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Abstract1

Selective sweeps reduce neutral genetic diversity. In sexual populations, this2

“hitchhiking” effect is thought to be limited to the local genomic region of the3

sweeping allele. While this is true in panmictic populations, we find that in4

spatially-extended populations the combined effects of many unlinked sweeps5

can affect patterns of ancestry (and therefore neutral genetic diversity) across6

the whole genome. Even low rates of sweeps can be enough to skew the spatial7

locations of ancestors such that neutral mutations that occur in an individual8

living outside a small region in the center of the range have virtually no chance9

of fixing in the population. The fact that nearly all ancestry rapidly traces back10

to a small spatial region also means that relatedness between individuals falls11

off very slowly as a function of the spatial distance between them.12

Introduction13

In large populations even a fairly low rate of selective sweeps is sufficient to14

reduce diversity across most of the genome via hitchhiking (Gillespie, 2000;15

Weissman and Barton, 2012). Most modeling of the effects of hitchhiking on16

diversity has considered well-mixed populations. However, the effects are po-17

tentially quite different in spatially-extended populations with only short-range18

dispersal, because instead of quickly fixing through logistic growth, sweeps must19

spread out in a spatial wave of advance over the whole range (Fisher, 1937). Bar-20

ton et al. (2013) recently showed that this increase in the time to sweep tends21

to reduce the size of the genomic region over which diversity is depressed by a22

sweep. While the effect of sweeps on genetic diversity at linked loci is therefore23

reduced by spatial structure, we show here that collective effect of sweeps on24

the diversity at unlinked loci can be much stronger than in panmictic popula-25

tions. Surprisingly, this effect is dependent on the geometry of the range – it26

only appears for realistic range shapes with relatively well-defined central re-27

gions, not for the perfectly symmetric idealizations of ring-shaped and toroidal28

ranges often used in theoretical models. In particular, we find that probability29

of fixation of an allele can be strongly position-dependent, with alleles near the30

center of the range orders of magnitude more likely to fix than those at typical31

locations. This is because all individuals trace most of their ancestry, even in32

the not-too-distant past, to individuals living in the center, which also causes33

far-away individuals to be much more closely related to each other than they34

would be in the absence of the unlinked sweeps, with relatedness falling off only35

as a power law of distance rather than exponentially.36

Model37

We wish to find the expected number of copies that an allele found in an individ-38

ual at spatial position x will leave far in the future, i.e., its reproductive value39

(Barton and Etheridge, 2011), which we denote φ(x). Equivalently, φ(x)ρ(x),40
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where ρ is the population density, is the probability density of a present-day indi-41

vidual’s ancestor being at location x at some time in the distant past. Maruyama42

(1970) showed that in the absence of selection, φ(x) ≡ 1 regardless of the details43

of the population structure, as long as dispersal does not change expected allele44

frequencies. Here we show that this result does not extend to populations un-45

dergoing selection. Populations living in perfectly symmetric ranges (circles in46

one dimension, tori in two) necessarily have φ(x) ≡ 1, but when this symmetry47

is broken, recurrent sweeps can make reproductive value strongly dependent on48

spatial position, with high φ in a small region in the center of the range and49

very small φ everywhere else.50

We consider a population with uniform, constant density ρ distributed over51

a d-dimensional range with radius L, with uniform local dispersal with diffusion52

constant D, i.e., 2D is the mean squared displacement after unit time. We53

assume that selective sweeps with advantage s occur in the population at a54

rate Λ per generation, originating at points uniformly distributed over time and55

space, and at loci uniformly distributed over the genome. As long as the density56

is sufficiently high (ρ � (s/D)
d/2

/s, Nagylaki (1978); Barton et al. (2013)),57

they will spread roughly deterministically in waves with speed c ≈ 2
√
Ds with58

characteristic wavefront width l ≈
√
D/s (Fisher, 1937), which we take to59

be much smaller than the range size, l � L. (However, even for fairly large60

densities, the stochastic corrections to c can be substantial; see Eq. 16 in the61

Methods.) We assume that Λ is low enough compared to the frequency of62

outcrossing, f , and the average number of crossovers per outcrossing, K, that63

the waves do not interfere with each other. For well-mixed populations, this64

means that Λ� fK (Weissman and Barton, 2012); we are currently preparing65

a manuscript in which we show that spatially-extended populations have nearly66

the same limit on Λ, up to logarithmic factors. The definitions of symbols are67

collected in Table 1.68

One and two dimensions69

We consider both one-dimensional ranges (lines with length 2L) and two-dimensional70

ranges. In two dimensions, the shape of the range will have some effect on many71

of our results; however, as long as the shape is fairly “nice”, with a clear center72

and single characteristic length scale L, this effect will be modest. We will there-73

fore ignore it for simplicity. For our purposes, the main difference between one74

and two dimensions will be in the density of individuals a distance x from the75

center, ρ(x). Since we are assuming a uniform spatial density, in one dimension76

this is just ρ, a constant. In two dimensions, however, we must account for the77

fact that there is more area at larger x, and thus ρ(x) ≈ 2πxρ. (Necessarily,78

ρ(x > L) = 0 in both one and two dimensions.)79
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Table 1: Symbol definitions
Symbol Definition

d Number of spatial dimensions (1 or 2)
ρ Density of individuals (individuals / (distance)d)∗

L Radius of range∗

D Dispersal constant∗

f Frequency of outcrossing
K Expected number of crossovers per outcrossing
s Selective advantage of adaptive alleles
Λ Frequency of selective sweeps

c ≈ 2
√
Ds Expected rate of advance of a sweeping beneficial allele

l ≈
√
D/s Characteristic width of the wave of advance of a sweep

φ(x) Reproductive value of individuals at location x
ψ(x) Identity-by-descent between individuals separated by x

∗In continuous space. In the corresponding model of discrete demes
on a square lattice, ρ is the deme size, L is the radius in demes, and
D is half the rate of migration into a deme, i.e., d times the
migration rate between a pair of neighboring demes.

Results80

In spatially-extended populations, genetic hitchhiking not only changes the fre-81

quency of neutral alleles, but also shifts their distribution in space. To see this,82

consider the ancestry of a lineage going backward in time, so that sweeps ap-83

pear as receding waves. When one passes over the focal lineage, it “pulls” it84

back towards origin of the sweep at the same speed c as the wave. If there85

is no recombination, the lineage will necessarily be pulled all the way back to86

the origin (i.e., all present-day individuals necessarily descend from the original87

mutant at the swept locus), but if recombination is frequent, the lineage will be88

pulled only a short distance before recombining out of the wave and stopping.89

If recombination occurs at rate r, then we expect that the lineage will remain in90

the wavefront for a time of O (1/r) before recombining, and therefore be pulled91

a distance of ∼ c/r towards the origin of the sweep. For most positions in most92

realistic range shapes, sweeps tend to arrive (forward in time) from the direction93

of the center of the range, and so pull the ancestry back towards the center; the94

collective effect of many sweeps is then to concentrate the ancestry in the center.95

To make this description more quantitative, it will be convenient to classify96

sweeps based on their genetic map distance r to the focal locus. We will refer97

to sweeps at r � s as tightly-linked and those at r � s as loosely-linked.98

Barton et al. (2013) found that a tightly-linked sweep pulls a lineage a distance99

that is approximately exponentially distributed with mean c/r, going backward100

in time, with an upper cutoff at the distance to the origin of the sweep. In101

this paper, we calculate the effect of a loosely-linked sweep and find that the102

lineage is only pulled an expected distance c/2r (see Methods). To calculate103
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the net effect of hitchhiking on a locus over time, we need to integrate over104

all sweeps occurring across the genome at different recombination fractions r.105

The 1/r dependence for the expected pull suggests that this net effect should106

be dominated by some combination of a few very tightly-linked sweeps and107

the many very loosely-linked sweeps (rather than the moderately-linked sweeps108

with r ∼ s). This actually overstates the importance of tightly-linked sweeps,109

since the 1/r dependence has an upper cutoff for r . L/c, and understates110

the importance of loosely-linked sweeps, since even if a sweep occurs very far111

away on the genome the recombination fraction cannot exceed f/2. Thus we112

expect that if the genome is sufficiently long (in a sense that will be made113

more precise below), the total average displacement of a typical locus will be114

dominated by loosely-linked sweeps. We will begin by focusing on this case,115

making the further approximation that most sweeps are not just loosely-linked116

but unlinked (r = f/2), as will be the case for even moderately long genomes,117

K & 1. This case is also relevant for loci that are far from all loci undergoing118

selection, i.e., the ones whose evolution might be expected to depend only on119

demography. It also describes bacterial populations in which recombination120

primarily involves relatively short lengths of DNA, so that most pairs of loci in121

the genome recombine at roughly the same rate, as long as this recombination122

is still rapid relative to selection (the “quasisexual” case, Rosen et al. (2015)).123

The pull of unlinked sweeps124

For a lineage a distance x from the center, there is an excess of approximately125

∼ Λx/L sweeps per generation pulling it back toward the center, each of which126

pulls it an expected distance c/f . (Note that the effect of the upper cutoff on127

the displacement from these sweeps is negligible as long as L � c/f .) The128

expected distance from the center therefore decays exponentially (backward in129

time) like130

x ≈ x0 exp

(
−Λc

Lf
t

)
. (1)

This implies that there is a characteristic concentration time tcon beyond which131

ancestry is significantly altered by the collective effect of unlinked sweeps:132

tcon =
Lf

Λc
. (2)

This deterministic move back to the center is opposed by dispersal, and133

also by the effect of occasional tightly-linked sweeps which pull the lineage a134

distance ∼ L, effectively randomizing its position. The balances between these135

forces means that the ancestry of the population is not completely concentrated136

at the center of the range, but is instead distributed around it in some region of137

size ∼ xc. Figure 1 shows this rapid concentration followed by a balance with138

dispersal and tightly-linked sweeps.139
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Figure 1: Tracing the ancestry of a neutral locus in a single individual back
through time. Individuals throughout the range rapidly trace their ancestry
back to a small region in the center of the range. Curves show simulations, while
shaded regions show analytical predictions, Eq. 1. Left: Exact forward-time
simulations. Each curve is the mean location of the ancestors of all individuals
in a given present-day deme, averaged over three independent simulation runs.
Parameters are L = 200, s = 0.05, D = 0.25, f = 1, ρ = 300, and Λ ≈ 0.6
(so that tcon ≈ 3000), with all loci unlinked. The discrepancy between the
analytical prediction and the simulations at older times is an artifact caused
by loss of resolution in the simulations as genetic diversity is exhausted (see
Methods). Right: Approximate backward-time simulations. Each curve is an
independent simulation of the ancestry of a single present-day individual. While
the width of the central region is determined by a balance between dispersal and
the pull of unlinked sweeps, the occasional excursions out of the center are due
to hitchhiking on tightly-linked sweeps. Parameters are L = 500, s = 0.05, D =
0.125,Λ = 1, f = 1,K = 300.
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Balance with dispersal140

If tightly-linked sweeps are relatively rare, either because the overall rate of141

sweeps is low or because the focal locus lies in a region of the genome that is142

not undergoing much adaptation, the main balance will be between the diffusive143

effect of dispersal and the pull of unlinked sweeps. In this case, the position of144

the ancestry is an Ornstein-Uhlenbeck process, i.e., if we denote the position145

of the ancestral lineage t generations in the past by Xt, it evolves backward in146

time as:147

dXt = −t−1
conXt dt+

√
2DdBt,

where Bt is a Brownian motion. By Fick’s first law of diffusion, the diffusive148

flux of ancestry is −D∇φ(x). In the stationary state this must exactly cancel149

the deterministic pull of unlinked sweeps, so far in the past the distribution of150

ancestry is normal and concentrated in the center of the range according to:151

φ(x) ∝ exp

(
− x2

2x2
c

)
, with xc =

√
Dtcon =

√
fl

2ΛL
L. (3)

Eq. 3 holds in both one and two spatial dimensions (although recall that in two152

dimensions we are ignoring corrections that depend on the exact shape of the153

range) and corresponds to a root mean square distance to the center of
√
dxc. If154

xc � L, then the reproductive value of an individual at the center of the range155

can be orders of magnitude higher than than one at a typical distance ∼ L/2156

from the center (Fig. 2).157

From Eq. 3, we see that the ancestral range will be substantially reduced158

by selection if the rate of sweeps per sexual generation is greater than the159

ratio of the cline width to the range size: Λ/f > l/L. It is unclear what160

ranges these ratios take in natural populations. Λ/(fK) is unlikely to be much161

more than O (1) (Weissman and Barton, 2012), but in organisms with many162

chromosomes (large K), Λ/f may be substantial. Looking at the right-hand163

side of the inequality, modeling sweeping alleles by waves spreading across the164

range necessarily requires l/L� 1, so even small values of Λ/f may be enough165

to distort the distribution of ancestry. Surprisingly little is known about typical166

values of l for the waves of advance of sweeping alleles in nature, but it seems167

plausible that for many species it should be much smaller than the total species168

range (Fisher, 1937). For the spread of insecticide resistance in Culex pipiens169

in southern France, the width of the wave of advance was ∼ 20 km (Lenormand170

et al., 1999), much smaller than the global scale of the species range, but the171

dynamics were more complex than a simple selective sweep (Labbé et al., 2007).172

Much more is known about the width of stable clines and hybrid zones, which173

are frequently much smaller than species ranges (Barton and Hewitt, 1985). To174

the extent that the selection maintaining them is comparable in strength to175

the selection driving sweeps, these should have roughly the same width as the176

wavefronts.177
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Figure 2: Hitchhiking due to unlinked sweeps concentrates ancestry in the cen-
ter of the range. The plot shows the probability of that the distant ancestor
of a neutral allele was at location x, or, equivalently, the fixation probability
of a new mutation occurring at x. Probabilities are shown on a linear (top)
and log (bottom) scale. Histograms show the results of exact forward-time
simulations (blue, top panel only) and approximate backward-time simulations
(gold). The purple curve shows the predicted distribution: a normal distri-
bution (Eq. 3) inside the center, crossing over to a power law outside (with
an additional downturn near the boundaries, Eq. 4), with the crossover be-
tween the regimes at the value of x at which Eq. 3 and Eq. 4 match. The
dashed black line shows a uniform distribution. Parameters for the top panel
are L = 500, ρ = 100, s = 0.05, D = 0.125,Λ = 0.1, f = 1,K = 100. Parameters
for the bottom panel are as in the right panel of Fig. 1.
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Balance with tightly-linked sweeps178

Finding the balance between concentrating effect of unlinked sweeps and the179

randomizing effect of tightly-linked sweeps is slightly trickier, and we do not180

know of an exact expression for φ(x). However, we can find an approximate181

expression by using the fact that the mean squared displacement of the ancestral182

lineage due to linked sweeps is dominated by rare very tightly-linked sweeps183

rather than the many loosely-linked ones (Barton et al., 2013). This suggests184

that for large x, the probability that an individual’s ancestor was farther than185

x from the center at time t0 in the distant past is roughly just the probability186

that a single very tightly-linked sweep pulled it there at some time within ∼ tcon187

generations of t0. Since the distance that a sweep at recombination fraction r188

pulls the lineage goes like 1/r, the rate of sweeps close enough on the genome189

to pull the ancestry a distance of at least x falls off like 1/x. Therefore, the190

probability of finding the ancestry at a distance of at least x should also fall off191

like 1/x; the probability density of being exactly at x, φ(x)ρ(x), should then192

fall off like 1/x2.193

In the Methods, we calculate this more formally, and find:194

φ(x)ρ(x) ≈
2L
(
1− (x/L)d

)
Kx2

for x� xc = 2L/K. (4)

The factor 1− (x/L)d (where d = 1 or 2 is the dimension of the habitat) reflects195

the fact that for very large x, x ∼ L, most sweeps start at distances less than196

x and cannot pull the lineage that far from the center. For x � xc = 2L/K,197

lineages will tend to experience many sweeps pulling them distances greater198

than x in time ∼ tcon, so the approximation used to derive Eq. 4 breaks down;199

for these small values of x, the randomizing effects of moderately-linked sweeps200

smooth out φ(x) and make it roughly constant.201

Barton et al. (2013) describe the randomizing effect of tightly-linked sweeps202

by “Deff,” an effective dispersal rate, with Deff ≈ 16LΛ
3lKfD (their Eq. (9)). Com-203

paring Eqs. 3 and 4, however, we see that their effect cannot simply be described204

as an increase in the dispersal rate, since they create a much longer tail in the205

spatial distribution of ancestry. Because of this, it is possible that while the206

bulk of the distribution of ancestry is determined by a balance between unlinked207

sweeps and dispersal, with linked sweeps too rare to make a difference, linked208

sweeps make the dominant contribution to the tails of the ancestry distribution209

(Fig. 2, bottom).210

Combining dispersal and tightly-linked sweeps211

Combining Eqs. 3 and 4, we see that unlinked sweeps reduce the effective size212

of the ancestral range by a factor xc/L:213

xc
L
≈ max

{√
fl

2ΛL
,

2

K

}
. (5)
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For typical numbers of chromosomes K, it would seem that ancestry could be214

concentrated by about an order of magnitude. However, the result 2/K was215

derived under the assumption that sweeps are distributed uniformly across the216

genome. If, on the other hand, adaptation is mostly occurring in just a few217

genes, the rest of the genome will not experience any tightly-linked sweeps, and218

ordinary dispersal will be the only force counteracting the concentration, mean-219

ing that the effect could potentially be much stronger. This has the surprising220

implication that selection can have a stronger effect on some features of the221

spatial distribution of ancestry at far-away loci than at those nearby.222

Effect on diversity223

While the effect of recurrent sweeps on neutral diversity can be quite large,224

detecting the effect in data from real populations may be tricky. It might seem225

to be indistinguishable from a range expansion in the absence of time-series226

data, but there is a simple way to tell them apart: under recurrent sweeps,227

there is no serial founder effect reducing diversity away from the center. One228

way to see this is by looking at isolation by distance. The probability ψ(x)229

that two individuals separated by a distance x are genetically identical can be230

written in terms of the neutral mutation rate µ and their coalescence time T as231

ψ(x) = E
[
e−2µT | x

]
. (6)

For x large compared to the size of a single deme (i.e., the spatial scale232

over which individuals interact within a generation) and loci far on the genome233

from any recent sweeps, there are two simple regimes for Eq. 6. If individuals234

are close together and µT � 1, then we expect that the pull due to sweeps235

is too slow to cause lineages to coalescence before they mutate, and ψ(x) is236

just given by the neutral value, ψ(x) ∝ x(1−d)/2e−
√
µ/Dx (Barton et al., 2002),237

which says that the probability of identity falls off rapidly with distance. On238

the other hand, larger values of x are quickly collapsed by the pull of sweeps239

in time ∼ tcon log(x/xc), so we expect that ψ should be of the form ψ(x) ∝240

x−2µtcon . A detailed calculation (see Methods) confirms that this is true for241

x � xc
√

2 + 4µtcon; the results are also confirmed by simulations, as shown in242

Fig. 3. The probability of identity thus has a long tail in distance – if µtcon243

is small, individuals at opposite sides of the range (separated by ≈ 2L) are244

nearly as related as individuals separated by, say, L/2. Notice that ψ does not245

depend on from where in the range we sampled the pair of individuals. This246

implies that, while reproductive value is concentrated in the center of the range,247

genetic diversity is more evenly spread, distinguishing this scenario from a range248

expansion.249

When x � xc, we can approximately invert Eq. 6 to find the distribution250

of the coalescence time T for one-dimensional ranges. In the Methods, we find251

that the lineages deterministically approach to within ∼ xc of each other in252

time ∼ tcon log(x/xc), after which they coalesce at roughly the same rate as253

they would in a neutral, well-mixed population of size ≈ 2
√
πρxc ≡ 1/λ. For254
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Figure 3: Relatedness between distant individuals has a power-law tail. Ex-
pected identity-by-descent ψ between a pair of sampled individuals is shown as
a function of the distance x between them. Cyan curves show the results of three
independent forward-time simulations. The solid black curve shows the full ana-
lytical prediction, Eq. 25. For large x, this approaches a power law, ψ ∝ x−2µtcon

(dotted gray line). This is far higher than it would be in the absence of sweeps,
in which case ψ would fall off exponentially at rate

√
µ/D (dashed gray curve).

Parameters are as in the left panel of Fig. 1, with µ = 3× 10−4 ≈ 1/tcon.

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 30, 2017. ; https://doi.org/10.1101/084426doi: bioRxiv preprint 

https://doi.org/10.1101/084426
http://creativecommons.org/licenses/by/4.0/


comparison, in a purely neutral one-dimensional population with strong spatial255

structure (L � Dρ), the long-term rate of coalescence is λneut = π2D/(8L2)256

(Maruyama, 1971), so hitchhiking greatly increases the rate of coalescence:257

λ/λneut ∼ (L/Dρ)(L/xc) � 1. We can also compare the rate of coalescence258

to that in a well-mixed population with the same pattern of adaptive substi-259

tutions. While Barton et al. (2013) showed that spatial structure reduces the260

coalescence caused by tightly-linked sweeps, for loosely-linked sweeps it can have261

the opposite effect. In well-mixed populations, unlinked sweeps only substan-262

tially increase the rate of coalescence when they become so frequent that they263

begin to interfere with each other (Λ ∼ f2/s) (Weissman and Barton, 2012); for264

large ranges, coalescence will be increased (i.e., xc � L) at much lower values265

of Λ than this.266

So far in our discussion of diversity, we have ignored loci that are close to267

recent sweeps. If we are considering large enough loci so that µtcon � 1, then268

usually only these recently swept regions will be identical between individuals269

from different parts of the range. In this case, because each sweep causes co-270

alescence between individuals separated by a large distance x over a region of271

genome with length r ∝ 1/x (Barton et al., 2013), ψ should still have a long272

tail, but with an exponent that is independent of the population parameters,273

ψ ∝ 1/x (see Methods). This characteristic exponent is another effect of rare,274

tightly-linked sweeps that cannot be accounted for by any effective dispersal275

rate Deff.276

Discussion277

Because selection and demography are often difficult or impossible to measure278

directly in natural populations, both are typically inferred from patterns of279

genetic diversity. This inference can be difficult, because the two processes can280

produce similar signals. For instance, both purifying selection and population281

expansion tend to produce site frequency spectra with a relative excess of rare282

alleles. In order to tease apart the two factors, demography is often first inferred283

using data from loci that are thought to be neutral, and then the answer is used284

to infer the pattern of selection at the remaining loci. However, in order for the285

demography to be inferred correctly, this method requires that the first set of286

loci be not just neutral, but also unaffected by selection at linked loci. Typically,287

this is done by using loci that are far from sites where selection is thought to288

have been important (e.g., Sattath et al. (2011)). Our results suggest that289

this may be problematic in spatially-structured populations – even diversity at290

these loci may be strongly affected by unlinked sweeps. Instead, selection and291

demography should be inferred simultaneously.292

Geometry, not topology293

Our results might seem to show that the genetic diversity in a population de-294

pends sensitively on the topology of the range and can therefore change dras-295
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Figure 4: The distribution of ancestry depends smoothly on the shape of the
range as it deforms from a perfectly symmetric circle (a) to a curve with end-
points (d). Shading is a schematic representation of the reproductive value of
each location, from high (dark) to low (light). In (a), the ancestry is neces-
sarily evenly distributed. Slight asymmetries in the range (b) introduce slight
differences in the distribution of ancestry. When the range has a well-defined
middle, the ancestry is concentrated there, regardless of whether there is a weak
connection between the ends of the range (c) or a strict break (d).

tically as the result of small perturbations to the environment. For example,296

a circular range (which by symmetry has no concentration of ancestry) can be297

transformed into a linear one (with very concentrated ancestry) by removing a298

single point. However, this is a misleading interpretation. In fact, a “circular”299

range is an annulus with radius large compared to its thickness (Fig. 4a). A300

small perturbation that slightly reduces the population in one part of the range301

will only have a correspondingly small effect on the distribution of ancestry302

(Fig. 4b), and the bias of the ancestry ancestry increases smoothly as the per-303

turbation grows (Fig. 4c), until the annulus is completely pinched off (Fig. 4d).304

More generally, the common-sense intuition that the pattern of diversity should305

not depend on the details of the shape of the range is correct. All that matters306

is that, in at least some parts of the range, sweeps are more likely to come from307

some directions than others. If we consider the vector field defined by the net308

flow of sweeps, ancestry/reproductive value will tend to concentrate around crit-309

ical points with positive divergence. (Technically, the distribution of ancestry310

will evolve according to a convection-diffusion equation.) For the simple range311

shapes with uniformly distributed sweeps that we have considered in this paper,312

this occurs in the center of the range. If instead sweeps tended to originate from313

one end of the range (e.g., if they tend to be introgressed alleles from a hybrid314

zone), ancestry would concentrate there instead.315

Extensions316

We have focused on a very simple population model. Here we consider several317

possible modifications. First, we have assumed that the density ρ is constant318

in time. If density fluctuations typically occur on timescales longer than tcon,319

this approximation should be accurate, and if they are rapid compared to the320

sweep time L/c they should average out, but it is unclear how fluctuations on321
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moderate timescales should interact with dynamics discussed here.322

We have also neglected the possibility of rare long-range dispersal. Tightly-323

linked sweeps already effectively produce occasional long-range jumps in the324

ancestry of neutral sites, so adding long-range dispersal might not have a large325

direct effect, but it can have dramatic effects on how sweeps spread (Hallatschek326

and Fisher, 2014), and therefore a large indirect effect on the hitchhiking dy-327

namics. It is not clear what this effect should be – on the one hand, the sweeps328

will spread faster, increasing their pull, but on the other hand, the direction of329

that pull may be less reliably towards the center.330

We have also neglected the possibility that many sweeps may be “soft”,331

starting from multiple alleles (Hermisson and Pennings, 2005), which are likely332

to be particularly common in spatially-extended populations (Ralph and Coop,333

2010). If these alleles typically descend from a recent single ancestor, i.e, are334

concentrated in a small region at the time when they begin to sweep, then335

the results should be essentially unchanged, with the possible exception of the336

coalescent effects of tightly-linked sweeps. The same should be true if sweeps337

are “firm”, i.e., multiple mutant lineages contribute to each sweep, but the most338

successful one typically colonizes most of the population. But sweeps in which339

many widely-spread mutations contribute equally would likely not consistently340

concentrate ancestry in space.341

We have focused on the effect of sweeps on neutral variation, but they will342

of course also affect selected alleles. Most obviously, if recombination is limited343

they will interfere with each other (Martens and Hallatschek, 2011). They will344

interfere even more strongly with weakly-selected variants. We will address345

these issues in a subsequent manuscript.346

Methods347

Simulations348

Forward-time simulations (blue histogram in Fig. 2, left panel in Fig. 1, and349

Fig. 3) were conducted using the algorithm from Weissman and Barton (2012)350

(which draws on that of Kim and Stephan (2003)), modified so that popula-351

tion was subdivided into a line of L demes of ρ individuals each, with random352

dispersal between adjacent demes. For Figs. 1 and 3, loci were taken to be353

unlinked (i.e., at a recombination fraction f/2 with each other). Because these354

simulations were extremely computationally demanding, we also conducted ap-355

proximate backward-time simulations to get better statistics and investigate356

rare events (right panel of Fig. 1 and gold histograms in 2). These simulations357

followed a lineage back in time at one neutral locus as it diffused through a358

continuous one-dimensional space. Sweeps were treated as instantaneous events359

arising uniformly at random in space and time, with no interference among them.360

Sweeps occurring at a recombination fraction r from the focal locus pulled each361

lineage an exponentially-distributed distance with mean c/r or c/(2r) (for r < s362

and r > s, respectively), truncated at the origin of the sweep. For the backward-363
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time simulations in Fig. 1 and all simulations in Fig. 2, the focal locus was at364

the center of a linear genome with map length K Morgans with sweeps arising365

uniformly at random across the genome.366

Calculating the “pull” of an loosely-linked sweep367

We would like to find the expected spatial displacement of a lineage caused368

by an loosely-linked sweep, tracing backward in time. To do so, suppose that369

we sample an allele in a present-day individual in the middle of a very large370

one-dimensional range, and that a long time ago a selective sweep occurred at371

a locus a recombination fraction r away from the focal allele, starting a very372

long distance away from our sample. We wish to find the expected location of373

the ancestor of the sampled allele before the sweep began. Let p(x, τ) be the374

probability density for finding the ancestor at location x τ generations in the375

past, with x = 0 corresponding to the present location. We want to find:376

lim
τ→∞

〈X〉 ≡ lim
τ→∞

∫
dxxp(x, τ)

=

∫
dτ

∫
dxx∂τp(x, τ). (7)

To find ∂τp, first define pi(x, τ) as the probability density that the ancestor377

was at location x and in genetic background i, where i = 0 is the ancestral378

genetic background, and i = 1 is the background with the allele that swept.379

(Note p = p0 + p1.) If we define u(x, τ) ≡ u1(x, τ) and u0(x, τ) to be the380

frequencies of the sweeping allele and the background allele, respectively, with381

u1 + u0 = 1, pi satisfies the partial differential equation382

∂τpi = r(uip1−i − u1−ipi) +D∂x(∂xpi − 2pi∂x log ui). (8)

The first term on the right-hand side is the backward-time version of the decay383

in linkage disequilibrium due to recombination. The second term is backward384

diffusion; see Appendix A of Hallatschek and Nelson (2008). (Note that their385

Eq. (3) differs from our Eq. 8 because it includes an additional deterministic drift386

term due to their use of the co-moving frame of the sweep.) The piece containing387

∂x log ui accounts for the fact that the diffusion is biased towards the direction of388

increasing frequency of the focal genotype, because migrants of a given genotype389

are more likely to come from a location where that genotype is frequent than390

one where it is rare. Technically, in models with discrete generations, Eq. 8 only391

applies when the recombination rate per generation is small, but we will use it392

for unlinked loci anyway.393

The equivalent of linkage disequilibrium in this system is ∆ ≡ u0p1 − u1p0;394

we expect it to be small for large r. Using ∆ to change variables back to p,395

Eq. 8 becomes396
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∂τp =D∂x

(
∂xp− 2

∂xu

u(1− u)
∆

)
(9)

∂τ∆ =− r∆ +D∂2
x∆− (∂τu+D∂2

xu)p

+ 2(2u− 1)D∂x

(
∂xu

u(1− u)
∆

)
+ 2D

∂xu

u(1− u)
∆ (10)

Plugging Eq. 9 into Eq. 7, we have397

lim
τ→∞

〈X〉 = D

∫
dτ

∫
dxx∂x

(
∂xp− 2

∂xu

u(1− u)
∆

)
= 2D

∫
dτ

∫
dx

∂xu

u(1− u)
∆, (11)

where we have used integration by parts and the fact that p(±∞, τ) = 0. It398

now remains to find an expression for ∆. Eq. 10 is quite complicated, but for399

large r we will have ∆� p and the dominant balance will be between the first400

and third terms on the right-hand side, giving401

∆ ≈ −1

r
(∂τu+D∂2

xu)pneut, (12)

where pneut is the value of p ignoring the perturbation caused by the sweep,402

i.e., pneut = 1√
4πDτ

exp
(
− x2

4Dτ

)
. We can simplify this further by noting that u403

solves Fisher’s equation:404

∂τu+D∂2
xu = −su(1− u). (13)

(Recall that τ is backward time.) Using this relation and substituting Eq. 12405

into Eq. 11, we have406

lim
τ→∞

〈X〉 =
2Ds

r

∫
dτ

∫
dx ∂xu pneut. (14)

We are interested in the effect of a long-past sweep. Let τ0 be the time at407

which the wave of advance passed the point where we sampled the allele; we will408

take τ0 to be extremely large. At time τ0, pneut has width ∼
√
Dτ0, so the wave409

crosses the region where the ancestor might have lived in a time∼
√
Dτ0/c� τ0,410

and the integral in Eq. 14 is dominated by times τ in the approximate range411

|τ − τ0| .
√
Dτ0/c. Since τ does not vary by much (proportionately) in this412

interval, pneut(x, τ) ≈ pneut(x, τ0) is approximately constant in τ . Using this413

approximation in Eq. 14 yields414

lim
τ→∞

〈X〉 ≈2Ds

r

∫
dx pneut(x, τ0)

∫
dτ ∂xu

=
2Ds

r
(1)

(
−1

c

)
=− c/(2r). (15)
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Note that this result did not depend on the form of pneut, only that it was415

approximately constant in time; in particular, it also holds if the ancestry settles416

down to a stationary distribution, as in Eq. 3.417

Effects of noise on sweeps418

In Eq. 13 above, we have assumed that sweeps spread as smooth, deterministic419

waves. In fact, for finite ρ, they will be stochastic, and this will tend to reduce420

their speed c (see, e.g., Brunet et al. (2006); Hallatschek and Korolev (2009); and421

the references in Barton et al. (2013)). We have not attempted a full stochastic422

derivation of Eq. 15; instead, we simply use the noise-adjusted speed for c. In423

one dimension, this is (Barton et al. (2013), Eq. 5):424

c ≈ 2
√
Ds

1− π2

2 log2
(
ρ
√
Ds
)
 . (16)

The speed c approaches 2
√
Ds as ρ

√
Ds → ∞, but only very slowly, so the425

finite-density correction usually cannot be neglected. It is not obvious that426

substituting Eq. 16 into the final expression Eq. 15 gives the correct answer.427

We could alternatively, for instance, substitute into the previous line, but this428

would give the implausible result that the reduction in c causes an increase429

in the pull of sweeps. The close agreement between the analytical predictions430

and simulations in the left panel of Fig. 1 and in Fig. 3 (in which the finite-431

density correction reduces c by approximately 40%) is the best argument that432

the approach suggested is correct.433

Other kinds of loosely-linked sweep434

Above, we have assumed that the sweeping allele spread according to Fisher’s435

equation, Eq. 13, which describes an allele with a constant selective advantage436

s. However, the allele may have a varying selective advantage if, for instance,437

dominance or frequency-dependent effects are important, or if there is environ-438

mental variation. More generally, the changing allele frequency is described439

by440

∂τu+D∂2
xu = −sf(u, x, τ)u(1− u) (17)

for some function f .441

Otherwise, the derivation of the expected displacement is the same as above,442

and we have443

lim
τ→∞

〈X〉 ≈ 2Ds

r

∫
dx pneut(x, τ0)

∫
dτ f(u, x, τ)∂xu. (18)

Assuming that f is such that u(x, τ) is still a traveling wave moving at some444

speed c, we can change variables in the second integral to obtain:445

lim
τ→∞

〈X〉 ≈ −2Ds

rc

∫
dx pneut(x, τ0)

∫ 1

0

du f(u, x, τ(x, u)). (19)
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Effect of tightly-linked sweeps446

We wish to calculate φ(x) for large x, including the effect of occasional tightly-447

linked sweeps. It is easiest to consider
∫ L
x
dy ρ(y)φ(y), which we can think of as448

the probability that at some time t0 in the distant past, the ancestor of a present-449

day individual was at a distance greater than x from the center. For large x,450

we expect that this is dominated by the probability that it was pulled there by451

a ’recent’ tightly-linked sweep t generations ‘before’ t0 (i.e., t generations closer452

to the present), with t not too large. This sweep must have pulled the lineage453

out to a distance of at least xet/tcon for it still to be at a distance of at least x454

t generations ‘later’, and therefore the sweep must have originated a distance455

z > xet/tcon from the center. Given that it did, the probability that it pulled the456

lineage out far enough is exp
[
− rcxe

t/tcon
]
. Putting this all together, and using457

that the density of sweeps per generation per unit map length per distance (or458

area in two dimensions) at distance z from the center and genetic map distance459

r from the focal locus is 2Λ/(fKL) (or 4Λz/(fKL2) in two dimensions), the460

expected number of sweeps that would have left the lineage more than x from461

the center at time t0 is:462

∫ L

x

dy ρ(y)φ(y) ≈ 2Λ

fKLd

∫ tcon log L
x

0

dt

∫ L

xe
t

tcon

dz(2z)d−1

∫
dr e−

rx
c e

t
tcon

=
2L

Kx
×

{
1− (1 + log(L/x))x/L for d = 1

(L− x)2/L2 for d = 2.
(20)

Taking the derivative of both sides of Eq. 20 with respect to x gives the proba-463

bility density, Eq. 4.464

Note that Eq. 20 approximates the probability that there is at least one465

tightly-linked sweep by the expected number of such sweeps, so it is only valid466

when the right-hand side is small, x� 2L/K. It also obviously typically breaks467

down as x approaches L and the particular geometry of the habitat begins to468

matter.469

Isolation by distance470

We wish to find the probability ψ(x) that a pair of lineages a distance x apart471

will be identical at a neutral locus. Let us assume that the locus is far from472

any recent sweeps. (We relax this assumption below.) Then tracing the an-473

cestry back in time, the separation Xτ between them can be approximated by474

a Brownian motion, with diffusion constant 2D (since it combines the motion475

of both lineages), and with the lineages moving together at a mean velocity of476

≈ −ΛcX/fL = −X/tcon from (unlinked) sweeps that start in between them. In477

other words, we can approximate the motion by478

dYτ = −t−1
conYτdτ + 2

√
DdBτ , (21)
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where B is a Brownian motion. We write Y to emphasize that this is not quite479

the same as the real path of the lineages X. In particular, unlike X, Y does480

not include coalescence. (In two dimensions, Y fails to approximate X even481

when the lineages are just very close together, but since most of the coalescence482

time will be spent at some distance away, it is still a useful approximation.)483

In addition, Eq. 21 ignores the fact that X cannot exceed the diameter of the484

range 2L, and so will only be valid for ranges sufficiently large that lineages are485

unlikely to bump into the boundaries.486

We would like to find an explicit form for Eq. 6. To do this, we can rewrite in487

terms of the behavior of Y . First, note that the rate of coalescence for the two488

lineages when they are in the same place is 1/ρ, and therefore the probability489

density of coalescence at time τ is ≈ δ(Yτ )
ρ exp

(
−
∫ τ

0
dτ ′ δ(Yτ′ )ρ

)
, where δ is the490

Dirac delta. (The exponential factor accounts for the possibility that the two491

lineages have already coalesced.) Plugging this into Eq. 6 gives:492

ψ(x) =EX
[
e−2µT

∣∣ |X0| = x
]

≈EY
[∫ ∞

0

dτ
δ(Yτ )

ρ
e−2µτ−

∫ τ
0
dτ ′δ(Yτ′ )/ρ

∣∣∣∣ |Y0| = x

]
. (22)

We can use the Feynman-Kac formula (Pham (2009), p25) to rewrite Eq. 22493

as an ordinary differential equation:494

0 = 2Dψ′′ +

(
2D

d− 1

x
− x

tcon

)
ψ′ − 2µψ +

1

ρ
δ(x)(1− ψ), (23)

where δ is the Dirac delta. Eq. 23 breaks down for x→ 0 in d = 2 dimensions; in495

this case, some kind of small-scale cutoff is needed, but this does not change the496

shape of ψ(x) at larger scales. In one dimension, to handle the x = 0 boundary,497

we need to understand what we mean by ψ′′ and ψ′ at x = 0. The correct498

interpretation is that x is actually the signed distance between the lineages, i.e.,499

we should remove the absolute value signs around X0 and Y0 in Eq. 22 (Barton500

et al., 2002). Thus ψ(x) = ψ(−x), limx→0− ψ
′(x) = − limx→0+ ψ′(x), and ψ′501

has a discontinuity at x = 0, i.e., ψ′′ has a singularity that must cancel with502

the last term in Eq. 23. This coalescent term can therefore be seen as just a503

boundary condition that sets the overall normalization of ψ. Explicitly, we have:504

lim
x→0+

ψ′(x) =
1− ψ(0)

4Dρ
. (24)

The solution to Eq. 23 can be written exactly in terms of special functions.
For d = 1 and x > 0, Eq. 23 is the Hermite equation, with solution:

ψ(x) = AH−2µtcon

(
x

2xc

)
(25)

= A2−µtcone
x2

8x2cD−2µtcon

(
x√
2xc

)
,
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where Hν(z) is a Hermite function and Dν(z) is a parabolic cylinder function505

(Wolfram Research (2017) functions HermiteH and ParabolicCylinderD, re-506

spectively), and xc =
√
Dtcon. A is a normalization constant, fixed by Eq. 24507

to be:508

A =
2Γ (2µtcon)

Γ (µtcon) + 4ρ
√
D/tconΓ (µtcon + 1/2)

, (26)

where Γ is the gamma function.509

We have not been able to find an exact closed-form expression for the inverse
Laplace transform of Eq. 25 (i.e., the distribution of coalescence times) but the
mean pairwise coalescent time τ2 is:

τ2(x) = −1

2

∂ψ(x)

∂µ

∣∣∣∣
µ=0

= 2
√
πρxc + tcon

(
γ

2
+
∂Hν(x/2xc)

∂ν

∣∣∣∣
ν=0

)
≈ 2
√
πρxc + tcon

(γ
2

+ ln(x/xc)
)

for x� xc, (27)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Note that two randomly-510

sampled individuals will typically be a distance ∼ L apart, so the mean pairwise511

coalescence time over the whole population can be roughly approximated by512

τ2(L).513

For large separations x� xc
√

2 + 4µtcon, Eq. 25 is approximately:514

ψ(x) ≈ A
(
x

xc

)−2µtcon

. (28)

Notice that ψ decays only as a power of distance. Up to the normalization515

constant, Eq. 28 is also valid in two dimensions. For µtcon � 1, Eq. 26 ap-516

proaches A ≈ 1/(1 + 4
√
πµρxc), and Eq. 28 approaches the Laplace transform517

of a simple convolution: first, a nearly deterministic concentration phase last-518

ing tcon log(x/xc) generations, followed by an exponentially-distributed phase519

with mean 2
√
πρxc, consistent with Eq. 27. In other words, first the lineages520

are pulled to within ∼ xc of each other, and then undergo neutral coalescence521

within an effective range of radius ∼ xc.522

For µtcon � 1 and x . 2xc
√
µtcon, the pull of sweeps is too slow to affect523

relatedness (by the time the lineages have been pulled together an appreciable524

distance they will have already mutated), and the solutions to Eq. 23 are close525

to the neutral solutions in Barton et al. (2002), ψ(x) ∝ x(1−d)/2e−
√
µ/Dx (their526

Eqs. (10) and (14)).527

Tightly-linked sweeps528

Above, we have focused on regions of the genome far from any recent sweeps.529

Ideally, however, we would like to be able to extend our analysis to include530

recently-swept regions. As a first approximation, we can say that the main effect531
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of tightly-linked sweeps is that they can cause two widely-separated lineages to532

rapidly coalesce. The probability that a sweep recombining at rate r with the533

focal neutral locus will cause coalescence between two lineages separated by x534

is ≈ exp(−rx/c)/(1 + 2rΥ), where Υ is mean coalescence time for two lineages535

inside the wavefront of the sweep (Barton et al., 2013). We can therefore account536

for the effect of sweeps uniformly distributed over the genome by changing the537

coalescence kernel in Eq. 22 from δ(x)/ρ to538

pcoal(x) ≈ δ(x)/ρ+
2Λ

fK

∫ ∞
0

dr
e−rx/c

1 + 2rΥ

≈ 2Λ

fK

c

x
for x� cΥ.

For x� cΥ, Eq. 23 then becomes539

0 = 2Dψ′′ +

(
2D

d− 1

x
− x

tcon

)
ψ′ − 2µψ +

2Λ

fK

c

x
(1− ψ).

For large x, there are two possible tail behaviors for the solution. If 2µtcon < 1,540

then the pull of unlinked sweeps is strong enough that it is likely to bring lineages541

close together before they mutate, and ψ ∝ x−2µtcon as above. For 2µtcon > 1,542

only recently-swept loci share recent enough ancestry to be likely to be identical543

in distant individuals, and ψ ∝ x−1.544
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