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Abstract: FST is a fundamental measure of genetic differentiation and population structure cur-
rently defined for subdivided populations. FST in practice typically assumes the “island model”,
where subpopulations have evolved independently from their last common ancestral population. In
this work, we generalize the FST definition to arbitrary population structures, where individuals may
be related in arbitrary ways. Our definitions are built on identity-by-descent (IBD) probabilities
that relate individuals through inbreeding and kinship coefficients. We generalize FST as the mean
inbreeding coefficient of the individuals’ local populations relative to their last common ancestral
population. This FST naturally yields a useful pairwise FST between individuals. We show that
our generalized definition agrees with Wright’s original and the island model definitions as special
cases. We define a novel coancestry model based on “individual-specific allele frequencies” and prove
that its parameters correspond to probabilistic kinship coefficients. Lastly, we study and extend the
Pritchard-Stephens-Donnelly admixture model in the context of our coancestry model and calculate
its FST. Our probabilistic framework provides a theoretical foundation that extends FST in terms
of inbreeding and kinship coefficients to arbitrary population structures.
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1 Introduction

A population is structured if its individuals do not mate randomly, in particular, if homozygozity
differs from what is expected when individuals mate randomly [1]. FST is a parameter that measures
population structure [2, 3], which is best understood through homozygosity. FST = 0 for an un-
structured population, in which genotypes have Hardy-Weinberg proportions. At the other extreme,
FST = 1 for a fully differentiated population, in which every subpopulation is homozygous for some
allele. Current FST definitions assume a partitioned or subdivided population into discrete, non-
overlapping subpopulations [2–6]. Many FST estimators further assume an “island model”, in which
subpopulations evolved independently from the last common ancestral population [4–6] (Fig. 1A,
Fig. 2A). However, populations such as humans are not necessarily naturally subdivided; thus, ar-
bitrarily imposed subdivisions may yield correlated subpopulations [7] (Fig. 1B, Fig. 2B). In this
work, we build a generalized FST definition applicable to arbitrary population structures, including
arbitrary evolutionary dependencies.

Natural populations are often structured due to evolutionary forces, population size differences
and the constraints of distance and geography [10]. The human genetic population structure, in
particular, has been shaped by geography [11], population bottlenecks [12], and numerous admixture
events [9, 13, 14]. Notably, human populations display genetic similarity that decays smoothly with
geographic distance, rather than with discrete jumps as would be expected for island models [7]
(Fig. 1B). Current FST definitions do not apply to these complex population structures.

Population structure can be quantified by the inbreeding and kinship coefficients, which measure
how individuals are related. The inbreeding coefficient f is the probability that the two alleles of
an individual, at a random locus, were inherited from a single ancestor, also called “identical by
descent” (IBD) [15]. The mean f is positive in a structured population [15], and it also increases
slowly over time in finite panmictic populations, an effect known as genetic drift [16]. The kinship
coefficient ϕ is the probability that two random alleles, one from each individual, at a random
locus are IBD [2]. Both f and ϕ combine relatedness due to the population structure with recent
or “local” relatedness, such as that of family members [17]. The values of f, ϕ are relative to an
ancestral population, where relationships that predate this population are treated as random [18].
Thus, f and ϕ increase if the reference ancestral population is an earlier rather than a more recent
population.

Given an unstructured subpopulation S, Malécot defined FST as the mean f in S relative to
an ancestral population T [2]. When S is itself structured, Wright defined three coefficients that
connect T , S and individuals I in S [3]: FIT (“total f ”) is the mean f in I relative to T ; FIS (“local
f ”) is the mean f in I relative to S, which Wright did not considered to be part of the population
structure; lastly, FST (“structural f ”) is the mean f relative to T that would result if individuals
in S mated randomly. Wright distinguished these quantities in cattle, where FIS can be excessive
[15]; however, FIS ought to be small in large, natural populations. The special case FIS = 0 gives

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2016. ; https://doi.org/10.1101/083915doi: bioRxiv preprint 

https://doi.org/10.1101/083915
http://creativecommons.org/licenses/by-nd/4.0/


●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

A

0.
4

0.
6

A
lle

le
 fr

eq
ue

nc
y

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●
●

●
●

●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●
●●

● ●

● ●

●
●

●
●

● ●

●●

B

0
0.

1
0.

2
0.

3
0.

4

A
lle

le
 fr

eq
ue

nc
y

Figure 1: Illustration of the island model, Human SNP with median differentiation. In
these maps, circles correspond to populations (moved to prevent overlaps in HGDP), and colors are
allele frequencies (AFs). A. A simulated SNP from the island model (illustration). Individuals from
the same island share AFs, while individuals from different islands evolve independently. AFs are
drawn from the Balding Nichols distribution [8] with ancestral AF p = 0.5 shared by the islands,
but F varied by island size: F = 0.01, 0.1, 0.3 for the large island, the four medium islands, and
the three smallest islands, respectively. B. Sample AFs of SNP rs11692531 in the Human Genome
Diversity Project (HGDP) [9], illustrates typical differentiation in human populations. HGDP was
filtered to remove close relatives resulting in n = 940 individuals and m = 431, 345 SNPs. This
SNP had the median FST estimate (≈ 0.081) in HGDP, using the Weir-Cockerham estimator [4]
and the K = 53 subpopulations shown in the map. (Note that to improve the dynamic range of
the color map, the outlier population “Colombian” (AF ≈ 0.57, z-score ≈ 3.2) is displayed as the
next largest AF (0.4).) AFs span a wide range and display strong geographical correlation, so the
human population is structured but does not fit the island model.
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FST = FIT [3]. The FST definition has been extended to a set of disjoint populations, where it is
the average FST of each population from the last common ancestral population [5, 6].

FST is known by many names (for example, fixation index [3], coancestry coefficient [5, 19]),
and alternative definitions (in terms of the variance of subpopulation allele frequencies [3], variance
components [20], correlations [4], and genetic distance [19]). Our generalized FST, like Wright’s
FST, is defined using inbreeding coefficients. There is also a diversity of measures of differentiation
that are specialized for a single multiallelic locus, such as GST, G′ST, and D, which are functions of
observed allele frequencies, and which relate to FST under certain conditions [21–25]. We consider
FST as a genome-wide measure of genetic drift given by the relatedness of individuals, which does
not depend on allele frequencies or other locus-specific features.

In our work, we generalize FST in terms of individual inbreeding coefficients, and exclude local
inbreeding on an individual basis. Our FST applies to arbitrary population structures, generalizing
previous FST definitions restricted to subdivided populations. We also generalize the “pairwise FST”,
a quantity often estimated between pairs of populations [6, 11, 26–30], now defined for arbitrary
pairs of individuals.

We also define a coancestry model that parametrizes the correlations of “individual-specific allele
frequencies” (IAFs) [31, 32], a recent tool that also accommodates arbitrary relationships between
individuals. Our model is related to previous models between populations [5, 33]. We prove that
our coancestry parameters correspond to kinship coefficients, thereby preserving their probabilistic
interpretations, and we relate these parameters to FST.

We demonstrate our framework by providing a novel FST analysis in terms of our coancestry
model of the widely used Pritchard-Stephens-Donnelly (PSD) admixture model, in which individuals
derive their ancestry from intermediate populations given individual-specific admixture proportions
[34–36]. We analyze an extension of the PSD model [31, 37–40] that generates intermediate allele
frequencies from the Balding-Nichols distribution [8], and propose a more complete coancestry model
for the intermediate populations. We derive equations relating FST to the model parameters of PSD
and its extensions.

Our generalized definitions permit the analysis of FST and kinship estimators under arbitrary
population structures, and pave the way forward to new approaches, which are the focus of our
following work in this series [41, 42].

2 Generalized definitions in terms of individuals

2.1 Overview of data and model parameters

Let xij be observed biallelic genotypes for SNP i ∈ {1, ...,m} and diploid individual j ∈ {1, ..., n}.
Biallelic SNPs are the most common genetic variation in humans; the multiallelic model follows in
analogy to the work of [5]. Given a chosen reference allele at each SNP, genotypes are encoded as the
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number of reference alleles: xij = 2 is homozygous for the reference allele, xij = 0 is homozygous
for the alternative allele, and xij = 1 is heterozygous. Our models assume that the genotype
distribution is parametrized solely by the population structure, evolving by genetic drift in the
absence of new mutations and selection.

We assume the existence of a panmictic ancestral population T . Relationships that precede T in
time are considered random and do not count as IBD, while relationships since T count toward IBD
probabilities. Every SNP i is assumed to have been polymorphic in T , with an ancestral reference
allele frequency pTi ∈ (0, 1) in T , and no new mutations have occurred since then.

The inbreeding coefficient of individual j relative to T , fTj ∈ [0, 1], is defined as the probability
that the two alleles of any random SNP of j are IBD [15]. Therefore, fTj measures the amount
of relatedness within an individual, or the extent of dependence between its alleles at each SNP.
Similarly, the kinship coefficient of individuals j and k relative to T , ϕTjk ∈ [0, 1], is defined as
the probability that two alleles at any random SNP, each picked at random from each of the two
individuals, are IBD [2]. ϕTjk measures the amount of relatedness between individuals, or the extent
of dependence across their alleles at each SNP.

For a panmictic population S that evolved from T , the inbreeding coefficient fTS ∈ [0, 1] of S
relative to T equals fTj shared by every individual j in S. Thus, fTS is equivalent to Wright’s FST

for a subdivided population. The random drift in allele frequencies across SNPs from T to S is
parametrized by fTS alone, combining the contribution of time and sample size history into a single
value [16].

2.2 Local populations

Our generalized FST definition depends on the notion of a local population. Our formulation includes
as special cases island models and admixture models, and its generality is in line with recent efforts
to model population structure on a fine scale [43, 44], through continuous spatial models [7, 45–
47], or in a manner that makes minimal assumptions [32]. We define the local population Lj of
an individual j as the most recent ancestral population of j. In the simplest case, if j’s parents
belong to the same population, then that population is Lj and j belongs to it too. However, if
j’s parents belong to different populations, then Lj is an admixed population (see example below).
More broadly, Lj is the most recent population from which the inbreeding coefficient of j can be
meaningfully defined. We define the “local” inbreeding coefficient of j to be fLj

j , and j is said to be

locally outbred if fLj

j = 0.

For any population T ancestral to Lj , the parameter trio (fTj , f
Lj

j , fTLj
) are individual-level

analogs of Wright’s trio (FIT, FIS, FST) defined for a subdivided population [3]. Moreover, just like
Wright’s coefficients satisfy

(1− FIT) = (1− FIS) (1− FST) , (1)
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Figure 2: Comparison between island model and arbitrary population structures. These
trees illustrate relationships (edges) between populations (nodes). Edge lengths are proportional
to inbreeding coefficients. A. In the island model, K populations S1, ..., SK evolved independently
from an ancestral population T . fTSu

is the inbreeding coefficient of population Su relative to T . B.
In an arbitrary population structure, each individual j has its own local population Lj , and every
pair of individuals (j, k) have a jointly local population Ljk from which Lj and Lk evolved. Note
that we do not assume a bifurcating tree process; the case for three or more individuals cannot
generally be visualized as a tree. The coefficients fTLj

and fTLjk
are relative to T , while fLjk

Lj
, fLjk

Lk

are relative to Ljk.

our individual-level parameters satisfy(
1− fTj

)
=
(

1− fLj

j

)(
1− fTLj

)
, (2)

since the absence of IBD of j relative to T requires independent absence of IBD at two levels: of j
relative to Lj , and of Lj relative to T . Note that an individual j is locally outbred (fLj

j = 0) if and
only if fTLj

= fTj .
Similarly, we define the jointly local population Ljk of the pair of individuals j and k as the

most recent ancestral population of j and k. Hence, Ljk is ancestral to both Lj and Lk (Fig. 2B).
We define the “local” kinship coefficient to be ϕLjk

jk , and j and k are said to be locally unrelated if

ϕ
Ljk

jk = 0. Since the inbreeding coefficient of an individual is the kinship of its parents [2], it follows
that a locally-outbred individual has locally-unrelated parents.

Consider an individual j in an admixture model, deriving alleles from two populations A and
B with proportions qjA and qjB = 1− qjA. Then Lj has allele frequencies πij = qjAp

A
i + qjBp

B
i at

each SNP i, where pAi and pBi are the allele frequencies in A and B, respectively. Considering a pair
of individuals (j, k), the jointly local population Ljk at one extreme equals Lj = Lk if qjA = qkA;
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at the other extreme Ljk is the last common ancestral population T of A and B if qjA = 1 and
qkA = 0 or vice versa (i.e., individuals are not admixed and belong to separate populations).

2.3 The generalized FST for arbitrary structures

Recall the individual-level analog of Wright’s FST is fTLj
, which measures the inbreeding coefficient

of individual j relative to T due exclusively to the population structure (Fig. 2B), as discussed in
the last section. We generalize FST for a set of individuals as

FST =

n∑
j=1

wjf
T
Lj
, (3)

where T is the most recent ancestral population common to all individuals under consideration,
and wj > 0,

∑n
j=1wj = 1 are fixed weights for individuals. The simplest weights are wj = 1

n for
all j. However, we allow for flexibility in the weights so that one may assign them to reflect how
individuals were sampled, such as a skewed or uneven sampling scheme.

This generalized FST definition summarizes the population structure with a single value, intu-
itively measuring the average distance of our individuals from T . Moreover, our definition contains
the previous FST definition as a special case, as discussed shortly. For simplicity, we kept Wright’s
traditional FST notation [3] rather than using something that resembles our fTS notation. A more
consistent notation could be F T{Lj}({wj}), which more clearly denotes the weighted average of fTLj

across individuals. Our definition is more general because the traditional S population is replaced
by a set of local populations {Lj}, which may differ for every individual.

2.3.1 Mean heterozygosity in a structured population

Our generalized FST is connected to the mean heterozygosity in a structured population, and il-
lustrates its properties. Here we will assume locally outbred individuals, for which fTLj

= fTj . The
expected proportion of heterozygotes Hij of an individual with inbreeding coefficient fTj at SNP i

with an ancestral allele frequency pTi is given by [15]

Hij = Pr(xij = 1|T ) = 2pTi
(
1− pTi

) (
1− fTj

)
.

The weighted mean of these expected proportion of heterozygotes across individuals, H̄i, is given
by our generalized FST:

H̄i =
∑
j

wjHij = 2pTi
(
1− pTi

)
(1− FST) .

Hence, individuals have Hardy-Weinberg proportions (H̄i = 2pTi
(
1− pTi

)
) if and only if FST = 0,

which in turn happens if and only if fTj = 0 for each j. In the other extreme, individuals have
fully-fixated alleles (H̄i = 0), if and only if FST = 1, which in turn happens if and only if fTj = 1

for each j.
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2.3.2 FST under the island model

Here we show that our generalized FST contains as a special case the currently used FST definition for
a subdivided population. As discussed above, FST estimators often assume what we call the “island
model,” in which the population is subdivided into K non-overlapping subpopulations that evolved
independently from their last common ancestral population T [4–6]. For simplicity, individuals are
often further assumed to be locally outbred and locally unrelated. These assumptions result in the
following block structure for our parameters,

fTj = fTSu
for j ∈ Su,

ϕTjk =

fTSu
j ∈ Su, k ∈ Su, j 6= k,

0 j ∈ Su, k ∈ Su′ , u 6= u′,

where Su, Su′ are disjoint subpopulations treated as sets containing individuals. This population
structure is illustrated as a tree in Fig. 2A.

In the notation of our generalized FST, we have under the island model assumptions that

FST =
n∑
j=1

wjf
T
j =

K∑
u=1

1

K
fTSu

,

where the weights wj are such that
∑

j∈Su
wj = 1

K . Note also that the Su here act as the K unique
local populations, where Lj = Su whenever j ∈ Su.

2.4 The individual-level pairwise FST

An important special case of FST is the “pairwise” FST, which is the FST of two subpopulations.
When the assumption holds that individuals belong to one of the two unstructured populations, this
pairwise FST can be estimated consistently [6], and is used frequently in the literature [11, 26–30].
Here we generalize this parameter to be between two individuals, and clarify its relationship to
inbreeding coefficients measured relative to ancestral population T .

Let Ljk denote the last common ancestral population of the pair of individuals j and k, which
we defined above as their jointly local population (Fig. 2B). We define the “individual-level pairwise
FST” to be

Fjk =
f
Ljk

Lj
+ f

Ljk

Lk

2
,

which is the special case of our generalized FST for two populations, T = Ljk, and equal weights
wj = wk = 1

2 . Note that Lj and Lk being independent relative to Ljk enables consistent estimation
of Fjk [6, 41]; the same is not generally possible for three or more individuals relative to their most
recent ancestral population T .
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Given fTLj
and fTLjk

relative to some earlier ancestral population T 6= Ljk (Fig. 2B), the desired

parameters fLjk

Lj
are given by, (

1− fTLj

)
=
(

1− fLjk

Lj

)(
1− fTLjk

)
, (4)

which follows analogously to Eqs. (1) and (2). Solving for fLjk

Lj
, repeating for fLjk

Lk
, and replacing

them into our individual-level pairwise FST, we obtain an equation for arbitrary T :

Fjk =

fTLj
+fTLk

2 − fTLjk

1− fTLjk

. (5)

When there is no local relatedness, fTLj
= fTj is the usual inbreeding coefficient and fTLjk

= ϕTjk is
the usual kinship coefficient, both measuring population structure only and yielding

Fjk =

fTj +fTk
2 − ϕTjk
1− ϕTjk

.

Note that the mean individual-level pairwise FST for n > 2, given by

F̄ =

n∑
j=1

n∑
k=1

wjwkFjk =
1

2

n∑
j=1

n∑
k=1

wjwk

(
f
Ljk

Lj
+ f

Ljk

Lk

)
gives a lower bound for the “global” FST =

∑n
j=1wjf

T
Lj
, since fLjk

Lj
≤ fTLj

. Thus, F̄ = FST for n > 2

if and only if all individuals are independent, where fTLjk
= 0 for all j 6= k.

2.5 Shifting IBD probabilities for change of reference ancestral population

In developing the generalized FST and the individual-level pairwise FST, we have made use of
equations that relate IBD probabilities in a hierarchy. Here we present more general forms of these
equations, which allow for transformations of probabilities under a change of reference ancestral
population. Our relationships are straightforward generalizations of Wright’s equation relating FIT,
FIS, and FST in Eq. (1), now more generally applicable.

Let A be a population ancestral to population B, which is in turn ancestral to population C.
The inbreeding coefficients relating every pair of populations in {A,B,C} satisfy(

1− fAC
)

=
(
1− fBC

) (
1− fAB

)
,

which generalizes Eq. (4). A similar form applies for individual inbreeding and kinship coefficients
given relative to populations A and B, respectively,(

1− fAj
)

=
(
1− fBj

) (
1− fAB

)
,(

1− ϕAjk
)

=
(
1− ϕBjk

) (
1− fAB

)
,

which generalizes Eq. (2). All of these cases follow since the absence of IBD of C (or j, or j, k)
relative to A requires independent absence of IBD at two levels: of C (or j, or j, k) relative to B,
and of B relative to A.
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2.6 Genotype moments under the kinship model

In the kinship model, genotypes xij are random variables with first and second moments given by

E[xij |T ] = 2pTi , (6)

Var(xij |T ) = 2pTi
(
1− pTi

) (
1 + fTj

)
, (7)

Cov(xij , xik|T ) = 4pTi
(
1− pTi

)
ϕTjk. (8)

Eq. (6) is a consequence of assuming no selection or new mutations, leaving random drift as the only
evolutionary force acting on genotypes [15]. Eq. (7) shows how inbreeding modulates the genotype
variance: an outbred individual relative to T (fTj = 0) has the Binomial variance of 2pTi

(
1− pTi

)
that corresponds to independently-drawn alleles; a fully inbred individual (fTj = 1) has a scaled
Bernoulli variance of 4pTi

(
1− pTi

)
that corresponds to maximally correlated alleles [3]. Lastly,

Eq. (8) shows how kinship modulates the correlations between individuals: unrelated individuals
relative to T (ϕTjk = 0) have uncorrelated genotypes, while ϕTjk = 1 holds for the extreme of
identical and fully inbred twins, which have maximally correlated genotypes [2, 48]. Hence, fTj and
ϕTjk parametrize the frequency of non-independent allele draws within and between individuals. The

“self kinship”, arising from comparing Eq. (7) to the j = k case in Eq. (8), implies ϕTjj = 1
2

(
1 + fTj

)
,

which is a rescaled inbreeding coefficient resulting from comparing an individual with itself or its
identical twin.

3 The coancestry model for individual allele frequencies

FST and its estimators are most often studied in terms of population allele frequencies [4–6, 33].
Here we introduce a coancestry model for individuals, which is based on individual-specific allele
frequencies (IAFs) [31, 32] that accomodate arbitrary population-level relationships between in-
dividuals. Some authors use the terms “coancestry” and “kinship” exchangeably [5, 49, 50]; in
our framework, kinship coefficients are general IBD probabilities (following [17]), and we reserve
coancestry coefficients for the IAFs covariance parameters (in analogy to the work of [5]).

In this section we introduce two parameters. First, πij ∈ [0, 1] is the IAF of individual j at SNP
i. Individual j draws its alleles independently according to probability πij . Allowing every SNP-
individual pair to have a potentially unique allele frequency allows for arbitrary forms of population
structure at the level of allele frequencies [32]. Second, θTjk ∈ [0, 1] is the coancestry coefficient of
individuals j and k relative to an ancestral population T , which modulate the covariance of πij and
πik as shown below.

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2016. ; https://doi.org/10.1101/083915doi: bioRxiv preprint 

https://doi.org/10.1101/083915
http://creativecommons.org/licenses/by-nd/4.0/


3.1 The coancestry model

In our coancestry model, the IAFs πij have the following first and second moments,

E[πij |T ] = pTi , (9)

Cov(πij , πik|T ) = pTi
(
1− pTi

)
θTjk, (10)

xij |πij ∼ Binomial(2, πij). (11)

Eq. (9) implies that random drift is the only force acting on the IAFs, and is analogous to Eq. (6) in
the kinship model. Eq. (10) is analogous to Eqs. (7) and (8) in the kinship model, with individual
coancestry coefficients (θTjk) playing the role of the kinship and inbreeding coefficients (for j = k),
a relationship elaborated in the next section. Lastly, Eq. (11) draws the two alleles of a genotype
independently from the IAF, which models locally outbred (fLj

j = 0) and locally unrelated (ϕLjk

jk =

0) individuals [5]. Hence, the coancestry model excludes local relationships, so it is more restrictive
than the kinship model.

Our coancestry model between individuals is closely related to previous models between popu-
lations [5, 33]. However, previous models allowed θTjk < 0 [5]. We require that θTjk ∈ [0, 1] for two
reasons: (1) covariance is non-negative in latent structure models [51], such as population structure,
and (2) it is necessary in order to relate θTjk to IBD probabilities as shown next.

3.2 Relationship between coancestry and kinship coefficients

Here we show that the coancestry coefficients for IAFs, θjk, defined above can be written in terms
of the kinship and inbreeding coefficients utilized in our more general model. We do so by relating
our coancestry coefficients to general kinship coefficients by matching moments. Conditional on the
IAFs, genotypes in the coancestry model have a Binomial distribution, so

E[xij |πij ] = 2πij ,

Cov(xij , xik|πij , πik) =

2πij(1− πij) j = k

0 j 6= k
.

We calculate total moments by marginalizing the IAFs. The total expectation is

E[xij |T ] = E[E[xij |πij ]|T ] = E[2πij |T ] = 2pTi ,

which agrees with Eq. (6) of the kinship model. The total covariance is calculated using

Cov(xij , xik|T ) = E [Cov(xij , xik|πij , πik)|T ] + Cov (E[xij |πij ],E[xik|πik]|T ) .

The first term is zero for j 6= k, and for j = k it is

E [Var(xij |πij)|T ] = E [2πij(1− πij)|T ]

= 2
(
E[πij ]−Var(πij |T )− E[πij ]

2
)

= 2pTi (1− pTi )
(
1− θTjj

)
11
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The second term equals 4 Cov (πij , πik|T ) for all (j, k) cases, which is given by Eq. (10). All together,

Cov(xij , xik|T ) =

2pTi (1− pTi )
(

1 + θTjj

)
j = k,

4pTi
(
1− pTi

)
θTjk j 6= k.

Comparing the above to Eqs. (7) and (8), we find that

θTjk =

fTj if j = k,

ϕTjk if j 6= k.
(12)

Therefore, our coancestry coefficients are equal to kinship coefficients, except that self coancestries
are equal to inbreeding coefficients.

Since individuals in our IAF coancestry model are locally outbred and unrelated, we also have
fTLj

= θTjj and fTLjk
= θTjk for j 6= k. Replacing these quantities in Eqs. (3) and (5), we obtain the

generalized FST and pairwise FST in terms of coancestry coefficients.

FST =

n∑
j=1

wjθ
T
jj , (13)

Fjk =

θTjj+θ
T
kk

2 − θTjk
1− θTjk

. (14)

4 Coancestry and FST in admixture models

The Pritchard-Stephens-Donnelly (PSD) admixture model [34] is a well-established, tractable model
of structure that is more complex than island models. There are several algorithms available to esti-
mate the PSD model parameters [34–36, 40, 52]. This model assumes the existence of “intermediate”
populations, from which individuals draw alleles according to their admixture proportions. How-
ever, the PSD model was not developed with FST in mind; we will present a modified model that is
compatible with our coancestry model.

The PSD model is a special case of our coancestry model with the following additional param-
eters. The number of intermediate populations is denoted by K. Let pSu

i ∈ [0, 1] be the reference
allele frequency at SNP i and intermediate population Su. Lastly, qju ∈ [0, 1] is the admixture
proportion of individual j for intermediate population Su. These proportions satisfy

∑K
u=1 qju = 1

for each j.

4.1 The PSD model with Balding-Nichols allele frequencies

The original algorithm for fitting the PSD model [34] utilizes prior distributions for intermediate
population allele frequencies and admixture proportions according to

(qju)Ku=1 ∼ Dirichlet (α, ..., α) , (15)

pSu
i ∼ Beta(1, 1). (16)
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It has been shown [32, 36] that their model is then equivalent to forming IAFs

πij =
K∑
u=1

pSu
i qju (17)

where genotypes are then drawn independently according to xij ∼ Binomial(2, πij).
Here we consider an extension of this, which we call the “BN-PSD” model, by replacing Eq. (16)

with the Balding-Nichols (BN) distribution [8] to generate the intermediate allele frequencies pSu
i .

This combined model has been used to simulate structured genotypes [31, 38, 39], and is the target
of some inference algorithms [37, 40]. The BN distribution is the following reparametrized Beta
distribution,

p∗ ∼ BN(p, F ) = Beta
(
p

(
1

F
− 1

)
, (1− p)

(
1

F
− 1

))
,

where p is the ancestral allele frequency and F is the inbreeding coefficient [8]. The resulting allele
frequencies p∗ fit into our coancestry model, since E[p∗] = p and Var(p∗) = p(1− p)F hold.

In BN-PSD, the allele frequencies pSu
i are generated independently from

pSu
i |T ∼ BN

(
pTi , f

T
Su

)
,

resulting in an island model structure for the intermediate populations Su.
We calculate the coancestry parameters of this model by matching moments conditional on the

admixture proportions Q = (qju). We calculate the expectation as

E[πij |Q, T ] =
K∑
u=1

qju E
[
pSu
i

∣∣∣T] =
K∑
u=1

qjup
T
i = pTi .

and the IAF covariance is

Cov(πij , πik|Q, T ) =

K∑
u=1

qjuqku Var
(
pSu
i

∣∣∣T) = pTi (1− pTi )
K∑
u=1

qjuqkuf
T
Su
.

By matching these to Eq. (10), we arrive at coancestry coefficients and FST of

θTjk =
K∑
u=1

qjuqkuf
T
Su
,

FST =

n∑
j=1

K∑
u=1

wjq
2
juf

T
Su
.

4.2 The BN-PSD model with full coancestry

The BN-PSD contains a restriction that the K intermediate populations are independent. Suppose
instead that the intermediate population allele frequencies pSu

i satisfy our more general coancestry
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model:

E
[
pSu
i

∣∣∣T] = pTi ,

Cov
(
pSu
i , pSv

i

∣∣∣T) = pTi
(
1− pTi

)
ϑTuv,

where ϑTuv is the coancestry of the intermediate populations Su and Sv. Note that the previous
BN-PSD model satisfies ϑTuu = fTSu

and ϑTuv = 0 for u 6= v. Repeating our calculations assuming our
full coancestry setting, individual coancestry coefficients and FST are given by

θTjk =
K∑
u=1

K∑
v=1

qjuqkvϑ
T
uv,

FST =
n∑
j=1

K∑
u=1

K∑
v=1

wjqjuqjvϑ
T
uv.

Therefore, all coancestry coefficients of the intermediate populations influence the coancestry coef-
ficients between individuals and the overall FST. The form for θTjk above has a simple probabilistic
interpretation: the probability of IBD at random SNPs between individuals j and k corresponds
to the sum for each pair of ancestries u and v of the probability of the pairing (qjuqkv) times the
probability of IBD between these populations (ϑTuv).

5 Discussion

We presented a generalized FST definition corresponding to a weighted mean of individual-specific
inbreeding coefficients. Compared to previous FST definitions, ours is applicable to arbitrary pop-
ulation structures, and in particular does not require the existence of discrete subpopulations. A
special case of our generalized FST is the pairwise FST of two individuals, which generalizes the
pairwise FST between two populations that is part of many modern analyses [6, 11, 26–30].

We considered two closely-related population structure models with individual-level resolution:
the kinship model for genotypes, and our new coancestry model for IAFs (individual-specific allele
frequencies). The kinship model is the most general, applicable to the genotypes in arbitrary sets of
individuals. Our IAF model requires a local form of Hardy-Weinberg equilibrium to hold, and it does
not model locally related or locally inbred individuals. Nevertheless, IAFs arise in many applications,
including admixture models [35], estimation of local kinship [31], genome-wide association studies
[53], and the logistic factor analysis [32]. We prove that kinship coefficients, which control genotype
covariance, also control IAF covariance under our coancestry model.

We also calculated FST for admixture models. To achieve this, we framed the PSD (Pritchard-
Stephens-Donnelly) admixture model as a special case of our IAF coancestry model, and studied
extensions where the intermediate populations are more structured. FST was previously studied in
an admixture model under Nei’s FST definition for one locus, where FST in the admixed population
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is given by a ratio involving admixture proportions and intermediate population allele frequencies
[54]. On the other hand, our FST is an IBD probability shared by all loci and independent of allele
frequencies. Under our framework, the FST of an admixed individual is a sum of products, which is
quadratic in the admixture proportions and linear in the coancestry coefficients of the intermediate
populations. In the future, inference algorithms for our admixture model with fully correlated
intermediate populations could yield improved results, including coancestry and FST estimates.

Our probabilistic model reconnects FST [5, 6] to inbreeding and kinship coefficients [17, 50,
55], all quantities of great interest in population genetics, but which are studied in increasing
isolation. The main reason for this isolation is that FST estimation assumes the island model, in
which kinship coefficients are uninteresting. However, study of the generalized FST in arbitrary
population structures requires the consideration of arbitrary kinship coefficients [17]. Our work lays
the foundation necessary to study estimation of the generalized FST, which is the focus of our next
publications in this series [41, 42].
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