ring of the diagram are depicted progressive stages of
division, as reflected by the different markers of cell-cycle progression. Each bar inside the cell represents a single copy of DNA.
The feature at the neck joining the mother and daughter cell represents the myosin ring. The myosin ring appears late in G1,
marking the location where the bud will emerge, and disappears with cytokinesis, indicating the separation of the mother and
daughter cytoplasms. After cell wall separation, the mother and daughter cells are free to undergo more rounds of division. In
budding yeast, division is asymmetric and daughters (shown outside) are born smaller than their mothers.

These time-lapse datasets also allow investigation of correlations between measurements made at different cell cy-
cles, an important gap in our understanding of coordination between growth and division. In multicellular systems,
coordination of division among cells has important implications for higher-scale phenomena like development, differ-
entiation, and tissue organization [14–17]. In unicellular organisms like the budding yeast, Saccharomyces cerevisiae,
inter-cycle dependencies between growth and division are plausible [18] and might affect more classically studied
intra-cycle dependencies or characteristics. For example, a mother cell with some advantage in cell division or growth
might transmit that advantage to her progeny, resulting in a fast-dividing or fast-growing daughter cell. However, it
is unclear the extent to which cell-cycle progression is correlated across cell cycles in budding yeast, if at all.
Statistical modeling provides a powerful and principled foundation for characterizing these correlations in lineages

of proliferating cells. Indeed, correlation and biological lineage analysis have been intertwined since the development of
the correlation coefficient by Galton and Pearson [14, 18–22]. Statistical models of correlation in cellular characteristics
have been successfully applied to bacterial and mammalian cell lineage data [23, 24]. In addition, modern Bayesian
inference techniques for regression and model averaging provide a framework for evaluating the plausibility of a variety
of different models of correlation between growth and division [25].
Here, we provide in-depth statistical analysis to address four main biological questions: (1) Is S/G2/M duration

approximately constant across cells or does it vary among mothers and daughters?; (2) Is S/G2/M duration indepen-
dent of cell size?; (3) Is size at birth independent of size accumulated over the cell cycle?; and (4) Is there evidence for
inter-cycle dependencies in cell-cycle progression that accompany known intra-cycle dependencies? We analyze three
microscopy datasets comprising different genetic and nutrient environment conditions [2]. We conduct a Bayesian
regression analysis to further investigate the dependence between cell growth and division within and between cycles
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FIG. 2: Density plots of S/G2/M durations for mother and daughter cells in the three different experimental conditions. Rug
plots appear below each density plot.

and comprehensively evaluate the plausibility of different models of correlation. We introduce a novel hierarchical
statistical model [26, 27] of budding yeast cell division at the single-cell level to formally characterize inter-cycle cor-
relations in cell-cycle progression. Our analysis offers fresh biological and methodological insights on the extent and
nature of coordination between cell division and cell growth, as well as a novel framework for formally characterizing
dependencies within and between cells in these and other biological processes.

II. SINGLE-CELL ANALYSIS OF BUDDING YEAST SIZE CONTROL MODELS

A. Single-cell measurements of Saccharomyces cerevisiae growth and division

Single-cell data of haploid budding yeast were acquired from a previously published study [2]. The study followed
cell-cycle progression and growth in 26 wild-type lineages (782 cells) grown in glucose, 19 6×CLN3 lineages (376
cells) grown in glucose, and 21 wild-type lineages (518 cells) grown in glycerol/ethanol. Only those cells (or a subset
thereof where specified) with fully observed cell-cycle durations were retained for subsequent processing and analysis,
resulting in 213 wild-type cells in glucose, 99 6×CLN3 cells, and 157 wild-type cells in glycerol/ethanol.
Cell-cycle progression was measured using the times of occurrence of two landmark cell-cycle events for each yeast

cell on the plate: the appearance and disappearance of the myosin ring, visualized by tagging Myo1p with green
fluorescent protein (GFP) (Figure 1). The myosin ring is a contractile structure that appears late in G1, just prior to
the appearance of the bud [28] (Figure 1). Cell growth was monitored with the red fluorescent protein, DsRed, which
was placed under the control of the promoter of ACT1, the constitutively expressed actin gene. In this way, total red
fluorescence in a cell served as a proxy for total protein content or cell mass. Red fluorescence in a cell was quantified
at each time point and suitably normalized across all cells in a microcolony (Supplement).

B. Size-dependent differences in S/G2/M duration between mothers and daughters

Budding yeast cells born at a smaller than average size tend to undergo longer G1 phases to reach a sufficient size
for cell-cycle entry, manifesting as a dependence between cell size and division within a given cell cycle. Under the
assumption that mothers and daughters complete G1 at roughly the same size, the cells could maintain a consistent
cell size distribution from generation to generation provided the amount of time they spent in S/G2/M was similar
on average. As such, we tested whether combined S/G2/M duration is similar across mother and daughter cells [9].
To assess differences in the observed mother and daughter S/G2/M duration, we performed two-sided nonparametric

Wilcoxon rank sum tests in the three datasets (Figure 2 and Table I). For this analysis, we separated mother and
daughter S/G2/M durations. We used a subset of the mother cells since some S/G2/M durations were associated
with the same mother in consecutive cell cycles (Supplement). We found significantly shorter S/G2/M’s for mothers
compared with daughters for both 6×CLN3 cells and wild-type cells growing in glucose. We also found suggestive
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Dataset Estimate (mins) P-value

Wild-Type (Glu) −6 (−9,0) 0.021

6×CLN3 −12 (−18,−3) 0.001

Wild-Type (Gly/Eth) −6 (−12,0)∗ 0.166

TABLE I: Differences in S/G2/M duration between mother and daughter cells. Cell counts are the same as in Figure 2.
Estimates of differences in S/G2/M duration and 95% confidence intervals (in parentheses) are shown. ∗Before rounding of
interval estimates for display purposes, interval for wild-type cells in glycerol/ethanol included 0 while interval for glucose did
not (hence different p-values).

Wild-Type 6×CLN3 Wild-Type

Glucose (N=44 pairs) Glucose (N=16 pairs) Gly/Eth (N=26 pairs)

Parameter Estimate (P-value) Estimate (P-value) Estimate (P-value)

Intercept −0.26 (1.03×10−6) −0.06 (0.366) 0.09 (0.068)

Coefficient −1.16 (2.19×10−8) −0.68 (0.047) −0.36 (0.061)

TABLE II: Regression of daughter-mother differences in size at budding on differences in log S/G2/M duration. P-values (in
parentheses) are for the test of zero-valued estimates. Fitted masses at budding were computed from linear regressions on the
logarithm of each cell’s growth traces (Section II, Supplement). P-values less than 0.001 are shown in scientific notation.
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FIG. 3: Scatter and marginal plots of mother-daughter differences in log S/G2/M duration and mass at budding. Marginal
density plots of each variable are shown on the diagonal. In the lower off-diagonal panels appear the Spearman rank correlation
coefficients. Scatter plots along with best linear fit lines (green), loess smoothed fit lines (solid red) and loess spread lines
(dashed red; root-mean-squared positive and negative residuals) appear in the upper diagonal panels. The loess span was 1.0.
Daughter-mother pair counts are those listed in Table II.

(but not significant) differences in S/G2/M for wild-type cells growing in glycerol/ethanol.
One potential explanation for these differences in S/G2/M duration is that daughter cells smaller than their mothers

at the onset of S/G2/M might require more time to complete the budded period. We tested this hypothesis by pairing
mother cells from the previous analysis with their first daughters. Here, mother-daughter pairs only consisted of
daughter cells whose immediate mother was not also a daughter cell herself. We then fit a linear regression of the
daughter-mother difference in log S/G2/M duration on the differences in estimated mass at budding (Figure 3). In
this regression model, the intercept represents the conditional expected difference between daughter and mother log
S/G2/M durations independent of size differences and the coefficient is the slope in terms of differences in fitted masses
at budding. In two of the three experimental settings, the difference between daughter and mother mass at budding
was a significant negative predictor of differences in log S/G2/M duration (Table II). Thus, daughters smaller than
their mothers at the point of cell-cycle entry tended to spend more time in S/G2/M. Collectively, these results provide
evidence that S/G2/M duration is systematically different between mother and daughter cells, and, surprisingly, we
identify a growth-related component to this difference.

C. Significant associations observed between size at birth and size accumulated

Recent studies in bacteria and budding yeast have suggested a compelling alternative model for size control called
the ‘adder’ model [6, 11–13] which posits that the size added by cells during the cell cycle is roughly constant from cell
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Madd,full Madd,sg2m

Dataset Cell Type P-value P-value

Wild-Type (Glu) Mothers (N=78) 0.011 0.188

Daughters (N=70) 2.10×10−8 0.183

6×CLN3 Mothers (N=35) 2.22×10−4 0.003

Daughters (N=34) 1.69×10−4 0.001

Wild-Type (Gly/Eth) Mothers (N=58) 3.82×10−7 0.001

Daughters (N=44) 4.49×10−5 0.172

TABLE III: Test of no correlation between size at birth and mass accumulated over the cell cycle. The third column shows
p-values for the correlation between mass at birth (M0) and mass added over the entire cell cycle (Madd,full). The fourth
column shows p-values for the correlation between birth mass and mass added during S/G2/M (Madd,sg2m). P-values less than
0.001 are shown in scientific notation.

to cell and independent of the cell’s size at birth. To evaluate evidence for this hypothesis in our data, we analyzed
the association between the observed birth mass (M0) and mass accumulated between birth and division (Madd =
Mdiv − M0). Interestingly, we find strong negative correlations between mass at birth and mass accumulated over the
cell’s life in every cell type and every condition (see Figure 4). Moreover, the correlations we observe are all significant
with two-sided hypothesis tests of the Spearman rank coefficients (Table III).
One possible explanation for the association we observe is that it is driven primarily by a negative correlation between

mass at birth and size accumulated during G1 (more classical size control dependence) and that mass at birth and size
accumulated during S/G2/M are uncorrelated. However, we observe significant negative associations between mass
at birth and size accumulated during S/G2/M, particularly in 6×CLN3 cells (Table III). These correlations might
indicate a compensatory mechanism during S/G2/M to overcome disabled G1 size control and ensure robust cell size
at division. In aggregate, we find no evidence for ‘adder’ model effects in our time-lapse datasets.

D. Post-G1 dependence between cell-cycle progression and cell growth

As aforementioned, budding yeast daughter cells tend to spend more time in G1 than their mothers to reach a
sufficient size for cell-cycle entry. This reflects an association between G1 duration and cell size at birth. It has
been hypothesized that G1 is the primary period during which cell-cycle progression depends on cell size and that
S/G2/M progression is largely independent of size, subject instead to a timing mechanism [10]. Moreover, analyses of
coordination between growth and division have focused primarily on dependencies within rather than across cell cycles.
However, given that budding yeast cells divide asymmetrically, leading to partitioning of organelles and other cellular
contents between mothers and daughters, it is plausible that cell-cycle progression might depend on characteristics of
the cell’s mother as well as on the size of the cell itself.
Classically, one would analyze the correlation between a cell-cycle interval (e.g. G1) and the cell’s size at the

beginning of that interval. Here, by conditioning on more predictor variables, we can estimate the relative effects of
a cell’s size and the growth and division characteristics of its mother on the cell’s current cell-cycle durations. So, we
first computed growth characteristics of a cell and its immediate antecedent cell. Using the single-cell growth traces
of each cell j and its immediate predecessor cell (Pa(j); mother cycle that immediately preceded cycle of cell j) in
lineage i, we estimated growth-related variables (α̂i,j , α̂i,Pa(j), M̂0,i,j , M̂0,i,Pa(j), M̂B,i,j, and M̂B,i,Pa(j)) by assuming
exponential single-cell growth kinetics and fitting a separate linear model to the logarithm of each cell’s growth trace
([2]; Supplement). The fitted intercept of this linear model gave the estimated birth mass (M̂0,i,j) of cell j from
each lineage i while the slope gave the estimated mass accumulation rate (α̂i,j). We also retained the fitted mass
at budding of each cell (M̂B,i,j). We then fit linear regression models of log S/G2/M durations on these cell-level
estimates as well as on the log S/G2/M durations of the cell’s predecessor (Si,Pa(j)).
Here, a model represents a particular pattern of dependence between growth and division and is determined by

the set of predictor variables included in the regression. As we have 7 different predictor variables (not counting
the included intercept term, µS), there are 27 = 128 possible regression models. To infer the most plausible model
of dependence between size and cell-cycle progression while explicitly accounting for uncertainty in the model spec-
ification, we conducted Bayesian model averaging [25]. Since we didn’t have strong prior information about the
dependencies between these variables, we assumed that each regression model was equally plausible a priori. We then
computed posterior probabilities of each model for mother cells (Figure 5) and daughter cells (Figure 6). For the
analysis of mothers, we retained every other cell cycle of the mother cell starting with its most recent cycle in the
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FIG. 4: Scatter plots and univariate density plots of mass at birth and mass accumulated from birth to division for mother and
daughter cells in all three experimental conditions. The layout and content of each of the six panels is the same as in Figure 3.
Cell counts are in Table III.

lineage, accounting for potential correlations between different cycles of the same mother. This procedure resulted
in 53 wild-type pairs in glucose, 25 6×CLN3 pairs, and 46 wild-type pairs in glycerol/ethanol. For the analysis of
daughters, we used the mother-daughter pairs of a previous analysis (cell counts provided in Table II).
When we consider mother-to-mother dependencies, we find a strong association for wild-type mothers between log

S/G2/M duration and growth characteristics, particularly mass at budding (Figure 5, left and right panels). Mass
at budding (MB) was included in nearly every enumerated model with non-zero posterior probability (Figure 5)
indicating that mass at budding was an informative predictor of mother log S/G2/M duration (∼82% posterior
probability of inclusion; log10(Bayes factor) = 0.657 or ‘substantial evidence’ for inclusion [29]). Mass at birth (M0;
∼74% posterior probability) and mass accumulation rate (α; ∼71% posterior probability) also tended to be included
as predictors. Likewise, for a mother growing in glycerol/ethanol, we detect an association between her current log
S/G2/M duration and mass at birth (∼64% posterior probability) and budding (∼61% posterior probability; Figure 5,
right panel). In addition, the posterior means (averaged across all models) of the included regression coefficients for
mass at budding for wild-type mothers in glucose (−1.129) and glycerol/ethanol (−0.262) were consistent with classical
G1 size control (larger mass at budding corresponds to less time spent in S/G2/M). This pattern of dependence has
not previously been observed in mother cells, potentially due to the fact that we are conditioning on multiple growth
and division characteristics for the cell’s current and previous cycles. We did not see such patterns of dependence
for 6×CLN3 mother cells. Importantly, we also did not find strong evidence for dependence between a wild-type or
6×CLN3 mother’s log S/G2/M duration and her characteristics in her previous cycle (Figures 5). So, conditioned
on summaries of the mother’s current cycle, her log S/G2/M duration can be considered independent of her previous
growth and cell-cycle progression.
Extending this analysis to mother-to-daughter associations, we again discovered patterns of dependence between a

cell’s log S/G2/M duration and mass at budding (MB): for wild-type daughter cells growing in glucose (Figure 6, left
panel). Mass at budding was included as an explanatory variable for the wild-type daughter’s log S/G2/M duration (in
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FIG. 5: Bayesian adaptive sampling results for mother cells. Shown are the top 20 models (columns ranked by posterior
probability) where colored squares indicate that the corresponding predictor variable is included in the model and black
squares indicate exclusion of the variable.
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FIG. 6: Bayesian adaptive sampling results for daughter cells. Panel layout and content is the same as in Figure 5.

glucose) in nearly all models with non-zero probability (∼93% posterior probability of inclusion; log10(Bayes factor)
= 1.118 or ‘strong evidence’ for inclusion according to [29]; Figure 6, left panel). As in the previous analysis, the
model-averaged posterior mean of the included regression coefficient was −0.616, an estimate consistent with classical
G1 size control. We also found mild associations between log S/G2/M duration and other growth characteristics
in all three conditions (Figure 6). In particular, we note an association between log S/G2/M duration and mass
accumulation rate in glycerol/ethanol (∼58% posterior probability of inclusion). The model-averaged posterior mean
of the included regression coefficient for mass accumulation rate was −18.391, indicating that daughters with larger
mass accumulation rates spent less time in S/G2/M. Collectively, our findings for both mother and daughter cells run
counter to the notion that S/G2/M duration is independent of size.

III. HIERARCHICAL MODELING OF CORRELATION IN BUDDING YEAST CELL DIVISION AT
THE SINGLE-CELL LEVEL

The regression framework used in the previous section highlighted associations between growth and division within
and across cycles. However, we limited our analysis to rigidly defined mother-mother and mother-daughter pairs and
did not take advantage of the inherent hierarchical organization of the data (i.e. cells make up lineages, multiple
lineages are observed for each experimental condition). Moreover, simply computing sample-based estimates of inter-
cell correlations would preclude separation of cell-to-cell variation in cell-cycle progression from variation due to
measurement error. Hierarchical models provide a formal framework to represent such structure and naturally pool

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2016. ; https://doi.org/10.1101/082735doi: bioRxiv preprint 

https://doi.org/10.1101/082735
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

Cell 10

Cell 101

Cell 100

Mother Sub-Lineage

Cell 11

Cell 111

Cell 110

Daughter Sub-Lineage
Cell 1

FIG. 7: Illustration of single-cell lineages and classification of cell types. Shown is a typical single-cell lineage tree from the
dataset of Di Talia et al., 2007. Arranged along each branch of the lineage tree are images of representative cells undergoing
cell-cycle events. Binary cell labels ending in 0 indicate a mother cycle while labels ending in 1 indicate a daughter cycle.

information across replicate lineages as well as allow for estimation of cell-specific and noise-related sources of variation.
An important property of these models is the potential to reduce parameter estimation error relative to sample-based
approaches by shrinking cell-specific parameter estimates towards sample (population) estimates [26]. For these
reasons, and to more effectively characterize dependencies between cells, we opted to analyze single-cell cell-cycle
durations with a novel hierarchical model.

A. Observing a cellular branching process

To motivate our model, we consider how the single-cell data are acquired using time-lapse microscopy. A single
yeast cell (the founder cell; cell 1 in Figure 7) growing on the agarose slab is identified at the onset of the time-lapse
experiment. Each founder cell generates a lineage consisting of two fully observed sub-lineages (Figure 7). The mother
sub-lineage consists of the founder’s first cell cycle after division from its daughter (‘mother origin’) and her progeny.
The daughter sub-lineage consists of the founder cell’s first daughter (‘daughter origin’) and her progeny. Non-origin
cells of these sub-lineages are hereafter referred to as ‘mother’ and ‘daughter’ cells.
For these sub-lineage cells, we observe the time since the start of the time-lapse experiment of the appearance and

disappearance of the cell’s myosin ring. We refer to these times as budding and division times, respectively. In our
notation, the budding time for cell j from lineage i is Bi,j and the division or cycle time is Ci,j (Figure 8). We
transformed these times to cell-specific budding (Brel

i,j) and division (Crel
i,j) durations (Figure 8; Supplement). To refer

to durations specific to each cell, we adopted the binary indexing scheme of Di Talia et al. [2].
We view the budding and division durations from each lineage (as in Figure 8) as noisy observations from an

underlying branching process (illustrated in Figure 9). The branches of the tree in Figure 9 represent the expected
observed division durations for each cell. The cell’s expected budding duration is some fraction of this branch length.
To identify inter-cycle correlation in cell-cycle progression, we assume that the branch lengths in the process may
depend on one another. Further details of model construction follow.

B. Likelihood and error model for budding and division observations

The first (or lowest) level of our hierarchical model captures noise or error in observations while higher levels of the
hierarchical model will capture cell-to-cell variability. Here, we first assumed that the elapsed times from which the
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FIG. 8: Sample diagram of budding and division observations arising from the time-lapse microscopy experiments. Here,
an example mother origin cell (cell 10) of the sub-lineage proceeds through the cell cycle, undergoing budding and division.
Dividing from her daughter (cell 101), the mother origin becomes mother cell 100 and undergoes another round of division.
The ellipses following the lineage leaves indicate that other lineages could be larger.

durations for cell j in lineage i were derived were independent and normally distributed with means µBi,j
and µCi,j

and variance τ2. While the observed cell-cycle durations are positively valued, we use normal errors at the lowest
level of the hierarchical model rather than alternative error models (e.g. log-normal) as we don’t expect multiplicative
errors from the manual recording of budding and division events. Rather, as will be discussed in a later section, we
constrain the branch length parameters to be positively valued. After transformation of elapsed times into durations,
the likelihood of all budding and division durations for lineage i is:

(

B̃rel
i

C̃rel
i

)

∣

∣

∣
γ̃i, β̃i,Θpop, τ

2 ∼ MVNorm(Aµ̃i, τ
2AA′).

Here, A is a linear transformation matrix and µ̃i is a vector of the expected budding and division durations for lineage
i. γ̃i is a vector containing two types of cell-specific parameters that make up the branching process of a lineage:
the expected base cell-cycle durations for each cell in lineage i (λi,js) and extensions to expected daughter cell-cycle
durations due to smaller size at birth (δi,js). Θpop is the set of population-level parameters {Λ,∆,σ2

λ,σ
2
δ ,ψ, ρ,φ} (see

Table IV) that specify correlation and cell-to-cell variation in the λi,js and δi,js. The vector β̃i contains another set
of cell-specific parameters (βi,js): the fraction of a cell’s λ branch in the unbudded phase. We describe the model for
the means (µ̃i) of the observations and the remaining parameters in the next section.

C. Representing inter-cycle dependence and cell-to-cell variability with an asymmetric branching process

The second level of the hierarchical model consists of cell-specific parameters (e.g. branch lengths) that give the
expected value of a cell’s budding and division durations for a particular lineage. This second level comprises a
branching process in which the branch lengths are potentially correlated and vary from cell to cell (Figure 9). The
branch lengths for a lineage i are represented by a vector γ̃i, composed of two sets of parameters: λi,js and δi,js. The
δs account for longer daughter cell cycles due to smaller birth sizes. To measure correlation between these branch
lengths, we introduced three parameters: ψ, ρ, and φ (Figure 9, Table IV)
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Parameter Description

Λ population average of mother cell-cycle duration (minutes)

∆ population average of daughter cell G1 extension duration (minutes)

ψ correlation between λs from two successive mother cycles

ρ correlation between a mother’s λ and her daughter’s λ

φ correlation between a mother’s λ and her daughter’s δ

σ2
λ variance in cell-specific λ branch lengths (minutes2)

σ2
δ variance in cell-specific δ branch lengths (minutes2)

µm expected proportion of λ spent unbudded in mothers

µd expected proportion of λ spent unbudded in daughters

ηm prior weight of information for mother unbudded period

ηd prior weight of information for daughter unbudded period

τ 2 variance in measurement error (minutes2)

TABLE IV: Population parameters of hierarchical model

FIG. 9: A diagram of the asymmetric branching process specifying expected cell-cycle durations for each cell. The diagram
is drawn to indicate the branch lengths that give rise to the budding and division durations in Figure 8. λ10 is the expected
cell-cycle duration of mother origin cell 10. The expected cell-cycle duration of her subsequent cycle is λ100, which depends on
her first cell cycle through the correlation parameter ψ. For the daughter branch, two parameters specify the cell’s expected
division duration: δ101 and λ101. These branch lengths depend on the mother’s cell-cycle duration through the correlation
parameters ρ and φ, respectively.

As noted in previous work [30, 31] and since the cell-cycle durations are positively valued, we jointly model all
branch lengths for a lineage i (γ̃i) with a multivariate log-normal distribution. That is:

γ̃i = exp(γ̃∗i ) (1)

with

γ̃∗i |Θ
∗

pop ∼ MVNorm(µ∗

γ̃i
,Σ∗

γ̃i
). (2)

Here, γ̃∗i is the vector of cell-specific branch lengths on the natural logarithmic scale. These log-scale durations
follow a multivariate normal distribution with a structured covariance matrix Σ∗

γ̃i
. In this covariance matrix, we

encode a simple model of inter-cycle dependence. With no strong expectations of the extent of inter-cycle correlation
structure, we consider the simplest model for inter-cell correlation: that the expected log-scale cell-cycle duration
of a newly arisen cell depends solely on the expected log-scale cell-cycle duration of its predecessors in the lineage
only through its mother. As we do not observe the cell-cycle durations of each lineage’s founder cell (Figure 7), this
correlation structure dictates that the branch lengths of the mother origin (λi,j) and daughter origin are correlated
with one another, and we model them accordingly (Supplement).
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The mean vector µ∗

γ̃i
consists of parameters Λ∗ and ∆∗ (counterparts of Λ and ∆ on the log scale). Σ∗

γ̃i
is

parameterized by log-scale analogues of ψ, ρ, φ, σλ, and σδ. To infer parameters on the original scale (Table IV), we
transform the log-scale analogues (Supplement).
As with the λ and δ parameters, each cell has a parameter indicating the proportion of its λi,j it spends in the

unbudded state: βi,j . The vector β̃i comprises these cell-specific parameters for lineage i.
Now, we can compute the expected value of a cell’s observed budding and division durations. For example, if a cell

j is a mother cell then:

µBi,j
= E[Brel

i,j | γ̃i, β̃i,Θpop] = βi,jλi,j (3)

and

µCi,j
= E[Crel

i,j | γ̃i, β̃i,Θpop] = λi,j . (4)

On the other hand, if cell j is a daughter cell, then:

µBi,j
= E[Brel

i,j | γ̃i, β̃i,Θpop] = δi,j + βi,jλi,j (5)

and

µCi,j
= E[Crel

i,j | γ̃i, β̃i,Θpop] = δi,j + λi,j . (6)

The third level of our hierarchical model (represented by population-level parameters Θpop; Table IV) encapsulates
patterns of cell-cycle progression and inter-cycle dependence shared across replicate lineages in a given experimental
condition. Owing to the hierarchical structure of the data, we assume for each experimental condition that the
branch lengths (λi,js and δi,js) from all lineages are drawn from the same distribution: the multivariate log-normal
distribution parameterized by Λ, ∆ and other parameters of Θpop. More formally, the branch lengths are exchangeable
within a given experimental condition [26]. We make a similar assumption for the cell-specific βi,js: the unbudded
proportions are exchangeable within a given cell type (mother or daughter) and experimental setting.

βi,j ∼

{

Beta(µmηm, (1− µm)ηm) if cell j is a mother

Beta(µdηd, (1− µd)ηd) if cell j is a daughter
(7)

D. Hierarchical model fitting uncovers variation in cell-cycle progression across experimental conditions and
between mothers and daughters

Fits of the hierarchical model to the three different datasets suggest distinct patterns of cell-cycle progression. As
shown in Table V, population average mother cell-cycle duration (Λ) was approximately 88 minutes for wild-type cells
in glucose. In contrast, mother cells divided nearly twice as slowly in glycerol/ethanol (∼146 minutes). Since Cln3 is
a rate-limiting factor for cell-cycle entry [2, 32], daughters with 6 copies of CLN3 show quite short G1 extensions (δ)
compared to wild-type daughters grown in glucose (Table V). Likewise, the estimated spread in 6×CLN3 daughter
G1 extensions (σ2

δ ) was much smaller compared to the corresponding estimates for wild-type cells, reflecting greater
availability of Cln3 protein [2]. In contrast, wild-type daughters in glycerol/ethanol took nearly 95 minutes more to
complete G1 (on average) than their mothers [33].
A benefit of our hierarchical approach is the ability to separate cell-to-cell variation in cell-cycle progression from

measurement error. As mentioned previously, while inferences for σλ do not change much between the two types of
cells grown in glucose, σδ is dramatically reduced in 6×CLN3 cells reflecting differences in cell-cycle progression one
might expect. However, as the cells were grown in similar conditions, differences in cell-cycle progression should have
little effect on an experimenter’s ability to record budding and division times, and so, measurement error should be
similar. Importantly, inferences for τ for all three conditions are similar to one another (95% confidence intervals
overlap).
As part of our deeper investigation of inter-cycle dependence, we generated inferences for the three correlation

parameters in the model (ρ, ψ, and φ). As shown in Table V, no strong correlations exist in the two strains grown
in glucose (wild-type and 6×CLN3) with all 95% posterior confidence intervals overlapping 0. However, we do see
moderate mother-to-mother λ correlations (ψ) for wild-type cells grown in glycerol/ethanol. As we did not detect
mother-to-daughter correlations in the same conditions, the inferences for ψ suggest that cells in glycerol/ethanol
tend to retain the rate of cell-cycle progression with which they are born. This correlation could not be explained
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Wild-Type 6×CLN3 Wild-Type

Glucose (N=213) Glucose (N=99) Gly/Eth (N=157)

Parameter Estimate Estimate Estimate

Λ 87.60 (85.08,90.33) 95.80 (92.40,100.79) 145.24 (139.19,152.34)

∆ 25.55 (20.21,31.30) 18.57 (12.20,23.03) 94.02 (81.68,107.78)

µm 0.18 (0.16,0.19) 0.15 (0.13,0.17) 0.25 (0.23,0.27)

µd 0.13 (0.09,0.17) 0.05 (0.01,0.11) 0.22 (0.17,0.27)

ηm 23.19 (18.45,28.77) 25.48 (19.02,33.19) 22.84 (17.89,28.49)

ηd 16.53 (11.51,23.33) 20.39 (13.48,28.22) 23.37 (16.56,31.56)

ψ −0.07 (−0.31,0.20) −0.03 (−0.38,0.50) 0.46 (0.22,0.65)

ρ −0.18 (−0.41,0.08) −0.29 (−0.61,0.12) 0.21 (−0.13,0.51)

φ −0.20 (−0.40,0.05) −0.64 (−0.84,0.01) −0.02 (−0.26,0.24)

σδ 20.00 (14.63,30.32) 6.56 (2.83,10.11) 42.65 (33.16,56.56)

σλ 15.30 (13.66,17.20) 15.72 (13.49,18.82) 26.07 (22.54,30.11)

τ 1.31 (0.93,1.91) 1.43 (0.99,2.30) 1.45 (0.96,2.30)

TABLE V: Posterior inferences (modes and 95% highest posterior density intervals) for model parameters. Λ, ∆, σδ, σλ, and
τ are in minutes. Cell-specific unbudded duration parameters, µm and µd, range from 0 to 1.

by drift in cell-cycle progression due to a cell’s replicative age or time spent by the cells on the plate (Supplement).
However, considering our previous Bayesian regression analysis (Part I, Section D), this cell-cycle dependence is likely
mediated by growth characteristics of the mother cell in her current cycle. To rule out the possibility that this result
is an artifact of over-fitting the data, we carried out a leave-one-out cross-validation analysis to evaluate the capacity
of different models of inter-cycle correlation to predict the observed cell-cycle durations of left-out cells. The results of
this analysis were consistent with our parameter inferences in that models lacking ψ predicted the observed cell-cycle
duration of wild-type cells in glycerol/ethanol more poorly (Supplement).
Overall, this statistical framework has generated valuable insights into potential inter-cycle sources of variation in

biological processes.

IV. DISCUSSION & CONCLUSIONS

In this novel analysis we set out to address questions regarding dependencies within and between the fundamental
processes of growth and division. We have found evidence from our analysis contradicting two tenets of budding yeast
size control: a relatively constant S/G2/M duration shared by mother and daughter cells and a lack of dependence
between S/G2/M duration and size. Our statistical analysis, including inferences from our hierarchical model (Sup-
plement), also demonstrated that combined S/G2/M duration appeared longer on average in daughter cells compared
with mother cells. Moreover, we detect a size-related component underlying these differences in S/G2/M duration.
In support of our results, at least one classical study with single cells has noted that the budded duration was mildly
longer (5–8 minutes on average) for daughters compared with mothers under a range of different growth conditions [34].
These observations are important because experimenters and modelers might otherwise assume approximately similar
S/G2/M durations across cell types or simpler dependence structure between size, G1 and S/G2/M that might not
be present in their experimental conditions, potentially affecting downstream conclusions about coordination between
growth and division.
Our Bayesian regression analysis uncovered patterns of dependence between cell size characteristics and S/G2/M

duration for wild-type cells in two different nutrient conditions. Post-G1 dependence between growth and division
has been observed in budding yeast strains engineered for phase locking [35] and predicted by dynamic models of
cell-cycle progression [31, 35]. In particular, we note phenotypic similarities between the post-G1 size dependence
we observe in 6×CLN3 cells and that observed in a study of strains in which the G1 cyclin, CLN2, was under
the control of the inducible MET3 promoter [35]. As in that study, we see both reduced G1 duration variability
(Supplement; σδ in Table V) and overall cell-cycle durations in 6×CLN3 cells similar to wild-type cells. Our analysis
more comprehensively demonstrates these patterns in S/G2/M, identifying these dependencies in wild-type cells and
in mother cells as well as daughter cells, on which size control studies have traditionally been focused. Our analysis
also takes into account new sources of variation (e.g. inter-cell dependencies) to qualify these dependencies. This
analysis coupled with our finding of no evidence for ‘adder’ model effects in our data add to evidence for compensation
in cell-cycle time during S/G2/M and raises the question of whether size control exists outside of G1 in budding yeast.
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Dual, complementary mechanisms of size control have been noted in the fission yeast, Schizosaccharyomyces pombe,
with a strong size control imposed at the G2/M boundary and a weaker compensatory size control imposed at the
G1/S boundary [10]. However, while our findings seem at first glance to extend the classical model of size control in
budding yeast, we caution that this observed dependence does not necessarily imply a true size control mechanism.
Rather, this association could be related to compensation in cell-cycle time due to premature cell-cycle entry or the
activation of a cell-cycle checkpoint [36] due to perturbed cell-cycle progression.
Consequently, our analysis has generated experimentally testable hypotheses about the molecular basis of post-G1

size dependence and insights for future studies of size control. While the dependence we observe in 6×CLN3 cells, for
example, is likely not due to activation of the morphogenesis checkpoint [37], other molecular targets related to DNA
replication checkpoints (e.g. Rad53) or cryptic budding yeast size control (e.g. Bck2) should be tested to ascertain
their relative effects on dependence between mass at budding and S/G2/M. Recent experimental work in budding
yeast suggests an intriguing mechanistic model for size control in which dilution of Whi5 as the cell grows in volume
dictates cell cycle entry at the G1/S transition [5]. This work could be extended to analyze changes in concentration
of Whi5 and other proteins during S/G2/M to identify potential mechanistic bases for the dependencies we observe.
We do not detect evidence in our datasets for an ‘adder’ model of size control. Instead, we detect substantial

negative dependencies between size at birth and size accumulated over the cell cycle. An important distinction
between the current study and previous analyses is the measurement of cell size. In our datasets, cell size was
measured via a fluorescent protein-based proxy for cell mass whereas recent work in bacteria and budding yeast has
focused on cell volume [6, 11–13]. Elements of cell volume in budding yeast, particularly the vacuoles, are known to
undergo dynamic, regulated changes over the course of the cell cycle [38]. On the other hand, it’s unclear the extent
to which the fluorescent protein construct used in Di Talia’s datasets is the best proxy for cell size without direct
measurements of cell mass. Therefore, further experimental and analytical studies are required to reconcile these
results and determine whether the type of cell size measurement has any effect on mechanistic conclusions about size
control.
In addition to these contributions, we have developed a novel hierarchical model of budding yeast cell-cycle pro-

gression. In uncovering correlations in cell-cycle progression between wild-type mother cycles in glycerol/ethanol, our
model highlights a potential need for considering between as well as within cell dependencies. If capturing cell-to-cell
dependence is an experimental goal, then time-lapse microscopy is preferable over techniques involving fixed and in-
dependent samples taken over time from an initially synchronized population of cells. From a statistical perspective,
observing more lineages and more generations per lineage allows for better characterization of this dependence. Our
analysis also suggests that both single-cell experimentalists and modelers should at least consider the possibility of such
dependence to avoid potential confounding of other observed between-cell or within-cell dependencies. Dependence
between cell growth and cell division has been thoroughly studied within a given cell cycle. However, the possibility
that this correlation might be mediated by inter-cycle dependencies brought about by changes in environment or
nutrient availability cannot be ignored. Correlations within a cycle could disappear or decrease in magnitude when
conditioning on characteristics of the previous cell or generation. Conversely, conditioning on additional variables
from previous cell cycles might not affect an observed correlation, providing greater context for experimental follow-
up or model construction. In either case, our analysis demonstrates that both experimentalists and modelers can
benefit from considering multi-generational data acquisition and analysis to verify the robustness of their correlation
inferences.
Our model provides a flexible and extensible platform for analysis of intra-cycle as well as inter-cycle dependencies.

The hierarchical specification of our model and our Bayesian approach to inference easily accommodates new lineage
information. We also note that the model is not limited to cell division observations and can be adapted to the
statistical analysis of dependence in any biological process (e.g. by dropping the budding yeast-specific δ and φ
parameters and treating the λ branch parameters as the sole quantity of interest). In addition, while we made use of
the single-cell growth data in our regression analysis, we are finalizing development of extensions to the hierarchical
model to formally fit both the growth and division measurements in a joint analysis, making for a powerful tool
to estimate correlations between multiple biological processes while accounting for dependencies between cells in a
lineage.
This work represents an important step towards understanding the dependencies in cell-cycle progression and cell

growth within and across cells in a dividing population. The statistical model-based approaches described here—
coupled with ongoing time-lapse microscopy studies—will shed new light on cell-cycle and cell growth regulation and
reveal mechanistic insights about the coordination between these two fundamental biological processes.
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