Abstract
All charismatic big cats including tiger (Panthera tigris), lion (Panthera leo), leopard (Panthera pardus), snow leopard (Panthera uncial), and jaguar (Panthera onca) are grouped into the subfamily Pantherinae. Several mitogenomic approaches have been employed to reconstruct the phylogenetic history of the Pantherine cats but the phylogeny has remained largely unresolved till date. One of the major reasons for the difficulty in resolving the phylogenetic tree of Pantherine cats is the small sample size. While previous studies included only 5‐10 samples, we have used 43 publically available taxa to reconstruct Pantherine phylogenetic history. Complete mtDNA sequences were used from all individuals excluding the control region (15,489bp). A Bayesian MCMC approach was employed to investigate the divergence times among different Pantherine clades. Both maximum likelihood and Bayesian phylogeny generated a dendrogram: Neofelis nebulosa (Panthera tigris (Panthera onca (Panthera uncia (Panthera leo, Panthera pardus)))), grouping lions with leopards and placing snow leopards as an outgroup to this clade. The phylogeny revealed that lions split from their sister species leopard ~3 Mya and the divergence time between snow leopards and the clade including lions and leopards was estimated to be ~5 Mya. Our study revealed that the morphology-based subspecies designation for both lions and tigers is largely not valid. The estimated tMRCA of 2.9 Mya between Barbary lions and Sub-Saharan African lions depicts the restriction of female-mediated gene flow between the lion populations in the backdrop of the habitat fragmentation taking place from late Pliocene to early to mid-Pleistocene creating islands of forest refugia in central Africa.