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Abstract 29 

In this study, we analyse RNA-Seq data from panels of human lymphoblastoid cell lines (LCLs) to 30 

identify covariation in the mRNA levels of large numbers of genes. Such large scale covariation may 31 

have biological origin or be due to technical variation in analysis (generally referred to as batch 32 

effects). We show that batch effects cannot explain this covariation by demonstrating reproducibility 33 

across different human populations and across different methods of analysis. This view is also 34 

supported by enrichment of single and combinations of transcription factors (TFs) binding to 35 

cognate promoter regions, enrichment of genes shown to be sensitive to the knockdown of 36 

individual TFs, enrichment of functional pathways, and finally enrichment of protein-protein 37 

interactions in proteins encoded by groups of covarying genes. The properties of the groups of 38 

covarying genes are therefore most readily explained by the influence of cumulative variations in the 39 

effectors of gene expression that act in trans on cognate genes. We suggest that covariation has 40 

functional outcomes by showing that covariation of 83 genes involved in the spliceosome pathway 41 

accounts for 8–16% of the variation in the alternative splicing patterns of genes expressed in human 42 

LCLs. 43 

Introduction  44 

Genetic variation that influences gene expression in humans is thought to be a major mechanism 45 

contributing to human phenotypes.1 The variation in mRNA levels in normal human cells is very 46 

substantial. The mRNA levels of around 14,000 genes expressed and measured by mRNA-Seq in 47 

lymphoblastoid cell lines (LCLs) derived from 88 Yoruban individuals (data from Lappalainen et al.
2
) 48 

has a median of 4.3 fold change by comparing the minimum to maximum expression levels. 49 

Presently, the overall inter-individual genetically derived variation in the expression level of a gene is 50 

best explained by a mix of cis- and trans-acting eQTLs (expression quantitative trait loci) defined as 51 

associated genetic variations local (cis) or distant (trans) to the affected gene based on the 52 

observation that local eQTLs usually act in cis and distant eQTLs usually act in trans.
3
 Huan et al.

4
 53 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/082842doi: bioRxiv preprint 

https://doi.org/10.1101/082842
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

reported that cis-acting eQTLs account for 33–53% of mRNA variability of a single gene whereas 54 

individual trans-eQTLs explain only 2–7%. This information derives from detecting the influence of a 55 

single eQTL on a single gene, be it in cis or in trans, with trans-eQTLs being defined simply by virtue 56 

of having a remote location from the cognate gene. However, it is also clear that the proteins and 57 

RNA elements involved in trans-acting controls on gene expression invariably have multiple gene or 58 

mRNA targets, and so a common feature of variation in trans influences should be that they will 59 

cause simultaneous changes to the mRNA levels of multiple genes.
5
 The impact of variation in these 60 

pleiotropic regulators can be substantial; Lovén et al.6 showed that engineered overexpression of 61 

the MYC gene results in increases in expression of 90% of all genes expressed in the cells and 62 

Cusanovich et al.7 used individual RNAi knockdowns of 59 transcription factors (TFs) to show that 63 

between 39 and 3,892 genes were differentially expressed as a consequence of knockdown of 64 

individual TFs. The knockdown of each TF mRNA level ranged 52–92% of normal in the target LCL, 65 

and analysis of mRNA encoding TFs measured in LCLs of multiple normal human beings reveals very 66 

similar levels of variation (Figure S1). This observation suggests that variation in TF mRNA levels in 67 

normal humans might result from in trans influences upon multiple genes. Moreover, genetic 68 

variations on coding sequences of TFs can affect their DNA-binding activity.8 Such simultaneous 69 

variation could be of substantial importance to phenotypic variation in humans, simply because 70 

many trans controls, particularly TFs, have been implicated in control of genes organised within 71 

pathways of function,7,9–12 suggesting that trans variation might have pathway specific influences.  72 

Detecting trans genetic influences presents two substantial challenges to conventional eQTL 73 

strategies: firstly, very large sample sizes are required to overcome the multiple testing problem 74 

implicit in analysing each mRNA trait against all genomic SNPs, and secondly the influence of a single 75 

trans-eQTL upon a target gene is weak.
4
 An alternative to the gene/eQTL centric approach is to infer 76 

the outcome of trans influence by detecting the correlated variation of the mRNA levels of groups of 77 

target genes in multiple individuals.
10,13

 Covariation of mRNA levels in such an analysis will 78 

necessarily be due to cumulative effects of trans-acting variations, be they caused by TFs or any 79 
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other diffusible regulators, and the detection of these overall effects does not lead to the 80 

identification of the underlying trans eQTLs but rather identifies the cumulative influence of all trans 81 

influences on mRNA levels within the individuals under study. Importantly, detecting covariation of 82 

mRNA levels in a set of genes as an analytic approach is statistically tractable in extant sample sets 83 

because it is not confounded by the trans-eQTL multiple testing problem, nor is it necessarily limited 84 

to identifying the small effect associated with single trans-eQTLs. 85 

However, the major difficulty in detecting covariation due to trans influences is to 86 

distinguish this from the covariation in mRNA levels that is induced by a wealth of technical 87 

artefacts, collectively referred to as batch effects, which are inherent to the analytic methods used 88 

in mRNA level estimation. Such effects include systematic differences in mRNA isolation and yield, 89 

purity, cDNA library or target mRNA construction and ascertainment of yield by both mRNA-Seq and 90 

by microarrays.14 Many methods have been developed15 to control for such batch effects but in most 91 

cases they are explicitly designed to detect and eliminate large-scale covariation in mRNA levels 92 

since these methods are intended to provide accurate mRNA measure on a gene by gene basis. If 93 

trans influences are indeed present on human gene expression then the likely outcome would be 94 

covariation of mRNA levels of multiple genes, that based upon the data of Cusanovich et al.,7 could 95 

number in the thousands. Goldinger et al.16 used eQTL methodology to identify trans effects in 96 

human mRNA samples analysed by microarrays and were able to show that principal component 97 

analysis (PCA), a statistical procedure commonly used to control batch effects, could also remove 98 

trans genetic influences. In this paper, we report an analysis based upon detection of large scale 99 

covariation of mRNA level using PCA to detect simultaneous variation of large sets of genes across 100 

multiple normal individuals. Following the previous analysis of Cowley et al.,
13

 we will refer to these 101 

sets of genes as correlating group of genes, abbreviated to CGG.  102 

We show that the genes within CGGs share multiple biological properties and that this 103 

makes it unlikely that covariation is simply a product of batch effects. Our observations lead us to 104 

suggest that covariation of mRNA levels in sets of human genes is common and could contribute 105 
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directly to human phenotypic variability at both the individual and population level. Further, we 106 

show the covariation of a set of 83 genes that are involved in mRNA splicing has a significant 107 

influence upon splicing patterns of human genes in LCLs.  108 

Materials and Methods 109 

Datasets of mRNA level in human LCLs 110 

1. Lappalainen et al:2 mRNA-Seq data from LCLs using the Illumina HiSeq2000 platform. Reads per 111 

kilobase per million mapped reads (RPKM) values of genes expressed in LCLs from Caucasian 112 

(CEU), Yoruba (YRI), Finns (FIN), British (GBR) and Toscani (TSI) individuals were obtained from 113 

ArrayExpress: E-GEUV-1.17 We selected expressed genes defined as genes with non-zero RPKM 114 

values across all LCL samples yielding 15,016 genes from CEU, 14,918 genes from YRI and 15,231 115 

genes from FIN+GBR+TSI. Where available, RPKM values of duplicate samples from the same LCL 116 

were averaged for each gene. We inspected log10 transformed RPKM distributions for all 117 

samples and excluded 1 YRI, 2 FIN and 1 GBR samples with outlier distribution, resulting in RPKM 118 

values of 88 individuals from YRI, 91 individuals from CEU and 279 individuals from FIN+GBR+TSI. 119 

88 individuals were then randomly selected from CEU and FIN+GBR+TSI dataset to make 3 120 

datasets with the same sample size. To correct for confounding effect of gender on mRNA level 121 

measurements, linear regression of each mRNA level profile on gender was then applied using R 122 

function lm. 123 

2. Pickrell et al:
18

 mRNA-Seq data from LCLs from 69 Yoruba individuals sequenced at Yale (YRI Yale) 124 

and Argonne (YRI Argonne) sequencing center using the Illumina GAII platform (GEO: GSE19480), 125 

and Montgomery et al:19 mRNA-Seq data of LCLs from 60 Caucasians (CEU) using the Illumina 126 

GAII platform (ArrayExpress: E-MTAB-197). To quantify mRNA level of genes, for both RNA-Seq 127 

data from Pickrell et al.18 and Montgomery et al.19 reads were mapped to the human reference 128 

genome GRCh37 using BWA20 and Samtools,21 and then counted using Rsamtools22
 and 129 

GenomicRanges23 based on human gene annotations from Ensembl Genes 69.24 RPKM values 130 
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were then calculated for each gene. We detected expressed genes including 12,171 genes from 131 

YRI Yale data, 12,385 genes from YRI Argonne data, and 9,418 genes from CEU data. RPKM 132 

values of duplicate samples from the same LCL were averaged for each gene. We inspected 133 

log10 transformed RPKM distributions for all samples and excluded 1 YRI Yale, 1 YRI Argonne 134 

and 6 CEU samples with outlier distribution. RPKM values with the remaining 68 individuals from 135 

YRI Yale data, the same 68 individuals from YRI Argonne data, and 54 individuals from CEU data 136 

were included in the following analysis. Linear regression of each mRNA level profile for YRI Yale 137 

and Argonne data was carried out against sample RNA concentration and gender, and for CEU 138 

data against gender, in both cases using R function lm.  139 

3. Stranger et al:25 gene expression microarray data from LCLs from 109 Caucasian individuals using 140 

Illumina’s Human-6 Expression BeadChip version 2. Normalized mRNA level values were 141 

obtained from ArrayExpress: E-MTAB-198. We detected 15,211 expressed genes from the 142 

microarray mRNA level dataset. Linear regression of each mRNA level profile on gender was 143 

performed using R function lm. 144 

Principal component analysis 145 

To calculate mRNA level matrices X with sequentially removed principal components (PCs), 146 

we scaled each log10 transformed mRNA level profile into mean 0 and standard deviation 1, and 147 

then performed PCA on mRNA level data for each dataset using R function svd. After obtaining 148 

X=UDV
T, we performed filtering of the first k PCs by setting the first k diagonal elements of the D 149 

matrix to zero, denoted as Dk, and then calculated Xk using Xk=UDkV
T, so that the variance explained 150 

by the first k PCs was removed from mRNA level matrix X. 151 

mRNA correlation analysis 152 

We calculated correlations of all gene pairs from all mRNA level matrices using absolute 153 

Spearman’s correlation coefficient |ρ| computed via the R function cor. To generate the null 154 

distribution of correlation, 1000 permutations were applied to each mRNA level matrix by randomly 155 

permuting the individual labels of each gene expression profile across individuals. Gene correlations 156 
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with the permutation p-value < 0.01 were considered as significant (Figure S2 and Table S1). Gene 157 

correlation networks were then built by connecting gene pairs with correlation above the threshold 158 

by edges using function graph.edgelist from igraph.
26

  159 

Simulation of batch effects 160 

 To investigate the influence of batch effects on the detection of co-varying genes, we 161 

simulate artificial batch effects by increasing gene expression level of random sets of genes in 162 

random 44 out of 88 RNA-Seq samples. All RPKM values were first log10 transformed and 163 

normalized to have 0 mean and unit 1 standard deviation (SD), and then an offset (0.5, 1.0, 1.5 or 2.0 164 

SDs) were added to expression level of random genes (200, 500, 1000 or 2000 genes) in random 44 165 

samples. We found that adding offset of 0.5, 1.0, 1.5 or 2.0 SDs correspond to 1.15, 1.33, 1.54 and 166 

1.78 fold change of RPKM values, respectively. After artificially increasing mRNA levels of certain 167 

genes, we applied the same procedure as described in the main text to identify the combined CGG. 168 

The same simulation process was applied on two gene expression datasets: one is RNA-Seq data of 169 

LCLs from Yoruba individuals,
2
 the other one is the same dataset but with sample labels randomly 170 

permutated for each gene expression profile. The simulation process was repeated 100 times, and 171 

then the median value of summary statistics was recorded.  172 

 173 

Replication analyses  174 

We used Fisher’s exact test to test whether there is significant overlap of genes between 175 

CGGs identified from different data sets using R function fisher.test, Bonferroni corrected for the 176 

number of comparisons that were performed. 177 

PEER and GC-content bias correction 178 

PEER was used in processing mRNA level data with 22 unobserved factors (25% of sample 179 

size) as recommended in Stegle et al..
27

 To investigate the effect of GC-content bias on the 180 

covariation of mRNA level we adapted the GC-content bias correction procedure as described in 181 
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Pickrell et al..18 All expressed genes were first grouped into 200 bins of equal size based on their 182 

gene-level GC content. Then, the log2 relative enrichment of RPKM values was calculated for each 183 

gene bin from each sample. We then fitted a smoothing spline for the relative enrichment of each 184 

gene bin against its mean GC content using R function smooth.spline. Next, we calculated the 185 

predicted over/under-representation of each gene from each sample based on the fitted spline, and 186 

adjusted its RPKM value to remove the effect of different GC content on mRNA level of individual 187 

genes.   188 

Identification of binding sites of transcription factors 189 

TF binding data for human LCL GM12878 was from the ENCODE (Encyclopedia of DNA 190 

Elements) project;28 hg19 coordinates of TF binding regions were obtained from the "Txn Factor 191 

ChIP" track (the wgEncodeRegTfbsClusteredV2.bed.gz file). We used binding regions for 50 TFs (see 192 

Table S2) that are consistently expressed in all 3 RNA-Seq datasets from Lappalainen et al..
2
 We 193 

defined a census promoter region as the 1000 bp upstream to 1000 bp downstream of gene 194 

transcription start site (TSS). Overlaps between TF binding regions and gene promoter regions were 195 

detected using GenomicRanges
23

 and gene annotations from Ensembl Genes 69.
24

 196 

Enrichment analysis for TF binding, TF knock down and KEGG pathways 197 

Enrichment tests were performed by upper-tailed hypergeometric test using R function 198 

phyper, Bonferroni corrected for the number of tests, to determine whether binding of individual, 199 

pairs or combinations of TFs are enriched in promoter regions of CGGs, or whether KEGG pathways 200 

or genes that are differentially expressed from the knockdowns of TF genes from Cusanovich et al.,7 201 

are significantly enriched in CGGs. We retrieved Ensembl gene IDs for 229 KEGG pathways29 using 202 

org.Hs.eg.db.
30

 To identify CGGs with mitochondrial localization, the list of 1158 human 203 

mitochondrial genes were obtained from MitoCarta2.0.
31

  204 
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Analysis of protein-protein interactions 205 

To test for the enrichment of protein-protein interactions (PPIs) among proteins encoded by 206 

CGGs, we used PPI data from STRING.
32

 P values for PPI enrichment were calculated based on a 207 

random background model that preserves the degree distribution of input proteins using function 208 

get_summary from the STRINGdb33 package. 209 

Analysis of alternative splicing 210 

RNA-Seq reads for LCLs from 88 Yoruba and 88 Caucasian individuals2 were mapped to 211 

genomic regions of retained intron (RI) and skipped exon (SE) events using TopHat2.
34

 Annotations 212 

of RI and SE events were obtained from MISO
35

 (specifically the miso_annotations_hg19_v2.zip file). 213 

Only uniquely mapped reads were considered in the following analysis. To quantify the level of 214 

alternative splicing, MISO was used to detect alternative splicing events and calculate the percent 215 

spliced in (PSI) values. To test the association between expressions of spliceosome genes in the 216 

combined CGG and PSI values using YRI and CEU RNA-Seq data,
2
 we calculated the PC1–PC20 217 

eigenvectors of expression profiles of the spliceosome genes to represent their shared expression 218 

pattern across multiple individuals using R function svd. Separately, we calculated the average R2 for 219 

the expression profile of each spliceosome gene and the splicing profile of all RI or SE events in a 220 

linear regression model. Average correlation between splicing profile of individual RI or SE events 221 

and expression profiles of spliceosome genes were calculated using Pearson’s correlation coefficient 222 

r.  223 

Data Availability 224 

All mRNA level data used for gene expression analyses are previously published
2,18,19,25

. Other data 225 

necessary to support the conclusions of this work are represented fully within the article or in the 226 

supplemental material. 227 

 228 
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Results 229 

Experimental design 230 

Our experimental strategy is based upon using PCA to detect groups of genes whose mRNA 231 

levels are covarying. We use three published mRNA level data sets of human LCLs derived by mRNA-232 

Seq, the first from Lappalainen et al.
2
 containing 462 individuals from 5 populations: 91 Caucasians 233 

(CEU), 89 Yoruba (YRI), 95 Finns (FIN), 94 British (GBR) and 93 Toscani (TSI); the second from Pickrell 234 

et al.18 containing 69 Yoruban individuals; and the third from Montgomery et al.19 containing 60 235 

Caucasians. We also analyse a gene expression microarray dataset from Stranger et al.25 containing 236 

109 Caucasians. Full details are in Materials and Methods.  237 

Our approach is based upon the view that trans genetic influences should affect multiple 238 

genes and that we do not know the numbers of genes, nor the scale of variation, that are likely to be 239 

affected. The mRNA level of any gene is conceptually controlled by multiple cis- and trans-acting 240 

elements and so the mRNA level in any given individual will be set by the particular combinations of 241 

cis and trans variables that that individual contains. Each trans variable, such as the level of a single 242 

TF, will act in concert with many other TFs in the individual, contributing to the final level of mRNA 243 

of the cognate genes in the individual.  244 

Based upon this view, we would expect that such expression data assayed from multiple 245 

individuals in a population should demonstrate covariation associated with these shared, trans, 246 

genetic regulatory influences, along with contributions from both other biological regulatory 247 

influences and related technical artefacts. Such shared variation is readily captured by PCA, and 248 

building on the findings of Goldinger et al.16 and related works,36,37 we would predict that different 249 

principal components will contain differing proportion of contribution from both biological and 250 

batch influences upon of variation. Under this assumption, we build our analytical approach as 251 

follows. We can apply PCA on the mRNA level data and the first PC will capture some shared 252 

variance, which in principle is caused by a shared influence. Similarly, the second PC will capture 253 
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variance that might be due to a second influence and this process can be repeated sequentially. 254 

Given we have argued that trans influences are associated with correlated mRNA level variation in 255 

multiple genes, we use correlation statistics to interpret the effect of removal of variance by PCA, 256 

recognising that at this stage we cannot distinguish between correlation due to trans or batch 257 

influences. The process we have developed is detailed in Figure 1. We first set an absolute 258 

correlation level above which we deem the correlation to be significant using a permutation 259 

approach (see below and Figure S2 for justification of correlation thresholds). To illustrate the 260 

process, let us assume we have mRNA level data on multiple genes derived from LCLs of multiple 261 

individuals. In the data prior to PCA analysis (mRNA level matrix X1), we calculate all pairwise mRNA 262 

level correlations (correlation matrix C1) and identify the genes whose mRNA levels are correlated 263 

better than the threshold (Figure 1A, Figure 1B). Following the removal of PC1 (yielding matrix X2) 264 

we recalculate the correlation (matrix C2) and again find genes correlated above the threshold. In 265 

Figure 1C, the Venn diagram is composed of two sets of genes: those genes that are correlated 266 

above the threshold in the source data (C1) and genes that are correlated above the threshold in the 267 

PC1 removed data (C2). For the genes displayed in the sector marked PC1* in Figure 1C, we suggest 268 

that filtering out PC1 has removed variance from these genes that corresponds to shared, and 269 

possibly trans, influences and so reduces their correlation below threshold. We then remove PC2 270 

(X3) and again recalculate the correlation of all pairs of genes (C3) and identify the genes that fall into 271 

the Venn diagram sector marked PC2* in Figure 1C. Again, we suggest filtering out PC2 has removed 272 

shared, possibly trans, variance influencing this set of genes. Thus, in each PC there are a set of 273 

genes that are better correlated than the threshold but that in the next PC no longer meet the 274 

threshold (see Figure 2). Each set of genes we define as “correlating group of genes” (CGG) whose 275 

covariation is removed by PC1 or PC2 (Figure 1C). We use a nomenclature that is based upon the 276 

covariation detectable in one set of data (Xn) and removed by the next PC (Xn+1), and we call these 277 

genes the “CGG of PCn” or “PCn CGG”. 278 
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At this stage, we cannot determine if the covariation that defines our CGGs is either due to a 279 

batch effect, shared variation of biological origin, including trans influences, or some combination of 280 

the two. To determine if batch effects can, or cannot, best explain the behaviour of the CGGs, we 281 

designed several analyses to  1) carry out multiple replication studies to show that it is implausible 282 

that the effects we observe are due to experimental artefacts, and 2) employ multiple analyses of 283 

different biological properties of the CGGs to show that the distribution of these properties is also 284 

incompatible with experimental batch effects.  285 

 Replication analyses are carried out using the same procedure on multiple datasets and 286 

comparing the overlap of CGGs identified by each dataset. We use 3 classes of analysis (Table 1):  287 

1. Within and between population replication. 288 

2. Technical replication by analysis of the same mRNA samples with library generation and 289 

sequencing in 2 independent labs.  290 

3. Cross platform replication using mRNA samples of the same individuals analysed using different 291 

analysis techniques.  292 

 Our reasoning is that technical batch effects affecting CGGs are less likely to be replicable 293 

between laboratories and across different platforms, but that CGGs should replicate within and 294 

between different populations. 295 

We then ask if the CGGs hold biological properties that would not logically be observed in 296 

sets of genes that are simply generated as a consequence of underlying batch effects. We use four 297 

approaches: 1) we test for overabundance of TFs bound to the census promoter region of CGGs, as 298 

binding might be expected to be enriched in the case of trans influence rather than batch effects; 2) 299 

we test for overabundance of genes that are sensitive to the knockdown of individual TFs, which are 300 

expected to be enriched in CGGs due to trans influence of TFs; 3) we test for overabundance of 301 

functional descriptors (KEGG pathways
38

) in the CGGs: as gene groupings artefactually formed by 302 

batch effects are expected to be independent of any annotated biological function; and finally 4) we 303 
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look at the protein-protein interactions (PPIs) of the proteins encoded by CGGs and ask if they 304 

interact more than random expectation: again, batch effects are not expected similarly to influence 305 

genes that encode proteins with more interactions than random expectation. The same approaches 306 

have been used previously in related analyses
7,10,12

 to support a biological rather than batch origin of 307 

changes in gene expression.  308 

Finally, we show that inter-individual variation in expression of a set of genes involved in 309 

mRNA splicing and also contained in CGGs is associated with variation in splicing patterns within the 310 

same individuals, suggesting that the shared variation of mRNA level in CGGs may have phenotypic 311 

consequences.  312 

These multiple lines of evidence lead to the conclusion that mRNA levels of substantial 313 

numbers of genes are influenced collectively in trans, and that their covariation has phenotypic 314 

effects upon at least one property of human cells.  315 

 316 

Defining correlation thresholds 317 

We set a correlation threshold for our analyses by systematically permuting the individual 318 

labels of each gene expression profile for each mRNA level matrix created by sequential removal of 319 

PCs. We reason that permutation reveals background noise, and therefore any correlations observed 320 

in unpermuted data are likely to derive from either biological or background noise. We applied 1000 321 

permutations and recorded the maximum absolute correlation for each mRNA level matrix as the 322 

null distribution. In Figure S2 we graph for each PC removal step the correlation values 323 

corresponding to P=0.001, P=0.01 and P=0.05 based on the null distribution of correlation generated 324 

from 1000 permutations. We identify correlation thresholds for all sets of mRNA level matrices used 325 

in our analyses (Table S1); for the Lappalainen et al.2 data sets this is an absolute correlation more 326 

than 0.64. We examined the number of gene pairs with correlation above the threshold in mRNA 327 
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level data with sequential removal of PCs (Figure S3A), and observe that it decreases until about 328 

PC20, plateaus until about PC40 then steadily increase. We also observe (Figure S3B) that in 329 

randomly permuted mRNA level data there are only few gene pairs correlating above the threshold 330 

in PC1–20, followed by a steady increase of numbers of correlating gene pairs with subsequent 331 

removal of PCs. This observation suggests that most biological effects influencing gene pair 332 

correlations should be within the first 20 PCs. We therefore limit our analyses to the first 20 PCs. 333 
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 334 

Defining correlating groups of genes 335 

To identify potential genes under trans regulation we used the RNA-Seq data for 88 336 

individuals each drawn from the Caucasian, Yoruban and combined Finns, British and Toscani 337 

population from Lappalainen et al.,
2
 and carried out the process shown in Figure 1 to identify CGGs. 338 

In Figure 3 we show the number of genes within 20 sets of CGGs as consecutive PCs are removed 339 

(54–2137, 75–2168 and 75–2155 genes for Caucasian, Yoruban and combined Finns, British and 340 

Toscani population, respectively). The pattern of above threshold correlations of genes can be very 341 

complex, and so the gene-pair correlations are conveniently treated as a network with each gene as 342 

a node connected by edges representing correlations above the threshold. Summary statistics of 343 

these networks from each population are in Table S3, and as an example of the complexity of the 344 

correlations, the gene PPIAP29 identified in PC1 CGG of combined Finns, British and Toscani 345 

population from the Lappalainen et al.2 has 997 pairwise absolute correlations better than 0.64 — 346 

the highest number of connections in our data. An example correlation network (PC7 CGG from 347 

RNA-Seq of Caucasian individuals from Lappalainen et al.2) is shown in Figure S4 which is a network 348 

defined by 1578 genes and 6268 gene pairs with |ρ|>0.64. This network contains around 0.5% of 349 

the 1,244,253 total possible gene pairs definable between member genes and 56% of all correlations 350 

are poor with absolute correlation level between -0.2 and 0.2 (Figure S4A). The network is non-351 

homogeneous and has obvious multiple clusters (Figure S4B). Generally, the correlations of gene 352 

pairs in CGGs correspond to 0.3–1.4% of all gene pairs in the mRNA level data with removed PCs 353 

(Table S3). 354 

We tested the behaviour of our approach by conducting simulations that are detailed in 355 

Materials and Methods and designed to study the behaviour of sets of genes that have artificially 356 

offset expression variation that will induce correlations and that may therefore be expected to 357 

define CGGs in our analyses. In brief, we used the RNA-Seq data of 88 Yoruban individuals taken 358 

from Lappalainen et al.
2
 with individual labels randomly permuted on a per gene basis. We 359 
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hypothesized that the number of covarying genes and the scale of offset would both influence the 360 

detection of CGGs, so we randomly selected 4 groups of genes containing 200, 500, 1000 and 2000 361 

genes, and adjusted the normalised expression levels of genes in each group with an added offset of 362 

0.5, 1.0, 1.5 or 2.0 standard deviations, corresponding respectively to 1.15, 1.33, 1.54 and 1.78 fold 363 

mRNA level increase in random 44 of the 88 individuals. The 1.78 fold adjustment is not 364 

unrealistically large as in the 88 individuals there is an average of 2.4 fold change between 365 

individuals, and following the 1.78 fold adjustment, 80% of the adjusted gene’s mRNA level still fall 366 

within the extremes of the unadjusted expression values. We then attempted to identify which 367 

genes were classified as being in CGGs. We repeated this analysis 100 times using different random 368 

selections of genes and below we use the relevant median values of the 100 analyses. The 1.15 and 369 

1.33 fold adjustment for all 4 groups of genes results in not more than 1% of the genes being defined 370 

as CGGs. In contrast, the 1.54 fold adjustment results in 10%, 19%, 29.2% and 40.6% of, respectively, 371 

the 200, 500, 1000 and 2000 genes being identified in the first PC as CGGs. For the 1.78 fold 372 

adjustment, the equivalent figures are 93.2%, 97.6%, 99.1% and 99.7%. False positives were not 373 

detected in any set of genes, and false negatives (failure to identify a gene with an offset as being a 374 

member of a CGG) are decreasing with the increase of gene numbers and offset size (Table S4A). 375 

These data suggest that there are two determinants of the efficiency of detection of CGG: the 376 

number of genes and the extent of variation driving the correlation.  377 

Covariation with a biological origin should be replicable but these analyses will themselves 378 

by confounded by batch effects. We would expect batch effects could have two extreme influences 379 

upon the replication of CGGs: they could either disrupt covariation such that individual genes were 380 

no longer detectable as CGGs in two or more populations, or they could alter patterns of covariation 381 

such that the PCs that detected the same CGGs were different in the two samples. We therefore 382 

carried out a second simulation to address how batch effects might interfere with detection of 383 

covariation in our analyses. We used the unpermuted Yoruban data (Figure 3) where we had 384 

previously detected 75–2168 CGGs but we randomly selected 4 groups of genes containing 200, 500, 385 
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1000 and 2000 non-CGG genes (defined as all expressed genes other than genes in any CGG), and 386 

adjusted the expression of genes in each group with on average 1.15, 1.33, 1.54 and 1.78 fold 387 

increase in random 44 of the 88 individuals. This adjustment can be treated as a batch effect by 388 

comparing the recovery on a PC by PC basis of the CGGs in the presence or absence of the gene 389 

expression adjustment. We identified the union of genes that are identified as being a member of 390 

CGG defined by any PC up to 20 PCs; this list is the “combined CGG”. We repeated this analysis 100 391 

times and calculated the relevant median values. Recovery of CGG in any PC in the presence or 392 

absence of the batch effects ranges from 97.7% to 99.8%, but importantly as both the number of 393 

genes and the offset becomes larger, the PC that defines the CGG in the original data compared to 394 

the batch effects containing data changes. For the 2000 gene set, 7.72%, 21.8%, 42.9% and 57.4% of 395 

combined CGG respectively for the 1.15, 1.33, 1.54 and 1.78 fold offset of gene expressions, are 396 

identified as CGG members in a different PC (Table S4B). This analysis tells us that replication of 397 

CGGs with artificial batch effects will often not be based upon the same genes being defined by the 398 

same PC; instead, we define replication as the same genes being defined in the combined CGG 399 

without considering from which PC they were detected. 400 

Based upon the simulations, we use the overlap of combined CGG as a criterion of 401 

replication. We identified the combined CGG for RNA-Seq data of 88 individuals each drawn from 402 

the Caucasian, Yoruban and combined Finns, British and Toscani population from Lappalainen et al.,
2
 403 

and in Table 1 we show the overlap of genes within the combined CGG detected within a population: 404 

the combined CGG from 88 Caucasian compared to the combined CGG from 88 Finns, British and 405 

Toscani (Lappalainen et al.
2
) has 84% and 75% overlap with an odds ratio of 13.6 (Table 1, row 1); 406 

the CGGs from Caucasian and Yoruban has 74% and 79% overlap with an odds ratio of 11.5 (Table 1, 407 

row 2). In Figure S5, we show replication analyses for the CGGs defined by PC1–10, and note that 408 

there is significant replication of CGGs but the best overlaps are not always of CGGs defined by the 409 

same PC in the two analyses.  410 
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 411 

Technical replication of CGGs  412 

To test for technical replication of combined CGG between experiments, we used samples 413 

from Lappalainen et al.2 who report the mRNA-Seq analysis of the same 52 mRNA samples with 414 

library generation and sequencing in 2 independent laboratories, and we observe replication with 415 

74% and 58% overlap and an odds ratio of 13.5 (Table 1, row 3). Similarly, 68 Yoruban mRNA 416 

samples were sequenced by 2 independent laboratories reported by Pickrell et al.,18 and we observe 417 

replication with 89% and 90% overlap and an odds ratio of 38.7 (Table 1, row 4).  418 

To test for replication of combined CGG across machine types, we compared combined CGG 419 

of the same individuals analysed in different labs using different analysis machines or techniques. 420 

We compared combined CGG from Illumina GAII and HiSeq2000 analysis of the same 47 individuals 421 

analysed by Pickrell et al.18 and Lappalainen et al.,2 respectively (Table 1, row 5). Based upon Fisher’s 422 

exact test the genes in combined CGG replicate across the analyses with 69% and 42% overlap and 423 

an odds ratio of 3.2. We also compared combined CGG from the same 80 individual’s mRNA 424 

analysed on microarrays and Illumina HiSeq2000 by Stranger et al.25 and Lappalainen et al.,2 425 

respectively (Table 1, row 6), and observed 51% and 53% overlap with an odds ratio of 2.2, which is 426 

for data derived from two very different methodologies.  427 

In Figure S6, we show the replication of CGGs defined by PC1–10 from RNA-Seq data of 428 

different labs, and from gene expression data of different machine types in Figure S7. The best 429 

overlaps of CGGs are not from the same PC suggests that different pattern of technical batch effects 430 

between experiments may influence the distribution of CGGs across multiple PCs. The list of CGGs 431 

for each dataset mentioned above are provided in Table S5, and the IDs of individuals for each 432 

dataset analysed are in Table S6. 433 
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Batch effects  434 

The fact that we see replication of CGGs across multiple analyses, populations and platforms 435 

makes it difficult to suggest that experimental batch effects alone are the source of the shared 436 

behaviour of gene expression. Later we will show that the genes contained within the CGGs indeed 437 

have a number of biological properties that cannot be accounted for by experimental variations but 438 

we accept that batch effects must have an influence upon overall correlation of mRNA levels. We 439 

therefore repeated our analyses but first used two methods commonly used to remove technical 440 

artefacts. PEER (probabilistic estimation of expression residuals) from Stegle et al.27 is a software 441 

that is widely used for removing batch effects from mRNA-Seq data. PEER removes 61.7%, 63.0% 442 

and 64% of total variance of the mRNA levels of LCLs from Yoruban, Caucasian, and the Finns, British 443 

and Toscani from Lappalainen et al.,2 and we identify 651, 693 and 644 combined CGG, compared 444 

with 7863, 8386 and 9363 combined CGG identified without PEER, with an overlap of 6.1%, 6.2% and 445 

5.4% of genes, respectively. PEER is very effective at reducing variance of gene expression, and so it 446 

is unsurprising that this leads to a very substantial drop in CGG numbers, but the analysis is likely to 447 

be removing both technical and biological sources of variation.  448 

In the second case we used an approach that is based upon mRNA level variation that was 449 

due to GC base composition biases in mRNA-Seq (Materials and methods). This method was 450 

developed by Pickrell et al.18 to identify sample to sample deviation from expectation of mRNA-Seq 451 

read counts mapped to exons separated by GC base composition and to correct for such deviation. 452 

For the Yoruban mRNA level data2 with GC bias correction we obtained 6762 genes in the combined 453 

CGG following the same data analysis procedure. Comparing with the combined CGG without GC 454 

bias correction, the recovery rate of CGG is 93% with 61% genes shifted among their original 455 

defining PCs, which suggests that GC bias is not a major explanation for correlated behaviors of CGG. 456 

In both cases these methods are designed to leave an expression level of an individual gene 457 

as unaffected as possible by shared influences; in reality we believe it is most probable that removal 458 
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of shared variations or correction of deviation from random or other expectation is likely to be 459 

removing both technical artefacts and biological signal from some genes and, inevitably, as greater 460 

variance is removed by filtering out initial PCs, correlation in mRNA levels will necessarily decrease 461 

to a minimum (Figure S3A). As a consequence, we rely on our PCA approach to remove variance 462 

systematically, recognizing that the sources of this variance cannot be established from 463 

identification of correlations alone.  464 

Collectively our analyses support the view that the behaviour of CGGs is unlikely to be best 465 

explained by batch effects as we see replication across both platforms and laboratories, individuals 466 

and populations. We therefore set out to examine if CGGs have biological properties that are not 467 

associated with the technology of mRNA-Seq at a frequency greater than random expectation: we 468 

argue that association of such biological properties with CGGs is supportive evidence for a biological 469 

explanation for correlations in mRNA levels.  470 

 471 

Some TFs show over abundant binding to census promoter regions of CGGs 472 

Allocco et al.39 have shown that the expression level of genes that share TFs bound to their 473 

cognate promoter are better correlated than those that share fewer. We therefore analysed the TF 474 

binding in the 1000 bp up- and down-stream of the TSS of sets of the CGGs reasoning that if the 475 

behaviour of CGGs is indeed of biological origin we might expect particular TFs to be more 476 

associated with CGGs than random expectation. We use the binding site data from 50 TFs (listed in 477 

Table S2) whose binding has been established in a lymphoblastoid cell line by the ENCODE project
28

 478 

and use hypergeometric test, with appropriate correction for multiple tests, to identify enrichment 479 

for binding of any TF to the cognate promoter regions of the combined CGG using RNA-Seq data of 3 480 

populations containing 88 Yoruban, 88 Caucasian and 88 individuals from the British, Finns, Toscani 481 

populations (data of Lappalainen et al.).
2
 These results are displayed in Table 2. 38 of the 50 TFs have 482 

significantly enriched binding to the promoter regions of genes in the combined CGG defined from 483 
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one or more populations, and in Table S7 we show the enrichment within the CGGs identified from 484 

individual PCs. In Figure S8 we show that there is substantial similarity in overabundance of TF 485 

binding to the combined CGG of 3 populations.  486 

In summary, multiple TFs compared to random expectation appear to be over abundantly 487 

associated with census promoter regions of CGGs, which have been identified from multiple 488 

populations. We recognise of course that classification of genes as having a bound TF is necessarily 489 

an inference based upon the ENCODE28 analysis of a single LCL; Although there is inter-individual 490 

variation in TF binding (e.g. 7.5% of binding regions of NFKB were found different among individuals 491 

by Kasowski et al.),40 the scale of the overlaps suggests that such effects would have rather limited 492 

influence upon our analysis. At the very least, we would not expect enrichment of any TF binding to 493 

cognate promoters to be associated with batch effects, adding further support to the view that 494 

there is a biological basis for CGGs’ behaviours.  495 

Genes known to be sensitive to single TF knockdown are enriched in CGGs  496 

Our results suggest the possibility that the variation in the amount or activity of the 497 

appropriate TFs may be involved in generating the correlated behaviour of CGGs, but numerous lines 498 

of experimental evidence show that for most genes binding of a single TF to a cognate promoter 499 

region is neither necessary nor sufficient for controlling mRNA level.41–43 Consequently, our 500 

detection of overabundance of TF binding to some CGGs does not necessarily imply a causal 501 

relationship between variation in those overabundant TF bindings and variation in their target 502 

genes’ mRNA levels. Cusanovich et al.7 tested the relationship directly by studying the effects of 503 

knockdown of expression of 59 TFs and chromatin modifiers (TFs used in this study are listed in 504 

Table S8). They were able to identify sets of genes whose expression levels were directly influenced 505 

by knockdown of single TFs. If the relationship of CGGs with TF is causal of shared behaviour, we 506 

might expect the genes identified by Cusanovich et al.7 are enriched in relevant CGGs. In Table 3 we 507 

show that there is a statistically significant overlap of genes identified as combined CGG with genes 508 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/082842doi: bioRxiv preprint 

https://doi.org/10.1101/082842
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

defined as being sensitive to knockdown of 29 different TFs (see Table S9 for enrichment in CGGs 509 

from individual PCs). Of the 29 TFs, 9 are also analysed for binding in the ENCODE data: of these 9 510 

TFs, 8 (IRF4, RELA, POU2F2, PAX5, SP1, TCF12, USF1, YY1) demonstrate both overabundance of 511 

binding sites, and enrichment for targets of TF knockdowns.  512 

 513 

Combinations of TFs are overabundant in promoter regions of CGGs 514 

Despite these analyses, it is unlikely that single TF binding is the only likely biological 515 

contribution to the variable expression of the CGGs. As discussed earlier, multiple TFs generally bind 516 

to the census promoter region of genes
28,44

 and it would therefore be useful to test for combinations 517 

of TFs binding to the census promoter. A systematic analysis of all possible combinations of the 50 518 

TFs in the ENCODE data set is impossible due to the huge numbers of combinatorial possibilities. To 519 

overcome this, we used two approaches. Wang et al.44 show that 20 pairs of TFs co-bind in the 520 

genome of a human LCL: we can ask if these pairs are more commonly found in promoter regions of 521 

CGGs than would be expected at random. In the second approach, we remove PCs sequentially until 522 

we have reached a minimum number of correlated gene pairs and then search for shared binding of 523 

TFs in promoter regions of this minimal gene set; we reason that a correlated expression in just a 524 

pair of genes is the most minimal evidence of trans activity and therefore the shared TFs might be 525 

important in mediating trans influences. In both cases we use the hypergeometric test to detect 526 

overabundance of binding of combinations of TFs, ignoring their relative location, to the cognate 527 

promoter region of the combined CGG of the Yoruban, the Caucasian and the British, Finns, Toscani 528 

populations from Lappalainen et al..2 529 

In the first approach, of the 20 TF pairs identified in Wang et al.,
44

 14 are enriched in the 530 

combined CGG in one or more populations of which 8 pairs are enriched in CGGs from all three 531 

populations (Table 4). Table S10 shows the enrichment for CGGs from individual PCs. In the second 532 

approach, we sequentially removed PCs from the Lappalainen et al.
2
 Yoruban, Caucasian and British, 533 
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Finns, Toscani data sets. Respectively removal of 30, 31 and 31 PCs yielded a minimum of 2142, 1892 534 

and 1719 gene pairs with absolute correlation better than 0.64 (Figure S3) of which 303, 178 and 535 

258 had between 2 to 25 TF binding sites in common. 51 combinations of TFs were common to all 3 536 

populations, and so we then tested for significance of overabundance of these combinations of 537 

bound TFs in the promoter regions of combined CGG and CGGs from individual PCs of the 3 538 

populations. In Table S11 we identify significant enrichments of combinations of TFs within both the 539 

combined CGG and CGGs from individual PCs. In the combined CGG, 23 of the 51 combinations of 540 

TFs are enriched, 17 in all 3 populations, 1 in both Yoruban and British, Finns and Toscani and 5 in 541 

just the Yoruban. These data suggest that combinations of TFs might be contributing to the 542 

correlated variation in expression of CGGs and also again reinforce the view that these biological 543 

properties are not those expected of technical batch effects.  544 

CGGs encode proteins with related functions 545 

Our data collectively suggest groups of genes are covarying in humans under complex trans 546 

control. We wish to understand if these genes might be associated with biological functions firstly to 547 

further test the view that the observed covariation has a biological origin and secondly to start to 548 

understand what might be, if any, the phenotypic consequences of trans variation. We wish to ask 549 

two questions as to the biological properties of proteins encoded in both combined and individual 550 

groups of CGGs. Firstly, do CGGs encode proteins that physically interact more commonly than 551 

random expectation, and secondly does this indicate a possible functional interaction that can be 552 

detected by enrichment of functional annotation within the KEGG pathway database? 553 

We tested for enrichment of physical interactions of encoded proteins within the combined 554 

CGG identified from Yoruban, the Caucasian and the British, Finns and Toscani populations from 555 

Lappalainen et al.2 using protein-protein interactions from the STRING database.32 We compared the 556 

number of PPIs seen in the various CGGs with a random background model (see Materials and 557 

Methods). These analyses show that the combined CGG from any one of the 3 populations encode 558 
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proteins that interact more commonly than expected by chance; the Yoruban set contains 6,008 559 

proteins with 624,213 PPIs (P < 1×10
-16

); the Caucasian set of 6,389 proteins with 711,122 PPIs (P < 560 

1×10
-16

) and the Finns, British, Toscani with 7,066 proteins with 831,191 PPIs (P < 1×10
-16

). 561 

In Table S12 we show similar analysis for CGGs from individual PCs indicating that for all 562 

three populations there are multiple significant enrichments for PPIs within CGGs identified from 563 

individual PCs. The finding that the proteins encoded by CGGs are more likely to interact with each 564 

other than expectation again suggests that the variation in mRNA levels is unlikely to be due to 565 

batch effects within sample analyses. More interestingly in many cases proteins that physically 566 

interact have been shown to be contained within pathways of biological activity45 and suggests 567 

therefore that CGGs might be associated with specific pathways of biological activity.  568 

We therefore tested for this by asking if pathways defined within the KEGG database are 569 

enriched in CGGs. In Table 5 we show the results of enrichment analysis of KEGG function terms in 570 

the combined CGG using hypergeometric test (see Materials and Methods), and in Table S13 we 571 

present the results of a similar analysis for CGGs from individual PCs. We see enrichment for 10 572 

functions in the combined CGG: oxidative phosphorylation, pyrimidine metabolism, ribosome, 573 

spliceosome, proteasome, cell cycle, protein processing in endoplasmic reticulum, Alzheimer's 574 

disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). In these pathways 31–109 575 

genes are shared in one population (Table 5) and 30–86 genes are shared within all 3 populations 576 

(Figure S9). These results suggest that, in humans there are significant numbers of genes that are 577 

functionally related and covarying, which opens the possibility that trans variation in genes involved 578 

in the same pathway might have phenotypic outcomes. 579 

 580 

Expressions of spliceosome genes correlate with changes in splice patterns  581 

Testing of phenotypic outcomes of variation in the CGGs enriched in particular pathways in 582 

most cases would require further case control or biochemical analyses, but the hypothesis that 583 
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expression variation within the spliceosome set of genes results in changes to splice patterns can 584 

readily be tested by analysis of the alternative splicing in the same RNA-seq data that we have used 585 

in our analyses. Variation in mRNA levels will result in some variation in protein levels and Battle et 586 

al.
46

 showed the median Spearman's correlation between LCL mRNA levels and protein levels across 587 

62 Yoruban individuals for 4322 genes is 0.14. Even though this correlation is relatively weak the 588 

mean variation for the 83 spliceosome genes in the combined CGG is 3.2 fold for mRNA levels and 589 

3.0 fold for protein levels (see Table S14). Given this variability we sought to ask if covariation in the 590 

mRNA levels of the spliceosome genes might contribute to changes in splicing. We focused upon the 591 

RNA-Seq data of 88 individuals from the Yoruban and Caucasian sample sets from Lappalainen et al.2 592 

and we used the software MISO35 which uses annotations of alternative splicing events of human 593 

genes (see Materials and Methods). We calculated the PSI value for each alternative splicing event in 594 

the LCL. PSI values were calculated for two classes of alternative splicing: retained introns (RI), 595 

where an intron is retained in the mRNA transcript relative to other transcripts from the same gene 596 

where the intron is removed, and skipped exons (SE) where an exon is removed by splicing in some 597 

but not all transcripts of the same gene. In the Yoruban samples MISO detects 1656 RI events in 598 

1162 genes and 10100 SE events in 4824 genes, and for the 88 Caucasian samples there were 1507 599 

RI events in 1100 genes and 9258 SE events in 4579 genes.  600 

We then ask how variability of PSI values of RI and SE events might be attributed to the 601 

variability of the expressions of spliceosome genes. In total in the 88 Yoruban data set there are 83 602 

(out of 107 with detectable mRNA levels) spliceosome genes in the combined CGG and for the 603 

Caucasian individuals there are 83 out of 110 detectable genes: 73 genes are shared in the combined 604 

CGG of both populations. We hypothesized that expressions of spliceosome genes may contribute to 605 

the variability of gene splicing, and also that variability of CGG from spliceosome genes should 606 

explain more variability of gene splicing than non-CGG due to their trans effects on gene splicing. To 607 

test this hypothesis, we regressed PSI values of individual splicing events on PC1 to PC20 608 

eigenvectors of expressions of spliceosome genes combined. We observed that for RI events using 609 
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Yoruban and (Caucasian) RNA-seq data, CGG of spliceosome genes explain 29% (31%) of splicing 610 

variability on average, while non-CGG of spliceosome genes explain only 13% (17%) on average. This 611 

result suggests that 16% (14%) of splicing variability can be attributed to trans effects from 612 

expressions of CGG of spliceosome genes. Similarly, for SE events using Yoruban and (Caucasian) 613 

RNA-seq data, CGG of spliceosome genes explain 16% (17%) of splicing variability on average, while 614 

non-CGG of spliceosome genes explain only 7.6% (8.5%) on average, so that 8.4% (8.5%) of splicing 615 

variability can be attributed to trans effects from expressions of CGG of spliceosome genes. These 616 

data suggest that for both populations variation of CGG from the spliceosome pathway has a 617 

significant impact upon differential splicing of genes; the CGG’s expression variation accounts for an 618 

average of 16% of splicing variation for the RI events in the Yoruban data, and given the variation 619 

explained is the average R2 value for 1656 RI events this is a substantial influence.  620 

Discussion  621 

In this paper, we have used multiple lines of evidence to show that correlation in mRNA 622 

levels has a biological rather than purely technical origin. In summary, we show this by using PCA of 623 

multiple sets of mRNA-Seq data to identify genes with correlated mRNA levels. We then use four 624 

lines of evidence to show covariation is unlikely to be due to batch effects: 1) they can be replicated 625 

within and between populations and across different analytic platforms including mRNA-Seq and 626 

microarray; 2) they contain an overabundance of cognate TFs bound to their census promoter 627 

regions and they are enriched for genes known to be sensitive to knockdown of single TFs; 3) the 628 

proteins they encode are more likely to physically interact with each other than expected; 4) they 629 

comprise groups of genes encoding shared functions more frequently than expected. These multiple 630 

lines of evidence lead us to believe that CGGs are indeed covarying under the influence of variation 631 

in their trans-acting controllers and that the cumulative trans effects can account for a significant 632 

proportion of individual genes’ expression variation. 633 

 634 
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The properties of CGGs align with what is known about control of mRNA levels 635 

The control of mRNA levels can occur at any point from initiation of transcription, to splicing, 636 

mRNA stability and degradation and these process all involve multiple protein and/or RNA 637 

interactions in trans.47 If we focus upon transcriptional control by TFs then any given gene can be 638 

controlled by multiple TFs and the action of any given TF can be activating or repressive conditional 639 

on proximity to promoter and/or interacting with or co-binding to other TFs. Variation of a TF can 640 

therefore be expected to influence sets of genes that based upon Cusanovich et al.7 can number 641 

from a few dozen to over 3000. However, the simultaneous variation of multiple TFs will necessarily 642 

have complicated outcomes conditional upon the overlap of influence; presently we have no 643 

understanding of the extent of these outcomes but it is likely that the mRNA of subsets of genes will 644 

be increased, decreased or remain unaltered in any one individual under the simultaneous variation 645 

of two TFs. Ultimately the combinatorial nature of the control of gene expression by TFs means that 646 

trans influences could influence anywhere from several thousand down to a single gene and that 647 

these effects could be significantly different both between individuals and between populations; this 648 

behaviour is indeed what we observe in our replication studies where we observe significant 649 

overlap, but not identity, of CGGs.  650 

 651 

How much variation is associated with combined trans influences? 652 

Comparison of the variance sequentially removed by PCA for the two sets of genes reveals 653 

that CGG lose variance faster than non-CGG until PC9 when the reverse becomes true for the RNA-654 

Seq data of Yoruban, the Caucasian and the British, Finns and Toscani populations from Lappalainen 655 

et al..
2
 The total variance of expressions of CGG accounted by the first 9 PCs is 63.8%, 62.2% and 656 

64.3%, respectively and the total variance of expression of non-CGG accounted for by the first 9 PCs 657 

are 37.8%, 37.8% and 37.5%, respectively. Therefore, the difference in average variance lost 658 

between CGG and non-CGG is 26.0%, 24.4% and 26.8% for the 3 populations, respectively. It is 659 
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reasonable that the difference reflects the effects of the shared variation which, by virtue of its 660 

scale, is recognized earlier in the PCA sequential analysis and suggests that at least 24% of mRNA 661 

level variation appears to be due to combined trans effects.  662 

Comparison to other studies 663 

Goldinger et al.16 systematically studied the influence of PCA on mRNA levels and eQTLs 664 

using microarray data and tests of SNP association and heritability of expression. They concluded 665 

“Most importantly, we show that the first 50 PCs, which have been removed in previously published 666 

articles to correct for batch effects (references omitted), contain …… a considerable proportion of 667 

genetic variation influencing gene expression……”. We note that microarray and mRNA-Seq have 668 

quite different distributions of variance explained per PC: for example, PC1 explains a much greater 669 

proportion of variance from microarray data than it does from mRNA-Seq data. This means our 670 

findings cannot be directly related to those of Goldinger et al.
16

 both because the variance structures 671 

are very different and also because we can have no insight into the causation of shared influences—672 

a necessary feature of our approach. However, our findings similarly suggest batch effects and 673 

biological signal can be confounded and techniques to de-noise mRNA-Seq data need to be applied 674 

very carefully. As we discuss above, the PEER software of Stegle et al.
27

 can effectively remove most 675 

of the covariation that underpins CGGs’ behavior.  676 

 677 

The approach we have developed has advantages and disadvantages over present more 678 

gene centric eQTL approaches. The advantages are, firstly, the overall level of an mRNA is 679 

determined by many influences and it is the actual level that ultimately may be associated with 680 

biological outcome. In contrast, eQTL based approaches dissect the causative variations influencing 681 

mRNA levels and given these are individually small effects and subject to epistatic interactions this 682 

can be a challenging approach to detail the final mRNA level variation. Secondly, our approach does 683 

not generate the multiple testing problem of trans eQTL analyses and so can be applied to relatively 684 

small data sets. Thirdly, the correlated mRNA changes within functionally related genes may well 685 
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prove to have a greater predictive effect upon phenotypic outcomes than the single cis- or trans-686 

eQTL associations. The disadvantages to our approach are, firstly that we require mRNA level 687 

analysis of phenotypically relevant tissues (a problem which is increasingly shared by tissue specific 688 

eQTL analyses) and secondly that we do not gain mechanistic understanding at the level of 689 

association between DNA sequence variation and regulators or targets. We also recognize that the 690 

LCL resources we have used here are tissue culture cell lines and therefore subject to culture 691 

induced changes (see for example Yuan et al.
48

 and Choy et al.
49

) which may confound analysis. 692 

 693 

Spliceosome mRNA variation and alternative splicing 694 

The finding that collective variation in the mRNA level of the spliceosome genes may 695 

account for 14–16% of the variation in alternative splicing of RI events enables us to ask if collective 696 

behavior of CGGs might have a stronger effect than variation in expression of individual genes. We 697 

compare the 14–16% collective influence to the influence of single spliceosome genes using a similar 698 

analysis framework. We calculated the average correlation between variation in the mRNA levels of 699 

individual genes and the splicing profile of individual RI events across the same individuals, and we 700 

observe correlations in both the Caucasian and the Yoruban data (see Table S15) that range from -701 

0.24 to 0.19 and R2 of up to 0.065 with about 1/3 of the single gene correlations being positive; 702 

these figures replicate with a correlation between the two populations of 0.72. The very complex 703 

structure of CGGs covariation combined with the complex biochemistry of splicing events where 704 

coordinated changing levels of multiple proteins could modulate splicing activities, suggests that for 705 

any set of genes in a pathway their overall effect of expression variation is likely to enhance the 706 

impact of variation in individual genes. This highlights the interesting possibility that the control of 707 

gene expression in trans might have substantial overall effect on human phonotypes even if impact 708 

of individual genes is small.  709 

 710 
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Alzheimer’s, Parkinson’s and Huntington’s disease and oxidative phosphorylation 711 

The enrichment in the combined CGG for KEGG functions Alzheimer’s disease (62%, 62% and 712 

68% of 158 KEGG annotated genes from Caucasian, Yoruban and British, Finns, Toscani populations 713 

respectively), Parkinson’s diseases (65%, 63% and 69% of 127 genes) and Huntington’s disease (59%, 714 

55%, and 62% of 177 genes) is particularly striking (see Table S16 for details). In the Yoruban samples 715 

of Battle et al.46 the mRNA levels vary with a median of 3.0, 2.9 and 2.9 fold change and protein 716 

levels with a median of 4.2, 4.4 and 3.9 fold change for AD, PD and HD genes, respectively. The 717 

enrichment is driven in good measure by 58 genes functionally classified as oxidative 718 

phosphorylation which is itself an enriched function (62%, 62% and 68% of 128 genes). These 58 719 

genes are detected as enriched in the combined CGG of all 3 populations and a further 12 oxidative 720 

phosphorylation genes are found in CGGs from one or two populations only. In total, an additional 721 

17 genes involved in oxidative phosphorylation are found in one or more of the 3 disease functions 722 

in CGGs from one or more populations yielding a total of 88 genes involved in oxidative 723 

phosphorylation out of 265 genes in the combined list of genes involved in one or more disease 724 

categories. We also found 71 mitochondria localized genes that are shared with AD, PD and HD 725 

genes. The involvement of the mitochondrion in the etiology of all three diseases has been 726 

extensively documented (see Wang et al.,50 Franco-Iborra et al.,51 Turner and Schapira52 for reviews 727 

of mitochondrial dysfunction and AD, PD and HD respectively and Biffi et al.53 for genetic evidence 728 

for involvement in AD) and our detection of correlated changes raises the question of whether this 729 

variation results in significant change to mitochondrial function and therefore an increased 730 

susceptibility to, or severity of, disease outcome. It has also been widely discussed (see Sun et al.
54

 731 

for a recent review) that aging processes are associated with changes to mitochondrial function and 732 

properties. This suggests that identifying an effect of the natural covariation of genes involved in the 733 

oxidative phosphorylation pathway could be a significant contribution to understand the natural 734 

variation of human aging process. 735 
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For the remaining functional categories, pyrimidine metabolism, ribosome, spliceosome, 736 

proteasome, cell cycle, protein processing in endoplasmic reticulum, there is relatively little overlap 737 

with the exception of four proteins involved in ubiquitin conjugating and a ubiquitin ligase shared 738 

between protein processing in endoplasmic reticulum and Parkinson’s disease (see Ross et al.
55

 for a 739 

review of the role of ubiquitin and mitochondrial damage in PD and AD) and 10 RNA polymerase II 740 

subunits shared between pyrimidine metabolism and Huntington’s disease.  741 

In each case testing of the relationship of variation in mRNA levels to ultimate biochemical 742 

phenotype will be challenging but we believe that we have defined some potential targets that could 743 

contribute to natural human variation that in turn might have significant impact upon our health.  744 
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Figure Titles and Legends 896 

Figure 1. Schematic of experimental design to identify CGGs.  897 

(A) PCA is applied to a set of appropriate, pre-processed mRNA level measurements (matrix X1) 898 

derived from multiple human LCLs. PCA is used sequentially and after each principal component has 899 

been removed we generate a new mRNA level matrices Xn to create 20 matrices X1–X20 (X1–X3 are 900 

shown here). (B) Pair-wise mRNA level correlations are calculated for each mRNA level matrix to 901 

yield a matrix of correlations of all possible gene pairs (matrices C1–C20, C1–C3 are shown here). Gene 902 

pairs with correlations above the threshold are highlighted in orange. (C) Correlating group of genes 903 

(CGG) of PC1 are defined as genes included in gene pairs with correlations above the threshold in 904 

correlation matrix C1, but not contained in any gene pairs with correlations above the threshold in 905 

correlation matrix C2. Similarly, CGG of PC2 are defined as genes included in correlated gene pairs 906 

from C2 but not in correlated gene pairs from C3. 907 

 908 

Figure 2. Example of correlating groups of genes. 909 

In PCn gene expression data, 5 different genes A–E are connected with each other by edges 910 

representing correlation coefficient above the threshold (blue lines). Correlations for gene pairs 911 

below the threshold are not shown. In PCn+1 data, all correlations for A and B fall below the 912 

threshold, indicating that they are no longer correlated with any other gene. So, gene A and B are 913 

defined as CGG of PCn. Please note that two correlation edges for gene E are lost in PCn+1, but a new 914 

edge between gene C and E is formed. Therefore, gene E does not match the definition of CGG. 915 

 916 

Figure 3. Numbers of genes in CGGs defined by principal components.  917 

The x-axis is sequential PCs that are removed from mRNA level data to identify CGGs, and the y-axis 918 

is numbers of genes identified as CGGs defined by the relevant PC. Left panel, CEU: Caucasian 919 
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individuals; center panel, YRI: Yoruba individuals; right panel, FIN+GBR+TSI: Finns, British and 920 

Toscani mixed individuals. mRNA level data is from Lappalainen et al..
2
 921 

 922 
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Tables 925 

Table 1. Overlap of CGGs identified from different datasets. 926 

Dataset1
a
 Dataset2

a
 

CGG1 

Number
b
 

CGG2 

Number
c
 

Overlap 

Number
d
 

CGG1 

Percentage
e
 

CGG2 

Percentage
f
 

P value
g
 Odds 

CEU  FIN+GBR+TSI 8386 9363 7029 83.8% 75.1% <1e-300 13.6 

CEU  YRI 8386 7863 6207 74.0% 78.9% <1e-300 11.5 

UNIGE  CNAG_CRG  3844 4893 2844 74.0% 58.1% <1e-300 13.5 

YRI Yale  YRI Argonne 8710 8590 7763 89.1% 90.4% <1e-300 38.7 

Illumina 

HiSeq 2000  

Illumina GAII  2747 4538 1905 69.3% 42.0% 6e-134 3.2 

RNA-Seq Microarray  8062 8341 4286 53.2% 51.4% 6e-46 2.2 

a Dataset1 and dataset2 are two sets of combined CGGs that are compared to establish the extent to 927 

which the sets overlap. CEU, Caucasian individuals; YRI, Yoruba individuals; FIN+GBR+TSI, Finns, 928 

British and Toscani individuals all from Lappalainen et al.;2 UNIGE, RNA-Seq data from 52 individuals 929 

carried out by University of Geneva, and CNAG_CRG, RNA-Seq data from the same 52 individuals 930 

performed by the Centro Nacional de Análisis Genómico and Centre for Genomic Regulation 931 

(Lappalainen et al.2). YRI Yale, RNA-Seq data from 68 Yoruba individuals from Yale sequencing center 932 

and YRI Argonne, RNA-Seq data from the same 68 Yoruba individuals from Argonne sequencing 933 

center (Pickrell et al.18). Illumina HiSeq 2000, RNA-Seq data from 47 Caucasian individuals using the 934 

Illumina HiSeq 2000 platform (Lappalainen et al.2); Illumina GAII, RNA-Seq data from the same 47 935 

Caucasian individuals using the Illumina GAII platform (Pickrell et al.18); RNA-Seq, RNA-Seq data from 936 

80 Caucasian individuals (Lappalainen et al.2); Microarray, microarray estimates on mRNA levels 937 

from the same 80 Caucasian individuals (Stranger et al.25).  938 

b Numbers of unique genes in the combined CGG identified from dataset1. 939 

c 
Numbers of unique genes in the combined CGG identified from dataset2.  940 

d 
Numbers of genes observed in common between CGG1 and CGG2. 941 

e
 The percentage of common genes in CGG1. 942 

f 
 The percentage of common genes in CGG2. 943 

g 
P value for Fisher’s exact test for the observed number of genes in common. 944 

 945 
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Table 2. Enrichment of individual transcription factors bound to promoter regions of CGGs.  946 

 CEU YRI FIN+GBR+TSI 

TF symbol N P
a
 N P

a
 N P

a
 

ATF3 826 1.8e-05* 782 1.0e-07* 893 2.0e-05* 

BCLAF1 1044 3.7e-05* 974 1.7e-05* 1131 2.0e-05* 

BRCA1 222 1.7e-03 216 1.3e-05* 236 1.4e-02 

CHD2 1691 1.5e-10* 1615 1.0e-17* 1827 3.6e-12* 

EBF1 2164 3.3e-04* 2067 5.5e-07* 2428 2.5e-09* 

EGR1 3425 1.4e-08* 3187 1.7e-10* 3776 9.2e-16* 

ELF1 5114 5.3e-16* 4833 5.0e-29* 5595 8.9e-23* 

ETS1 1344 1.4e-08* 1271 9.3e-12* 1472 1.5e-11* 

FOS 866 4.3e-03 833 3.2e-05* 916 1.5e-02 

GABPA 2468 2.7e-09* 2343 8.7e-16* 2683 3.7e-12* 

IRF4 938 3.3e-05* 888 4.0e-07* 1025 6.3e-06* 

MAX 501 1.3e-01 493 8.0e-04* 548 1.5e-01 

MEF2A 1060 1.0e-04* 1017 5.2e-08* 1163 2.9e-05* 

MEF2C 456 2.1e-03 432 4.7e-04* 497 3.5e-03 

MYC 1176 4.8e-13* 1111 1.8e-15* 1260 6.5e-12* 

NR2C2 345 4.2e-04* 328 7.8e-05* 355 2.1e-02 

NRF1 2394 3.0e-07* 2233 1.2e-09* 2604 1.4e-09* 

PAX5 2680 8.8e-08* 2508 2.2e-09* 2923 2.0e-09* 

PBX3 1324 1.2e-06* 1249 8.0e-08* 1401 5.9e-04* 

POU2F2 2684 7.0e-20* 2539 3.6e-27* 2884 1.3e-17* 

RELA 750 1.9e-06* 702 1.2e-07* 799 8.9e-05* 

RFX5 1038 3.7e-03 997 3.3e-07* 1146 5.4e-06* 

RXRA 632 2.0e-06* 599 1.9e-07* 677 1.4e-05* 

SIN3A 4057 1.4e-18* 3811 7.0e-26* 4370 4.6e-19* 

SIX5 2137 5.3e-14* 2056 6.2e-23* 2301 2.1e-13* 

SP1 3426 7.4e-14* 3277 1.9e-25* 3716 6.8e-16* 

SPI1 1976 1.8e-05* 1873 2.8e-09* 2201 5.9e-09* 

SRF 1775 7.7e-10* 1658 6.4e-12* 1896 6.0e-08* 

TAF1 2635 7.5e-31* 2446 8.5e-31* 2797 2.0e-25* 

TBP 2886 2.7e-26* 2692 1.2e-31* 3101 7.8e-26* 

TCF12 2083 1.2e-10* 1946 2.5e-12* 2261 1.7e-11* 

USF1 1604 4.9e-04* 1533 2.3e-07* 1765 1.9e-06* 

USF2 1454 1.2e-02 1393 9.9e-06* 1586 1.6e-03 

WRNIP1 344 3.0e-07* 327 1.7e-08* 351 2.1e-04* 

YY1 4273 1.9e-19* 4008 8.8e-25* 4617 6.6e-20* 

ZBTB33 795 4.2e-04* 756 1.6e-05* 852 1.6e-03 

ZEB1 1922 7.7e-03 1821 2.9e-05* 2136 2.5e-05* 

ZNF143 2506 2.4e-06* 2421 3.4e-14* 2768 7.4e-11* 

The table lists the TFs that are found to be significantly associated to the combined CGG in at least 947 

one population. CEU, Caucasian individuals YRI, Yoruba individuals; FIN+GBR+TSI, Finns, British and 948 

Toscani individuals all from Lappalainen et al..
2
 N: The number of CGGs with individual transcription 949 

factors bound to promoter region defined as ±1000 base pairs of TSS; P: P value for hypergeometric 950 

test for enrichment of binding.  951 

a
 P < 1.0 × 10

-3
 (Bonferroni corrected significance threshold) are labeled with *. 952 
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Table 3. Enrichment of differentially expressed genes from transcription factor knockdown in 953 

CGGs.  954 

 CEU YRI FIN+GBR+TSI 

TF Knockdown N P
a
 N P

a
 N P

a
 

ARNTL2 443 2.0e-04* 447 2.1e-09* 501 3.1e-08* 

CEBPG 269 2.0e-02 275 2.0e-06* 286 2.2e-02 

CEBPZ 263 1.4e-03 238 6.4e-03 287 7.3e-04* 

CREBBP 1516 2.7e-08* 1416 1.6e-09* 1624 6.7e-07* 

DIP2B 508 7.5e-04* 470 3.8e-04* 548 3.7e-04* 

E2F1 270 8.2e-04* 244 4.1e-03 285 3.4e-03 

ESRRA 375 1.5e-06* 333 2.5e-04* 373 3.8e-02 

HOXB7 506 6.9e-04* 466 1.2e-03 531 8.6e-03 

IRF4 2203 4.7e-12* 2062 1.3e-14* 2371 1.4e-10* 

IRF5 546 7.2e-05* 517 6.9e-06* 566 1.3e-02 

NFE2L1 525 2.5e-07* 473 1.9e-05* 528 1.1e-02 

NFKB2 663 2.1e-04* 606 2.4e-03 703 4.7e-03 

NR1D2 362 7.5e-04* 328 6.0e-03 376 9.9e-03 

NR2F6 694 4.8e-06* 624 1.8e-03 762 4.5e-08* 

NR3C1 281 9.1e-04* 272 3.6e-06* 303 8.0e-04* 

PAX5 1380 2.2e-06* 1292 1.1e-07* 1469 1.2e-04* 

POU2F1 411 8.4e-06* 385 9.2e-07* 443 2.4e-06* 

POU2F2 478 1.1e-02 453 3.6e-04* 536 6.3e-05* 

RAD21 1539 1.4e-05* 1430 1.8e-05* 1667 7.7e-05* 

RELA 240 5.0e-02 236 5.4e-04* 250 1.5e-01 

SP1 2023 2.0e-05* 1952 1.7e-13* 2212 4.2e-07* 

STAT2 52 3.3e-04* 40 1.2e-01 50 6.1e-03 

TCF12 537 5.0e-04* 494 2.3e-03 577 1.3e-03 

TFDP1 694 5.4e-07* 647 1.1e-06* 729 8.3e-05* 

TFDP2 468 6.0e-06* 442 7.3e-08* 488 5.8e-04* 

TFE3 427 1.7e-03 401 2.4e-04* 462 9.1e-04* 

USF1 310 5.1e-03 297 9.2e-04* 327 2.8e-02 

YY1 1025 2.2e-02 957 6.0e-03 1135 8.9e-05* 

ZHX2 298 4.4e-04* 269 5.7e-03 311 1.8e-03 

The table presents genes sensitive to knockdown of individual TFs from Cusanovich et al.
7
 that are 955 

significantly enriched in the combined CGG from at least one population. CEU, Caucasian individuals; 956 

YRI, Yoruba individuals; FIN+GBR+TSI, Finns, British and Toscani individuals all from Lappalainen et 957 

al..2 N: The number of CGGs that overlap with genes exhibiting differential expression following TF 958 

knockdown by Cusanovich et al..7 P: P value of hypergeometric test.  959 

a
 P < 9.6 × 10-4 (Bonferroni corrected significance threshold) are labeled with *. 960 

 961 
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Table 4. Enrichment of pairs of transcription factors bound to promoter regions of CGGs.  963 

 CEU YRI FIN+GBR+TSI 

TF Pair N P
a
 N P

a
 N P

a
 

ATF3, NRF1 402 2.0e-03* 383 4.0e-05* 454 5.5e-06* 

ELF1, YY1 3860 1.1e-19* 3636 3.5e-27* 4176 3.4e-21* 

GABPA, YY1 2010 2.2e-10* 1903 9.6e-15* 2178 7.3e-12* 

IRF4, JUND 20 2.8e-01 16 4.7e-01 22 4.2e-01 

IRF4, MAX 130 1.1e-01 118 2.1e-01 136 4.5e-01 

IRF4, MEF2A 441 3.5e-03 421 1.7e-04* 478 1.6e-02 

IRF4, MEF2C 231 5.3e-02 215 3.4e-02 246 1.7e-01 

IRF4, RELA 271 3.9e-03 254 4.6e-04* 293 6.9e-03 

IRF4, TCF12 510 6.0e-04* 463 3.1e-03 546 3.5e-03 

JUND, MEF2C 9 5.9e-01 10 2.1e-01 9 8.9e-01 

JUND, SPI1 11 4.2e-01 11 8.8e-02 13 3.6e-01 

MAX, SPI1 193 2.1e-01 187 5.6e-02 211 2.1e-01 

MAX, USF1 354 1.3e-01 352 7.2e-04* 387 9.7e-02 

MAX, USF2 361 2.0e-01 358 1.6e-03* 396 1.3e-01 

MEF2A, SPI1 466 2.8e-04* 439 2.1e-05* 513 2.5e-05* 

MEF2C, SPI1 186 9.9e-03 181 2.9e-04* 204 5.4e-03 

PBX3, SP1 1072 1.4e-05* 1018 1.2e-07* 1129 1.5e-03* 

RELA, SPI1 394 2.8e-05* 357 1.1e-04* 416 2.5e-03* 

SPI1, TCF12 793 1.5e-05* 730 2.8e-05* 885 7.7e-09* 

USF1, YY1 1186 1.1e-04* 1140 3.9e-09* 1301 6.1e-07* 

The table lists the pairs of TFs taken from Wang et al.44 that are found to be significantly associated 964 

to the combined CGG in at least one population. CEU, Caucasian individuals YRI, Yoruba individuals; 965 

FIN+GBR+TSI: Finns, British and Toscani individuals all from Lappalainen et al..2 N: The number of 966 

CGGs with individual pairs of transcription factors bound to promoter region defined as ±1000 base 967 

pairs of transcription start site; P: P value for hypergeometric test for enrichment of bindings.  968 

a
 P < 2.5 × 10-3 (Bonferroni corrected significance threshold) are labeled with *. 969 

 970 

  971 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/082842doi: bioRxiv preprint 

https://doi.org/10.1101/082842
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

Table 5. Enrichment of KEGG pathways in CGGs. 972 

 CEU YRI FIN+GBR+TSI 

KEGG pathway N P
a
 N P

a
 N P

a
 

Oxidative phosphorylation 79 2.2e-03 79 5.2e-05* 87 1.9e-04* 

Pyrimidine metabolism 55 3.4e-02 50 4.9e-02 64 7.0e-05* 

Ribosome 71 4.3e-11* 67 4.2e-11* 69 1.1e-07* 

Spliceosome 83 1.5e-05* 83 8.5e-08* 81 7.8e-04 

Proteasome 31 3.1e-04 33 2.4e-06* 33 1.9e-04* 

Cell cycle 82 1.8e-04* 69 1.2e-02 81 2.0e-03 

Protein processing in endoplasmic reticulum 90 6.2e-02 90 3.6e-03 108 9.4e-05* 

Alzheimer's disease 91 6.5e-05* 89 6.0e-06* 98 5.6e-06* 

Parkinson's disease 82 2.0e-05* 80 5.6e-07* 87 1.5e-05* 

Huntington's disease 104 2.1e-04* 97 6.9e-05* 109 2.0e-04* 

KEGG pathways that are enriched in the combined CGG in at least one population. CEU, Caucasian 973 

individuals; YRI, Yoruba individuals; FIN+GBR+TSI: Finns, British and Toscani individuals all from 974 

Lappalainen et al..
2
 N: The number of CGGs annotated with a KEGG pathway; P: P value of 975 

hypergeometric test.  976 

a
 P < 2.8 × 10

-4
 (Bonferroni corrected significance threshold) are labeled with *. 977 

 978 

 979 
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