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Abstract	

Patient	classification	has	widespread	biomedical	and	clinical	applications,	including	

diagnosis,	 prognosis	 and	 treatment	 response	 prediction.	 A	 clinically	 useful	

prediction	algorithm	should	be	accurate,	generalizable,	be	able	to	integrate	diverse	

data	types,	and	handle	sparse	data.	A	clinical	predictor	based	on	genomic	data	needs	

to	be	easily	interpretable	to	drive	hypothesis-driven	research	into	new	treatments.	

We	 describe	 netDx,	 a	 novel	 supervised	 patient	 classification	 framework	 based	 on	

patient	similarity	networks.	netDx	meets	the	above	criteria	and	particularly	excels	

at	data	integration	and	model	interpretability.	As	a	machine	learning	method,	netDx	

demonstrates	 consistently	 excellent	 performance	 in	 a	 cancer	 survival	 benchmark	

across	four	cancer	types	by	integrating	up	to	six	genomic	and	clinical	data	types.	In	

these	 tests,	 netDx	 has	 significantly	 higher	 average	 performance	 than	 most	 other	

machine-learning	 approaches	 across	 most	 cancer	 types	 and	 its	 best	 model	

outperforms	 all	 other	methods	 for	 two	 cancer	 types.	 In	 comparison	 to	 traditional	

machine	 learning-based	 patient	 classifiers,	 netDx	 results	 are	 more	 interpretable,	

visualizing	 the	decision	boundary	 in	 the	 context	 of	 patient	 similarity	 space.	When	

patient	 similarity	 is	 defined	 by	 pathway-level	 gene	 expression,	 netDx	 identifies	

biological	pathways	 important	 for	outcome	prediction,	as	demonstrated	 in	diverse	

data	 sets	 of	 breast	 cancer	 and	 asthma.	 Thus,	 netDx	 can	 serve	 both	 as	 a	 patient	

classifier	and	as	a	tool	for	discovery	of	biological	features	characteristic	of	disease.	

We	provide	a	 software	 complete	 implementation	of	netDx	along	with	 sample	 files	

and	automation	workflows	in	R.	
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Introduction	 	

The	 goal	 of	 precision	medicine	 is	 to	 build	 quantitative	models	 that	 guide	 clinical	

decision-making	 by	 predicting	 disease	 risk	 and	 response	 to	 treatment	 using	 data	

measured	 for	an	 individual.	Within	 the	next	 five	years,	 several	countries	will	have	

general-purpose	 cohort	 databases	with	 10,000	 to	 >1	million	 patients,	with	 linked	

genetics,	 electronic	 health	 records,	 metabolite	 status,	 and	 detailed	 clinical	

phenotyping;	examples	of	projects	underway	include	the	UK	BioBank1,	 the	US	NIH	

Precision	 Medicine	 Initiative	 (www.whitehouse.gov/precision-medicine),	 and	 the	

Million	Veteran	Program	(http://www.research.va.gov/MVP/).	Additionally,	human	

disease	specific	research	projects	are	profiling	multiple	data	types	across	thousands	

of	 individuals,	 including	 genetic	 and	 genomic	 assays,	 brain	 imaging,	 behavioural	

testing	 and	 clinical	 history	 from	 integrated	 electronic	medical	 records2-4	 (e.g.	 the	

Cancer	 Genome	 Atlas,	 http://cancergenome.nih.gov/).	 Computational	 methods	 to	

integrate	 these	 diverse	 patient	 data	 for	 analysis	 and	 prediction	 will	 aid	

understanding	 of	 disease	 architecture	 and	 promise	 to	 provide	 actionable	 clinical	

guidance.	

		

Statistical	models	that	predict	disease	risk	or	outcome	are	in	routine	clinical	use	in	

fields	 such	as	 cardiology,	metabolic	disorders,	 and	oncology5-8.	 Traditional	 clinical	

risk	 prediction	 models	 typically	 use	 generalized	 linear	 regression	 or	 survival	

analysis,	in	which	individual	measures	are	incorporated	as	terms	(or	features)	of	a	

single	equation.	Standard	methods	of	this	type	have	limitations	analyzing	large	data	
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from	 genomic	 assays	 (e.g.	 whole-genome	 sequencing).	 Machine	 learning	methods	

can	handle	large	data,	but	are	often	treated	as	black	boxes	that	require	substantial	

effort	to	interpret	how	specific	features	contribute	to	prediction.	Black	box	methods	

are	unlikely	to	be	clinically	successful,	as	physicians	frequently	must	understand	the	

characteristic	features	of	a	disease	to	make	a	confident	diagnosis9.	Interpretability	is	

particularly	required	in	genomics	because	of	relatively	smaller	sample	sizes	and	to	

better	understand	the	molecular	causes	of	disease.	Further,	many	existing	methods	

do	not	natively	handle	missing	data,	requiring	data	pruning	or	imputation,	and	have	

difficulty	integrating	multiple	different	data	types.	

		

The	 patient	 similarity	 network	 framework	 can	 overcome	 these	 challenges	 and	

excels	 at	 integrating	 heterogeneous	 data	 and	 generating	 intuitive,	 interpretable	

models.	In	this	framework,	each	feature	of	patient	data	(e.g.	gene	expression	profile,	

age)	 is	 represented	 as	 a	 patient	 similarity	 network	 (PSN)	 (Figure	 1A).	 Each	 PSN	

node	 is	 an	 individual	 patient	 and	 an	 edge	 between	 two	 patients	 corresponds	 to	

pairwise	similarity	for	a	given	feature.	For	instance,	two	patients	could	be	similar	in	

age,	 mutation	 status	 or	 transcriptome.	 PSNs	 can	 be	 constructed	 based	 on	 any	

available	data,	using	a	similarity	measure	(e.g.	Pearson	correlation,	 Jaccard	 index).	

Because	 all	 data	 is	 converted	 to	 a	 single	 type	 of	 input	 (similarity	 networks),	

integration	across	diverse	data	types	is	straightforward.	Patient	similarity	networks	

(PSN)	 are	 a	 recently	 introduced	 concept	 and	 have	 been	 used	 successfully	 for	

unsupervised	class	discovery	in	cancer	and	type	2	diabetes10,11,	but	have	never	been	

developed	for	supervised	patient	classification.	
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We	 describe	 netDx,	 the	 first	 PSN-based	 approach	 for	 supervised	 patient	

classification.	In	this	system,	patients	of	unknown	status	can	be	classified	based	on	

their	 similarity	 to	 patients	 with	 known	 status.	 This	 process	 is	 clinically	 intuitive	

because	 it	 is	 analogous	 to	 clinical	 diagnosis,	 which	 often	 involves	 a	 physician	

relating	 a	 patient	 to	 a	 mental	 database	 of	 similar	 patients	 they	 have	 seen.	 As	

demonstrated	 below,	 netDx	 has	 strengths	 in	 classification	 performance,	

heterogeneous	data	integration,	usability	and	interpretability.	

Results	

Algorithm	Description	

The	overall	netDx	workflow	is	shown	in	Figure	1.	This	example	conceptually	shows	

how	PSNs	can	be	used	to	predict	 if	a	patient	 is	at	high	or	 low	risk	of	developing	a	

disease	 based	 on	 a	 variety	 of	 patient-level	 data	 types.	 Similarity	 networks	 are	

computed	 for	 each	 patient	 pair	 and	 for	 each	 data	 type.	 In	 this	 example,	 high-risk	

patients	 are	 more	 strongly	 connected	 based	 on	 their	 clinical	 profile,	 which	 may	

capture	 age	 and	 smoking	 status,	 and	metabolomics	 profile.	 Low-risk	 patients	 are	

more	similar	 in	their	clinical	and	genomic	profiles.	The	goal	of	netDx	 is	 to	 identify	

the	 input	 features	 predictive	 of	 high	 and	 low	 risk,	 and	 to	 accurately	 assign	 new	

patients	to	the	correct	class.		
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Input	data	design.	Each	patient	similarity	network	(PSN)	 is	a	 feature,	similar	to	a	

variable	 in	a	 regression	model	 (we	use	 the	 terms	 “input	networks”	and	 “features”	

interchangeably).	 A	 PSN	 can	 be	 generated	 from	 any	 kind	 of	 patient	 data,	 using	 a	

pairwise	 patient	 similarity	 measure	 (Figure	 1A).	 For	 example,	 gene	 expression	

profile	 similarity	 can	 be	 measured	 using	 Pearson	 correlation,	 while	 patient	 age	

similarity	can	be	measured	by	the	normalized	difference.	A	reasonable	design	is	to	

define	 one	 similarity	 network	 per	 data	 type,	 such	 as	 a	 single	 network	 based	 on	

correlating	the	expression	of	all	genes	in	the	human	genome,	or	a	network	based	on	

similarity	 of	 responses	 to	 a	 clinical	 questionnaire.	 If	 a	 data	 type	 is	 multivariate,	

defining	 a	 network	 for	 each	 individual	 variable	 will	 result	 in	 more	 interpretable	

output.	 However,	 this	 approach	 may	 lead	 to	 too	 many	 features	 generated	 (e.g.	

millions	of	SNPs),	which	increases	computational	resource	requirements	and	risk	of	

overfitting.	 Thus,	 as	with	 any	machine	 learning	 task,	 there	 is	 a	 trade-off	 between	

interpretability	 and	overfitting/scalability.	To	help	address	 this	problem	 for	gene-

oriented	 data	 (e.g.	 transcriptomics),	 we	 group	 gene-based	 measurements	 into	

biological	 pathways,	 which	 we	 assume	 capture	 relevant	 aspects	 of	 cellular	 and	

physiological	processes	underlying	disease	and	normal	phenotypes.	This	biological	

process-based	 design	 generates	 ~2,000	 networks	 from	 gene	 expression	 profiles	

containing	over	20,000	genes,	with	one	network	per	pathway.	

	

Selecting	features	informative	of	class	prediction.	Feature	selection	identifies	the	

input	networks	with	the	highest	generalizable	predictive	power,	and	is	run	once	per	

patient	 class.	 netDx	 is	 trained	 on	 samples	 from	 the	 class	 of	 interest,	 using	 cross-
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validation	 (Figure	 S1)	 and	 an	 established	 association	 network	 integration	

algorithm12,13.	 The	 algorithm	 scores	 each	 network	 based	 on	 its	 value	 in	 the	

classification	task.	The	ideal	network	is	one	connecting	all	patients	of	the	same	class	

without	any	connections	to	other	classes;	for	example,	one	connecting	all	treatment	

responders,	 and	 all	 non-responders,	 without	 edges	 between	 the	 two.	 The	 least	

useful	network	is	one	that	connects	patients	from	one	class	to	patients	from	other	

classes,	 without	 connecting	 any	 patients	 in	 the	 same	 class;	 for	 example,	 one	 that	

connects	 responders	 and	 non-responders	 to	 the	 same	 extent.	 In	 each	 cross-

validation	fold,	regularized	linear	regression	assigns	network	weights,	reflecting	the	

ability	 to	 discriminate	 query	 patients	 from	 others,	 and	 removes	 uninformative	

networks.	netDx	increases	a	network’s	score	based	on	the	frequency	with	which	it	is	

assigned	 a	 positive	 weight	 in	 multiple	 cross-validation	 folds.	 The	 classifier’s	

sensitivity	and	specificity	can	be	tuned	by	thresholding	this	score;	a	network	with	a	

higher	 score	 achieves	 greater	 specificity	 and	 lower	 sensitivity.	 The	 output	 of	 this	

feature	 selection	 step	 is	 a	 set	 of	 networks	 that	 can	 be	 integrated	 to	 produce	 a	

predictor	for	the	patient	class	of	interest.	

	

Class	prediction	using	 selected	 features.	After	 training	 and	 feature	 selection	 are	

separately	run	for	each	class,	feature	selected	networks	are	combined	by	averaging	

their	similarity	scores	 to	produce	an	 integrated	network.	Test	patients	are	ranked	

by	 similarity	 to	 each	 class	 using	 label	 propagation	 in	 the	 integrated	network,	 and	

are	assigned	to	the	class	with	the	highest	rank14,15	(Figure	S2).	
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netDx	 output	 (Figure	 1C-D).	 netDx	 returns	 predicted	 classes	 for	 all	 test	 patients	

and	 standard	 performance	 measures	 including	 the	 area	 under	 the	 receiver	

operating	 characteristic	 curve	 (AUROC),	 area	 under	 the	 precision-recall	 curve	

(AUPR),	and	accuracy.	Scores	for	each	feature	are	returned	and	if	pathway	features	

are	used,	they	are	visualized	using	an	enrichment	map	(Figure	1D)16.	The	integrated	

patient	network	is	visualized	and	used	to	assess	the	strength	of	class	separation,	and	

inter-	and	intra-class	separation	is	measured	using	average	shortest	path	methods	

(Online	Methods,	Figure	1C).	

Benchmarking	performance	by	predicting	binarized	survival	in	cancer	

To	 assess	 the	 classification	 performance	 of	 netDx,	 we	 use	 an	 established	 cancer	

survival	prediction	benchmark	available	for	four	tumor	types,	using	data	from	The	

Cancer	 Genome	 Atlas	 (TCGA;	 http://cancergenome.nih.gov/)	 via	 the	 TCGA	

PanCancer	 Survival	 Prediction	 project	 website	 of	 Yuan	 et	 al.17,	

https://www.synapse.org/#!Synapse:syn1710282,	 Table	 1).	 These	 tumor	 types	

have	 been	 thoroughly	 analyzed	 using	 eight	 machine	 learning	 methods,	 which	

provides	extensive	performance	results	that	we	can	compare	to17.	Data	are	for	renal	

clear	cell	carcinoma18	(KIRC,	N=150	patients),	ovarian	serous	cystadenocarcinoma19	

(OV,	 N=252),	 glioblastoma	 multiforme20	 (GBM,	 N=155),	 and	 lung	 squamous	 cell	

carcinoma21	(LUSC,	N=77).	Data	for	a	given	tumour	type	includes:	clinical	variables	

(e.g.	age,	 tumour	grade);	mRNA,	miRNA	and	protein	expression;	DNA	methylation;	

and	somatic	copy	number	aberrations.	Binarization	of	survival	and	format	of	clinical	

variables	followed	previous	work17.	
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For	 each	 tumour	 type,	 we	 classified	 high	 and	 low	 survival	 using	 multiple	

combinations	 of	 input	 data	 following	 the	 original	 work17.	 For	 each	model	 tested,	

patient	 samples	 were	 split	 80:20	 into	 a	 training	 and	 a	 test	 set.	 Using	 only	 the	

training	 samples,	 10-fold	 cross	 validation	 was	 performed	 for	 each	 class	 (good	

survival;	poor	survival),	generating	for	each	network	a	score	between	0	and	10.	The	

best	scoring	networks	(9	or	10)	were	selected	as	features	and	used	to	classify	test	

samples.	 This	 process	 was	 repeated	 for	 random	 splits	 of	 train	 and	 test	 until	

performance	 measures	 stabilized	 (20	 splits)	 (Figure	 2A).	 Predictor	 performance	

was	measured	 as	 the	 average	 of	 test	 classification	 across	 the	 20	 splits.	We	 tested	

fifteen	 different	 predictor	 models	 that	 varied	 by	 prefiltering	 strategy,	 choice	 of	

similarity	 metric,	 and	 whether	 networks	 were	 defined	 at	 the	 level	 of	 individual	

variables	 (genes)	 or	 entire	 datatypes	 (Supplementary	 Table	 1).	 Prefiltering	 is	 an	

initial	 feature	 selection	 step	which	 creates	 patient	 similarity	 networks	 only	 using	

variables	that	pass	lasso	regression;	it	is	performed	within	the	cross-validation	loop	

to	avoid	leaking	information	between	train	and	test	samples.	For	similarity	metrics,	

we	tested	normalized	difference,	Pearson	correlation	with	and	without	exponential	

scaling,	 radial	 basis	 function,	 and	 Euclidean-distance	 based	 similarity	 with	

exponential	scaling	(see	Online	Methods).	

	

We	use	the	AUROC	to	measure	performance,	as	this	was	the	metric	reported	by	the	

PanCancer	 survival	 project17.	 Information	 on	 the	 exact	 samples	 used	 for	 the	 10	

train/test	splits	used	by	Yuan	et	al.	is	not	available,	thus	we	used	new	random	splits,	
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but	 used	 more	 splits	 (n=20)	 chosen	 to	 reach	 a	 stable	 AUROC	 estimate.	 netDx	

demonstrates	consistently	excellent	performance	for	all	 four	tumour	types	(Figure	

2B);	 average	 netDx	 performance	 is	 significantly	 higher	 than	 that	 for	 all	 other	

methods	for	three	of	the	tumours	(one-tailed	WMW;	KIRC:	p	<	0.03;	OV:	p	<	0.013;	

LUSC:	p	<	0.04),	and	 is	close	to	significant	 for	the	 fourth	(GBM:	p	<	0.06).	Further,	

the	 top-performing	 netDx	 model	 outperforms	 all	 eight	 tested	 machine	 learning	

algorithms	for	kidney	and	ovarian	cancer	(Figure	2B,	Table	S1),	performs	at	par	for	

brain	cancer	(netDx	best=0.69;	Yuan	et	al.	best=0.71),	and	outperforms	all	but	one	

outlier	 data	 point	 for	 lung	 cancer.	 Performance	 statistics	 reported	 for	 Yuan	 et	 al.	

were	 the	 best	 performing	 models	 out	 of	 hundreds	 tested	 for	 different	 data	

combinations	with	eight	different	machine	learning	methods:	diagonal	discriminant	

analysis;	 K-nearest	 neighbor;	 discriminant	 analysis;	 logistic	 regression;	 nearest	

centroid;	 partial	 least	 squares;	 random	 forest;	 and	 support	 vector	machine.	 Thus,	

netDx	performs	as	good	or	better	than	a	diverse	panel	of	machine-learning	methods	

and	parameter	combinations.	

Pathway-level	 feature	 selection	 identifies	 cellular	 processes	 predictive	
of	clinical	condition	
Creating	a	single	feature	per	datatype	identifies	the	general	predictive	value	of	that	

data	 layer	but,	without	further	work,	does	not	provide	insight	 into	which	genes	or	

cellular	processes	 are	useful	 for	 classification.	This	 information	 is	 useful	 to	 better	

understand	the	mechanisms	of	disease.	netDx	natively	supports	the	ability	to	group	

unit	measures	into	relevant	groupings	for	more	interpretable	features.	For	instance,	

genes	can	be	grouped	into	pathways	(gene	sets)	so	that	the	feature	selection	process	
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scores	pathways	 for	predictive	value.	To	 illustrate	 this	ability,	we	classified	breast	

tumours	 as	 being	 of	 the	 Luminal	 A	 subtype	 or	 not,	 starting	 from	 tumour-derived	

gene	 expression	 (N=348	 patients;	 (154	 Luminal	 A,	 194	 non-Luminal	 A22).	 Gene	

expression	 was	 used	 as	 input	 and	 features	 were	 defined	 at	 the	 level	 of	 curated	

pathways	of	cellular	processes.	Cross-validation	was	run	with	100	80:20	train/test	

splits.	 Each	 split	 included	 a	 feature	 selection	 process	 that	 resamples	 the	 training	

data	ten	times;	each	split	 therefore	scores	 features	between	0	and	10,	with	higher	

values	 indicating	 greater	 predictive	 power.	 We	 then	 calculated	 the	 highest	 score	

each	 feature	 consistently	obtained	over	all	100	 splits	 (here	defined	as	 the	highest	

score	 obtained	 for	 >=70%	of	 the	 100	 splits)	 as	 a	 stable	measure	 of	 that	 feature’s	

predictive	power.	Resulting	pathways	were	visualized	as	an	EnrichmentMap	(Figure	

3).	

	

Tumour	 classification	 was	 near	 perfect,	 with	 an	 average	 (SD)	 AUROC	 of	 0.97+/-	

0.01,	 average	 AUPR	 of	 0.93+/-0.02,	 and	 average	 accuracy	 of	 89%	+/-	 3%	 (Figure	

3A).	Performance	for	pathway-level	features	is	slightly,	but	significantly,	better	than	

when	 gene	 expression	 is	 provided	 as	 a	 single	 feature	 (mean	 AUROC	 for	 single	

network	 =	 0.96+/-	 0.02;	 two-sided	Wilcoxon-Mann-Whitney	 test	 p	 <	 0.025).	 Top-

scoring	 pathways	 included	 cell	 cycle	 progression	 and	 checkpoint	 regulation,	 DNA	

synthesis,	 DNA	 mismatch	 repair,	 and	 DNA	 double-strand	 break	 repair	 themes	

(Figure	3B,	Table	S2).	These	processes	are	consistent	with	the	pathways	known	to	

be	dysregulated	in	luminal	breast	tumours	and	cancer	progression	in	general.	netDx	

also	 identified	 pathways	 related	 to	 Solute	 Carrier	 Family	 membrane	 transport	
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proteins	and	vesicle	release,	which	are	not	traditionally	linked	to	breast	cancer,	but	

may	 support	 new	 insights	 (see	 discussion).	 We	 integrated	 patient	 similarity	

networks	from	top-scoring	pathways	(those	scoring	10	out	of	10	in	all	splits)	into	a	

single	 patient	 similarity	 network	 (Figure	 3C).	 In	 this	 network,	 LumA	 patients	 are	

significantly	 closer	 to	 other	 LumA	 patients	 (average	 shortest	 distance=0.52),	

compared	 to	 patients	 of	 other	 breast	 cancer	 subtypes	 (average	 shortest	

distance=0.58;	one-tailed	Wilcoxon-Mann-Whitney	test	p	<	2e-16).	

	

A	common	problem	in	clinical	genomics	is	relating	higher-level	analyses,	such	as	the	

set	 of	 affected	 pathways	 in	 Figure	 3B,	 back	 to	 changes	 in	 individual	 patients.	 To	

address	 this	 problem,	 we	 performed	 principal	 component	 analysis	 on	 gene	

expression	values	of	all	genes	within	a	given	pathway	and	correlated	the	projections	

of	 the	 first	 three	 principal	 components	 with	 clinical	 outcome	 (Figure	 3).	 Most	

features	 individually	 showed	 significant	 correlation	 with	 tumour	 subtype	 (e.g.	

correlation	for	“Amplification	of	Signal	from	the	Kinetochores”=-0.80,	p	<	3.3e-72)	,	

and	 the	 patient	 class	 boundary	 is	 visually	 evident	 in	 these	 features	 (Figure	 3D).	

However,	not	all	features	had	this	property	(e.g.	correlation	for	“Glucuronidation”	=	

0.1,	p	<	0.038).	Pathways	 that	 score	highly	 in	 feature	 selection	and	correlate	with	

outcome	are	good	candidates	for	follow-up	biomarker	or	mechanistic	studies.	

	

As	 a	 second	 case	 study	 to	 demonstrate	 that	 netDx	 feature	 selection	 identifies	

pathways	 consistent	with	 the	 biology	 of	 the	 condition,	we	 predicted	 case/control	

status	in	asthma	using	gene	expression	from	sorted	peripheral	blood	mononuclear	
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cells23	 (97	cases,	97	controls)	and	an	 identical	predictor	design	as	used	 for	breast	

cancer	above.	The	netDx	predictor	achieved	an	AUROC	of	0.71+/-	0.07	(SD)	(Figure	

3E;	mean	AUPR=0.65;	mean	accuracy=66%).	Selected	pathways	 included	cytotoxic	

T-lymphocytes	 related	processes	 and	Notch2	 signaling	 (Figure	 3D;	Table	 S3).	 The	

feature-selected	themes	in	breast	cancer	and	asthma	are	each	consistent	with	prior	

knowledge	of	cellular	changes	in	these	conditions	(see	discussion).	These	examples	

demonstrate	that	when	used	with	pathway-level	features,	netDx	can	provide	insight	

into	the	molecular	mechanisms	that	discriminate	between	patient	groups	and	 into	

general	disease	related	processes.	Altogether,	our	results	show	that	using	pathway-

level	 features	 can	 improve	 classification	 performance	 and	 provide	 insight	 into	

disease	mechanisms.	

Discussion	

We	 describe	 netDx,	 the	 first	 supervised	 patient	 classification	 system	 based	 on	

patient	similarity	networks.	We	demonstrate	that	netDx	has	excellent	classification	

performance	predicting	survival	across	four	different	tumour	types.	Further,	feature	

selection,	 especially	 when	 biological	 pathways	 are	 used,	 aids	 interpretability	 and	

provides	 insight	 into	 disease	 mechanisms	 important	 for	 classification.	 This	

framework	 can	 be	 used	 to	 create	 accurate,	 generalizable	 predictors,	 and	 has	

particular	 strengths	 in	 data	 integration	 and	 interpretation	 compared	 to	 other	

machine	learning	approaches.	netDx	is	targeted	at	researchers	who	are	interested	to	

see	 if	 their	patient-level	data	 can	answer	 a	 specific	patient	 classification	question.	

netDx	provides	a	standard	workflow	that	can	quickly	determine	if	the	classification	
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question	can	be	answered	based	on	a	training	set	and	if	so,	provides	a	set	of	relevant	

features	and	a	software	tool	to	classify	new	patients.	

	

netDx	 demonstrated	 consistently	 excellent	 performance	 with	 the	 PanCancer	

benchmark	 set,	 performing	as	 good	or	better	 in	 almost	 all	 cases.	A	 single	 support	

vector	machine	model	 from	 Yuan	 et	 al.	 for	 lung	 cancer	 survival	 prediction	 vastly	

outperformed	 any	 other	 model,	 including	 netDx.	 This	 may	 be	 because	 the	 latter	

model	 identified	a	non-linear	decision	boundary	or	was	overfit.	Future	versions	of	

netDx	 will	 explore	 if	 considering	 non-linear	 effects	 (e.g.	 via	 non-linear	 similarity	

measure	and	network	combinations)	can	improve	performance.	

	

netDx	also	 includes	support	 for	 feature	grouping	to	 improve	 interpretability	while	

keeping	 feature	 number	 low.	 Reducing	 the	 number	 of	 features	 can	 mitigate	

overfitting	 risk,	 improve	 signal	 detection	 with	 sparse	 data,	 require	 less	 compute	

resources,	 and	 improve	 prediction	 performance.	 While	 we	 demonstrate	 this	

functionality	 by	 grouping	 gene-level	 expression	 measures	 into	 pathway-level	

features	(Figure	3),	any	feature	grouping	is	possible.	Groupings	with	clear	clinical	or	

mechanistic	 interpretation	 will	 aid	 classification	 interpretation.	 The	 themes	

identified	 for	 Luminal	 A	 classification	 of	 breast	 tumours	 are	 consistent	 with	

processes	known	to	be	dysregulated	in	this	type	of	cancer.	For	instance,	themes	of	

DNA	repair	and	G2-M	checkpoint	regulation	are	consistent	with	the	known	roles	of	

BRCA1/BRCA2	 and	 ATM	 proteins,	 which	 are	 established	 risk	 factors	 for	 breast	

cancer24.	 Cell	 cycle	 dysregulation	 accompanies	 genomic	 instability	 as	 a	 feature	 of	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/084418doi: bioRxiv preprint 

https://doi.org/10.1101/084418
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 15	

several	 cancers25.	 netDx	 also	 identified	 a	 theme	 of	 solute	 carrier	 family	 proteins,	

many	 of	which	 are	 overexpressed	 in	 tumours,	 are	 thought	 to	mediate	 the	 altered	

metabolic	 needs	 of	 growing	 tumours26,27,	 and	 are	 associated	with	 genetic	 risk	 for	

breast	 cancer28.	 Even	 genes	 typically	 thought	 to	 be	 involved	 in	 neurotransmitter	

release	 are	 expressed	 in	 multiple	 TCGA	 cancers27;	 for	 instance,	 ABAT,	 which	 is	

responsible	 for	 catabolism	of	 the	neurotransmitter	GABA,	 is	 a	biomarker	 for	poor	

hormone	 therapy	 outcome	 in	 advanced	 stages	 of	 breast	 cancer29.	 Therefore,	

pathways	 identified	 by	 netDx	 may	 suggest	 novel	 directions	 for	 biomarker	

identification	and	therapeutic	targeting.	Similarly,	the	themes	identified	for	asthma	

case	 prediction,	 including	 cytotoxic	 T-lymphocytes	 and	 associated	 apoptosis,	 are	

consistent	 with	 known	 asthma	 genetics	 and	 genomics	 results.	 Asthma	 is	 an	

inflammatory	 condition	 affecting	 the	 airways	 of	 the	 lung.	 Genetic	 loci	 associated	

with	 asthma	 include	 genes	 involved	 in	 immunoregulation	 and	 T-helper	 cell	

differentiation,	 and	 T-cell	 activation	 has	 been	 identified	 in	 blood	 of	 affected	

individuals	 from	 transcriptomic	 and	 DNA	 methylation	 studies23,30-32.	 Notch	

signalling	 regulates	 the	 differentiation	 of	 T-helper	 cells,	 and	 inhibitors	 of	 this	

pathway	are	being	 tested	 in	clinical	 trials	 to	suppress	symptoms	of	asthma33-35.	 In	

summary,	when	provided	with	pathway-level	features,	netDx	can	be	a	useful	tool	for	

discovery	research.	

	

Good	 performance	 and	 interpretability	 increase	 confidence	 of	 prediction	 results.	

However,	 it	 is	 sometimes	 difficult	 to	 know	 how	 well	 a	 prediction	 method	 is	

performing	if	there	is	nothing	to	compare	with.	Thus,	we	recommend	that	machine-
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learning	classifiers,	such	as	netDx,	be	assessed	using	a	predictor	checklist	of	tests	to	

gain	 confidence	 in	 the	 classification	 results	 (Supplementary	 Figure	 3).	 Such	 a	

checklist	would	include:	

1) traditional	 performance	 metrics,	 including	 the	 AUROC,	 AUPR,	 F1,	 and	

accuracy	

2) the	extent	to	which	the	predictor	captures	prior	knowledge	about	the	disease	

under	study,	such	as	known	cellular	pathways	

3) an	orthogonal	measure	of	the	validity	of	the	predicted	classes.	For	instance,	

in	 the	 context	 of	 survival	 prediction	 in	 cancer,	 a	 predictor	 should	 result	 in	

significantly	separable	survival	curves	for	the	two	predicted	patient	sets	

4) a	measure	of	the	strength	of	separation	of	the	classes,	such	as	the	extent	to	

which	patient	classes	separately	cluster	in	the	integrated	similarity	network	

5) a	measure	of	how	much	the	results	are	better	than	random,	measured	using	

an	appropriate	set	of	negative	controls	

A	list	of	passing	or	failing	grades	on	each	test	would	provide	a	simple	report	card	to	

compare	 several	 predictor	 designs	 (Figure	 S4)	 and	 intuitive	 visualizations	 of	 the	

results	 (e.g.	 Figures	 2B	 and	 3)	would	 improve	 understanding	 about	 how	well	 the	

predictor	may	work	in	general.	

	

netDx	provides	a	complete	framework	for	precision	medicine.	However	the	ultimate	

vision	 is	 to	 enable	 clinical	 researchers	 to	 assess	 classification	 performance	 for	

questions	 of	 interest,	 such	 as	 ‘will	 a	 patient	 respond	 to	 one	 therapy	 or	 another?’	

based	on	patient	measurements	and	outcomes	present	 in	 large	electronic	medical	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/084418doi: bioRxiv preprint 

https://doi.org/10.1101/084418
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 17	

record	databases.	Output	would	 include	 a	 report	 card	on	model	 performance	 and	

generalizability	 estimates	 on	 independent	 cohorts,	 feature	 interpretation,	 an	

interactive	 integrated	 patient	 similarity	 network	 visualization	 enabling	 the	

exploration	of	individual	patients,	and	a	ready-to-run	classifier	for	new	patients.	

	

netDx	 is	 implemented	 as	 an	 open-source	 R	 software	 package	 available	 at	

http://netdx.org,	 with	 worked	 examples.	 We	 also	 propose	 that	 users	 store	 and	

publicly	 share	 patient	 similarity	 networks,	 useful	 as	 features	 for	 netDx	 and	 other	

PSN	methods,	in	the	NDEx	network	exchange	system36.		
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Figures	

	

Figure	1.	The	netDx	method.	

netDx	converts	patient	data	(A)	into	a	set	of	patient	similarity	networks	(PSN),	with	

patients	 as	 nodes	 and	 weighted	 edges	 representing	 patient	 similarity	 by	 some	

measure	 (B).	 The	 simple	 example	 for	 predicting	 low/high	 risk	 for	 disease	 uses	

clinical,	 genomic,	metabolomic	 and	 genetic	 data.	 netDx	 identifies	which	 networks	

strongly	 relate	high-risk	patients	 (here,	 clinical	 and	metabolomic	data)	 and	which	

relate	low-risk	patients	(clinical	and	gene	expression	data).	Feature	selection	is	used	

to	score	networks	by	their	ability	to	predict	patient	class;	details	in	Figure	S1.	
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C.	netDx	returns	several	types	of	output.	Top-scoring	features	are	combined	into	a	

single	view	of	overall	patient	similarity,	which	can	be	used	to	classify	new	patients	

based	on	relative	similarity	to	known	patient	classes.	netDx	also	provides	standard	

classifier	 performance	 metrics	 and	 scores	 for	 the	 predictive	 value	 of	 individual	

features.	

D.	 If	pathway	features	are	used,	netDx	identifies	and	visualizes	the	pathways	most	

useful	for	classification.	
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Figure	2.	Performance	benchmarking	using	the	PanCancer	Survival	data	

A.	Method.	Various	combinations	of	networks	were	input	to	netDx	to	predict	binary	

survival	(YES/NO).	Predictors	were	built	using	20	random	train/test	splits.	

B.	 Average	 performance	 of	 netDx	 compared	 to	 other	 machine-learning	 methods.	

Each	panel	shows	data	for	one	tumour	type,	and	a	boxplot	shows	mean	AUROC	for	a	

given	 machine-learning	 method	 for	 different	 tested	 combinations	 of	 input	 data	

(Supplementary	 Table	 1).	 netDx	 is	 shown	 in	 pink.	 As	 a	 reference	 point,	 Kaplan-

Meier	 curves	 and	 hazard	 ratios	 are	 shown	 for	 predicted	 samples	 from	 a	

representative	 KIRC	 split	 (bottom).	 P-values	 are	 from	 one-sided	Wilcoxon-Mann-

Whitney	comparing	netDx	to	all	other	methods	combined.		 	
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Figure	3.	Pathway-level	feature	selection	in	breast	cancer	and	asthma	

A. netDx	Performance	 for	 binary	 classification	 of	 breast	 tumour	 as	 Luminal	A	

subtype	from	tumour-derived	gene	expression	(N=384	patients).	

B. Pathways	 feature-selected	 by	 netDx	 in	 predicting	 Luminal	 A	 status.	 Nodes	

are	 pathways	 and	 edges	 indicate	 shared	 genes.	 Nodes	 are	 coloured	 by	
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highest	netDx	score	consistently	achieved	out	of	a	maximum	possible	of	10,	

in	>=70%	of	100	train/test	splits.	Themes	identified	by	AutoAnnotate16,37.		

C. Integrated	 patient	 similarity	 network.	 Nodes	 are	 patients,	 and	 edges	 are	

average	 similarity	 from	 the	pathways	 that	 scored	10	out	 of	 10	 in	 all	 splits.	

Nodes	are	coloured	by	tumour	type.	Edges	with	weight	<	0.7	were	excluded	

and	the	top	20%	of	edges	per	node	were	retained.	The	resulting	network	was	

visualized	in	Cytoscape	(spring-embedded	layout).	

D. Correlation	 of	 top-scoring	 pathway	 features	 (represented	 as	 the	 first	 three	

principal	 components	 of	 pathway-specific	 gene	 expression)	 with	 tumour	

type	(Spearman’s	correlation).	Table	cells	are	colored	by	sign	and	magnitude	

of	 correlation	 (blue:	 Spearman	 corr.	 >0;	 red,	 corr.	 <0).	 Circled	 letters	

correspond	to	detailed	panels	on	the	right.	Right:	Projections	of	patient-level	

gene	 expression	 in	 feature-selected	 pathways	 onto	 first	 two	 principal	

components	 (individual	 dots	 indicate	 patients).	 Points	 are	 colored	 by	

survival	class.	Decision	boundaries	were	calculated	using	logistic	regression	

on	scatterplot	data.	

E. Selected	 features	 for	asthma	case	status	 in	 the	case	of	asthma	case/control	

prediction	(N=97	cases;	N=97	controls).	Legend	as	in	(B).	

	
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/084418doi: bioRxiv preprint 

https://doi.org/10.1101/084418
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 1	

	

Online	Methods	

PanCancer	Survival	benchmark	models	

We	tested	various	models	for	the	PanCancer	survival	benchmarking	exercise.	This	section	

describes	the	model	details;	models	are	named	as	per	Supplementary	Table	1.	The	models	

varied	 based	 on	 whether	 or	 not	 they	 included	 a	 data	 imputation	 step,	 whether	 or	 not	

variables	were	prefiltered	using	lasso	regression,	and	choice	of	similarity	metric	(Pearson	

correlation,	 normalized	 difference,	 scaled	 Euclidean/Pearson).	 Where	 used,	 imputation	

was	performed	separately	for	training	and	test	samples	to	avoid	information	leaking	from	

train	to	 test.	Where	used,	prefiltering	was	performed	on	training	samples	within	a	cross-

validation	loop	to	avoid	information	leaking	from	train	to	test.	

	 	

Base	(no	lasso	prefiltering):	In	this	model,	each	datatype	was	treated	as	a	single	feature;	

i.e.	one	patient	similarity	network	was	generated	for	gene	expression,	one	for	clinical	data,	

etc.	 Similarity	 was	 defined	 by	 Pearson	 correlation	 where	 a	 datatype	 had	 more	 than	 six	

measures1,	or	by	average	normalized	difference	if	the	datatype	had	five	or	fewer	variables.	

For	a	set	of	k	variables	G={g1,g2,..gk},	where	1<=k<=5,	the	similarity	S	between	two	patients	

a	and	b	is	defined	as	the	average	of	normalized	differences	for	each	of	the	variables:		

	

	

	
S(a, b,G) =

Pk
i=1

abs(ai�bi)
max(gi)�min(gi)

k
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For	 the	 case	 of	 a	 single	 continuous	 variable,	 similarity	 is	 computed	 as	 normalized	

difference,	defined	as:	

	

	

where	a	and	b	are	the	values	of	the	variable	for	individual	patients	(a	and	b)	and	G	is	the	set	

of	all	values	for	the	variable	(e.g.	age).		

Variable	 prefiltering	 and	 Scaled	 Euclidean	 /	 Scaled	 Pearson:	 This	 design	 combines	

within-CV	prefiltering	with	lasso	regression2,	and	defines	features	at	the	level	of	individual	

variables	 (e.g.	 genes,	 clinical	 variables).	 It	 enables	 netDx	 to	 score	 individually	 predictive	

variables	in	contrast	to	combining	all	variables	of	a	data	type	into	a	single	network,	and	is	

likely	 a	 better	 choice	 when	 signal	 is	 not	 widespread	 in	 a	 datatype.	 Within	 each	 cross-

validation	 fold,	 lasso	 regression	 was	 applied	 to	 training	 samples	 for	 each	 datatype	

(prefiltering),	 and	only	variables	with	a	non-zero	weight	were	 included.	Regression	used	

only	 training	 samples	within	a	given	 fold	 to	avoid	 leaking	 information	 from	 test	 to	 train.	

The	 similarity	metric	 used	 is	 either	 Euclidean	 distance	 (model	 code=	 euc6K)	 or	 Pearson	

correlation,	 followed	 by	 local	 exponential	 scaling	 3.	 Imputing	 missing	 data	 by	 median	

further	improved	performance	only	for	glioblastoma	(eucimpute,	pearimpute).	 Imputation	

was	performed	within	cross-validation,	and	was	performed	separately	for	training	and	test	

samples	 to	 avoid	 leaking	 information	 from	 train	 to	 test.	 The	 lung	 cancer	 dataset	

demonstrated	 the	 best	 performance	 if	 the	 model	 was	 also	 limited	 to	 the	 top	 clinical	

variable	from	lasso	(plassoc1).	
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Integrated	patient	network		

The	integrated	patient	network	is	an	average	combination	of	all	feature-selected	networks	

to	 create	 a	 single	 network	 (i.e.	 average	 of	 all	 edge	 weights	 between	 patients	 from	 all	

selected	networks).	Visually,	the	goal	is	to	view	more	similar	patients	as	being	more	tightly	

grouped,	 and	 more	 dissimilar	 patients	 as	 being	 farther	 apart.	 Similarity	 is	 therefore	

converted	 to	 dissimilarity,	 defined	 as	 1-similarity.	Weighted	 shortest	 path	 distances	 are	

computed	 on	 this	 resulting	 dissimilarity	 network.	 To	 aid	 visualization,	 only	 edges	

representing	the	top	20%	of	distances	in	the	network	are	included.	For	the	network	with	a	

single	 clinical	 network,	 the	 top	 50%	 of	 distances	 are	 included,	 to	 limit	 the	 number	 of	

patients	without	edges.	

Survival	curve	and	hazard	ratios	
Survival	curves	were	constructed	based	on	netDx-predicted	classes	of	test	samples.	The	R	

packages	survival	and	survminer	were	used	to	compute	Kaplan-Meier	curves	and	rms	was	

used	to	calculate	 the	 log-rank	test	 for	separation	of	survival	curves.	The	package	survival	

was	also	used	to	compute	the	Cox	proportional	hazards	model	of	predicted	poor	survivors,	

using	 predicted	 good	 survivors	 as	 a	 reference,	 and	 to	 calculate	 the	 hazard	 ratio	 and	

associated	p-value.	

Pathway	networks	

Pathway	 definitions	 were	 aggregated	 from	 HumanCyc4	 (http://humancyc.org),	 NetPath5	

(http://www.netpath.org),	 Reactome6,7	 (http://www.reactome.org),	 NCI	 Curated	

Pathways8,	 mSigDB9	 (http://software.broadinstitute.org/gsea/msigdb/),	 and	 Panther10	
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(http://pantherdb.org/)	 (downloaded	 from	

http://download.baderlab.org/EM_Genesets/February_01_2018/Human/symbol/Human_

AllPathways_February_01_2018_symbol.gmt)11.	Only	pathways	with	10	to	500	genes	were	

included	 (1,801	 pathways).	 Pathway-level	 patient	 similarity	 was	 defined	 as	 the	 Pearson	

correlation	 of	 the	 expression	 vectors	 corresponding	 to	member	 genes,	 and	 the	 network	

was	sparsified	(see	next	section).	

Sparsification	of	input	networks	

Edges	with	weights	 below	 floating-point	 precision	were	 removed.	 The	 top	 50	 edges	 per	

node	 were	 retained	 (ties	 were	 ignored)	 to	 a	 maximum	 of	 6,000	 edges	 per	 network,	

following	 established	 GeneMANIA	 data	 processing	 procedures12.	 Where	 the	 resulting	

network	excluded	patients,	the	top-weighted	edge	for	each	patient	was	added	with	an	edge	

weight	at	floating-point	precision.	The	algorithm	requires	all	patients	to	be	in	the	network	

to	 allow	 test	 patients	 to	 be	 classified.	 For	 ovarian	 cancer,	 a	 less	 stringent	 sparsification	

method	provided	better	performance	where	clinical	data	were	included	(baserep1	model).	

This	method	applied	a	 similarity	 threshold	of	0.3	and	 included	 ties	when	keeping	 the	50	

strongest	 edges	 per	 patient;	 in	 case	 of	 ties,	 all	 interactions	 tied	 with	 the	 50th	 ranked	

interaction	are	retained,	for	a	maximum	of	2%	of	the	sample	size,	or	600	patients12.	

Map	of	feature-selected	networks	

The	Enrichment	Map	app	(3.1.0RC4)	in	Cytoscape	3.5.113	was	used	to	generate	enrichment	

maps11.	 A	 Jaccard	 overlap	 threshold	 of	 0.05	 was	 used	 to	 prune	 identical	 gene	 sets.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/084418doi: bioRxiv preprint 

https://doi.org/10.1101/084418
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

AutoAnnotate	 v1.1.0	 was	 used	 to	 cluster	 similar	 pathways	 using	 MCL	 clustering	 with	

default	parameters.	

		

The	 weighted	 shortest	 path	 between	 patient	 classes	 (a	 node	 set)	 was	 computed	 using	

Dijkstra’s	method	 (igraph	 v1.0114);	 distance	was	 defined	 as	 1-similarity	 (or	 edge	weight	

from	 a	 patient	 similarity	 network).	 The	 overall	 shortest	 path	 was	 defined	 as	 the	 mean	

pairwise	shortest-path	for	a	node	set.	
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Supplementary	Figures	

	
Supplementary	Figure	1	

Details	of	the	netDx	feature	selection	and	patient	classification	steps.	

A.	Machine	learning	is	used	to	identify	networks	predictive	of	each	patient	class.	Data	are	

split	 into	 training	 and	 test	 samples,	 and	 feature	 selection	 uses	 only	 training	 samples.	

Multiple	rounds	of	prediction	are	used	to	score	how	frequently	a	network	is	predictive	of	a	

given	 class	 (e.g.	 high-risk).	 This	 step	 results	 in	 network	 scores,	 with	 higher	 values	

indicating	networks	that	contribute	more	to	prediction.	These	scores	can	be	thresholded	to	

identify	 a	 set	 of	 high-confidence	 networks	 for	 each	 class	 of	 interest	 (pink	 and	 blue	

cylinders),	which	represent	the	selected	features	that	will	be	used	in	the	final	classifier.	

B.	Test	patients	are	ranked	by	similarity	to	known	examples	from	the	training	set.	For	this	

step,	 only	 class-specific	 feature-selected	 networks	 are	 used.	 Patients	 are	 assigned	 to	 the	

class	to	which	they	have	highest	similarity.	
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Supplementary	 Figure	 2.	 Conceptual	 overview	 of	 the	 GeneMANIA	 algorithm,	 used	 by	

netDx	for	network	integration.	GeneMANIA	is	a	network-based	recommender	system	that	

ranks	all	nodes	by	similarity	to	an	input	query	(or	“positive”	nodes).	In	netDx,	the	nodes	are	

patients	 and	 GeneMANIA	 uses	 the	 set	 of	 input	 patient	 similarity	 networks	 (left).	 The	

patient	ranking	is	achieved	by	a	two-step	process.	First,	input	networks	are	integrated	into	

a	 single	 association	 network	 via	 regularized	 regression	 that	 maximizes	 connectivity	

between	nodes	with	the	same	label	and	reduces	connectivity	to	other	nodes	(middle);	this	

step	 computes	 network	 weights	 corresponding	 to	 predictive	 value	 for	 each	 network.	

Second,	 label	 propagation	 is	 applied	 to	 the	 integrated	 network	 starting	 with	 the	 query	

nodes	(red),	thereby	ranking	patients	from	most	to	least	similar	to	the	query	(right).	
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Supplementary	 Figure	 3.	 Items	 in	 a	 predictor	 checklist	 that	 could	 be	 used	 to	 compare	

performance	of	several	predictors.	See	main	text	for	discussion.	
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Supplementary	Tables	
	

Supplementary	 Table	 1.	 Average	 AUROC	 for	 netDx-predicted	 binarized	 survival	

prediction	data	for	kidney,	ovarian,	lung	and	brain	cancers.	In	each	case,	the	value	shown	is	

the	average	of	AUROC	across	20	train/test	splits.	
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A.	Breast	tumour,	Luminal	A	
	

Feature	name	
max	
score	

ACTIVATION	OF	ATR	IN	RESPONSE	TO	REPLICATION	STRESS	 10	
AMPLIFICATION	OF	SIGNAL	FROM	THE	KINETOCHORES	 10	
AMPLIFICATION	OF	SIGNAL	FROM	UNATTACHED	KINETOCHORES	VIA	A	MAD2	
INHIBITORY	SIGNAL	 10	
AURORA	B	SIGNALING	 10	
BIOCARTA	MCM	PATHWAY	 10	
BIOCARTA	PTC1	PATHWAY	 10	
BIOCARTA	RANMS	PATHWAY	 10	
CIRCADIAN	RHYTHM	PATHWAY	 10	
CYCLIN	A	B1	B2	ASSOCIATED	EVENTS	DURING	G2	M	TRANSITION	 10	
DE	NOVO	PURINE	BIOSYNTHESIS	 10	
DE	NOVO	PYRIMIDINE	DEOXYRIBONUCLEOTIDE	BIOSYNTHESIS	 10	
FANCONI	ANEMIA	PATHWAY	 10	
FOXM1	TRANSCRIPTION	FACTOR	NETWORK	 10	
GABA	SYNTHESIS,	RELEASE,	REUPTAKE	AND	DEGRADATION	 10	
GLUCURONIDATION	*	 10	
GLUTATHIONE-MEDIATED	DETOXIFICATION	I	*	 10	
HDR	THROUGH	MMEJ	ALT-NHEJ		 10	
HDR	THROUGH	SINGLE	STRAND	ANNEALING	SSA		 10	
INTERCONVERSION	OF	NUCLEOTIDE	DI-	AND	TRIPHOSPHATES	 10	
INTERLEUKIN-6	SIGNALING	 10	
KINESINS	 10	
MASTL	FACILITATES	MITOTIC	PROGRESSION	 10	
MISMATCH	REPAIR	MMR	DIRECTED	BY	MSH2:MSH3	MUTSBETA		 10	
MMR	 10	
NEUROTRANSMITTER	CLEARANCE	 10	
NICOTINE	PHARMACODYNAMICS	PATHWAY	 10	
PID	AURORA	B	PATHWAY	 10	
PID	CIRCADIAN	PATHWAY	 10	
PID	FOXM1	PATHWAY	 10	
PID	PLK1	PATHWAY	 10	
PLK1	SIGNALING	EVENTS	 10	
PYRIMIDINE	SALVAGE	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	THROUGH	HOLLIDAY	JUNCTION	INTERMEDIATES	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	THROUGH	SYNTHESIS-DEPENDENT	STRAND	
ANNEALING	SDSA		 10	
RESOLUTION	OF	SISTER	CHROMATID	COHESION	 10	
RHO	GTPASES	ACTIVATE	CIT	 10	
RUNX1	AND	FOXP3	CONTROL	THE	DEVELOPMENT	OF	REGULATORY	T	LYMPHOCYTES	 10	
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TREGS		
TP53	REGULATES	TRANSCRIPTION	OF	GENES	INVOLVED	IN	G1	CELL	CYCLE	ARREST	 10	
TRANSCRIPTION	OF	E2F	TARGETS	UNDER	NEGATIVE	CONTROL	BY	P107	RBL1	AND	P130	
RBL2	IN	COMPLEX	WITH	HDAC1	 10	
ACTIVATION	OF	THE	PRE-REPLICATIVE	COMPLEX	 9	
ASSOCIATION	OF	LICENSING	FACTORS	WITH	THE	PRE-REPLICATIVE	COMPLEX	 9	
AURORA	A	SIGNALING	 9	
BIOCARTA	ETS	PATHWAY	 9	
BIOCARTA	IL6	PATHWAY	 9	
BIOCARTA	P35ALZHEIMERS	PATHWAY	 9	
CREATINE	METABOLISM	 9	
DIGESTION*	 9	
ESTABLISHMENT	OF	SISTER	CHROMATID	COHESION	 9	
GLUCONEOGENESIS	I	*	 9	
INACTIVATION	OF	APC	C	VIA	DIRECT	INHIBITION	OF	THE	APC	C	COMPLEX	 9	
INHIBITION	OF	THE	PROTEOLYTIC	ACTIVITY	OF	APC	C	REQUIRED	FOR	THE	ONSET	OF	
ANAPHASE	BY	MITOTIC	SPINDLE	CHECKPOINT	COMPONENTS	 9	
PID	ANTHRAX	PATHWAY	 9	
PID	AURORA	A	PATHWAY	 9	
PID	DELTA	NP63	PATHWAY	 9	
PID	FANCONI	PATHWAY	 9	
VALIDATED	TRANSCRIPTIONAL	TARGETS	OF	DELTANP63	ISOFORMS	 9	
BIOCARTA	P27	PATHWAY	 8	
DISEASES	ASSOCIATED	WITH	SURFACTANT	METABOLISM	*	 8	
NEUROTRANSMITTER	RELEASE	CYCLE	 8	
SYNTHESIS	OF	PIPS	AT	THE	EARLY	ENDOSOME	MEMBRANE	*	 8	
TRANSCRIPTIONAL	REGULATION	BY	E2F6	 8	
CONDENSATION	OF	PROMETAPHASE	CHROMOSOMES	 7	
INTERLEUKIN-27	SIGNALING	 7	
ORGANIC	CATION	TRANSPORT	 7	
RHO	GTPASES	ACTIVATE	FORMINS	 7	
FATTY	ACIDS	 6	
INTERLEUKIN-35	SIGNALLING	 6	
MISCELLANEOUS	SUBSTRATES	 6	
PURINE	NUCLEOTIDES	I	DE	NOVO	I	BIOSYNTHESIS	II	 6	
VOLTAGE	GATED	POTASSIUM	CHANNELS	 6	
ZINC	TRANSPORTERS	 6	
BIOCARTA	SARS	PATHWAY	 5	
G0	AND	EARLY	G1	 5	
HSP90	CHAPERONE	CYCLE	FOR	SHRS	 5	
NUCLEAR	RECEPTOR	TRANSCRIPTION	PATHWAY	 5	
BICARBONATE	TRANSPORTERS	 4	
SYNTHESIS,	SECRETION,	AND	DEACYLATION	OF	GHRELIN	 3	
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	 	B.	Breast	tumour,	other	
	

Feature	name	
max	
score	

ACTIVATION	OF	ATR	IN	RESPONSE	TO	REPLICATION	STRESS	 10	
ACTIVATION	OF	THE	PRE-REPLICATIVE	COMPLEX	 10	
AMPLIFICATION	OF	SIGNAL	FROM	THE	KINETOCHORES	 10	
AMPLIFICATION	OF	SIGNAL	FROM	UNATTACHED	KINETOCHORES	VIA	A	MAD2	
INHIBITORY	SIGNAL	 10	
ASSOCIATION	OF	LICENSING	FACTORS	WITH	THE	PRE-REPLICATIVE	COMPLEX	 10	
AURORA	A	SIGNALING	 10	
AURORA	B	SIGNALING	 10	
BIOCARTA	PTC1	PATHWAY	 10	
BIOCARTA	RANMS	PATHWAY	 10	
CIRCADIAN	RHYTHM	PATHWAY	 10	
CONDENSATION	OF	PROMETAPHASE	CHROMOSOMES	 10	
CYCLIN	A	B1	B2	ASSOCIATED	EVENTS	DURING	G2	M	TRANSITION	 10	
DE	NOVO	PURINE	BIOSYNTHESIS	 10	
ESTABLISHMENT	OF	SISTER	CHROMATID	COHESION	 10	
FANCONI	ANEMIA	PATHWAY	 10	
FOXM1	TRANSCRIPTION	FACTOR	NETWORK	 10	
HDR	THROUGH	MMEJ	ALT-NHEJ		 10	
KINESINS	 10	
MASTL	FACILITATES	MITOTIC	PROGRESSION	 10	
NEUROTRANSMITTER	CLEARANCE	 10	
PID	AURORA	A	PATHWAY	 10	
PID	AURORA	B	PATHWAY	 10	
PID	CIRCADIAN	PATHWAY	 10	
PID	FOXM1	PATHWAY	 10	
PLK1	SIGNALING	EVENTS	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	THROUGH	HOLLIDAY	JUNCTION	INTERMEDIATES	 10	
RUNX1	AND	FOXP3	CONTROL	THE	DEVELOPMENT	OF	REGULATORY	T	LYMPHOCYTES	
TREGS		 10	
TP53	REGULATES	TRANSCRIPTION	OF	GENES	INVOLVED	IN	G1	CELL	CYCLE	ARREST	 10	
TRANSCRIPTION	OF	E2F	TARGETS	UNDER	NEGATIVE	CONTROL	BY	P107	RBL1	AND	P130	
RBL2	IN	COMPLEX	WITH	HDAC1	 10	
BIOCARTA	MCM	PATHWAY	 9	
BIOCARTA	P35ALZHEIMERS	PATHWAY	 9	
CELL	DIVISION	 9	
CREATINE	METABOLISM	 9	
INACTIVATION	OF	APC	C	VIA	DIRECT	INHIBITION	OF	THE	APC	C	COMPLEX	 9	
INHIBITION	OF	THE	PROTEOLYTIC	ACTIVITY	OF	APC	C	REQUIRED	FOR	THE	ONSET	OF	
ANAPHASE	BY	MITOTIC	SPINDLE	CHECKPOINT	COMPONENTS	 9	
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INTERCONVERSION	OF	NUCLEOTIDE	DI-	AND	TRIPHOSPHATES	 9	
INTERLEUKIN-6	SIGNALING	 9	
PLASMINOGEN	ACTIVATING	CASCADE	 9	
POLO-LIKE	KINASE	MEDIATED	EVENTS	 9	
PYRIMIDINE	SALVAGE	 9	
RESOLUTION	OF	D-LOOP	STRUCTURES	THROUGH	SYNTHESIS-DEPENDENT	STRAND	
ANNEALING	SDSA		 9	
RHO	GTPASES	ACTIVATE	CIT	 9	
TP53	REGULATES	TRANSCRIPTION	OF	GENES	INVOLVED	IN	G2	CELL	CYCLE	ARREST	 9	
BIOCARTA	ETS	PATHWAY	 8	
BIOCARTA	SKP2E2F	PATHWAY	 8	
GLUTATHIONE-MEDIATED	DETOXIFICATION	I	 8	
INITIATION	OF	NUCLEAR	ENVELOPE	REFORMATION	 8	
KERATAN	SULFATE	DEGRADATION	 8	
NUCLEAR	ENVELOPE	REASSEMBLY	 8	
PHOSPHOLIPASE	C-MEDIATED	CASCADE	FGFR4	 8	
PID	P38	GAMMA	DELTA	PATHWAY	 8	
SIGNALING	MEDIATED	BY	P38-GAMMA	AND	P38-DELTA	 8	
GOLGI	CISTERNAE	PERICENTRIOLAR	STACK	REORGANIZATION	 7	
NICOTINE	PHARMACODYNAMICS	PATHWAY	 7	
SA	PROGRAMMED	CELL	DEATH	 7	
SYNTHESIS,	SECRETION,	AND	DEACYLATION	OF	GHRELIN	 7	
BIOCARTA	RB	PATHWAY	 6	
INCRETIN	SYNTHESIS,	SECRETION,	AND	INACTIVATION	 6	
MISCELLANEOUS	SUBSTRATES	 6	
PID	FANCONI	PATHWAY	 6	
SYNTHESIS,	SECRETION,	AND	INACTIVATION	OF	GLUCAGON-LIKE	PEPTIDE-1	GLP-1		 6	
ADRENALINE	AND	NORADRENALINE	BIOSYNTHESIS	 5	
BIOCARTA	DNAFRAGMENT	PATHWAY	 5	
MMR	 5	
PID	ANTHRAX	PATHWAY	 5	

Supplementary	Table	2.	Scores	for	pathway-level	networks	for	predicting	Luminal	A	

subtype	of	breast	tumour	from	gene	expression	l.	Score	shown	is	the	best	achieved	by	a	

given	network	for	over	70%	of	the	100	trials.	Only	networks	scoring	a	max	of	three	or	more	

out	of	10	in	over	70%	trials	are	shown	here.	Asterisks	indicate	high-scoring	singleton	

nodes	omitted	from	the	Enrichment	Map	in	Figure	3A.	
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A.	Asthma	cases	
	Feature	name	 max	score	

BIOCARTA	SET	PATHWAY	 10	
BIOCARTA	CTL	PATHWAY	 9	
BIOCARTA	D4GDI	PATHWAY	 9	
NOTCH2	INTRACELLULAR	DOMAIN	REGULATES	TRANSCRIPTION	 9	
SA	CASPASE	CASCADE	 8	

	 	B.	Controls	
	Feature	name	 max	score	

BIOCARTA	CTL	PATHWAY	 10	
BIOCARTA	D4GDI	PATHWAY	 10	
BIOCARTA	SET	PATHWAY	 10	
SA	CASPASE	CASCADE	 10	
ACTIVATION	OF	THE	MRNA	UPON	BINDING	OF	THE	CAP-BINDING	
COMPLEX	AND	EIFS,	AND	SUBSEQUENT	BINDING	TO	43S	 8	
BIOCARTA	DNAFRAGMENT	PATHWAY	 8	
DISEASES	ASSOCIATED	WITH	VISUAL	TRANSDUCTION	 8	
RETINOID	CYCLE	DISEASE	EVENTS	 8	
	

Supplementary	Table	3.	netDx	scores	for	pathway-level	features	in	asthma	case/control	

prediction.	Score	shown	is	the	best	achieved	by	a	given	network	for	over	70%	of	the	100	

trials.	Only	networks	scoring	a	max	of	three	or	more	out	of	10	in	over	70%	trials	are	shown	

here.		
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