
 1 

netDx: Interpretable patient classification using integrated patient similarity 

networks 

Authors: 

Shraddha Pai1,2, Shirley Hui1, Ruth Isserlin1, Muhammad A Shah1, Hussam Kaka1, Gary D. 

Bader*1,3,4,5 

  

Affiliations: 

1.   The Donnelly Centre, University of Toronto, Toronto, Canada 

2.   Affiliate Scientist, The Centre for Addiction and Mental Health, Toronto, Canada 

3.   Department of Molecular Genetics, University of Toronto, Toronto, Canada 

4.   Department of Computer Science, University of Toronto, Toronto, Canada 

5.   The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada 

* gary.bader@utoronto.ca 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2017. ; https://doi.org/10.1101/084418doi: bioRxiv preprint 

https://doi.org/10.1101/084418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

Patient classification has widespread biomedical and clinical applications, including 

diagnosis, prognosis and treatment response prediction. A clinically useful prediction 

algorithm should be accurate, generalizable, be able to integrate diverse data types, and 

handle sparse data. Importantly, the resulting model should be easily interpretable, as 

clinicians are unlikely to trust black box statistical models. We describe netDx, the first 

supervised patient classification framework based on patient similarity networks. netDx 

meets the above criteria and particularly excels at data integration and model 

interpretability. We demonstrate the features of this framework by integrating up to six 

heterogeneous datatypes, including clinical variables, DNA methylation, somatic mutations, 

mRNA, miRNA and protein expression profiles, for survival prediction in kidney, lung, 

ovarian and brain cancer. As a machine learning tool, netDx outperforms eight standard 

machine-learning methods in predicting binary survival in renal clear cell carcinoma, and 

performs at par with these methods in predicting ovarian carcinoma. In comparison to 

traditional machine learning-based patient classifiers, netDx results are more 

interpretable, visualizing the decision boundary in the context of patient similarity space 

and identifying biological pathways and other features important for prediction. Using 

pathway-level features in predicting kidney cancer survival from transcriptome data, netDx 

identified known and potentially novel kidney cancer pathways and biomarkers. Thus, 

netDx can serve both as a useful classifier and as a tool for discovery of biological features 

characteristic of disease. Upon publication, an open-source R/Java implementation of 
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netDx will be made publicly available along with sample files and automation workflows 

packaged as vignettes. 

Introduction 

The goal of precision medicine is to build quantitative models that guide clinical decision-

making by predicting disease risk and response to treatment using data measured for an 

individual. Within the next five years, several countries will have general-purpose cohort 

databases with 10,000 to >1 million patients, with linked genetics, electronic health 

records, metabolite status, and detailed clinical phenotyping; examples of projects 

underway include the UK BioBank1, the US NIH Precision Medicine Initiative 

(www.whitehouse.gov/precision-medicine), and the Million Veteran Program 

(http://www.research.va.gov/MVP/). Additionally, human disease specific research 

projects are profiling multiple data types across thousands of individuals, including genetic 

and genomic assays, brain imaging, behavioural testing and clinical history from integrated 

electronic medical records2-4 (e.g. the Cancer Genome Atlas, 

http://cancergenome.nih.gov/). Computational methods to integrate these diverse patient 

data for analysis and prediction will aid understanding of disease architecture and promise 

to provide actionable clinical guidance. 

  

Statistical models that predict disease risk or outcome are in routine clinical use in fields 

such as cardiology, metabolic disorders, and oncology5-8. Traditional clinical risk prediction 

models typically use generalized linear regression or survival analysis, in which individual 

measures are incorporated as terms (or features) of a single equation. Standard methods of 
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this type have limitations analyzing large data from genomic assays. Machine learning 

methods can handle large data, but are often treated as black boxes that require substantial 

effort to interpret how specific features contribute to prediction. Black box methods are 

unlikely to be clinically successful, as physicians must understand the characteristic 

features of a disease to make a confident diagnosis9. Further, many existing methods do not 

natively handle missing data, requiring data pruning or imputation, and have difficulty 

integrating multiple different data types. 

  

The patient similarity network framework can overcome these challenges and excels at 

integrating heterogeneous data and generating intuitive, interpretable models. In this 

framework, each input patient data feature (e.g. gene expression profile, age) is 

represented as a patient similarity network (PSN). Each PSN node is an individual patient 

and an edge between two patients corresponds to pairwise similarity for a given feature. 

For instance, two patients could be similar in age, mutation status or transcriptome. PSNs 

can be constructed based on any available data using a similarity measure. Because all data 

is converted to a single type of input (networks), integration across diverse data types is 

straightforward. Patient similarity networks (PSN) have been used successfully for 

unsupervised class discovery in cancer and type 2 diabetes10,11. 

 

We describe netDx, the first PSN-based approach for supervised patient classification. In 

this system, patients of unknown status can be classified based on their similarity to 

patients with known status. This process is clinically intuitive because it is analogous to 

clinical diagnosis, which often involves a physician relating a patient to a mental database 
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of similar patients they have seen. As demonstrated below, netDx has strengths in 

classification performance, heterogeneous data integration, usability and interpretability. 

Results 

Algorithm Description 

The overall netDx workflow is shown in Figure 1. This example conceptually shows how 

PSNs can be used to predict if a patient is at high or low risk of developing a disease based 

on a variety of patient-level data types. Similarity networks are computed for each patient 

pair and for each data type. In this example, high-risk patients are more strongly connected 

based on their clinical profile, which may capture age and smoking status, and 

metabolomics profile. Low-risk patients are more similar in their clinical and genomic 

profiles. The goal of netDx is to identify the input features predictive of high and low risk, 

and to accurately assign new patients to the correct class.  

 

Input data design. Each patient similarity network (PSN) is a feature, similar to a variable 

in a regression model (we use the terms “input networks” and “features” interchangeably). 

A PSN can be generated from any kind of patient data, using a pairwise patient similarity 

measure (Figure 1A). For example, gene expression profile similarity can be measured 

using Pearson correlation, while patient age similarity can be measured by the normalized 

difference. A reasonable design is to define one similarity network per data type, such as a 

single network based on correlating the expression of all genes in the human genome, or a 

network based on similarity of responses to a clinical questionnaire. If a data type is 
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multivariate, it is more interpretable to define a network for each individual variable. 

However, this approach may lead to too many features generated (e.g. millions of SNPs), 

which increases computational resource requirements and risk of overfitting. Thus, there is 

a trade-off between interpretability and overfitting/scalability, which is implicit in machine 

learning feature design. To help address this problem for ‘omics data, we group gene-based 

measurements into biological pathways, which we assume capture relevant aspects of 

cellular and physiological processes underlying disease and normal phenotypes. This 

biological process-based design generates ~2,000 networks from gene expression profiles 

containing over 20,000 genes, with one network per pathway. 

 

Selecting features informative of class prediction. Feature selection identifies the input 

networks with the highest generalizable predictive power, and is run once per patient 

class. netDx is trained on samples from the class of interest, using cross-validation (Figure 

S1) and an established association network integration algorithm12,13. The algorithm scores 

each network based on its value in the classification task. The ideal network is one 

connecting all patients of the same class without any connections to other classes. The least 

useful network is one that connects patients from one class to patients from other classes, 

without connecting any patients in the same class. In each cross-validation fold, regularized 

linear regression assigns network weights, reflecting the ability to discriminate query 

patients from others, and removes uninformative networks. netDx increases a network’s 

score based on the frequency with which it is assigned a positive weight in multiple cross-

validation folds. The classifier’s sensitivity and specificity can be tuned by thresholding this 

score; a network with a higher score achieves greater specificity and lower sensitivity. The 
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output of this feature selection step is a set of networks that can be integrated to produce a 

predictor for the patient class of interest. 

 

Class prediction using selected features. After training and feature selection are 

separately run for each class, feature selected networks are combined by averaging their 

similarity scores to produce an integrated network. Test patients are ranked by similarity 

to each class using label propagation in the integrated network, and are assigned to the 

class with the highest rank14,15 (Figure S2). 

 

netDx output (Figure 1C-D). netDx returns predicted classes for all test patients and 

standard performance measures including the area under the receiver operating 

characteristic curve (AUROC), area under the precision-recall curve (AUPR), and accuracy. 

Scores for each feature are returned  and if pathway features are used, they are visualized 

using an enrichment map (Figure 1D)16. The integrated patient network is visualized and 

used to assess the strength of class separation, and distance of one patient to others in the 

class, using network topology measures (Online Methods, Figure 1C). 

 

Predictor checklist. Each netDx classifier should be assessed using a checklist of tests to 

gain confidence in the classification results (Figure 1C). Such a checklist should include: 

1) traditional performance metrics, including the AUROC, AUPR, F1, and accuracy 

2) the extent to which the predictor captures prior knowledge about the disease under 

study, such as known cellular pathways 
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3) an orthogonal measure of the validity of the predicted classes. For instance, in the 

context of survival prediction in cancer, a predictor should result in significantly 

separable survival curves for the two predicted patient sets 

4) a measure of the strength of separation of the classes, such as the extent to which 

patient classes separately cluster in the integrated similarity network 

5) if the results are better than random, measured using an appropriate set of negative 

controls 

Each test results in a pass, fail or conditional pass. This simple categorization helps ease 

overall performance assessment (Figure 1C). 

Predicting binarized survival in cancer 

To demonstrate the utility of netDx, we predicted survival in four tumor types, using data 

from The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/) via the TCGA 

PanCancer Survival Prediction project website of Yuan et al.17, 

https://www.synapse.org/#!Synapse:syn1710282, Table 1). These tumor types were 

chosen because they have been rigorously analyzed using eight machine learning methods 

and thus provide an excellent performance benchmark17. Data were for renal clear cell 

carcinoma18 (KIRC, N=150 patients), ovarian serous cystadenocarcinoma19 (OV, N=252), 

glioblastoma multiforme20 (GBM, N=155), and lung squamous cell carcinoma21 (LUSC, 

N=77). Data for a given tumour type included: clinical variables (e.g. age, tumour grade); 

mRNA, miRNA and protein expression; DNA methylation; and somatic copy number 

aberrations. Binarization of survival and format of clinical variables followed Yuan et al. 
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Each data type was represented as a single patient similarity network. For each tumour 

type, we classified high and low survival using multiple combinations of input data: one 

data type at a time (one input network); clinical data plus one other data type (two input 

networks); or with all available data (five or six input networks, depending on the tumour 

type). Pairwise patient similarity was computed using Pearson correlation if five or more 

variables were present22, or by average normalized similarity where data had less than five 

variables (Online Methods). 

 

Informative features were identified during training using nested cross-validation. Patient 

samples were split 80:20 into a training and a blind test set. Using only the training 

samples, 10-fold cross validation was performed for each class (good survival; poor 

survival), generating for each network a score between 0 and 10. Networks that scored 

better than 8 out of 10 were used to classify blind test samples. This process was repeated 

100 times for random splits of train and blind test (Figure 2A). Predictor performance was 

measured as the average of blind test classification across the 100 splits. A network that 

consistently scored well (10 out of 10) across all 100 splits was selected for the final 

predictor. 

 

All data sets had some level of signal as indicated by AUROC; the best performing 

predictors had AUROC of 0.83 (SEM=0.01; mean over 100 splits +/- SEM) for KIRC, 0.65 

(0.01) for GBM, 0.68 (0.01) for OV and 0.66 (0.01) for LUSC, respectively (Figures 2, S3-S5, 

Table S1). Integrating multiple data types was useful in some tumour types. KIRC shows 

the best such improvement (Figure 2B; one-way ANOVA of single vs. pair or all: p < 4.3e-
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103). In contrast, integration does not improve performance in GBM compared to using 

solely clinical data (Figure 2C; mean AUROC for clinical=0.65 (0.01); Dunnett’s test for 

clinical vs. other single data sources, p < 1e-10 for all; Dunnett’s test for clinical vs. 

integrated data, p > 0.1). Results are similar for OV, where clinical data performs the best 

among all single sources, (Figure 2D; mean AUROC=0.68; Dunnett’s test p < 0.002), but 

integration offers no improvement (Dunnett’s test, p > 0.1). In LUSC, no condition 

significantly outperforms all the others but clinical and proteomic data perform equally 

best (Figure 2E). 

 

netDx outperforms previously-published measures for binary survival prediction for KIRC 

(best mean AUROC for netDx=0.84, compared to 0.775 from Yuan et al.), and is similar for 

OV (netDx is 0.68 compared to Yuan et al. 0.684)17; it performs worse for the other two 

cancer types (GBM: netDx: 0.65 vs. Yuan et al. 0.71; LUSC: 0.66 vs. Yuan et al. 0.84). 

Performance statistics reported for Yuan et al. were the best scores determined from eight 

different machine learning methods: diagonal discriminant analysis; K-nearest neighbor; 

discriminant analysis; logistic regression; nearest centroid; partial least squares; random 

forest; and support vector machine. Thus, netDx is useful and complementary to other 

machine learning strategies as it can do better in certain circumstances. 

Assessing predictor reliability through a checklist 

We evaluated each predictor using a set of tests (Figure 3, Table 1). First, a predictor 

needed to perform better than chance, as measured by average AUROC and AUPR across 

the 100 splits (Figure 3A). To validate class assignments, we compared the survival profiles 
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for netDx-predicted good and poor survivors using a log-rank test, and measured the 

fraction of the 100 splits with p < 0.05 (Figure 3B). We categorized a predictor has having 

fully passed the test (>75% splits with p < 0.05), conditionally passed the test (50-75% 

splits with p < 0.05) or failed the test (<50% splits with p < 0.05). Figure S6 shows all 

results for this test. KIRC passes this test for any predictor that includes clinical data 

(Figure 3B), and conditionally passes when proteomic data are included alone. The best 

result for OV is a conditional pass with only clinical data used (Figure 3B). LUSC and GBM 

fail this test in all conditions. We next compared the weighted shortest-path distances of 

same-class node pairs to different-class node pairs in the integrated patient network 

(Online Methods). A configuration passed if both classes, good and poor survival, grouped 

closer together than to nodes of the opposite class. The KIRC predictor using clinical data 

passes this test (Figure 3C, S7A; p < 0.001). By contrast, the OV predictor based on clinical 

data passed for good (p <3.3e-25) but not poor survivors (p>0.9); we define this as a 

conditional pass. 

 

The comparison of checklist performance for the best scenario for KIRC and OV shows that 

KIRC consistently passes the checklist tests, making it a more reliable predictor (Figure 3). 

The KIRC survival predictor, particularly when used with clinical data, was the only 

consistently reliable predictor of all configurations and tumour types we tested. Predictors 

for OV survival are less reliable (Figure S6).  None of the conditions tested for LUSC or GBM 

were reliable in our tests (Figure 2C, E; Figure S6). The checklist framework helps identify 

reliable predictors among all tested configurations. 
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Evaluating the predictive performance of individual clinical variables 

Our first survival predictor, described above, used one network for each data type. Clinical 

data is composed of relatively few variables and separating these could result in a more 

interpretable predictor. To test the effect of coding each variable as a separate feature, we 

created a KIRC predictor splitting clinical data into three networks, one each for tumour 

stage, grade, and patient age. This predictor shows a significant improvement in AUROC 

score compared to our original classifier (Figure S8A; mean AUROC+/-SEM=0.85+/-0.01, 

p<0.036), though was not significantly improved in AUPR (Figure S7A, p>0.1). Individual 

features had different network scores, reflecting their variable importance. Networks 

representing tumour stage and grade were highest scored for both classes, while age was 

only highly scored for predicting low survival. Consistent with this, increased tumour stage 

and grade are significantly associated with low survival by a univariate test (Figure S8B; p 

<2e-5), and this agrees with previous literature23. Thus, using individual variables may 

improve performance and improves interpretability by measuring the predictive power of 

each variable. 

Evaluating the value of pathway-level features 

To examine how well netDx can provide biological insight into the classes of interest, we 

ran a predictor for KIRC survival where gene expression was split into pathways (Figure 4, 

Online Methods). No network scored 10 out of 10 in all 100 splits for the “good survival” 

class, thus we relaxed the feature selection threshold to 10 out of 10 in >= 70% of splits. 

Feature-selected pathways for good survival include “reactions specific to the complex N-

glycan synthesis pathway” and “thyroxine biosynthesis”, both related to glycoprotein 
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hormones. Six pathways were feature-selected for poor survival, with themes including salt 

transport, vitamin and co-factor metabolism and cell adhesion (Figure 4; scores of top 

networks in Table S2, 3). The pathways identified are consistent with processes previously 

known to be altered in KIRC tumours (30% of themes for good and poor survival), 

including metabolic pathways for cholesterol biosynthesis, the regulation of the pyruvate 

dehydrogenase complex, and co-factor metabolism. Acetyl co-A carboxylase alpha (ACACA), 

frequently mutated in KIRC, is a member of these pathways18. Aquaporin-1 (AQP1), a 

member of pathways related to renal water homeostasis, is a urinary biomarker for early 

detection of renal clear cell carcinoma24. N-linked glycan expression is associated with 

features of metastatic cancer progression, such as neoplastic transformation, angiogenesis, 

tumour survival, and loss of contact inhibition in multiple cancer types25. N-glycans are 

potential biomarkers for detection of renal clear cell carcinoma26,27. 

 

Using pathway-based features in netDx results in a predictor that outperforms one where 

mRNA data is treated as a single feature (mean AUROC=0.73 for pathways; 0.66 for single; 

one-sided WMW p < 3.1e-9; Figure S9A). Additionally, the pathway-based netDx predictor 

results in an improved separation of survival curves for classified samples (one-sided 

WMW; p <1.4e-3, Figure S9B). The integrated patient network for single-feature and 

pathway-based features is similar, in that good survivors group closer together than 

opposite-class pairs, but poor survivors do not (Figure S9C). Therefore, pathway-level 

features perform better than the single-network configuration on the predictor checklist. 
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To examine how strongly each pathway feature correlates with outcome, we performed 

principal component analysis on the input gene expression matrix using the set of genes for 

each selected pathway, and correlated the projections of the first three principal 

components with clinical outcome. All features individually showed significant correlation 

with outcome (e.g. correlation for “Thyroxine biosynthesis” = -0.41, p<2.7e-7), and the class 

boundary is visually evident in these features (Figure 4B-C). 

 

Finally, we asked if combining clinical data with feature-selected pathways would improve 

KIRC survival predictor performance. A classifier using feature-selected pathways and 

individual clinical variables shows a significant improvement over using clinical variables 

only, when measured with AUPR (0.82; one-sided WMW p < 8.35e-4) but not with other 

metrics (Figure S10, S7D). 

 

Altogether, our results show that using pathway features provides performance 

improvements and substantially improves biological interpretability and insight into 

disease mechanisms. 

Discussion 

We describe netDx, the first supervised clinical sample classification system based on a 

patient similarity network framework, and demonstrate its features using multimodal data 

from four different tumour types. This framework can be used to create accurate, 

generalizable predictors, and has particular strengths in data integration and 

interpretation. netDx is targeted at clinical researchers who are interested to see if their 
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data can answer a specific patient classification question. netDx provides a standard 

workflow that can quickly determine if the classification question can be answered based 

on a training set and if so, provides a set of relevant features, a reliability report card and a 

tool to classify new patients. 

  

netDx is flexible and general. Heterogeneous datatypes are converted into a common 

“patient similarity” space, easing their integration. We integrated up to six major data 

types, including five ‘omic layers (Figure 2). netDx can accept input with missing values, 

because the network association algorithm it uses for feature-scoring has this capability15. 

In this case, the patient is not represented in the particular network where its value is 

missing, but it will be in other networks that have data for that patient. netDx also includes 

support for feature grouping to improve interpretability while keeping feature number 

low, to mitigate the risk of overfitting and improve signal detection with sparse data. This 

may improve prediction performance. We demonstrate this functionality by grouping gene-

level expression measures into pathway-level features (Figure 4). Users may construct 

groupings for any patient data type, though groupings with clear clinical or mechanistic 

interpretation will aid class interpretation. 

 

We implemented a predictor checklist or “report card” to evaluate predictors based on 

classification performance, model interpretability and consistency (Figure 1,3; Tables 1,2). 

While netDx provides output useful to construct a checklist, some checklist items are 

specific for a classification task (e.g. log-rank test for survival). We hope that including 
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diverse performance measures will contribute to greater insight into possible cause and 

effect relationships in the model (e.g. Bradford Hill criteria for inferring causation28). 

 

In the PanCancer survival prediction example, the renal clear cell carcinoma (KIRC) 

survival predictor consistently outperformed predictors for the other tumor types (Figure 

2,3). The predictors for glioblastoma multiforme (GBM) and ovarian carcinoma perform 

worse than those for KIRC, despite having comparable or substantially more samples. Thus, 

increased sample size is not a guarantee of improved performance. This variation may be 

because survival was dichotomized to balance sample sizes in the two groups, rather than 

based on some clinical or biological criterion; the threshold for good survival is one year 

for GBM, while that for KIRC is the longest, at four years. Another possibility is that the 

‘omic data may not contain detectable signal for survival time in GBM. Also, in all instances, 

clinical data outperforms ‘omic data in predicting survival. This seems surprising because 

the ‘omics data is much larger than the clinical data. However, tumour stage and grade, 

which measure the spread and size of a tumour, are well known to negatively impact 

survival time (Figure S6B). Genomic data is still valuable, as it enables netDx to provide 

mechanistic insight into disease via use of pathway features. Thus, it is useful to analyze all 

available data to support both prediction performance and biological discovery. 

 

While the pathway-based predictor performs better than the one where mRNA data is 

presented as a single similarity network, we observed that we can create a predictor with 

performance similar to that of the pathway-based predictor by using randomly generated 

“pseudo” pathways containing non-pathway genes (Figure S9). We interpret this to mean 
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that grouping genes reduces noise and improves good vs. poor survival signal in the gene 

expression data. Consistent with this idea, destroying the correlation structure of the gene 

expression matrix drops performance to random (Figure S11). Use of real pathways selects 

those that match known biology of each cancer type, which we interpret to mean that 

netDx can select appropriate, interpretable pathways. Thus, pathways may improve 

performance by providing both biological signal and general noise reduction. 

 

netDx provides a complete framework for precision medicine, however the ultimate vision 

is to enable clinical researchers to assess classification performance for questions of 

interest, such as ‘will a patient respond to one therapy or another?’ based on patient 

measurements and outcomes present in large electronic medical record databases. Output 

would include model performance and generalizability estimates on independent cohorts, 

feature interpretation, an interactive integrated patient similarity network visualization, a 

predictor checklist, and a ready-to-run classifier for new patients. Ideally this would be 

provided as a report that is easily interpretable by clinical researchers who would gain 

confidence in classification performance for further research or safe use with patients. 

 

netDx is implemented as an open-source R software package available at http://netdx.org, 

with worked examples. We also propose that users store and publicly share patient 

similarity networks, useful as features for netDx and other PSN methods, in the NDEx 

network exchange system29. Patient similarity networks shown in this manuscript are 

publicly available in NDEx, under the UUID numbers 2f24606b-a217-11e7-a10d-
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0ac135e8bacf, f9fab009-a218-11e7-a10d-0ac135e8bacf, 511ded80-a218-11e7-a10d-

0ac135e8bacf, and a0c529c5-a218-11e7-a10d-0ac135e8bacf. 
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Figures 

 

Figure 1. The netDx method. 

netDx converts patient data (A) into a set of patient similarity networks (PSN), with

patients as nodes and a user-provided similarity measure as weighted edges (B). The

simple example for predicting low/high risk for disease uses clinical, genomic

metabolomic and genetic data. netDx identifies which networks strongly relate high-risk

patients (here, clinical and metabolomic data) and which relate low-risk patients (clinical

and gene expression data). Cross-validation is used to score each input network by its

ability to predict patient class; details in Figure S1. 

C. netDx returns several types of output. Top-scoring features are combined into a single

view of overall patient similarity. This integrated network view can be used to classify new

patients based on relative similarity to known patient classes. It provides traditional
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performance metrics for the classifier, such as AUROC. netDx also provides scores for the 

predictive value of individual features. A performance checklist including a set of metrics, 

tests and controls helps evaluate the predictor. 

D. If pathway features are used, netDx provides visualization of the relationship between 

top-scoring pathways. 
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Figure 2. PanCancer predictor design and results. 

A. Method. Binary survival was predicted using different combinations of input networks

Predictors were built by running 10-fold cross validation over 100 different train/blind

test splits. This step resulted in 100 performance measures, which are plotted in panels B-

E. Selected features were those that scored 10 in all 100 splits. Predictor reliability was

assessed using a checklist of tests (Table 1). 

B-E. Average AUROC over 100 train/blind test splits for each predictor scenario for (B)

KIRC, (C) GBM, (D) OV and (E) GBM. Each panel is divided based on whether a data source
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is used singly (purple), is a genomic source paired with clinical data (pink) or whether all 

data sources were included as input (all). KIRC: p-value from one-way ANOVA; GBM and 

OV: p-values from Dunnett’s test. The solid reference line indicates random performance 

and dashed line indicates AUROC=0.70. 
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Figure 3. A predictor checklist is useful to compare reliability of different netDx predictors

Here we compare the performance of survival prediction in kidney (KIRC; left) and ovarian

(OV; right) carcinoma. The predictor was built using nested cross-validation with 100 train

and blind test data splits. A) Test of predictor performance, where both predictors pass

. 
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with performance above chance. B) Test of the difference of survival profiles of predicted 

classes. Passing depends on the fraction of splits with a significant p-value in the log-rank 

test. C) Test to measure the closeness of samples within the same class in the integrated 

patient network relative to opposite-class pairs. D) Compilation of test results in a tabular 

format, where it is clear that the KIRC predictor consistently performs well and is likely 

more reliable than the OV predictor. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2017. ; https://doi.org/10.1101/084418doi: bioRxiv preprint 

https://doi.org/10.1101/084418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 

 
Figure 4. Top-scoring pathways for predicting survival in clear cell renal carcinoma, using

only pathway features. 

g 
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A. Enrichment map of top-scoring pathways (nodes), where edges represent genes shared 

by two pathways. Node colour indicates the maximum score achieved by a feature in >70% 

of trials; nodes in red are selected features. Nodes are thematically clustered1. Blue 

asterisks indicate pathways/genes known to be altered in this tumour. Single pathways 

scoring less than 10 are indicated in Table S2 and S3.  

B. Correlation of top-scoring features (represented as the first three principal components 

of pathway-specific gene expression) with survival (Spearman’s correlation). Table cells 

are colored by sign and magnitude of correlation (blue: Spearman corr. >0; red, corr. <0). 

Circled letters correspond to detailed panels in C. 

C. Projections of patient-level gene expression in feature-selected pathways onto first two 

principal components (individual dots indicate patients). Points are colored by survival 

class. Panel border colour indicates whether a feature was selected for low survival (pink), 

good survival (blue) or both (mixed). Decision boundaries were calculated using logistic 

regression on scatterplot data. 
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Tables 

A. PanCancer performance checklist for one-net-per-datatype 
Tumour 

type (num 

good; poor 

survival) 

Data type Clinical 

variables 

Feature 

selected  

(scored 10 in 

100 runs) 

Perf. better 

than 

random? 

Are 

multiple 

data 

sources 

better than 

single? 

Do 

survival 

curves of 

predicted 

classes 

separate? 

In the overall 

PSN, are 

same-class 

pairs closer 

than 

opposite-

class pairs? 

KIRC 
(N=80 

good; 70 

poor)  

C,G,R,m,P,
D 

Age, 

tumour 

stage, 

tumour 

grade 

Good: P 
Poor: C,P,D 

    

OV  

(153 good, 
99 poor) 

C,G,R,m,P,

D 

Age Good: C 

Poor: C 
 

 ! ! 

LUSC 
(49 good; 

28 poor) 

C,G,R,m,P Age, stage None  
  

 

GBM 
(88 good; 

67 poor) 

C,G,R,m,D Age,Sex, 

Karnofsky 

score 

Good: - 
Poor: C 

 
  

 

 

B. Test criteria for pass/fail 

Test  Pass  ! Conditional 

pass 

 Fail 

Are multiple data sources better than 

single? One-way ANOVA comparing 

performance of predictor with two or 

more data sources to that with single 

data sources. 

one-sided 

WMW or 

Dunnett’s test, p 

< 0.05  

n/a One-sided WMW 

or Dunnett’s test, 

p > 0.05 

Do survival curves of predicted classes 

separate? % train/test splits with p < 

0.05 for log-rank test (must be true for at 

least one combination of input datatypes 

tested) 

>75% 50-75%  <50% 

In the overall PSN, are same-class pairs 

closer than opposite-class pairs? 

In the integrated patient similarity 

network, distribution of average 

weighted shortest path distance between 

same-class pairs, compared to opposite-

class pairs, p < 0.05 for one-sided WMW 

p < 0.05 for all 

classes 

p <0.05 for at 

least one class  

p >0.05 for all 

classes 

 

Table 1. A. Summary for PanCancer binary survival prediction and reliability checklist 

results Data type: C Clinical; C* Clinical represented as separate variables; G somatic copy 

number alterations; R RNA; m miRNA, P Proteomic (RPPA); D DNA methylation. 

B. Description of tests for predictor checklist and criteria for test assessment 
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