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Figure	3.	Pathway-level	feature	selection	in	breast	cancer	and	asthma	

A. netDx	Performance	 for	 binary	 classification	 of	 breast	 tumour	 as	 Luminal	A	

subtype	from	tumour-derived	gene	expression	(N=384	patients).	

B. Pathways	 feature-selected	 by	 netDx	 in	 predicting	 Luminal	 A	 status.	 Nodes	

are	 pathways	 and	 edges	 indicate	 shared	 genes.	 Nodes	 are	 coloured	 by	
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highest	netDx	score	consistently	achieved	out	of	a	maximum	possible	of	10,	

in	>=70%	of	100	train/test	splits.	Themes	identified	by	AutoAnnotate16,37.		

C. Integrated	 patient	 similarity	 network.	 Nodes	 are	 patients,	 and	 edges	 are	

average	 similarity	 from	 the	pathways	 that	 scored	10	out	 of	 10	 in	 all	 splits.	

Nodes	are	coloured	by	tumour	type.	Edges	with	weight	<	0.7	were	excluded	

and	the	top	20%	of	edges	per	node	were	retained.	The	resulting	network	was	

visualized	in	Cytoscape	(spring-embedded	layout).	

D. Correlation	 of	 top-scoring	 pathway	 features	 (represented	 as	 the	 first	 three	

principal	 components	 of	 pathway-specific	 gene	 expression)	 with	 tumour	

type	(Spearman’s	correlation).	Table	cells	are	colored	by	sign	and	magnitude	

of	 correlation	 (blue:	 Spearman	 corr.	 >0;	 red,	 corr.	 <0).	 Circled	 letters	

correspond	to	detailed	panels	on	the	right.	Right:	Projections	of	patient-level	

gene	 expression	 in	 feature-selected	 pathways	 onto	 first	 two	 principal	

components	 (individual	 dots	 indicate	 patients).	 Points	 are	 colored	 by	

survival	class.	Decision	boundaries	were	calculated	using	logistic	regression	

on	scatterplot	data.	

E. Selected	 features	 for	asthma	case	status	 in	 the	case	of	asthma	case/control	

prediction	(N=97	cases;	N=97	controls).	Legend	as	in	(B).	
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Online	Methods	

PanCancer	Survival	benchmark	models	

We	tested	various	models	for	the	PanCancer	survival	benchmarking	exercise.	This	section	

describes	the	model	details;	models	are	named	as	per	Supplementary	Table	1.	The	models	

varied	 based	 on	 whether	 or	 not	 they	 included	 a	 data	 imputation	 step,	 whether	 or	 not	

variables	were	prefiltered	using	lasso	regression,	and	choice	of	similarity	metric	(Pearson	

correlation,	 normalized	 difference,	 scaled	 Euclidean/Pearson).	 Where	 used,	 imputation	

was	performed	separately	for	training	and	test	samples	to	avoid	information	leaking	from	

train	to	 test.	Where	used,	prefiltering	was	performed	on	training	samples	within	a	cross-

validation	loop	to	avoid	information	leaking	from	train	to	test.	

	 	

Base	(no	lasso	prefiltering):	In	this	model,	each	datatype	was	treated	as	a	single	feature;	

i.e.	one	patient	similarity	network	was	generated	for	gene	expression,	one	for	clinical	data,	

etc.	 Similarity	 was	 defined	 by	 Pearson	 correlation	 where	 a	 datatype	 had	 more	 than	 six	

measures1,	or	by	average	normalized	difference	if	the	datatype	had	five	or	fewer	variables.	

For	a	set	of	k	variables	G={g1,g2,..gk},	where	1<=k<=5,	the	similarity	S	between	two	patients	

a	and	b	is	defined	as	the	average	of	normalized	differences	for	each	of	the	variables:		

	

	

	
S(a, b,G) =

Pk
i=1

abs(ai�bi)
max(gi)�min(gi)

k
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For	 the	 case	 of	 a	 single	 continuous	 variable,	 similarity	 is	 computed	 as	 normalized	

difference,	defined	as:	

	

	

where	a	and	b	are	the	values	of	the	variable	for	individual	patients	(a	and	b)	and	G	is	the	set	

of	all	values	for	the	variable	(e.g.	age).		

Variable	 prefiltering	 and	 Scaled	 Euclidean	 /	 Scaled	 Pearson:	 This	 design	 combines	

within-CV	prefiltering	with	lasso	regression2,	and	defines	features	at	the	level	of	individual	

variables	 (e.g.	 genes,	 clinical	 variables).	 It	 enables	 netDx	 to	 score	 individually	 predictive	

variables	in	contrast	to	combining	all	variables	of	a	data	type	into	a	single	network,	and	is	

likely	 a	 better	 choice	 when	 signal	 is	 not	 widespread	 in	 a	 datatype.	 Within	 each	 cross-

validation	 fold,	 lasso	 regression	 was	 applied	 to	 training	 samples	 for	 each	 datatype	

(prefiltering),	 and	only	variables	with	a	non-zero	weight	were	 included.	Regression	used	

only	 training	 samples	within	a	given	 fold	 to	avoid	 leaking	 information	 from	 test	 to	 train.	

The	 similarity	metric	 used	 is	 either	 Euclidean	 distance	 (model	 code=	 euc6K)	 or	 Pearson	

correlation,	 followed	 by	 local	 exponential	 scaling	 3.	 Imputing	 missing	 data	 by	 median	

further	improved	performance	only	for	glioblastoma	(eucimpute,	pearimpute).	 Imputation	

was	performed	within	cross-validation,	and	was	performed	separately	for	training	and	test	

samples	 to	 avoid	 leaking	 information	 from	 train	 to	 test.	 The	 lung	 cancer	 dataset	

demonstrated	 the	 best	 performance	 if	 the	 model	 was	 also	 limited	 to	 the	 top	 clinical	

variable	from	lasso	(plassoc1).	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/084418doi: bioRxiv preprint 

https://doi.org/10.1101/084418
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3	

Integrated	patient	network		

The	integrated	patient	network	is	an	average	combination	of	all	feature-selected	networks	

to	 create	 a	 single	 network	 (i.e.	 average	 of	 all	 edge	 weights	 between	 patients	 from	 all	

selected	networks).	Visually,	the	goal	is	to	view	more	similar	patients	as	being	more	tightly	

grouped,	 and	 more	 dissimilar	 patients	 as	 being	 farther	 apart.	 Similarity	 is	 therefore	

converted	 to	 dissimilarity,	 defined	 as	 1-similarity.	Weighted	 shortest	 path	 distances	 are	

computed	 on	 this	 resulting	 dissimilarity	 network.	 To	 aid	 visualization,	 only	 edges	

representing	the	top	20%	of	distances	in	the	network	are	included.	For	the	network	with	a	

single	 clinical	 network,	 the	 top	 50%	 of	 distances	 are	 included,	 to	 limit	 the	 number	 of	

patients	without	edges.	

Survival	curve	and	hazard	ratios	
Survival	curves	were	constructed	based	on	netDx-predicted	classes	of	test	samples.	The	R	

packages	survival	and	survminer	were	used	to	compute	Kaplan-Meier	curves	and	rms	was	

used	to	calculate	 the	 log-rank	test	 for	separation	of	survival	curves.	The	package	survival	

was	also	used	to	compute	the	Cox	proportional	hazards	model	of	predicted	poor	survivors,	

using	 predicted	 good	 survivors	 as	 a	 reference,	 and	 to	 calculate	 the	 hazard	 ratio	 and	

associated	p-value.	

Pathway	networks	

Pathway	 definitions	 were	 aggregated	 from	 HumanCyc4	 (http://humancyc.org),	 NetPath5	

(http://www.netpath.org),	 Reactome6,7	 (http://www.reactome.org),	 NCI	 Curated	

Pathways8,	 mSigDB9	 (http://software.broadinstitute.org/gsea/msigdb/),	 and	 Panther10	
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(http://pantherdb.org/)	 (downloaded	 from	

http://download.baderlab.org/EM_Genesets/February_01_2018/Human/symbol/Human_

AllPathways_February_01_2018_symbol.gmt)11.	Only	pathways	with	10	to	500	genes	were	

included	 (1,801	 pathways).	 Pathway-level	 patient	 similarity	 was	 defined	 as	 the	 Pearson	

correlation	 of	 the	 expression	 vectors	 corresponding	 to	member	 genes,	 and	 the	 network	

was	sparsified	(see	next	section).	

Sparsification	of	input	networks	

Edges	with	weights	 below	 floating-point	 precision	were	 removed.	 The	 top	 50	 edges	 per	

node	 were	 retained	 (ties	 were	 ignored)	 to	 a	 maximum	 of	 6,000	 edges	 per	 network,	

following	 established	 GeneMANIA	 data	 processing	 procedures12.	 Where	 the	 resulting	

network	excluded	patients,	the	top-weighted	edge	for	each	patient	was	added	with	an	edge	

weight	at	floating-point	precision.	The	algorithm	requires	all	patients	to	be	in	the	network	

to	 allow	 test	 patients	 to	 be	 classified.	 For	 ovarian	 cancer,	 a	 less	 stringent	 sparsification	

method	provided	better	performance	where	clinical	data	were	included	(baserep1	model).	

This	method	applied	a	 similarity	 threshold	of	0.3	and	 included	 ties	when	keeping	 the	50	

strongest	 edges	 per	 patient;	 in	 case	 of	 ties,	 all	 interactions	 tied	 with	 the	 50th	 ranked	

interaction	are	retained,	for	a	maximum	of	2%	of	the	sample	size,	or	600	patients12.	

Map	of	feature-selected	networks	

The	Enrichment	Map	app	(3.1.0RC4)	in	Cytoscape	3.5.113	was	used	to	generate	enrichment	

maps11.	 A	 Jaccard	 overlap	 threshold	 of	 0.05	 was	 used	 to	 prune	 identical	 gene	 sets.	
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AutoAnnotate	 v1.1.0	 was	 used	 to	 cluster	 similar	 pathways	 using	 MCL	 clustering	 with	

default	parameters.	

		

The	 weighted	 shortest	 path	 between	 patient	 classes	 (a	 node	 set)	 was	 computed	 using	

Dijkstra’s	method	 (igraph	 v1.0114);	 distance	was	 defined	 as	 1-similarity	 (or	 edge	weight	

from	 a	 patient	 similarity	 network).	 The	 overall	 shortest	 path	 was	 defined	 as	 the	 mean	

pairwise	shortest-path	for	a	node	set.	
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Supplementary	Figures	

	
Supplementary	Figure	1	

Details	of	the	netDx	feature	selection	and	patient	classification	steps.	

A.	Machine	learning	is	used	to	identify	networks	predictive	of	each	patient	class.	Data	are	

split	 into	 training	 and	 test	 samples,	 and	 feature	 selection	 uses	 only	 training	 samples.	

Multiple	rounds	of	prediction	are	used	to	score	how	frequently	a	network	is	predictive	of	a	

given	 class	 (e.g.	 high-risk).	 This	 step	 results	 in	 network	 scores,	 with	 higher	 values	

indicating	networks	that	contribute	more	to	prediction.	These	scores	can	be	thresholded	to	

identify	 a	 set	 of	 high-confidence	 networks	 for	 each	 class	 of	 interest	 (pink	 and	 blue	

cylinders),	which	represent	the	selected	features	that	will	be	used	in	the	final	classifier.	

B.	Test	patients	are	ranked	by	similarity	to	known	examples	from	the	training	set.	For	this	

step,	 only	 class-specific	 feature-selected	 networks	 are	 used.	 Patients	 are	 assigned	 to	 the	

class	to	which	they	have	highest	similarity.	
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Supplementary	 Figure	 2.	 Conceptual	 overview	 of	 the	 GeneMANIA	 algorithm,	 used	 by	

netDx	for	network	integration.	GeneMANIA	is	a	network-based	recommender	system	that	

ranks	all	nodes	by	similarity	to	an	input	query	(or	“positive”	nodes).	In	netDx,	the	nodes	are	

patients	 and	 GeneMANIA	 uses	 the	 set	 of	 input	 patient	 similarity	 networks	 (left).	 The	

patient	ranking	is	achieved	by	a	two-step	process.	First,	input	networks	are	integrated	into	

a	 single	 association	 network	 via	 regularized	 regression	 that	 maximizes	 connectivity	

between	nodes	with	the	same	label	and	reduces	connectivity	to	other	nodes	(middle);	this	

step	 computes	 network	 weights	 corresponding	 to	 predictive	 value	 for	 each	 network.	

Second,	 label	 propagation	 is	 applied	 to	 the	 integrated	 network	 starting	 with	 the	 query	

nodes	(red),	thereby	ranking	patients	from	most	to	least	similar	to	the	query	(right).	
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Supplementary	 Figure	 3.	 Items	 in	 a	 predictor	 checklist	 that	 could	 be	 used	 to	 compare	

performance	of	several	predictors.	See	main	text	for	discussion.	
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Supplementary	Tables	
	

Supplementary	 Table	 1.	 Average	 AUROC	 for	 netDx-predicted	 binarized	 survival	

prediction	data	for	kidney,	ovarian,	lung	and	brain	cancers.	In	each	case,	the	value	shown	is	

the	average	of	AUROC	across	20	train/test	splits.	
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A.	Breast	tumour,	Luminal	A	
	

Feature	name	
max	
score	

ACTIVATION	OF	ATR	IN	RESPONSE	TO	REPLICATION	STRESS	 10	
AMPLIFICATION	OF	SIGNAL	FROM	THE	KINETOCHORES	 10	
AMPLIFICATION	OF	SIGNAL	FROM	UNATTACHED	KINETOCHORES	VIA	A	MAD2	
INHIBITORY	SIGNAL	 10	
AURORA	B	SIGNALING	 10	
BIOCARTA	MCM	PATHWAY	 10	
BIOCARTA	PTC1	PATHWAY	 10	
BIOCARTA	RANMS	PATHWAY	 10	
CIRCADIAN	RHYTHM	PATHWAY	 10	
CYCLIN	A	B1	B2	ASSOCIATED	EVENTS	DURING	G2	M	TRANSITION	 10	
DE	NOVO	PURINE	BIOSYNTHESIS	 10	
DE	NOVO	PYRIMIDINE	DEOXYRIBONUCLEOTIDE	BIOSYNTHESIS	 10	
FANCONI	ANEMIA	PATHWAY	 10	
FOXM1	TRANSCRIPTION	FACTOR	NETWORK	 10	
GABA	SYNTHESIS,	RELEASE,	REUPTAKE	AND	DEGRADATION	 10	
GLUCURONIDATION	*	 10	
GLUTATHIONE-MEDIATED	DETOXIFICATION	I	*	 10	
HDR	THROUGH	MMEJ	ALT-NHEJ		 10	
HDR	THROUGH	SINGLE	STRAND	ANNEALING	SSA		 10	
INTERCONVERSION	OF	NUCLEOTIDE	DI-	AND	TRIPHOSPHATES	 10	
INTERLEUKIN-6	SIGNALING	 10	
KINESINS	 10	
MASTL	FACILITATES	MITOTIC	PROGRESSION	 10	
MISMATCH	REPAIR	MMR	DIRECTED	BY	MSH2:MSH3	MUTSBETA		 10	
MMR	 10	
NEUROTRANSMITTER	CLEARANCE	 10	
NICOTINE	PHARMACODYNAMICS	PATHWAY	 10	
PID	AURORA	B	PATHWAY	 10	
PID	CIRCADIAN	PATHWAY	 10	
PID	FOXM1	PATHWAY	 10	
PID	PLK1	PATHWAY	 10	
PLK1	SIGNALING	EVENTS	 10	
PYRIMIDINE	SALVAGE	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	THROUGH	HOLLIDAY	JUNCTION	INTERMEDIATES	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	THROUGH	SYNTHESIS-DEPENDENT	STRAND	
ANNEALING	SDSA		 10	
RESOLUTION	OF	SISTER	CHROMATID	COHESION	 10	
RHO	GTPASES	ACTIVATE	CIT	 10	
RUNX1	AND	FOXP3	CONTROL	THE	DEVELOPMENT	OF	REGULATORY	T	LYMPHOCYTES	 10	
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TREGS		
TP53	REGULATES	TRANSCRIPTION	OF	GENES	INVOLVED	IN	G1	CELL	CYCLE	ARREST	 10	
TRANSCRIPTION	OF	E2F	TARGETS	UNDER	NEGATIVE	CONTROL	BY	P107	RBL1	AND	P130	
RBL2	IN	COMPLEX	WITH	HDAC1	 10	
ACTIVATION	OF	THE	PRE-REPLICATIVE	COMPLEX	 9	
ASSOCIATION	OF	LICENSING	FACTORS	WITH	THE	PRE-REPLICATIVE	COMPLEX	 9	
AURORA	A	SIGNALING	 9	
BIOCARTA	ETS	PATHWAY	 9	
BIOCARTA	IL6	PATHWAY	 9	
BIOCARTA	P35ALZHEIMERS	PATHWAY	 9	
CREATINE	METABOLISM	 9	
DIGESTION*	 9	
ESTABLISHMENT	OF	SISTER	CHROMATID	COHESION	 9	
GLUCONEOGENESIS	I	*	 9	
INACTIVATION	OF	APC	C	VIA	DIRECT	INHIBITION	OF	THE	APC	C	COMPLEX	 9	
INHIBITION	OF	THE	PROTEOLYTIC	ACTIVITY	OF	APC	C	REQUIRED	FOR	THE	ONSET	OF	
ANAPHASE	BY	MITOTIC	SPINDLE	CHECKPOINT	COMPONENTS	 9	
PID	ANTHRAX	PATHWAY	 9	
PID	AURORA	A	PATHWAY	 9	
PID	DELTA	NP63	PATHWAY	 9	
PID	FANCONI	PATHWAY	 9	
VALIDATED	TRANSCRIPTIONAL	TARGETS	OF	DELTANP63	ISOFORMS	 9	
BIOCARTA	P27	PATHWAY	 8	
DISEASES	ASSOCIATED	WITH	SURFACTANT	METABOLISM	*	 8	
NEUROTRANSMITTER	RELEASE	CYCLE	 8	
SYNTHESIS	OF	PIPS	AT	THE	EARLY	ENDOSOME	MEMBRANE	*	 8	
TRANSCRIPTIONAL	REGULATION	BY	E2F6	 8	
CONDENSATION	OF	PROMETAPHASE	CHROMOSOMES	 7	
INTERLEUKIN-27	SIGNALING	 7	
ORGANIC	CATION	TRANSPORT	 7	
RHO	GTPASES	ACTIVATE	FORMINS	 7	
FATTY	ACIDS	 6	
INTERLEUKIN-35	SIGNALLING	 6	
MISCELLANEOUS	SUBSTRATES	 6	
PURINE	NUCLEOTIDES	I	DE	NOVO	I	BIOSYNTHESIS	II	 6	
VOLTAGE	GATED	POTASSIUM	CHANNELS	 6	
ZINC	TRANSPORTERS	 6	
BIOCARTA	SARS	PATHWAY	 5	
G0	AND	EARLY	G1	 5	
HSP90	CHAPERONE	CYCLE	FOR	SHRS	 5	
NUCLEAR	RECEPTOR	TRANSCRIPTION	PATHWAY	 5	
BICARBONATE	TRANSPORTERS	 4	
SYNTHESIS,	SECRETION,	AND	DEACYLATION	OF	GHRELIN	 3	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/084418doi: bioRxiv preprint 

https://doi.org/10.1101/084418
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

	 	B.	Breast	tumour,	other	
	

Feature	name	
max	
score	

ACTIVATION	OF	ATR	IN	RESPONSE	TO	REPLICATION	STRESS	 10	
ACTIVATION	OF	THE	PRE-REPLICATIVE	COMPLEX	 10	
AMPLIFICATION	OF	SIGNAL	FROM	THE	KINETOCHORES	 10	
AMPLIFICATION	OF	SIGNAL	FROM	UNATTACHED	KINETOCHORES	VIA	A	MAD2	
INHIBITORY	SIGNAL	 10	
ASSOCIATION	OF	LICENSING	FACTORS	WITH	THE	PRE-REPLICATIVE	COMPLEX	 10	
AURORA	A	SIGNALING	 10	
AURORA	B	SIGNALING	 10	
BIOCARTA	PTC1	PATHWAY	 10	
BIOCARTA	RANMS	PATHWAY	 10	
CIRCADIAN	RHYTHM	PATHWAY	 10	
CONDENSATION	OF	PROMETAPHASE	CHROMOSOMES	 10	
CYCLIN	A	B1	B2	ASSOCIATED	EVENTS	DURING	G2	M	TRANSITION	 10	
DE	NOVO	PURINE	BIOSYNTHESIS	 10	
ESTABLISHMENT	OF	SISTER	CHROMATID	COHESION	 10	
FANCONI	ANEMIA	PATHWAY	 10	
FOXM1	TRANSCRIPTION	FACTOR	NETWORK	 10	
HDR	THROUGH	MMEJ	ALT-NHEJ		 10	
KINESINS	 10	
MASTL	FACILITATES	MITOTIC	PROGRESSION	 10	
NEUROTRANSMITTER	CLEARANCE	 10	
PID	AURORA	A	PATHWAY	 10	
PID	AURORA	B	PATHWAY	 10	
PID	CIRCADIAN	PATHWAY	 10	
PID	FOXM1	PATHWAY	 10	
PLK1	SIGNALING	EVENTS	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	 10	
RESOLUTION	OF	D-LOOP	STRUCTURES	THROUGH	HOLLIDAY	JUNCTION	INTERMEDIATES	 10	
RUNX1	AND	FOXP3	CONTROL	THE	DEVELOPMENT	OF	REGULATORY	T	LYMPHOCYTES	
TREGS		 10	
TP53	REGULATES	TRANSCRIPTION	OF	GENES	INVOLVED	IN	G1	CELL	CYCLE	ARREST	 10	
TRANSCRIPTION	OF	E2F	TARGETS	UNDER	NEGATIVE	CONTROL	BY	P107	RBL1	AND	P130	
RBL2	IN	COMPLEX	WITH	HDAC1	 10	
BIOCARTA	MCM	PATHWAY	 9	
BIOCARTA	P35ALZHEIMERS	PATHWAY	 9	
CELL	DIVISION	 9	
CREATINE	METABOLISM	 9	
INACTIVATION	OF	APC	C	VIA	DIRECT	INHIBITION	OF	THE	APC	C	COMPLEX	 9	
INHIBITION	OF	THE	PROTEOLYTIC	ACTIVITY	OF	APC	C	REQUIRED	FOR	THE	ONSET	OF	
ANAPHASE	BY	MITOTIC	SPINDLE	CHECKPOINT	COMPONENTS	 9	
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INTERCONVERSION	OF	NUCLEOTIDE	DI-	AND	TRIPHOSPHATES	 9	
INTERLEUKIN-6	SIGNALING	 9	
PLASMINOGEN	ACTIVATING	CASCADE	 9	
POLO-LIKE	KINASE	MEDIATED	EVENTS	 9	
PYRIMIDINE	SALVAGE	 9	
RESOLUTION	OF	D-LOOP	STRUCTURES	THROUGH	SYNTHESIS-DEPENDENT	STRAND	
ANNEALING	SDSA		 9	
RHO	GTPASES	ACTIVATE	CIT	 9	
TP53	REGULATES	TRANSCRIPTION	OF	GENES	INVOLVED	IN	G2	CELL	CYCLE	ARREST	 9	
BIOCARTA	ETS	PATHWAY	 8	
BIOCARTA	SKP2E2F	PATHWAY	 8	
GLUTATHIONE-MEDIATED	DETOXIFICATION	I	 8	
INITIATION	OF	NUCLEAR	ENVELOPE	REFORMATION	 8	
KERATAN	SULFATE	DEGRADATION	 8	
NUCLEAR	ENVELOPE	REASSEMBLY	 8	
PHOSPHOLIPASE	C-MEDIATED	CASCADE	FGFR4	 8	
PID	P38	GAMMA	DELTA	PATHWAY	 8	
SIGNALING	MEDIATED	BY	P38-GAMMA	AND	P38-DELTA	 8	
GOLGI	CISTERNAE	PERICENTRIOLAR	STACK	REORGANIZATION	 7	
NICOTINE	PHARMACODYNAMICS	PATHWAY	 7	
SA	PROGRAMMED	CELL	DEATH	 7	
SYNTHESIS,	SECRETION,	AND	DEACYLATION	OF	GHRELIN	 7	
BIOCARTA	RB	PATHWAY	 6	
INCRETIN	SYNTHESIS,	SECRETION,	AND	INACTIVATION	 6	
MISCELLANEOUS	SUBSTRATES	 6	
PID	FANCONI	PATHWAY	 6	
SYNTHESIS,	SECRETION,	AND	INACTIVATION	OF	GLUCAGON-LIKE	PEPTIDE-1	GLP-1		 6	
ADRENALINE	AND	NORADRENALINE	BIOSYNTHESIS	 5	
BIOCARTA	DNAFRAGMENT	PATHWAY	 5	
MMR	 5	
PID	ANTHRAX	PATHWAY	 5	

Supplementary	Table	2.	Scores	for	pathway-level	networks	for	predicting	Luminal	A	

subtype	of	breast	tumour	from	gene	expression	l.	Score	shown	is	the	best	achieved	by	a	

given	network	for	over	70%	of	the	100	trials.	Only	networks	scoring	a	max	of	three	or	more	

out	of	10	in	over	70%	trials	are	shown	here.	Asterisks	indicate	high-scoring	singleton	

nodes	omitted	from	the	Enrichment	Map	in	Figure	3A.	
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A.	Asthma	cases	
	Feature	name	 max	score	

BIOCARTA	SET	PATHWAY	 10	
BIOCARTA	CTL	PATHWAY	 9	
BIOCARTA	D4GDI	PATHWAY	 9	
NOTCH2	INTRACELLULAR	DOMAIN	REGULATES	TRANSCRIPTION	 9	
SA	CASPASE	CASCADE	 8	

	 	B.	Controls	
	Feature	name	 max	score	

BIOCARTA	CTL	PATHWAY	 10	
BIOCARTA	D4GDI	PATHWAY	 10	
BIOCARTA	SET	PATHWAY	 10	
SA	CASPASE	CASCADE	 10	
ACTIVATION	OF	THE	MRNA	UPON	BINDING	OF	THE	CAP-BINDING	
COMPLEX	AND	EIFS,	AND	SUBSEQUENT	BINDING	TO	43S	 8	
BIOCARTA	DNAFRAGMENT	PATHWAY	 8	
DISEASES	ASSOCIATED	WITH	VISUAL	TRANSDUCTION	 8	
RETINOID	CYCLE	DISEASE	EVENTS	 8	
	

Supplementary	Table	3.	netDx	scores	for	pathway-level	features	in	asthma	case/control	

prediction.	Score	shown	is	the	best	achieved	by	a	given	network	for	over	70%	of	the	100	

trials.	Only	networks	scoring	a	max	of	three	or	more	out	of	10	in	over	70%	trials	are	shown	

here.		
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