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Generating a comprehensive map of molecular interactions in living cells is difficult and

great efforts are undertaken to infer molecular interactions from large scale perturbation

experiments. Here, we develop the analytical and numerical tools to quantify the fundamen-

tal limits for inferring transcriptional networks from gene knockout screens and introduce

a network inference method that is unbiased and scalable to large network sizes. We show

that it is possible to infer gene regulatory interactions with high statistical significance, even

if prior knowledge about potential regulators is absent.

The functionality of a living cell is determined by the interplay of multiple molecular com-

ponents that interact with each other. Generating a global map of these molecular interactions is

an essential step to advance our understanding of the molecular mechanisms behind disease, de-

velopment, and the reprogramming of organisms for biotechnological applications 1. The current

advances in gene editing methods 2 have scaled up the size of genome-wide single and double
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knockout libraries, ranging from microbes 3, 4 to higher eukaryotes 5 and open up a much more in-

formative data source than inferring gene regulatory networks from unspecific perturbations, such

as stress or changes in growth conditions 6. However, the detection of direct interactions between

two genes from association measures – for example the covariance between transcript levels – re-

mains a highly non-trivial task, given the significant noise among biological replicates, the frequent

case where the number of parameters exceeds the number of independent data points, and the high

dimensionality of the inference problem.

The existence of a direct interaction between gene A as a source of regulation (source node)

and gene B as a target of regulation (target node) can be detected if a significant part of the tran-

scriptional activity of B can be explained by the transcriptional activity of A but not by the activities

of the remaining genes in the network. Thus a necessary condition for identifiability or inferability

of links is the knowledge about the information that can be transmitted by alternative routes in

the network, which can be obtained by perturbing the involved nodes 7. As most gene perturba-

tion screens are incomplete – for example due to the fact that essential genes cannot be knocked

out – we have in general the situation that a significant amount of interactions within an N -gene

network are non-inferable, regardless of the amount of experimental replicates and the strength

of perturbations. Direct interactions inferred from transcriptome data typically oversimplify the

molecular complexity behind gene regulation, which frequently involves protein-protein interac-

tions and modifications on protein or DNA level.

To calculate the maximum number of links that can be inferred from knockout screens in
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absence of other constraints, we consider a directed network of N nodes, with node activities as

observables and a fraction q of node activities strongly perturbed by external forces. Given that

the perturbed nodes are randomly distributed within the network, we can analytically calculate the

expected fraction of inferable links, F (q), by a counting procedure illustrated in Fig. 1a (Online

Methods and Supplementary Note 1).

As F (q) is an upper bound for the expected number of directed links that can be inferred

from stationary node activities, we now ask how this bound is related to the structural properties

of the network. To compare different network architectures, it is useful to define the network in-

ferability, IF , as the area under the F (q)-curve, IF :=
∫ 1

0
F (q)dq. Comparison of IF between two

general classes of network structures with node degrees either power law or Poisson distributed

shows that networks that are enriched with nodes of high out degree (outgoing hubs) are the most

difficult ones to infer (Fig. 1b). Differences in inferability due to network structure are most pre-

dominant for networks with low mean degree and become less predominant with high mean degree

(Fig. 1c). As our measure of inferablity, IF , is essentially determined by the outdegree distribution

the curve starts saturating for scale-free exponents γ > 3, as in this regime the variance of the

number of links per node is essentially constant for increasing γ and fixed mean degree 8 (Fig. 1d).

The network inferability, IF , is asymptotically independent of network size (Fig. 1e). We further

investigated the inferability of causal interactions in biological and social networks as a function

of the mean degree (Fig. 1f). The decreasing trend can be explained by the higher number of alter-

native routes that come with a stronger connected network. The low inferability of gene regulatory

networks can be attributed to master regulators that regulate a large fraction of the genome (hubs

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/082925doi: bioRxiv preprint 

https://doi.org/10.1101/082925


with high outdegree), whereas the comparatively high inferability of protein interaction networks

is a consequence of the low number of different binding domains per protein and that only a frac-

tion of the existing interactions have been identified due to limitations of experimental methods

9. If we assume that the probability P (k, l,m|k → l) can be factorized, the resulting inferability

measure, I∗F , is simply a function of the outdegree distributions, P (k) and P (l). We observed that

I∗F ≈ IF for all networks investigated in this work (Fig. 1f, inset). This result shows that for a

large variety of networks structures the outdegree is the dominating factor that determines network

inferability.

Inference of transcriptional networks on a genome scale is best realised by methods that are

(i) asymptotically unbiased, (ii) scalable to large network sizes, (iii) sensitive to feed-forward loops

10, and (iv) can handle data sets with and without knowledge about which nodes are targeted by

experimentally induced perturbations 7, 11–15 (Supplementary Note 2). Inference methods for di-

rected networks typically require individual perturbation of all nodes 7 or many perturbations of

different strengths to compute conditional association measures 6, 16 or conditional probabilities 17.

Generation of time course data seems to be the most natural way to infer directed networks by sim-

ply analysing the temporal ordering of the transcriptional activities 18, 19. However, this approach

precludes the use of knockout experiments and requires fast acting perturbations in combination

with monitoring node activities over time, which is experimentally demanding, especially if nodes

respond on very different time scales 20.
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Inference is further complicated by the fact that transcriptome data contains a significant

amount of stochastic variation between biological replicates despite pooling over millions of cells

(Supplementary Fig. 1a). It is interesting to see that the variation across biological replicates for

baker’s yeast 3 is close to a normal distribution and follows almost exactly a t-distribution with 11

degrees of freedom over five standard deviations (Supplementary Fig. 1a, inset) and that biological

noise is much larger than technical noise (Supplementary Fig. 1b). As biological noise may arise

from subtle differences in growth conditions that induce changes in gene regulation, we expected to

see significant cross-correlations among genes (Supplementary Fig. 1c), whose magnitude is much

larger than expected by chance (Supplementary Fig. 1c, inset). These cross-correlations can be ex-

ploited for inferring the structure of undirected networks 11, if the driving noise is independent and

identically distributed for all nodes (Supplementary Note 2). In contrast, technical noise not only

reduces the statistical significance for detecting true interactions but can also induce a significant

fraction of false positive interactions, especially if the interaction network under investigation is

sparse. Such noise induced misclassification of links can be illustrated by a simple linear network

A → B → C for which standard inference methods interpret the information that A has about C

erroneously as a direct link between A and C if the state of B is corrupted by measurement noise

(Supplementary Fig. 1d). The reason is that a part of the correlation between A and C cannot be

explained by B.

To make use of the rapidly growing amount of single-gene knockout screens for which tran-

scriptome data is 3 or may become available 21, 22, we developed a method to infer directed net-

works on a genome scale where the number of genetic perturbations is typically below the number
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of nodes or genes in the network (Online Methods). In brief, our method uses the concept of prob-

abilistic principle component analysis 23 to compute partial response coefficients (PRC) that are

asymptotically unbiased with respect to Gaussian measurement noise (Supplementary Fig. 1d).

Additionally the algorithm provides a feature to identify non-inferable links, which are removed

before statistical analysis. In absence of noise, our numerical method correctly predictes the frac-

tion of links that are inferable, F (q) (Supplementary Notes 1). To evaluate the performance of our

method we generated two synthetic knockout data sets that closely resemble the gene regulatory

network structure of baker’s yeast, using the GeneNetWeaver software 24 that uses a hierarchical

network structure and our own generative model that uses a scale free network structure (Supple-

mentary Notes 3). We added Gaussian measurement noise to the synthetic data with a standard

deviation of 10% the log2 fold-change in expression level for each perturbation for each gene.

Residual bootstrapping among replicates was used to quantify the statistical significance of the in-

ferred link strengths. In comparison with standard inference methods, such as partial correlations

11–13, 25, 26, our method shows a significantly higher performance in absence of any penalties that

enforce sparse network structures (Fig. 2b, left panel). The improved performance of our method

can be assigned to the fact that it is unbiased with respect to measurement noise (Online Methods).

To further improve the predictive power of our method we included the prior knowledge that

transcriptional networks are highly sparse. Sparsity constraints are typically realized by penalising

either the existence of links or the link strengths by adding appropriate cost functions, such as

L1-norm regularized regression (Lasso) 27. Adding a cost function to the main objective comes

with the problem to trade-off the log-likelihood against the number of links in the network whose

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/082925doi: bioRxiv preprint 

https://doi.org/10.1101/082925


strength is allowed to be non-zero. In absence of experimentally verified interactions there is

no obvious way how to determine a suitable regularization parameter that weights the likelihood

against the cost function, which is one of the great weaknesses of such methods.

In our approach we reduce network complexity by assuming that functionally relevant in-

formation in molecular networks can only pass through nodes whose response to perturbations is

significantly above their biological noise level. The individual noise levels can be estimated from

natural variations between wild type experimental replicates (Supplementary Fig. 1). The signif-

icance level that removes nodes from the network with high noise-to-signal ratio can be set by

the desired false discovery rate. It can be shown that removal of noisy nodes imposes a sparsity

constraint on the inference problem (Online Methods). The different steps required to arrive at a

list of significant links are illustrated in Fig. 2a. In the first step, genes are grouped in clusters that

are co-expressed under all perturbations. These clusters are treated as single network nodes in the

subsequent steps. In the second step, only those samples are extracted from the dataset that corre-

spond to perturbation of a chosen gene – the source node – with no other genes perturbed (node 5

in Fig. 2a). From this reduced dataset, we identify all nodes in the network that change expression

above a given significance level upon perturbing the source node. These significantly responding

nodes define a subnetwork for each source node, which is typically much smaller in size than the

complete network. In the third step, we collect all perturbation data from the complete dataset for

all nodes that are part of the subnetwork. Before inferring a direct interaction that points from the

source node to a given target node in the subnetwork, we remove the perturbation data of target

node and all nodes that respond significantly to perturbations of the target node (green arrows in
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Fig. 2a). The second and third steps realise numerically the counting procedure of inferable links

as illustrated in Fig. 1a. Significant links are identified by partial response coefficients in combi-

nation with residual bootstrapping over replicates (Online Methods). In the fourth step, we collect

all clusters of co-expressed genes that contain two nodes in total with one of the nodes perturbed

and check statistical significance of the directed link between them. In the fifth step, all significant

links are collected in an edge list. We refer to these five steps as the clustering method. If we

remove all links from the edge list that have more than one node as a source or more than one node

as a target, we obtain an edge list that corresponds to links between single genes. This reduced

edge list would also arise by skipping the clustering step and we refer to remaining inference steps

that compute links between single genes as subnetwork method.

The Lasso method followed by bootstrapping has been benchmarked as one of the highest

performing network inference methods for in silico generated expression data 28. The receiver op-

erating characteristic (ROC) curve of the subnetwork method shows better performance than the

Lasso method (Fig. 2b, middle and right panel) after adjusting the regularization parameter of the

Lasso method such that the area under the ROC curve is maximized. However, a significant perfor-

mance boost for the Lasso method can be achieved by applying the second step of our method that

removes noisy nodes, resulting in comparable performance of Lasso with the subnetwork method

for the case that validation data exists such that the regularisation parameter can be determined

(Fig. 2B, middle and right panel).

To get insight into the optimal experimental design for generating data for network inference,
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we computed the fraction of correctly inferred links and compared them against the fraction of

independently perturbed nodes for different numbers of experimental replicates. We compared

three different variants of our approach: partial response coefficients (PRC), PRC together with

subnetwork method, PRC together with clustering method (Fig. 4C). As all variants share PRC

as underlying inference method (Online Methods), the observed strong increase in performance

can be assigned to the sparsity constraint that comes with the subnetwork method or the clustering

method. Due to this constraint, both the subnetwork method and the clustering method can have

higher accuracy than the noise-free analytical solution, as the latter does not enforce sparse network

structures. The results show that in presence of 10% measurement noise the amount of available

replicates limits the true positive rate, even if 100% of nodes are perturbed. However, inference of

more than 80% of the network can only be achieved if the number of replicates is sufficiently high.

To evaluate the performance of our approach on real data, we use one of the largest pub-

licly available transcriptome data sets 3, compromising transcriptomes that cover 6170 genes for

1441 single gene knockouts. We use the galactose utilisation network as a gene regulatory exam-

ple, which is one of the best characterised gene regulatory modules in yeast 29. The regulatory

mechanism of the GAL4 gene as a key regulator is shown in Fig. 4D, left panel. As information

about phosphorylation and protein interaction is absent in expression data, the inferred network

structure from transcriptome data with GAL4 and GAL80 perturbed is different from the known

gene regulation. By sorting genes with respect to their number of statistically significant outgoing

links, we can identify potential key regulators. Besides transcription factors, the regulators with

highest statistical significance are factors involved in chromatin remodelling, signalling kinases,
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and genes involved in ubiquitination (Supplementary Tables 1-3). This result – although expected

for eukaryotes – is inaccessible for inference methods that a priori fix known transcription factors

as regulatory sources. However, as the 1441 knockout genes of this dataset compromise just 23%

of the genes for which transcript levels have been measured, we can estimate from our simula-

tions that we have inferred less than 10% of the direct interactions in the transcriptional network of

yeast. However, the recently available double knockout screens in yeast 22 drastically increased the

number of targeted perturbations, which can boost the prediction accuracy of network inference

methods once transcriptome data for a fraction of these mutants become available.
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Figure 1 — Inferability as a function of network parameters. (a) Directed links are inferable if

either all outgoing links of the source node are perturbed including the target node (left panel) or if

all outgoing links of source node and target node are perturbed, with the target node not perturbed.

(b) Fraction of inferable links against the fraction of perturbed nodes using three network types: (i)

scale free network with exponent γ = 2.5 and mean degree 〈k〉 = 3, where nodes of higher degree

target nodes of lower degree (outgoing hubs), (ii) same network as (i) but with all link directions

inverted (incoming hubs), or a network generated by random insertion of links with the same mean
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degree as scale-free networks (random network). Colour coding as in (c). (c) Network inferabil-

ity versus mean degree, using networks of (b). (d) Network inferability versus scaling exponent

for two types of scale-free networks. (e) Asymptotic invariance of the two inferability measures

introduced in the main text with respect to network size. (d) Network inferability as a function of

mean degree for social and biological networks. Correlation between the two inferability measures

introduced in the main text (inset).
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Figure 2 — Performance of our method. a) Flow-chart showing the algorithmic steps for network

inference as explained in the main text. b) Receiver Operating Characteristic (ROC) curves for 300-

node scale-free networks with additive Gaussian measurement noise of 10% of the expression level

and 25% of the nodes perturbed. Data was generated using GeneNetWeaver (left and middle panel)

as well as using scale-free network structure with mean degree of 〈k〉 = 2 and scaling exponent

γ = 2.5 (right panel, Supplementary Notes 3). Here, the true positive rate is computed with respect

to the inferable links 30. Performance of inference methods without sparsity constraints (left panel):

PRC (red), partial correlations / linear regression (turquoise) and conditional mutual information

(orange). Performance of inference methods with sparsity constraints (middle and right panel):

PRC with subnetwork method (green) and Lasso (black) both applied to a subset of significantly

responding nodes that were selected with 1% false discovery rate, Lasso regression applied to all

300 nodes (blue), and PRC from left panel (red) for comparison. c) True positives for the same

scale-free network of (b) with 2, 4 and 8 experimental replicates with 5% false discovery rate for

both significantly responding nodes and link strength: PRC (red), PRC with subnetwork method

(green), PRC with subnetwork and clustering method (blue), and F (q) (black line). d) The S.

cerevisiae GAL network as an example for a gene regulatory network where phosphorylated Mig1

sets the basal expression levels of Gal4 and one of its many regulatory targets Gal3. Gal4 protein

can activate Gal3 but is inactivated upon binding of Gal80 protein. The transcriptome dataset

contains knockout mutants for Gal80 and Mig1 but not for the remaining Gal genes. A schematic

representation of the key molecular mechanisms (left) and links inferred from transcriptome data

3 (right).

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/082925doi: bioRxiv preprint 

https://doi.org/10.1101/082925


3

1

2

a b

c d

Supplementary Figure 1 — Distribution of wild type expression levels for S. cerevisiae from 748

biological replicates. (a) Distribution of the relative expression, log2(ri), with ri := xi/x
pool
i and

xi the expression of gene i relative to xpooli followed by standardization of the log2 fold changes

(z-score). The values xpooli have been obtained by first pooling the 748 biological replicates before

measuring gene expression. The distribution is well described within 5 standard deviations by a t-

distribution with 11 degrees of freedom (red line). b) Distribution as in (a) but now for differences

among technical replicates. c) Correlation between gene expression levels is significantly higher

than expected by chance (inset) d) Illustration of a noise induced false positive link (red arrow)

as described in the main text. Data for a three-node network with two links was generated by
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applying independent perturbations on node 1 and node 2. The link strength of the non-existing

link from node 1 to node 3 relative to the existing link from node 2 to node 3 was inferred using

three different methods (i) partial correlations (blue squares), (ii) conditional mutual information

(green triangles), and PRC (red circles).
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Methods

Partial response coefficients (PRC). We aim at inferring direct interactions between N observ-

able molecular components, such as transcripts or proteins, by measuring their copy numbers or

concentrations, y ∈ RN . We assume that the available dataset has been generated from P pertur-

bation experiments, {yk}Pk=1, which may also include experimental replicates. We further assume

that the molecular targets of the perturbations are known, as it is the case for gene knockout or

knockdown experiments. The elements of the interaction matrix A ∈ RN×N define the strength

of the directed interactions among the molecular components, for example Aij quantifies the di-

rect impact of component j on component i. Given the available experimental data, our aim is to

correctly classify the off-diagonal elements ofA as zero or nonzero to obtain the structural organi-

zation of the interaction network. We assume that the observed component abundance, yobs
k , differs

from the true value, yk, by additive measurement noise, ε(t), which is characterized by zero mean,

E[ε(t)] = 0, and variance, E[ε(t)ε(t)T ] = σ2IN , with IN the N dimensional identity matrix. We

assume that the observed data can by described to sufficient accuracy by a linear stochastic process

ẏ(t) = A
(
y(t)− yref

)
+Bu+ η(t)

yobs(t) = y(t) + ε(t) , (1)

with A negative definite to ensure stability. Equations of this type typically arise from linear

expansion of a nonlinear model around a reference state, yref . The perturbation vector u is time-

independent and reflects perturbations that persist long enough to propagate through the network,

such as mutations that affect gene activity. We further introduce with B ∈ RN×N , the associated

standard deviations of the perturbative forces, u, and assume that these forces are sampled from
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a standard normal distribution, with mean E[u] = 0 and covariance matrix E[uuT ] = IN . In

general, only the positions of the non-zero elements of B are known from the experimental setup

but their actual values are unknown. Fluctuating perturbations that are fast in comparison to the

network response are represented by the stochastic vector η(t), which we model as white noise

defined by E[η(t)] = 0 and E[η(t)η(t′)] = γδ(t − t′)IN , with δ(t) the delta function and γ the

fluctuation strength. The solution of Eq. (1) is given by

yobs(t) = yref +

∫ t

t0

eA(t−t′)[Bu+ η(t)]dt′ + ε(t) (2)

from which we obtain in the stationary regime, t � t0, a relation between A and the covariance

matrix of observed component abundances

C := E
[
(yobs − yref )(yobs − yref )T

]

= A−1BBTA−T − γ
(
A+AT

)−1
+ σ2IN (3)

We exploit Eq. (3) to infer directed networks from correlation data. Here, we assume that compo-

nent abundances are obtained from averaging over a large number of cells in the stationary growth

phase. In this case, fast fluctuating perturbations that arise from thermal noise and can be observed

only on single-cell level average out. To infer the interaction matrix, A, we start with singular

value decomposition of the matrix productA−1B

UΣV T := A−1B ⇒ B = AUΣV T (4)

with U and V orthogonal matrices and Σ a diagonal matrix containing the singular values. The

negative definite matrix A is invertible and hence has full rank. In the following, we show that

it is possible to infer the directed link strength between a sender node j and a receiver node i, if
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all direct perturbations on receiver node i are removed from the dataset and if a significant partial

correlation between i and j exists. Removing the perturbation data for node i implies that the

matrix B has at least one zero entry. As a consequence, N0 ≥ 1 singular values are zero – as

in general not all nodes are perturbed – and the corresponding rows of U span the left nullspace

of A−1B. In the absence of fast fluctuating perturbations, γ = 0, we can rewrite the covariance

matrix as

C = A−1BBTA−T + σ2IN (5)

= U(Σ2 + σ2IN)UT . (6)

Assuming that the observed node activities follow a multivariate normal distribution, we can find

estimates for the unknown orthogonal matrixU , the singular values Σ, and the observational noise

σ by maximizing the log-likelihood function L under the constraint UT
kU k = IN , with

L := ln
P∏

n=1

N (yobs
n |yref ,C) +

N∑

k=1

λk(UT
kU k − 1) (7)

= −P
2

{
M ln 2π + ln |C|+ tr(C−1S)

}
+

N∑

k=1

λk(UT
kU k − 1) (8)

Here, S := 1
P

∑P
n=1(y

obs
n − yref )(yobs

n − yref )T and yref := 1
P

∑P
n=1 y

obs
n denote maximum

likelihood estimates of the covariance matrix 31 and the expected node activities, λk is a Lagrange

multiplier and tr(.) denotes the trace of a matrix. In the following calculations, we substitute S by

the unbiased sample covariance matrix, S → P (P − 1)−1S. Note that V must disappear in the

likelihood function as the covariance matrix of u is invariant under any orthogonal transformation

u→ V Tu.

The maximum of the log-likelihood function is determined by the conditions dL/dU k = 0,
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dL/dΣkk = 0, and dL/dσ2 = 0, which results in

SU k = ΛkU k with Λ1 ≤ Λ2 ≤ ... ≤ ΛN (9)

σ2 =
1

N0

N0∑

k=1

Λk (10)

Σkk =





√
Λk − σ2 for k > N0

0 for k ≤ N0

(11)

showing that maximum likelihood estimates of U , σ2, and Σ are uniquely determined by the

sample covariance matrix S. Our analysis is mathematically equivalent to the probabilistic inter-

pretation of principle component analysis 23.

Solving the matrix equation, Eq. (4), forA gives

A = (BV Σ+ +WΣ0)UT (12)

with Σ+ the pseudoinverse of Σ. As the matrix A has full rank, we complement Σ+ with an

unknown diagonal matrix Σ0 that has nonzero values where Σ+ has zero values and vice versa

and complement BV with an unknown orthogonal matrix W . Note that by construction, Σ+UT

and Σ+UT map from complementary subspaces and thereby ensure that A has full rank. The

fact that V , W , and Σ0 cannot be determined from S shows that A cannot be computed from a

single covariance matrix. A more general case arises when measurement noise is independent but

not isotropic, σ2I → σ2D, with D = diag(r1, r2, ..., rN) a diagonal matrix with known positive

elements that contains scaled noise variances, ri := σ2
i /σ

2, resulting in

C = A−1BBTA−T + σ2D (13)
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A transformation to isotropic noise is possible by multiplying both sides of Eq. (13) by D−
1
2 ,

which changes the result Eq. (12) to

A = (BV Σ+ +WΣ0)UTD−
1
2 (14)

with U the eigenvectors ofD−
1
2SD−

1
2 .

Case N0 = 1. We assume that the i-th node is the only unperturbed node in the network and

consequently define Bil = 0 for all l. From Eq. (12) we obtain a unique solution for the i-th row

ofA relative to the diagonal element, Aii,

Aij

Aii

=

∑N
k,l=1BilVlkΣkk +

∑N
k=1WikΣ0

kkU
T
kj∑N

k,l=1BilVlkΣkk +
∑N

k=1WikΣ0
kkU

T
ki

=
UT
kj

UT
ki

∣∣∣∣∣
k=1

=
Uj1

Ui1

(15)

with Uj1 the j-th element of the eigenvector of S that has the smallest eigenvalue. Note that the

first term in the brackets vanishes as Bil = 0 and Σ0
11 is the only nonzero element of Σ0. The

important point is that any dependency on σ has dropped out, which makes this method asymptot-

ically unbiased with respect to measurement noise. The fact that we can determine the elements

of the i-th row of A only relative to a reference value, Aii, is rooted in fact that we have to de-

termine the N parameters {Ai1, .., Aii, .., AiN} from N − 1 perturbations. As a consequence, the

strengths of the links onto the target nodes cannot be compared directly if their restoring forces

or degradation rates, Aii, are different. Generally, only relative values of A can be determined, as

the average perturbation strength on node i cannot be disentangled from its restoring force Aii –

a problem that is typically circumvented by defining Aii := 1 for all i 7, 12, 14. For the case that all

nodes in the network are perturbed one-by-one, we can cycle through the network and remove the

perturbations that act on the current receiver node, while keeping the perturbations on the remain-
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ing nodes. By computing the N corresponding covariance matrices and their eigenvectors, we can

infer the complete network structure from Eq. (15) if the data quality is sufficiently high.

CaseN0 > 1. For all i that are not perturbed or whose perturbation data has to be removed from

the dataset we get from Eq. (12)

Aij

Aii

=

∑N0

k=1WikΣ0
kkU

T
kj∑N0

k=1WikΣ0
kkU

T
ki

(16)

Non-unique solutions of Eq. (16) can arise if a given fraction of the variance of the receiver node

i can be explained by more than one sender node, for example, when a perturbed node j targets

two nodes with index i and l. In this case it is unclear from the node activity data whether i is

affected directly by j or indirectly through l, or by a combination of both routes. If the node l is

unperturbed, we can use the simple criteria shown in Fig. 1a to decide whether the link from j to

i is inferable or not. If node l is weakly perturbed, a statistical criteria is needed to decide about

inferability, which can be computed numerically as follows: To find out whether j transmits a

significant amount of information to i that is not in l, we first remove the perturbed node j from the

network and determine the link strengthsA′ for the remaining network of size N −1. To construct

a possible realisation of A′ we set in Eq. (16) the nonzero values of Σ0 to unity and use W = U

to arrive at the expression

A′il
A′ii

=

∑N0

k=1 U
′
ikU

′
lk∑N0

k=1 U
′
ikU

′
ik

(17)

withU ′ determined from the sample covariance matrix with the i-th column and i-th row removed.

Using the inferred link strength from Eq. (17) we can rewrite Eq. (3) as a two-node residual infer-

ence problem between j and i, where we obtain a lower bound for link strength from node j to i
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by using the variation of i that could not be explained by A′. Defining by Ã, B̃ and D̃ the 2 × 2

analogs to the full problem we obtain

C̃ = Ã
−1
BBT Ã

−1
+ σ2D̃ (18)

with C̃ the covariance matrix of the vector ỹobs = (yobsj , yobsi +
∑

l 6={i,j}A
′
il(A

′
ii)
−1 yobsl )T and

D̃11 = rj , D̃22 = ri +
∑

l 6={i,j}A
′2
ilA
′−2
ii rl, using the scaled variances ri = σ2

i /σ
2. Note that

Aii < 0 for all i as these elements represent sufficiently strong restoring forces that ensure negative

definiteness ofA and that we have 0 = A′iiy
obs
i +

∑
l 6=iA

′
ily

obs
l from Eq. (1) in the stationary case.

An estimate for the minimum relative link strength from node j to node i can be calculated from

Eq. (14) and is given by

Ã12

Ã11

=
Ũ21D̃

−1/2
22

Ũ11D̃
−1/2
11

(19)

Eq. (19) can be considered as an asymptotically unbiased response coefficient between node 1

as target node and node 2 as source node, as any dependency on σ2 has dropped out. An esti-

mate for the maximum relative link strength from node j to node i follows from Eq. (19) with the

off-diagonal elements of A′ set to zero. We classify a link as non-inferable if there exists (i) a

significant difference between the minimum und maximum estimated link strength and (ii) a min-

imum link strength that is not significantly different from noise.

Computational complexity of PRC. The computational cost for computing partial response co-

efficients scales as O(N3
sub), with Nsub the size of the subnetwork under consideration. However,

as we infer directed networks, we first have to remove the perturbations on each target node before
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its incoming links can be inferred. The cycling through up to Nsub − 1 perturbed target nodes

increases the computational complexity to O(N4
sub) in the worst case. As we have generated a

subnetwork for each significantly varying node and used residual bootstrapping to infer statisti-

cally significant links, the total computational complexity is given by O(NbootNsig〈N4
sub〉), where

〈.〉 denotes averaging over all subnetworks and Nboot the number of bootstrap samples. If the trav-

elling distance of perturbations (correlation length) in the network is significantly shorter than the

network diameter, such that Nsub/N → 0 in the limit of large networks, N → ∞, the computa-

tional complexity scales linear with network size. In contrast, using Lasso to infer directed links

requires O(NbootN
4
sig) operations, as the more efficient Graphical Lasso method 32 is only appli-

cable to undirected networks. Whether our method is computationally more efficient than Lasso

depends on the inference problem. However, for the scale free networks investigated in this work

our method required significantly less computational time than inference via Lasso using parallel

computing.

Fraction of non-inferable links. Inferability of a directed link between source and target node

requires that the remaining network may not contain the same information that is transmitted be-

tween them. A sufficient condition is that all information that the remaining network receives from

the source node is destroyed by sufficiently strong perturbations. If the target node is not perturbed,

information from the source node my reach the remaining network through the target node. In this

case also the targets of the target node must be perturbed (Fig. 1a). Counting network motifs that

satisfy these conditions gives the number of inferable links. If the network size, N , is significantly

larger than the number of outgoing links for both the source and target nodes, we can approximate
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the fraction of inferable links, F (q), by the expression (Supplementary Note 1)

F (q) ≈
∑

k=1

∑

l=0

min(k−1,l)∑

m=0

[
qk+1 + (1− q) qz

]
P (k, l,m|k → l)

Here, P (k, l,m|k → l) is the conditional probability of finding two connected nodes in the directed

network, where the source node has k ≥ 1 outgoing links, the target node has l ≥ 0 outgoing links,

and both share m nodes as common targets of their outgoing links. The first term in the brackets

corresponds to the case that independent perturbation data for node B exists (Fig. 1a, left panel)

and the second term to the case where independent perturbation data for node B is absent (Fig. 1a,

right panel). In the calculation of F (q) we assumed that the links in the network are identical with

respect to the information they can transmit.

Data preparation Kemmeren et al.3 provided a transcriptome data set of a Saccharomyces cere-

visiae genome-wide knockout library (with mutant strains isogenic to S288c). This data set com-

prises transcript levels of 6170 genes for 1484 deletion mutants. The data is presented as the

logarithm of the fluorescence intensity ratios (M-values) of transcripts relative to their average

abundance across a large number of wild type replicates, resulting in logarithmic fold changes of

mutant/wild type gene expression levels compared to a wild type reference level. Kemmeren et

al. also used a dye swap setup for several experiments to average out the effect of a possible dye

bias. Their chip design measures most of the genes twice per biological sample, thus allowing to

estimate the technical variance. The preprocessing of the data is described in Kemmeren et al.3,

Supplementary Information.

25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/082925doi: bioRxiv preprint 

https://doi.org/10.1101/082925


Residual Bootstrapping We make use of the 748 measured wild type experimental replicates

to determine the natural variation among biological replicates, δin := log2(rin) − 〈log2(rin)〉n,

with rin := xin/x
pool
i , xin the expression of gene i in wild type replicate n, xpooli the expression

level of gene i measured after pooling over wild type replicates, and 〈.〉n denoting the average

over replicates. To generate the bootstrap samples we randomly select 200 different δin from the

replicates for each gene i, and add these values to the log fold-changes of the perturbed expression

levels, 〈log2(rpertin )〉n, with rpertin := xpertin /xpooli and the average is taken over the two replicates for

each knockout.

Sparsity constraints by removing noisy nodes As network inference typically comes with an

insufficient amount of independent perturbations and experimental replicates we run into the prob-

lem of overfitting the data. In this case, noisy information from many network nodes is collected to

explain the response of a given target node. L1-norm regularized regression (Lasso) systematically

removes many links, where each link explains only a small part of the variation of the target node,

in favour of few links, where each link contributes significantly. In our approach we remove noisy

nodes and thus their potential outgoing links, where the critical noise level is determined by inde-

pendent biological noise. Which nodes are removed depends on the source node that is perturbed.

In the absence of noise, our algorithm removes weakly responding nodes from the network. We

thereby assume that the existence of many indirect interactions between source and target node

by first distributing the signal of the source node among many weakly responding nodes and then

collecting these week signals to generate a significantly responding target node is much less likely

than the existence of a single direct interaction. However, in the noise-free case we run into the
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same problem as Lasso to determine the right cut-off (regularization parameter).

Synthetic Data Synthetic data was generated using our own model and GeneNetWeaver 24 – an

open access software that has been designed for benchmarking network inference methods. With

GeneNetWeaver, networks were generated from a model that closely resembles the structure of

the yeast regulatory network 24, and steady state levels of node activities were computed using

ordinary differential equations (ODEs). In our model, we first generated scale-free networks with

an exponent of 2.5 and an average degree of 2. Then, we solved a system of ordinary differential

equations with non-linear regulatory interactions between nodes to obtain steady state values of

node activities, e.g. transcript levels. For both models, logarithmic fold changes of node activi-

ties were calculated (transcriptional levels upon perturbation relative to wild levels), and gaussian

measurement noise was added.
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Supplementary Note 11

2

1 Counting the number of inferable links with respect to the3

number of perturbed nodes4

Structural features of a network allows us to determine the expected fraction of5

inferable links analytically if the number of randomly perturbed nodes (Np) is6

known and measurement noise is absent.7

Assume a subnetwork where a source node (A) targets a node (B), given that the8

out-degree of node A is k, the out-degree of node B is l, and A and B have c nodes9

as common targets. We aim to infer the link from node A to node B (See figure10

1).11

12

A 

B 

A 

B 

Fig. 1: Example of a directed subnetwork. We would like to infer the link from
node A to node B (shown in bold), where A has out-degree 4, B has out-
degree 3, and A and B share 1 common target.

We denote a direct link from source node (A) to target node (B) as inferable13

if there exits a detectable amount of mutual information between A and B that14

1
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2 Network’s Inferability 2

cannot be transmitted by any alternative route through the network. This requires15

that at least one nodes of each alternative route is perturbed and thereby part of16

the transmitted information is destroyed. To meet this requirement, either one of17

the following conditions must be fulfilled (Fig. 1a, main text):18

19

1. All nodes that are targeted by A are perturbed, including node B.20

2. Except B, all nodes that are targeted by A and B are perturbed.21

By collecting all subnetworks that fulfil conditions 1 or 2 we can calculate the22

average fraction of inferable links, F (Np), using N ′ := N−k−1 and N ′p := Np−k−123

F (Np) =
∑

k

(
N ′

N ′p

)

(
N
Np

)P (k|A→ B) +
∑

k,l,m

(
N ′ − l + c

N ′p − l + c + 1

)

(
N
Np

) P (k, l, c|A→ B) (1)

Here, N is network size, Np is number of perturbed nodes, k is the out-degree24

of the source node (A), l is the out-degree of the target node (B), c is the number25

of common nodes targeted by A and B. We further defined by P (k|A → B) the26

conditional probability that for any two connected nodes, source node (A) has27

out-degree k and P (k, l, c|A→ B) is conditional probability that for any two con-28

nected nodes, source node (A) has out-degree k , target node (B) has out-degree29

l, and A and B target c common nodes. The first term in the numerator counts30

motifs that fulfil condition 1, and the second term in the numerator counts motifs31

that fulfil condition 2. The term in the denominator counts all possible network32

motifs, when Np nodes of the network are perturbed. Note that measurement33

noise can decrease the fraction of inferable links due to distortion of information34

flow. Thus equation 1 calculates the expected maximum fraction of inferable links.35

36

Assuming that the network size, N , and the number of perturbed nodes, Np,37

are much larger than the out-degrees, N,Np � k, l, we can apply Stirling’s ap-38

proximation and simplify Eq. (1)39

F (q) ≈
∑

k,l,c

[
qk+1 + (1− q)qk+l−c]P (k, l, c|A→ B) (2)

where q denotes fraction of perturbed nodes, q = Np/N .40

41
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2 Network’s Inferability 3

2 Network’s Inferability42

According to Eq. (2), networks with different structural features have different43

F (q) curves (Fig. 1b, main text). We therefore define a inferability measure, IF ,44

as the area under the curve of F(q) that reflects how difficult it is to infer links for45

a given network structure46

IF =

∫ 1

0

F (q)dq

=
∑

k,l,c

[
1

k + 2
+

1

k + l − c + 1
− 1

k + l − c + 2

]
P (k, l, c|A→ B) (3)

Not that IF is independent of network size. For a sufficient large networks N � 147

and when feed forward loops rare, we can approximate the joint probability by48

IF ≈ I∗F

:=
∑

k,l,c

[
1

k + 2
+

1

k + l + 1
− 1

k + l + 2

]
P (k|A→ B)P (l|A→ B) (4)

According to Eqs. (3) and (4), inferability mainly depends on the out-degree of49

nodes. Consequently, networks consisting of nodes with high out-degree have low50

inferability (IF ) and are the most difficult ones to infer.51

3 Comparison of F (Np) with the inference algorithm52

We compared the fraction of inferable links determined by the analytical formula,53

F (Np), and the average number of inferable links classified by our inference al-54

gorithm in the limit of low measurement noise. In order to calculate the average55

number of inferable links form the inference algorithm, first we consider a specific56

network type. For each number of perturbed nodes, Np, we first randomly iden-57

tify nodes that will be perturbed and subsequently generate node activity data.58

For each random sample of Np nodes, we calculate the fraction of inferable links59

and finally average over all configurations of perturbed nodes. Figure 2 compares60

the results of the analytical and numerical approaches for three different types of61

networks. We consider the two extreme examples of scale-free networks; a scale-62

free network where hubs are targets of links (Fig. 2a), a scale-free network where63

hubs are souces of links (Fig. 2b) and a random network (Fig. 2c). In all three64

network types the network sizes are N = 100 and averaging runs over 300 different65

configurations of Np randomly selected nodes that are perturbed individually by66

knockouts.67

68
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Fig. 2: Comparison of the analytical formula, Eq. (1) and the inference algorithm
by calculating the number of inferable links with respect to the number of
perturbed nodes, Np.
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Supplementary Notes 21

2

Interpretation of network inference algorithms that are related3

to partial correlations4

Algorithms based on partial correlations [1, 2] – a method designed to discriminate5

between direct and indirect interactions – show comparatively low performance for6

predicting direct correlations between transcript levels using transcriptome data7

[3] but excellent performance for predicting contact points of protein structures8

[4, 1]. To understand the difference in performance of partial correlations, we9

investigate Eq. (3) of the Online Methods section for the special case where (i)10

all perturbations are independent and fast fluctuating, B = 0, (ii) all links are11

bidirectional (undirected network), A = AT , and (iii) measurement noise is absent,12

σ = 0. In this case the elements of interaction matrix, A, correspond to partial13

correlations for γ = 214

C = A−1 ⇔ A = C−1 (1)

The constraints imposed by the conditions (i)-(iii) explain the poor performance15

of partial correlations in inferring undirected links for gene regulatory networks16

[3], where most of data is generated by perturbations that persist on long time17

scales, measurement noise is significant, and the network is directed. In contrast,18

conditions (i)-(iii) are satisfied to very good approximation for identifying phys-19

ical contacts between amino acids in folded proteins [4], where single nucleotide20

substitutions occur on much shorter time scales than significant changes in pro-21

tein structure, links are undirected, and measurement noise from sequencing errors22

make no relevant contribution.23

24

In contrast to undirected networks, directed links can be inferred in absence25

of measurement noise using a response matrix method, if static perturbations are26

applied individually to all nodes in the network [5]. Given that fast fluctuating27

perturbations are absent, we can calculate from Eq. (2) of the Online Methods28

section the response of the i-th node, δyi, with respect to a perturbation that acts29

exclusively on the j-th node by δyi = −A−1
ij Bju, with δyi := yi− yrefi and Bj the30

1
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2

j-th row of B. Using the expression δyj = −A−1
jj Bju to substitute Bju, we arrive31

at the relation32

Gij :=
δyi
δyj

=
A−1

ij

A−1
jj

⇒ G = A−1[diagA−1]−1 (2)

with diagX a matrix with elements {X11, X22, ...} on the main diagonal and zero el-33

ements otherwise. Here, Gij denotes the linear response coefficient of the network,34

describing the change in activity of node i if node j changes its value in response35

to a perturbation that acts exclusively on node j. After inverting both sides of36

Eq. (2) and setting the restoring forces (degradation rates) to unity, Ajj = −1 for37

all j, we arrive at the published result of Ref. [5]38

A = [diagA−1]−1G−1 = −[diagG−1]−1G−1 . (3)

In the derivation we used that by definition diagA = −I = [diagA−1]−1diagG−1,39

with I the identity matrix.40

41

The lack of a unique relation between G and A is rooted in the fact that the42

N(N + 1) parameters of A and Bu cannot be uniquely identified from the N ×N43

measured node activities, even for the rare case that it was possible to perturb all44

nodes in the network one-by-one. This problem does not change if more perturba-45

tions are carried out as Bu takes different values for different perturbations. The46

result that direct interactions can be computed by inverting the linear response47

matrix, Eq. (3), has been derived several times, with either fixing the restoring48

force, A = −I, [5, 2] or by computing direct interactions from A = I −G−1, [1]49

(the latter reference defines an unusual response matrix with zero elements on the50

main diagonal by Gobs := G− I).51

52

Substantial confusion arrises if G is substituted by C in Eq. (3) for the rea-53

son that C can be computed using perturbative forces that act simultaneously on54

many nodes [2, 1], whereas computation of G requires that all nodes are perturbed55

individually [5]. Despite the fact that Eq. (1) and Eq. (3) look similar, the invalid56

operation G→ C implies that we apply Eq. (1), which only holds for fast fluctu-57

ating perturbations, to static perturbations for which Eq. (3) has been derived. As58

expected, this invalid substitution gives poor performance if a substantial fraction59

of the dataset comes from slowly varying perturbations [3] and good performance60

if the conditions (i)-(iii) apply [1].61

62
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Supplementary Note 31

2

1 Input data to network inference algorithm3

1.1 Saccharomyces cerevisiae genome-wide knockout library4

1.1.1 Description of the data set5

Kemmeren et al. [1] provided a transcriptome data set of a Saccharomyces cere-6

visiae genome-wide knockout library (with mutant strains isogenic to S288c [2]).7

This data set, hereafter simply referred to as the yeast deletome data, comprises8

of transcript levels of 6170 genes for 1484 deletion mutants (hereafter referred to9

as perturbation experiments). The data of 1441 of these perturbation experiments10

can be used for network inference as the transcript levels of the deleted genes was11

measured with the microarray chip design. The data is presented as the logarithm12

of the fluorescence intensity ratios of red and green labelled microarray targets13

(M-values): M =
(
R
G

)
. For the regular experimental setup, DNA from the dele-14

tion mutants was labelled red, and DNA that was pooled from several wild type15

batches was labelled green. The aim of pooling the wild type DNA was to aver-16

age out biological fluctuations, so that this DNA pool could be used to define a17

reference gene expression level. This allows the interpretation of the M-values as18

logarithmic fold changes of mutant gene expression levels compared to a wild type19

reference. Kemmeren et al. also used a dye swap setup for several experiments to20

average out the effect of a possible dye bias. The chip design used by Kemmeren21

et al. measures each gene twice per biological sample, thus allowing estimation of22

the technical variance.23

1.1.2 Preprocessing of data24

We used the preprocessed data provided by Kemmeren et al. for our analyses. The25

preprocessing steps are described elsewhere [1]. We re-arranged the original pre-26

processed data layout to make it compatible with our network inference algorithm.27

Specifically, M-values corresponding to dye-swap experiments were multiplied by28

-1 and only knock-out experiments corresponding to genes that were also included29

in the chip design were kept in the data set.30

1
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1 Input data to network inference algorithm 2

1.1.3 Distribution of biological and technical variance (suppl. figure 1a31

and suppl. figure 1b)32

Since there is insufficient information about the biological processes leading to33

variation among biological replicates (biological noise), we assume that the process34

is equal for all genes. By bringing the wild type data to unit variance for each gene,35

we show that the variation among the wild type data logarithmic fold changes36

is approximately Gaussian distributed (suppl. figure 1a). By taking the mean37

logarithmic fold change of each biological replicate (wild type data only) and then38

calculating the differences of the technical replicates to this mean, the distribution39

of the technical variance can be found (suppl. figure 1b).40

1.1.4 Correlation among wild type experiment M-values (suppl. figure 1c)41

The histograms shown in suppl. figure 1c were created from the upper triangular42

correlation matrix (without diagonal elements) of wild type experiment M-values.43

The inserted figure was created by breaking up correlations between genes via44

random shuffling of the experiments.45

1.2 Simulating Gene Expression data46

To estimate how well network inference works on data which is similar to the data47

set provided by Kemmeren et al. [1], the input data to the inference algorithms48

was generated as described below. In short, steady state solutions of ordinary49

differential equations were used to generate absolute gene expression levels, which50

were then turned into logarithmic fold changes, and measurement noise was added.51

1.2.1 Using scale free networks and steady state solutions of ordinary52

differential equations to simulate absolute gene expression levels53

We chose scale free network models with exponent 2.5 to simulate a comparable54

network structure to yeast; the average degree was set to 2. Up to a rounding55

error, 80 % of links were set as inhibiting. Non-linear regulatory interactions were56

simulated by solving ordinary differential equations. First, wild type expression57

levels were calculated by solving a system of equations of the form shown below.58

The Hill-coefficients hki were sampled from a uniform distribution between 1 and59

2. The constant Kki was set to 0.5. The linear degradation term λi was set to 260

to assure stability. The coefficients aki and bki were set to 1 and -1 respectively for61

inhibiting links and to 0 and 1 respectively for activating links.62
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1 Input data to network inference algorithm 3

ẏi =
∑

k ∈{1, ..., N}/i

(
aki + bki

yhkik

Khki
ki + yhkik

)
+ ui − λiyi

Here, ui denotes the basal gene expression rate. To compute the response yij of a63

gene i to a knock-out of gene j, the above shown system of ODEs was modified by64

setting the basal expression rate for the knocked out gene to zero and by removing65

all links onto and away from the gene j.66

1.2.2 Using GeneNetWeaver to simulate absolute gene expression data67

For better comparability with other publications, gene expression data was also68

generated with the program “GeneNetWeaver” [3]. This data was only used for69

comparing inference methods using ROC curves. From the “gold standard” yeast70

network in the program, random subnetworks were extracted with at least 10071

regulators (random vertex seed; greedy neighbor selection). Then, the “Generate72

Kinetic Model” option was used with removal of auto-regulatory interactions to73

allow the generation of data sets. Data sets were generated with the following74

options: deterministic (ODEs) model, knock-out & wild type experiments, no75

time series, no noise added.76

1.2.3 Logarithmic fold changes (M-values)77

To simulate logarithmic fold changes that were similar to the M-values (logarith-78

mic fold changes) of the yeast deletome data set described above, the M-values79

of yeast knock-out mutants were investigated for the knocked-out genes. Due to80

measurement noise, these values never reach negative infinity as would be expected81

in the absence of technical noise. The median minimal absolute fluorescence inten-82

sity averaged over all knocked out genes was estimated to be 2−2.5. This value was83

added to all simulated absolute gene expression level values before calculating the84

logarithmic fold changes. That is, the gene expression response of a gene i towards85

a perturbation of a gene j, expressed as logarithmic fold change, was calculated as86

Mji = log2

(
yji+2−2.5

yi+2−2.5

)
, with yji the absolute expression level of gene i when gene87

j is perturbed, and yi the expression level of gene i for the non-perturbed (wild88

type) state, as defined above. Replicates were produced through duplication of89

the logarithmic fold changes for each perturbation experiment.90

1.2.4 Simulating measurement noise91

Although the reference node activities (wild type data logarithmic fold changes)92

in the data set provided by Kemmeren et al. [1] are correlated, we did not sim-93

ulate correlated measurement node activities. This is because we were lacking94
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2 Workflow 4

information about the processes that generate biological variance as well as the95

actual network structure of S. cerevisiae. Because the biological noise dominated96

the technical noise, we did not distinguish both noise types in our simulations.97

Rather, we simulated noise by adding normal random variables to all simulated98

logarithmic fold changes.99

1.2.5 Signal-to-noise ratio100

The signal-to-noise ratio was calculated from the covariance matrix C by eigenvalue101

decomposition and analysis of the sorted eigenvalues. That is, the covariance102

matrix was decomposed into C = UΣUT , where Σ is a diagonal matrix that has103

its eigenvalues sorted in ascending order (σ11 < . . . < σNN) on its diagonal. Then,104

the signal-to-noise ratio (SNR) was calculated as SNR =
√

s−n
n

, with the signal105

s = 1
N0

∑N0

k=1 Σkk and the noise n = 1
N−N0

∑N
k=N0+1 Σkk. Here, N0 denotes the106

number of perturbed nodes, and N is the total number of nodes.107

2 Workflow108

2.1 Data normalization109

All node activities x were centered to the average of the corresponding reference110

node activities (wild type data logarithmic fold changes) x̄, such that the average111

reference node activities became zero. That is, with data for N reference node112

activities and P perturbation node activities, for a gene i, we have for an arbitrary113

normalized node activity: xnormni = xni − x̄i, with n between 1 and N + P and114

x̄i = 1
N

∑N
k=1 xki.115

2.2 Identification of significantly affected nodes116

To identify which nodes were significantly affected by a perturbation, it was117

checked whether the node activities were significantly different from the back-118

ground noise. This was done by comparing node activities (perturbation experi-119

ment logarithmic fold changes) to the corresponding reference node activity vari-120

ance (wild type data logarithmic fold change variance) using t-tests. Because we121

had found that the biological variance was larger than the technical noise, only the122

number of biological replicates was used to estimate the degrees of freedom. To123

account for the multiple hypothesis testing, we adjusted the overall false detection124

rate (FDR) [4]. For the analysis of the Saccharomyces cerevisiae genome-wide125

knockout library, we followed the recommendation by Kemmeren et al. (supple-126

menting information) to exclude several genes from further analysis. Furthermore,127
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2 Workflow 5

we excluded all Pseudogenes and dubious ORFs listed on yeastgenome.org [5].128

Because we had found that the distribution of normalized wild type experiment129

logarithmic fold changes can be well described by a t-distribution with 11 degrees130

of freedom, this number was used as the degrees of freedom for the t-tests instead131

of the number of biological wild type experiments. Although the microarray de-132

sign used by Kemmeren et al. could be used to disentangle technical and biological133

noise, the biological noise clearly dominated the technical noise. Hence, we did134

not disentangle the variances for our analyses but rather used the overall variance.135

Nodes that were significantly affected in at least one perturbation experiment were136

kept in the network; all other nodes were removed from further analysis.137

2.3 Identification of significant links138

Inferable links were tested for significance using z-tests. The estimators of the139

link strength’s variances were found by bootstrapping over node activity data140

(described below). The false discovery rate (FDR) was adjusted to 5 % to account141

for multiple hypothesis testing [4].142

2.4 Bootstrapping143

Residual bootstrapping was used (this was done to get a speed-up compared to144

parametric bootstrapping, in which residuals are drawn de novo from a distribution145

rather than used multiple times but in randomized order). First, residuals were146

calculated from the reference node activity data (wild type data logarithmic fold147

changes) and then added to the average node activity values of each perturbation148

experiment. For this addition step, we followed two approaches as explained in149

the following.150

2.4.1 Utilizing correlations among reference node activities for analysis of151

yeast deletome data152

Because we had found that wild type experiment logarithmic fold changes are153

highly correlated in the yeast deletome data, we sought to maintain the correlations154

among the reference node activity residuals to improve inference performance.155

2.4.2 Minimizing the effect of random correlations156

Because we did not simulate correlated measurement noise in our simulated data,157

the effect of random correlations among the reference node activities was sought to158

be minimized. This was achieved by shuffling the the order of reference experiments159

among the nodes.160
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2 Workflow 6

2.4.3 Residual bootstrapping procedure illustrated161

Both bootstrapping approaches are illustrated in the following example, in which162

it is described how residual bootstrapping is performed on the node activity data163

for one perturbation experiment. (Residual bootstrapping of reference node ac-164

tivity data is analogous). The node activity data for N reference experiments of165

a two-node network with nodes i and j is represented as column vectors xWT
i =166 (

xWT
i,1 , . . . , xWT

i,N

)T
and xWT

j =
(
xWT
j,1 , . . . , x

WT
j,N

)T
, and node activity data for167

a single perturbation experiment with two replicates is represented as xKOi =168 (
xKOi,1 , x

KO
i,2

)T
and xKOj =

(
xKOj,1 , x

KO
j,2

)T
. The residuals for the nodes are calcu-169

lated to be ri=(ri,1, . . . , ri,N)T = x̄
WT

i −x
WT

i
and rj=(rj,1, . . . , rj,N)T = x̄

WT

j −x
WT

j
,170

with x̄WT
j and x̄WT

i the mean of the corresponding reference node activities. To171

leave correlations among reference node activities intact, we have the following172

expression for an arbitrary bootstrap sample for the perturbation node activities:173

xKO,booti =
(
x̄KOi , x̄KOi

)T − (ri,p, ri,q)
T and xKO,bootj =

(
x̄KOj , x̄KOj

)T − (rj,p, rj,q)
T ,174

with p and q being random (possibly equal) integers between 1 and N, and x̄KOi and175

x̄KOj the average node activities of the perturbation experiment. To destroy cor-176

relations among reference node activity residuals, the residuals are shuffled ran-177

domly across bootstrap samples. We have the following expression for an arbitrary178

bootstrap sample for the perturbation node activities: xKO,booti =
(
x̄KOi , x̄KOi

)T −179

(ri,p, ri,q)
T and xKO,bootj =

(
x̄KOj , x̄KOj

)T − (rj,u, rj,v)
T , with p, q, u and v being180

random (possibly equal) integers between 1 and N.181

2.5 Clustering182

Nodes were grouped into clusters if they were not sufficiently linearly independent.183

The following steps were followed:184

1. All node activities were normalized to unit reference node activity (wild type185

data logarithmic fold change) variance.186

2. A (P ×N) node activity matrix was formed by merging experimental repli-187

cates (here, P denotes the number of experiments and N denotes the number188

of genes). Replicates (biological and technical) were merged by averaging and189

multiplication by the square root of the number of biological replicates.190

3. For each pair of nodes k and l, a test statistic Tkl was compared to a 5 %191

FDR cutoff. The test statistic was calculated as the square of the smaller192

singular value of the P × 2 matrix consisting of those two columns of the193

node activity matrix which corresponded to the nodes k and l. For simplicity,194

we assumed that the reference node activities were Gaussian distributed and195
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3 Applications 7

that the node interactions were sufficiently linear. Then, under the Null196

Hypothesis of linear dependence, the test statistic approximately follows a197

Chi-square distribution with P degrees of freedom (the expected value of the198

X 2
P distribution over-estimates the expected value of the small eigenvalue, but199

this is negligible if sufficiently high confidence is claimed to reject the null200

hypothesis). An FDR of 5 % was chosen to define a significance cutoff.201

4. Clusters were finally formed by grouping unperturbed nodes with perturbed202

nodes on which they were linearly dependent. If an unperturbed node was203

linearly dependent on multiple perturbed nodes, this node was grouped with204

the perturbed node onto which it was the most linearly dependent. Remain-205

ing unperturbed nodes were grouped with other unperturbed nodes if they206

were not sufficiently linearly independent.207

5. For each cluster, either the perturbed node, or, if no perturbed node existed208

in the cluster, the node with the largest signal-to-noise ratio was chosen to209

be the cluster representative, and the corresponding node activity data was210

used for further analysis.211

Links between clusters were found by inferring links between cluster representa-212

tives. Links within clusters can only be inferred within two-node clusters if there is213

exactly one perturbed node and if the unperturbed node is the only node affected214

by the perturbed node. Note that all perturbation experiment node activities were215

used to create the (P × N) node activity matrix and that no bootstrapping was216

done.217

2.6 Subnetwork method218

To infer a link from a node j onto a target node i using the subnetwork method, the219

network is temporarily limited to only those nodes that are significantly affected220

when node j is perturbed (the cutoffs used here were the same ones that were used221

for identifying the significantly affected nodes). This means that the inference222

of several links is skipped, and the corresponding link strengths are set to zero223

and are not included in the calculation of the FDR to determine a cutoff for link224

significance.225
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3 Applications226

3.1 Analysis of yeast deletome data227

3.1.1 Inference of GAL network228

The network was limited to all genes that could in principle be affected by pertur-229

bations of the following nodes: GAL3, GAL4, GAL80 and MIG1. A false discovery230

rate of 10-3 was used as a threshold for the identification of significantly affected231

nodes. With this threshold, 44 nodes remained in the network, that were then232

clustered. Only clusters that contained at least one of the above mentioned nodes233

were kept for the graph shown in figure 2d.234

3.1.2 Lists of inferred links (consensus stringent.xlsx and235

consensus less stringent.xlsx)236

To generate a list of the most significant links inferred from the whole yeast dele-237

tome data, a consensus list was created that reflects the links inferred from the data238

by using two different methods of bootstrapping (see also the section on bootstrap-239

ping). The reason for this is that we are lacking a sophisticated model describing240

the process that generates biological noise. A consensus list should thus represent241

a more reliable model for link inference, as only the most significant links that242

were found by all methods survive the selection process. We created two different243

consensus lists (consensus stringent.xlsx and consensus less stringent.xlsx), each244

corresponding to a certain cutoff to select significantly affected nodes. That is, for245

the most stringent cutoff, the network size was smaller than for the less stringent246

cutoff because less nodes were found to be significantly affected by perturbations.247

The cutoffs correspond to false discovery rates of 10-8 and 10-6. The covariance248

matrix was calculated from all available node activity data for the significantly249

affected nodes. The following methods for residual bootstrapping were used (see250

also the section on bootstrapping) to create two separate link lists:251

1. Correlations between residuals were left intact.252

2. Correlations between residuals were destroyed.253

The lists were merged by keeping only links that appeared in both lists and by254

then keeping the (maximally 500) most significant links with the highest average255

Z-score. Gene descriptions from the Saccharomyces Genome Database [5] were256

added to the list to allow easier investigation. We found that, among the most257

significant links, there are links whose source and target nodes are either adjacent258

on the genome or which are paralogs. These links are most likely false positives259
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that reflect inspecificities of the gene deletion process used to generate the yeast260

deletion collection [2].261

3.1.3 List of inferred hub nodes (consensus stringent hubs.xlsx)262

From the consensus link list with the stringent cutoff for the selection of sig-263

nificantly affected nodes, we selected the 10 nodes with the highest number of264

significant outgoing links (significance cutoff: 5 % false discovery rate). The mean265

and median link strengths of the outgoing links were calculated for each of these266

10 hub nodes. Gene descriptions from the Saccharomyces Genome Database [5]267

were added.268

3.2 Simulations269

3.2.1 Effect of noise-induced bias on relative link strength (suppl. figure270

1d)271

To show that network inference methods are biased towards measurement noise,272

we simulated node activity data for the limiting case of infinitely many replicates.273

In that case, all parameters are estimated perfectly because uncertainty resulting274

from a limited number of observations are averaged out. The covariance matrix of275

node activities was simulated according to the following formula:276

Cexact =
(
AT
)−1 (

BTB
)

(A)−1 + σ2IN .

Where B is a diagonal matrix with element bii = 1 if node i is perturbed. The277

signal-to-noise ratio was adjusted by changing the value of σ2.278

3.2.2 Comparison of simple, clustering and subnetwork methods (figure279

2c)280

The Inferability curves represent averages over 4 different networks and 12 per-281

turbation samples. The network size was 60 nodes. Gene expression data was282

simulated from scale free networks and a non-linear model (as described below).283

3.2.3 Receiver Operating Characteristic (ROC) curves (figure 2b)284

Simulation setup The ROC curves were averaged (as described below) over285

24 perturbation samples and 4 network structures. The network size was 300286

nodes, and 25 % of nodes were randomly perturbed in each perturbation sample.287

The noise-to-signal ratio was adjusted to 10 %. Data was generated with both288

GeneNetWeaver [3] and scale-free networks with a non-linear model to generate289
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stationary data. For each perturbation sample, only data corresponding to signifi-290

cantly perturbed nodes was used to calculate the covariance matrices (1 % FDR),291

the only exception being Lasso regression applied to the data of all nodes. All292

methods (except Lasso applied to the data of all nodes) received almost the same293

covariance matrix C as input: because of the randomness of bootstrap sampling,294

small numerical differences between the covariance matrices that PRC and the295

other methods received may have occurred. Binary classification was done solely296

based on links pointing away from perturbed nodes because only those links are297

potentially inferable. This is similar to the method described by Siegenthaler and298

Gunawan [6]. To infer a link onto a certain node, the data corresponding to a299

perturbation of that node was removed prior to calculating the covariance ma-300

trix. Because both Lasso regression and the subnetwork method set certain link301

strengths to exactly zero, it would be impossible to smoothly reach a false positive302

rate of 1. This is why we set all link test statistics that were set to zero to random303

values smaller than the smallest non-zero link test statistic. When creating the304

ROC curve, this procedure corresponds to random guessing for all links that were305

set to exactly zero.306

ROC curve averaging In the following, the false positive rate is denoted by307

FPR and the true positive rate is denoted by TPR. To generate an averaged ROC308

curve, the tuples (FPR, TPR) of the individual ROC curves were assigned to 50309

bins according to the FPR of each tuple. Bins were filled up in a way such that310

approximately equally many tuples were assigned to all bins. Then, for each bin,311

the FPR and TPR was calculated. These 50 averaged tuples (FPR, TPR) were312

used for the averaged ROC curve.313

ROC curves for Subnetwork method and Lasso We generated 10 different ROC314

curves for the subnetwork method, each curve corresponding to a different cutoff315

for the selection of significantly affected nodes (based on which the subnetworks316

were created). For Lasso, we generated ROC curves for 10 different regularization317

coefficients. To model a smooth transition between the cutoffs or regularization318

coefficients, we interpolated (cubic spline) between the ROC curves in a way such319

that the resulting hybrid curve had a possibly larger area under the curve than the320

individual ROC curves. The 10 different cutoffs for selection of significant nodes321

correspond to the following FDRs: 1.00, 0.89, 0.78, 0.67, 0.56, 0.45, 0.34, 0.23,322

0.12, and 0.01. The 10 different regularization coefficients were: 0, 0.001, 0.0018,323

0.0032, 0.0056, 0.010, 0.0178, 0.0316, 0.0562, and 0.1000.324

Comparison of non-regularized inference methods Test-statistics Tji corre-325

sponding to a link from a node j to a node i were calculated according to the326
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following formulas. The standard deviations of the test statistics were estimated327

via residual bootstrap.328

1. Regression: Tji =
|Gji|

std(Gji)
, where Gji =

(C)−1
ji

(C)−1
ii

.329

2. Conditional Mutual Information: Tji =
|Gji|

std(Gji)
, withGji = log2

(
det (A) × det(B)
det(C) × det(D)

)
.330

Here, A, B and D are covariance matrices with rows and columns of certain331

nodes removed. A: node j removed. B : node i removed. D : nodes i and j332

removed.333

3. PRC: Tji =
|Gji|

std(Gji)
, where Gji =

∑N0
k=1 U

′
ikU
′
jk∑N0

k=1 U
′
ikU ′ik

, where N0 is the number of334

unperturbed nodes and Ui is the ith eigenvector of the covariance matrix.335

Note that links were not identified as artifacts.336

Comparison of regularized inference methods For a fair comparison, we used337

10 different regularization coefficients to generate ROC curves for Lasso regression,338

keeping only the ROC curve corresponding to the regularization coefficient that339

gave the best performance. The following is a brief derivation of the formulas used340

for regularized regression using the L1 and L2 norms. The simulation setup is de-341

scribed afterwards. Consider the following equation, which is essentially equation342

1 of the main paper except that perturbations are not restricted to single nodes,343

which is expressed through the perturbation strength matrix U :344

Ẏ = Y AT + U
345

Y obs = Y + ε

For simplicity, we assumed here that the reference state is 0. Here, Y are the true
node activities that are masked by measurement noise ε to yield observed node
activities Y obs, and the matrix ATdenotes the link strengths. In the steady state
and under the assumption that the measurement uncertainties ε are Gaussian
distributed, a maximum a posteriori (MAP) function of the parameters AT and U
given the observed data Y obs can be defined. The logarithm of this function is:

a
(
AT , U |Y obs

)
= K +

N∑

i=1

∑

n∈Si

[(
N∑

j=1

Y obs
nj ATji

)
+ Uni

]2
1

σ2
ii

(1)

+ r2
N∑

i

(
ATii + µi

)2
+ v2

N∑

i

∑

n∈T
U2
ni (2)
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Here, K is a normalization constant from the distributions that vanishes upon346

differentiation. The experiment indices n run over the set of all experiments except347

the ones in which node i is perturbed, Si. N is the number of nodes; P is the348

number of experiments; Y obs
nj is the matrix of node activities (each row corresponds349

to a sample and each column corresponds to a node); σ2
ii is a variance coefficient350

and r2, v2 are regularization coefficients that correspond to weights of the prior351

distributions. Note that the first prior distribution is only defined over the diagonal352

elements of the network matrix A. It can be shown that the following estimator353

maximizes the MAP function:354

(
ÂT
)
ji

=

(
ΦTΦ

)−1
ji

(ΦTΦ)−1ii

µi.

Here, Φ denotes the observed node activities with samples corresponding to a355

perturbation of node i removed (the number of rows of Φ is less than or equal356

to the number of rows of Y obs, depending on whether node i is perturbed). This357

means that the data may need to be re-organized to infer links onto each node.358

To arrive at this result, one needs to maximize a
(
AT , U |Y obs

)
with respect to359

A. This is possible because the diagonal elements of the network matrix A are360

regularized, which does not allow for arbitrary combinations of either A or U. The361

following steps lead to the above stated solution:362

1. Set the derivative of the log-MAP function w.r.t. Uni to zero:363

δa(AT ,U |Y obs)
δUni

= 0.364

2. Solve for Uni to obtain the MAP estimator Ûni. Plug this expression into365

formula for log-MAP function.366

3. Set this new expression of the log-MAP function w.r.t. ATji to zero:367

δa(AT ,U |Y obs)
δAT

ji
= 0.368

4. Solve for ATji to obtain the MAP estimatorÂTji . To achieve this, one has to369

apply the Sherman-Morrison-Woodbury formula and let the regularization370

coefficient r2 go to infinity, which essentially sets all AT
ii equal µi.371

Note that, for µi = −1, the set of parameters ATji (except for AT
ii , which become372

equal to µi) are simply the ordinary least squares (OLS) estimators that minimize373

the following expression:374

F = ‖Ωβ − Φi ‖22
Here, Ω is a matrix that is equal to Φ except that it is missing column i, and375

β is a vector that is equal to ATi except that it is missing the element equal376
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to ATii . The L1 Norm (“Lasso” regularization) and L2 Norm (“Tikhonov-Miller”377

regularization) impose further constraints on this extreme value problem. The378

corresponding formulas are:379

FL1 = ‖Ωβ − Φi ‖22 + γL1

∥∥ATi
∥∥
1

and380

FL2 = ‖Ωβ − Φi ‖22 + γL2

∥∥ATi
∥∥2
2

for the L1 and L2 Norm, respectively.381

4 Software382

For all analyses and simulations, we used MATLAB and Statistics Toolbox and383

Parallel Computing Toolbox Release R2014b, The MathWorks, Inc., Natick, Mas-384

sachusetts, United States. Our MATLAB code is available on demand.385
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