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Abstract 

Investigations of transcriptional responses during developmental transitions typically use time 

courses with intervals that are not commensurate with the timescales of known biological 

processes. Moreover, such experiments typically focus on protein-coding transcripts, ignoring 

the important impact of long noncoding RNAs. We evaluated coding and noncoding expression 

dynamics at high temporal resolution (6-hourly) in differentiating mouse embryonic stem cells 

and report the effects of increased temporal resolution on the characterization of the underlying 

molecular processes. We present a refined resolution of global transcriptional alterations, 

including regulatory network interactions, coding and noncoding gene expression changes, gene 

coexpression patterns as well as alternative splicing events, many of which cannot be resolved by 

existing coarse developmental time-courses. We describe novel short lived and cycling patterns 

of gene expression and temporally dissect ordered gene expression at bidirectional promoters, in 

response to transcription factors & regulatory lncRNAs. These findings demonstrate the 

importance of temporal resolution for understanding gene interactions in mammalian systems.  
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Introduction 

Over the past decade, transcriptomic investigations into the of nature embryonic stem cell (ESC) 

differentiation have elucidated key biochemical features of stemness and differentiation. 

Increasingly, it has become apparent that understanding the dynamics and coordination of gene 

expression signatures over time during the key phases of differentiation is critical to adequate 

characterization of fundamental biological processes.  

ESC differentiation in mouse is a highly complex cascade of gene expression changes that allow 

single pluripotent cells in culture to progress to an organoid resembling a pre-implantation 

blastocyst within only five days. The spontaneous differentiation of these cells in culture has 

provided key insights into the developmental processes underlying the generation of the primary 

germ cell layers(1). Microarray and RNA sequencing have provided a means to characterize the 

molecular transitions in gene expression underlying ESC biology and more recently single cell 

transcriptomic studies have provided the first glimpses into the molecular history of these 

cells(2). However, it is clear that much more of the transcriptional landscape of ESC remains to 

be elucidated(3). 

Access to new technologies, such as massively parallel sequencing (MPS), has led to a dramatic 

increase in our knowledge of the mammalian transcriptome. Early genomic tiling array analysis 

indicated that most of the genome was transcribed into RNA(4). MPS of the transcriptome 

validated this observation and revealed that the majority of the mammalian genome is 

pervasively transcribed as interlaced and overlapping RNAs(5), many of which lack protein-

coding potential(6). The large number of long-noncoding transcripts (lncRNA) has become the 

focus of significant interest due to their exquisite cell type specific expression(7), potent 

biological function (8,9), and rapid transactivation of cellular processes. However, in general, 

lncRNAs are lowly expressed and short lived(10), possibly because, unlike mRNAs that require 

translation, are able to exert their function directly. These qualities obfuscate their identification 

and characterization with traditional approaches that are tuned to the properties of mRNAs (11). 

Owing to the relative infancy of the field, the vast majority of noncoding transcripts are of 

unknown function(12). Additionally, the expression patterns of these genes imply that their 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/084442doi: bioRxiv preprint 

https://doi.org/10.1101/084442


 4

function is dependent on cellular context and likely regulatory(8), thus the identification of these 

molecules and the context in which they act remains a research priority(13). 

Various expression profiling studies, using both microarrays and RNA-seq(14-17), have been 

used to explore the molecular changes occurring during ES cell development, typically at 24-

hourly or more. This potentially has lead to incomplete gene expression relationships through 

the phenomenon of temporal aggregation bias whereby each time point is assumed to represent 

all the signaling changes occurring in that time window (18). In contrast to single cell based 

approaches- which provide insight into the state of individual cells - examinations of whole cell 

populations provides system-wide behavior and a practical means to explore gene expression 

dynamics across time. The combination of these techniques has recently shed light the molecular 

framework of cellular differentiation (19). Higher temporal resolution has also shown rapid 

induction (within two hours of retinoic acid stimulation) of lncRNAs associated with the HOX 

locus (20). Furthermore, high temporal resolution has provided valuable insights into 

transcriptional annotation and regulation in drosophila (21,22), Xenopus (23) and C.elegans 

(24). 

Here we show that additional temporal resolution of the global transcriptome in spontaneously 

differentiating mESC cells following LIF withdrawal enables the capture of the rapid and complex 

dynamic regulatory and noncoding changes occurring during ES development. We analyzed the 

transcriptome of differentiating mouse ESCs at six-hourly intervals over a five-day period, over 

which time the three primordial germ layers are specified. Using this fine-resolution temporal 

sampling approach, we identify significant transitions in the transcriptome and large-scale shifts 

in observable transcription factor activities that could not be observed at 24 hourly sampling 

periods. Moreover, we identify entirely novel coding and noncoding transcripts that are 

expressed only within specific sub-24-hour window. By leveraging the high sampling frequency 

of the data, we are able to both accurately recapitulate known regulatory cascades in ES 

development and predict and refine others. Finally, using correlative approaches, we can infer 

functions for uncharacterized lncRNAs and predict the regulatory centers across the genome that 

coordinate early development. 
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Materials and Methods 

Sample Generation and Library Preparation 

Biological duplicate, low passage number (P18) W9.5 ESCs were cultured and differentiated as 

described previously(14,25). Cultures were harvested every six hours from the induction of 

differentiation to 120 hours post differentiation induction. Total RNA from cultures was purified 

using Trizol (Life Technologies) and DNase treatment was performed by RQ1 DNase (Promega) 

according to the manufacturer’s instructions. RNA integrity was measured on a Bioanalyzer RNA 

Nano chip (Agilent). RNA-Seq library preparation and sequencing of Poly-A-NGS libraries 

generated from 500 ng total RNA using SureSelect Strand Specific RNA Library Preparation Kit 

(Agilent) according to the manufacturer’s instructions. Paired-end libraries were sequenced to 

the first 100 bp on a HiSeq 2500 (Illumina) on High Output Mode. 

Quality control and read mapping 

Library sequencing quality was determined using FastQC (Babraham Bioinformatics) and FastQ 

Screen (Babraham Bioinformatics). Illumina adaptor sequence and low quality read trimming 

(read pair removed if < 20 base pairs) was performed using Trim Galore! (Babraham 

Bioinformatics: www.bioinformatics.babraham.ac.uk/). Tophat2 (26) was used to align reads to 

the December 2011 release of the mouse reference genome (mm10) as outlined by Anders et 

al.(27). Read counts data corresponding to GENCODE vM2 transcript annotations were generated 

using HTSeq (28). de novo transcript assembly was performed on each merged BAM file using 

Cufflinks’ reference annotation based transcript (RABT) assembly(29), using the Gencode vM2 

transcriptome(30) as a guide (options:  -u -I 500000 -j 1.0 -F 0.005 --trim-3-dropoff-frac 0.05 –g 

gencode.vM2.annotation.gtf --library-type fr-firststrand). Transcript assemblies were then 

merged using Cuffmerge(31) using default parameters, and compared to the Gencode vM2 

reference transcriptome using Cuffcompare(31). Novel transcripts with a Cuffcompare class code 

of j, i, o, u or x were filtered using three steps to find novel lncRNAs. First, a Browser Extensible 

Data (BED) format file was generated using a python script 

(https://gist.github.com/davidliwei/1155568) and any single exon transcripts were removed. 

Second, the FASTA-formatted sequence for each transcript was obtained using BEDTools(32), the 
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nucleotide (nt) length and open reading frame (ORF) size found using Perl scripts, and those with 

a length less than 200 nt or a ORF size greater than 300 nt were removed. Lastly, transcript 

sequences were submitted to Coding Potential Calculator (CPC)(33), and those with a coding 

potential of >0 were removed. 

 

Bioinformatics 

All analyses were performed in the R Statistical Environment(34). Briefly, counts data were 

background corrected and normalized for library size using edgeR(35),  then transformed using 

voom(36) for differential expression analysis using LIMMA(37). Transcription Factor (TF) 

activity was inferred from gene expression data using DREM(38) with a branching P-value of 

0.001 based on curated TF-target gene lists associated with mouse ESC differentiation from 

ChEA(39). TF-target gene was calculated by maximal Pearson’s correlation coefficient of >0.8 

using a custom autocorrelation analysis and verified with the “ccf” function in R. Gene differential 

exon (DEX) usage was analyzed by DEXSeq(40) on vM2 gene annotations using default settings 

and an adjusted p value cutoff of 0.001 for DEX between biological duplicates at each consecutive 

time-point. Genome position analyses were performed using genomic ranges(41) based on vM2 

annotations imported with ‘rtracklayer’(42) and Pearson’s correlation coefficient of gene 

expression Bidirectional genes were defined as two genes with expression data on opposing 

strands with <2000 bp between the transcriptional start sites (TSS). Co-expressed gene clusters 

were defined as >5 contiguous genes with expression data displaying a Pearson’s Correlation 

Coefficient of >0.5 with neighbouring genes. Cluster co-expression data was visualized with 

corrplot(43) and Cytoscape (v3.1.0(44)), location of related clusters was visualized by 

Circos(45). Gene expression periodicity was measured on 120 interpolated expression 

values(46) for each replicate time series using GeneCycle(47), candidate periodically expressed 

genes were identified as having the same calculated dominant cycling frequency between 

biological replicates. Time-dependent expression signatures were established using 

maSigPro(48) with a replicate correlation coefficient cutoff of 0.8. Target genes of potential 

regulatory (top 50 most highly and/or variably expressed) lncRNAs were identified using the 

GeneReg package(49) on 100 point-interpolated expression data based on fitted expression 
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values between duplicates and setting a maximum time delay of 18 hours and a global 

correlation coefficient of 0.9 and visualized using Cytoscape. Gene lists were functionally 

annotated with KEGG and Reactome pathways (adjusted p value <0.05) using the clusterProfiler 

and ReactomePA packages(50). 
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Results 

The dynamic transcriptome of mESC differentiation at high temporal resolution 

A median 42-million, paired-end 100-bp reads (Supplementary Figure S1A) were mapped from 

stranded, poly-A derived cDNA libraries derived from biological duplicate, six-hourly time 

courses of mESC differentiation over five days where key differentiation programs occur (0-120 

hours, Figure 1A). Transcript-level expression data was generated as previously described (27), 

then normalized for library size  and transformed for data visualization and differential gene 

expression analysis. Evaluation of 24 hourly time points indicated that our data was comparable 

to previously published data in a similar model (51) (Supplementary Figure S1B). An interactive 

gene expression portal was created to visualise this data 

(https://betsig.shinyapps.io/paper_plots). 

To assess the reproducibility and provide confidence in the biological validity of the global 

transcriptome trends, a principle components analysis (PCA) was performed on the 2,000 most 

variable genes (Figure 1B). This analysis indicated that biological replicates clustered closely, 

indicating that synchrony was retained, and that the major contributor to the determination of 

variance was explained by time. Deconvolution of the dimensions yielded time-dependent 

expression (in the first dimension) of genes enriched in focal adhesion/ ECM interactions KEGG 

pathways. Interestingly, the second dimension deconvolution (PC2), in which undifferentiated 

ESCs resemble the more differentiated embryoblast, yielded genes enriched in MAPK-signaling 

and cancer pathways, implying that the process of differentiation involves a partial retention of a 

cells capacity for self renewal. In the third component (PC3), in which the undifferentiated ES cell 

is separate, the axon-guidance pathway was enriched. We then evaluated expression patterns of 

genes associated with pluripotency, primitive streak formation and cell specialization (Figure 

1C). We observed that, although the gene expression patterns were broadly consistent with 

published studies (Supplementary Figure S1B), there were changes in expression on less than 24 

hourly timeframes that could not be attributed to measurement biases (within the top 5% of 

deviation from loess-smoothed expression values). To establish how prevalent sub-24 hour gene 

expression changes were in in the transcriptome of developing ESCs, we evaluated the extent to 
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which gene expression patterns observed 24 hourly were unable to capture gene expression 

changes happening within that window (temporal aggregation bias (18)). We observed that, 

compared to 24 hour time points, 417 more genes had counts data considered sufficient for 

differential gene expression analysis; reflecting a substantial increase in detected noncoding 

genes over protein coding (>12% vs. 2% respectively, chi-squared p value <0.001, 

Supplementary Table S1, Supplementary Figure S1C). Furthermore, the additional time points 

allowed the assembly of 58% more novel multiexonic intergenic, antisense and intronic 

noncoding RNAs from the data - indicating that a substantial proportion of noncoding transcripts 

are present on timescales much shorter than 24 hours. Finally, to ensure that the 6-hourly 

measures represented distinct gene expression patterns to the 24-hourly measures, we observed 

that no single 24-hourly measure was representative of the average expression over that day 

(Mann-Whitney U p. adj. <1E-145) and that more than 1,000 genes displayed a more than 2-fold 

difference mostly in the first 24 hours of differentiation (Supplementary Figure 1D-E). These 

results indicate that enhanced temporal resolution reduces the phenomenon of temporal 

aggregation bias and allows the observation of more distinct cell expression states than typical 

time-courses.. 

An improved signaling cascade described by higher temporal resolution 

Increased sampling frequency can provide a powerful insight into understanding of the 

contribution of gene regulatory networks to cellular differentiation (21). We utilized the DREM 

v2 analysis tool (38) to evaluate transcription factor (TF) target gene expression patterns. 

Divergence of gene targets responsive to groups of TF at each time point, either 24-hourly or 6-

hourly (Figure 2A-B) was shown if the overall difference was significant at p<0.001. Compared to 

24-hourly, the observed complexity was significantly higher, especially in the first 48 hours. We 

observed that significant changes in gene regulation occurred continuously within the 24-hour 

windows. Most notably, first 24 hours following depart from pluripotency resembles an ordered 

cascade of TF activity (Figure 2A, Supplementary Figure S2A) with large-scale changes in TF 

activity at 12, 18 and 24 hours; of which little can be deduced measuring at just 24 hours (Figure 

2B, Supplementary Figure S2B). Focusing on the interplay between two key transcription factors 

(Otx2 and Pou5f1/Oct4(52), Figure 2A), we observed a rapid rise in Otx2 activity in the first six 
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hours and stable Pou5f1activity for the first 24 hours (Red Box). Otx2 activity did not coincide 

with mRNA expression of the factor itself (Figure 2C), although previous studies have observed 

increased in Otx2 protein expression within 3-hours of differentiation(52), however periodic 

drops in Pou5f1 mRNA expression appeared to coincide with decreases in POU5F1 target genes, 

we calculated the time taken for Pou5f1 expression to result in changes in highly positively 

correlated (r>0.8) target genes using a cross-correlation approach similar to (53). We then 

evaluated how these “delays” enriched for certain Reactome pathways (Figure 2D). We found 

rapid effects for targets enriched for “gene expression”- and a delayed effect on “cell cycle” 

pathways compared to a null distribution produced by 500 random “target“ selections (grey). 

These were similarly observed in the DREM GO-term enrichment tool for Pou5F1 targets 

decreasing in expression at 42 (early- Transcription Factor Activity) and 54 hours (late- 

Epithelial Proliferation; Figure 2A, Blue Box & Supplementary Figure S2C) and associated with 

the decrease in Pou5F1 expression (Figure 2C, Blue Box). Importantly, Pou5F1 mRNA and 

protein expression are temporally correlated (52). This result implies that TF-target genes may 

be activated in an ordered- time dependent fashion. To explore this more broadly, we evaluated 

other TF-target gene temporal dynamics for other TFs that exhibited strong positive or negative 

correlations between the TF and their target genes. We found evidence of highly structured TF-

target expression patterns in time for negatively correlated Pou5f1 and Suz12 targets, as well as 

positively correlated Nanog, Myc, Sox2 and Suz12 targets (Supplementary Figure S3). 

These observations of precise temporal ordering of transcriptional events emphasize the 

importance of factoring time delays into understanding gene regulatory networks (54) and 

highlight the capacity of increased temporal resolution to directly identify –rather than inference 

in most cross-correlation approaches -valuable new knowledge of regulator-target gene 

interactions. 

Increased temporal resolutions identifies genes with previously uncharacterized 

expression patterns (Short-lived (slRNA) & Cycling (cycRNA)) 

Having established that the increased temporal resolution markedly improves the molecular 

framework for evaluating the contribution of gene expression to ES differentiation, we next 

sought to identify gene expression signatures previously unable to be resolved using lower 
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temporal resolution. For each 24-hour period, we identified genes that were differentially 

expressed between 0 and 6, 12 and 18 hours but not between any 24-hourly measures 

(Supplementary Figure S2D). We identified 1,135 genes with significant changes in gene 

expression that were unchanged between any 24-hourly comparison (adjusted p<0.0001). Of 

these, 354 were differentially expressed for more than half of the corresponding 24-hour 

window, mostly in the first and last 24-hour periods. These genes were described as short-lived 

RNAs (slRNAs). slRNA expression patterns over the first 24 hours of differentiation were found 

to be positively correlated with the same time window of retinoic acid directed differentiation 

(20) (Supplementary Figure S2E) implying that these genes may form part of the early response 

to differentiation signals. K-means clustering and KEGG pathway analysis of the expression 

profiles of these genes (Figure 2E) revealed enrichment in genes associated with the spliceosome 

(p=0.02) dramatically decreasing in expression over the first 24 hours before returning slowly to 

baseline. To examine whether this impacted gene-splicing patterns, we employed a differential 

exon (DEX) analysis between consecutive six-hourly time points and counted the number of 

genes displaying DEX usage (Figure 2E). Consistent with previous studies, the alternate splicing 

was most highly associated with cell differentiation(55) (Figure 2E). Increased temporal 

resolution has elucidated that these changes happen very rapidly (majority of changes in the first 

six hours), and that slRNAs may be involved in suppressing the alternate splicing of genes and 

limiting transcriptional plasticity. 

Some slRNAs appeared to have periodic expression profiles. We thus sought to uncover periodic 

expression patterns genome-wide, by applying a fast-Fourier transformation to our data (see 

Methods). Periodogram analysis was utilized to ascertain the dominant cycling period for each 

gene. We found 137 genes, which we termed cycling RNAs (cycRNAs), sharing the same 

dominant cycling period of less than 36 hours in both biological replicate experiments 

(Supplementary Table S2). Supporting the efficacy of the approach, we found Clock, which 

encodes a key regulator of circadian rhythm in mammals, to have a period of 24.2 hours. We 

identified 20 genes that displayed characteristics of both slRNAs and cycRNAs (Supplementary 

Figure S2F), including Ewsr1 and Clk1, involved in gene splicing(56,57) as well as five 

uncharacterized lncRNAs. Given the highly specific expression patterns in this context, we 

propose these genes may similarly have roles in maintaining or establishing biological rhythms. 
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Together these investigations show that the augmented temporal resolution approach provides 

access to gain insights from regulatory pathways by identifying transitions in expression that 

would otherwise have remained hidden.  

 Increased temporal resolution gives insight into local gene regulation in the 

genome 

Evaluating gene transcription at high temporal resolution in a highly dynamic process such as ES 

development, we anticipated that it might be feasible to dissect structural gene regulation within 

a given locus. To explore this possibility, we examined expression arising from transcripts that 

are oriented head-to-head as so-called bidirectional pairs (58,59). Interestingly, we observed 

that the antisense transcript for Evx1 (Figure 1C) displayed a previously unobserved (14) 

increase in expression in the first 24 hours after departure from pluripotency that was reflected 

in its paired protein coding gene Evx1 (Supplementary Figure S4A), highlighting the increased 

power of frequent sampling over time. In total, we identified 1,251 gene pairs with bidirectional 

transcriptional start sites (TSS) within 2,000 bp and evaluated correlation coefficients across the 

time course, distance between TSS and median expression values. Consistent with other studies, 

we found expression correlation more positive for bidirectional gene pairs than random 

transcript pairs(58) (Supplementary Figure S4B). We were also able to show that the distance 

between TSS of highly correlated bidirectional gene promoters is typically less than 500 bp 

(Figure 3A), consistent with a common regulatory domain. Highly correlated or anti-correlated 

genes pairs displayed differences in total gene expression, particularly with discordant gene 

biotypes (Figure 3B). We found that protein coding gene pairs were more likely to be of similar 

expression levels and positively correlated (p<0.05) than protein coding/noncoding pairs 

(Supplementary Figure S4C). Applying a variant of the temporal offset analysis used to measure 

TF- gene target delays, we calculated the time taken and defined the apparent driver gene type 

for peak correlation in coding/noncoding bidirectional pairs (Supplementary Figure S4D, E). This 

did not reveal a generalized bias in either time taken or particular “driving” gene type. However, 

this approach shows that the lncRNA Hotairm1, required for activation of Hoxa1(60), appears to 

have a six-hour delay between its expression changes and HoxA1. We present evidence of other 
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examples of lncRNA-led expression of protein coding genes in small numbers of bidirectional 

pairs (Supplementary Figure S5).  

To investigate whether the strong correlative potential between gene pairs could facilitate the 

identification of regions of the genome that are coordinately regulated (61), we scanned across 

the genome for regions containing five or more contiguous genes that were coexpressed (r>0.5). 

This revealed 59 regions with a mean size of 821 kb -each containing 5-14 genes (mean of 6) 

genes. The majority of these regions were each contained within a single topological associated 

domain(62) (Supplementary Figure S4F), increasing the propensity for a common regulatory 

architecture. Evaluation of gene-expression patterns across these clusters revealed evidence of 

high co-expression at both the inter- and intra-chromosomal levels (Supplementary Figure S4G). 

We assembled a map of regions of the mouse genome displaying high levels of clustered co-

expression (Figure 3C) by comparing the expression profiles of the regions. Two independent 

modules were identified with distinct decreasing (green)- and increasing (blue) expression 

patterns with differentiation. Given the independent location and expression patterns of these 

clusters, we suggest these regions may form core expression-factories of cellular differentiation. 

In support of this notion, this analysis identified the gene cluster -associated with the “increasing 

module”- containing the imprinting locus of H19, Igf2, Tnn3 and Mrpl23(63) (Supplementary 

Figure S4H); previously shown to be activated in concert during early stem cell 

differentiation(64).  

These investigations illustrate how analysis of high-resolution temporal transcriptomic data 

provides an independent and convenient approach (relying only RNA-Seq) to guide the 

partitioning of the genome into regulatory domains. 

Increased temporal resolution refines the noncoding landscape of mESC 

differentiation 

Having shown that rapid changes in lncRNAs are a key feature of ES differentiation, and that co-

expression analysis is a powerful tool for understanding gene regulation with augmented 

temporal resolution, we sought to unravel the roles that lncRNAs might play in ESC 

differentiation. 
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Analysis of gene annotations yielded confident expression data for 588 lncRNA genes at six-

hourly resolution (520 for 24-hourly, Supplementary Table S1). Indeed, added temporal 

resolution increased information of all noncoding transcript biotypes indicating that a 

proportion of these genes were only present for a short duration in this system. Clustering 

lncRNA expression patterns with time-dependent protein coding gene expression showed that 

lncRNAs were enriched at lower expression levels and shared related expression profiles to 

protein coding genes (Figure 4A). This relationship was further examined whereby K-means 

clustering of these expression profiles compared to clustering of a similar number of time-

dependent protein coding genes (Figure 4B, Supplementary Figure S6A) revealed clusters of 

lncRNA genes resembling gene expression patterns associated with stemness (cluster a) 

primitive streak formation (cluster b) and WNT signaling (cluster c)(14). Determining the role 

that these lncRNAs play in these processes will be important in understanding the molecular 

events underlying cell differentiation. 

As lncRNAs often exert their function through guiding or assembling transcriptional machinery, 

we sought to identify potential regulatory lncRNAs in this system. We selected 50 highly or 

variably expressed lncRNAs (Figure 4A) and tested for evidence of gene regulatory behavior 

across the transcriptome. Since lncRNAs typically exert their function as a transcript, we set a 

maximum time offset of 18 hours to avoid secondary (altered protein level) effects and examined 

patterns in the predicted gene targets of lncRNAs (r>0.8, p<0.05, divided by positive or negative 

associations). Reactome pathway analysis revealed that 11 of these lncRNAs (including well 

characterized lncRNAs, Supplementary Figure S6B&C) were potentially involved in regulating 

networks of genes associated with key developmental processes (p.adj<0.05, Supplementary 

Figure S6C). These analyses assigned target gene networks consistent with characterized lncRNA 

biological functions for Malat1 (oncogenic(65)), Neat1 & Rian (association with gene 

repression(66)) and Meg3 (tumour suppressor(67)). Interestingly, these data suggest that the 

pro-tumorigenic function of Malat1 may be mediated through facilitating the increase of MAPK 

signaling molecules. Importantly, these data also provide testable evidence for seven previously 

uncharacterized lncRNAs role in ES development and describes a map of regulatory interactions 

driven by lncRNAs (Figure 4C) whereby lncRNAs can affect gene expression across the genome. 

The identification of lncRNAs with a predicted biological role is important for unraveling lncRNA 
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function, providing candidate functional lncRNA and providing a level of molecular detail that is 

currently lacking in many lncRNA studies. 

Discussion 

Transcriptional regulation of key biological events is a key feature in understanding the 

complexity of cellular processes. Here we describe a detailed transcriptomic resource for 

research in cellular development, a framework for unraveling this detail and identifying new 

targets for analysis. We also present a comprehensively detailed survey of noncoding transcripts 

throughout early stem cell development. We have identified many previously uncharacterized 

noncoding RNAs with potentially pivotal roles in cellular differentiation. This will provide a 

valuable tool for researchers unraveling the transcriptional complexity of cellular differentiation.  

Increased interpretive power 

The understanding of molecular events underlying the departure from pluripotency has been 

determined by the extant knowledge of how biological functions are exerted – often measured at 

24 hourly or greater intervals. We hypothesized that interpretations of this model were missing 

detail in light of evidence indicating the unforeseen dynamics in RNA biology and regulation. By 

probing this detail with finer time distinctions, we show that gene expression profiles of well-

characterized genes display significant variation of expression levels and that such variations are 

manifest in a significantly more complex gene regulatory framework. This is consistent with a 

reduction in temporal aggregation bias (18) and highlights early array-based investigations in 

yeast demonstrating the importance of sufficient temporal resolution in understanding gene 

expression patterns (68). As such, much detail is likely missing from other systems that involve a 

change in phenotype or cellular behavior. With large-scale transcriptomic analyses becoming 

increasingly accessible, it is opportune to revisit other well-studied transitions with the view of 

improving understanding and applicability of their results rather than relying on 

presuppositions about gene expression patterns (69). 
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Insights into short bursts of transcription 

We have shown the benefit of frequent sampling over time in observing the transcription of 

genes that are observable only within sub-24 hourly windows. This approach highlights the 

importance of taking into account the presence of short-lived transcripts and shows that cells 

express more of the transcriptome in a time-dependent fashion. To this end, we have identified 

rapid changing and periodically expressed genes, which we term short-lived (slRNA) and cycling 

(cycRNA), that were unobservable outside this framework. That many slRNAs exhibited changes 

in expression over the first 24 hours of differentiation is consistent with rapid initial cellular 

response to stimuli (20,70). Indeed, it is likely that significant gene expression changes- 

especially noncoding- occur on timeframes shorter than those presented that may not be 

amenable to optimal timepoint prediction strategies (69). By probing deeper into time-

dependent gene transcription-possibly by interpolating available datasets-(68) it will be possible 

to uncover further complexity underlying cellular plasticity and gene regulation. These 

observations reinforce the concept that adequate temporal resolution is vital for describing 

biological transitions- for example in dissecting primary from follow on effects in gene 

knockdown studies – and that end-point analysis likely does not reflect the complex biology of 

phenotype changes. 

Insight genome organization and regulation 

Similarly, by using time to separate the order of gene transcription, we have been able to predict 

local gene regulation across the genome. We have been able to observe concerted gene 

expression (in trans) of hundreds of genes separated by large genome differences (in cis). Typical 

studies of this nature involve correlative analysis requiring large samples sizes and resources 

(71). We have instead leveraged the time axis to achieve these as well as discriminate driver 

from passenger molecular events. This has allowed the estimation of the time delay for changes 

in expression of regulatory molecules to manifest in changes in their target gene transcription 

and we have been able to unravel a potentially complex network of gene profiles responding to 

lncRNA transcription. Finally, we have been able to use an integrated biological system to draw 

strong associations in trans relationships with bidirectional promoters. Typically these 
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associations are observed by using thousands of gene expression profiles, yet here we have been 

able to do so with only 42.  

General experimental considerations 

The design and interpretation of time course experiments has been of great interest over the past 

decade (18,69) and they have been used effectively to elucidate transcriptome expression and 

regulation in many organisms (21-24). Furthermore, improvements in sequencing technologies 

are making the dynamics of larger and complex genomes more available to closer inspection. By 

probing transcriptional complexity in mouse ES development, we have gained insight into many 

areas of molecular inquiry. Using uniform dense sampling enables strong gene expression 

relationships to be drawn whilst simultaneously facilitating the dissection of expression ordering 

and kinetics. Importantly these data show that substantial changes in gene expression cannot be 

inferred from coarse time-points and that the continuous representation of gene expression data 

in many developmental time courses obscures detail. Therefore the assumptions made when 

choosing time points for these kinds of studies (such as how long a biologically significant event 

takes to occur) need to be re-evaluated; RNA and protein turnover is extremely rapid (72) and 

transcriptional responses are extremely rapid (20,68,70) and can be transient (73). Our data 

suggest that dense profiling will yield more insights into reprogramming and that a real-time 

picture is yet to be achieved (Supplementary Figure S7A). Furthermore, using temporal 

approaches to augment single cell transcriptome studies such as dissecting cellular heterogeneity 

(31) and lncRNA expression patterns (74) similar to the method employed in (19) may allow the 

temporal tracking of single cell alterations over time.  

Analysis of high-resolution temporal transcriptomic data reveals an unprecedented level of 

regulatory complexity and presents a tantalizing opportunity to revisit and bring new insight 

into other clinically or biotechnologically significant biological transitions. In designing these 

experiments it is important to choose the approach to match the aim. For example, gene 

knockdown experiments using siRNAs may benefit from early time point transcriptomes for 

dissecting primary from secondary or tertiary effects. Uniform temporal sampling simplifies the 

interpretation of temporal correlations in gene expression whereas focus on early responses will 

necessarily require rapid initial time point selection with tracking samples. The frequency of 
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collection will necessarily depend on the duration of the response and practical and financial 

considerations. Increasing density will necessarily increase the correlative power of the study 

without negatively affecting the observation of transiently expressed genes (Supplementary 

Figure S7B & (75)). However, replication ensures uniformity of the biology underlying the 

process in question (figure 1B), thus enabling confident dissection of transient or periodic gene 

expression patterns from noise.  
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Figure Legends 
 
Figure 1. Global and gene-specific evaluation of augmented temporal resolution in mES 
differentiation. (A) Schematic of mouse embryonic stem cell (ESC) differentiation into embryoid bodies 
(EB) over the time course evaluated here. (B)Analysis of the top three principle components (PCs) based on 
the 2,000 most variable genes from biological duplicate-6 hourly transcriptomes.and KEGG pathway 
enrichment for 500 genes contributing most to each of the top three PCs. (C) Expression profiles of genes 
associated with pluripotency, primitive streak formation and cell specialization .  
 
Figure 2. Insights into regulatory and gene expression kinetics . (A & B) Observable regulatory network 
dynamics at 24- and 6-hourly measures with OTX2 and POU5F1 target containing profiles annotated and in 
bold, See Supplementary Figure S2 for full figure. Transcriptomes at 24- (top) and 6-hourly (bottom) were 
subjected to DREM analysis of mouse TF/target gene interactions. A p-value cutoff of 0.001 was applied to 
calculating divergent TF activity (splits). Relative circle sizes are proportional to the spread of gene 
expression levels corresponding to that point. Red and blue boxes pertain to branch points of interest (C) 
Expression of the key transcription factors Pou5F1 (Oct4) and OTX2. Red and blue boxes correspond to the 
time points highlighted in part A. (D) Distribution of the number of genes and the time delay required to 
meet a maximum correlation (>0.8) between gene targets of Pou5f1 and pPou5f1 itself compared to 95% 
quantiles of 500 random gene selections. (E) Two k-means clusters short-lived RNA (slRNA) genes 
displaying differential expression without changes at 24-hourly time points (adj. p<0.0001).  
 
Figure 3. Analysis of gene coexpression patterns using augmented temporal resolution. (A) Smoothed 
scatter plot showing the correlation coefficient across the time course vs. distance between transcriptional 
start sites (TSS) of bidirectional gene pairs. Blue indicates no gene pairs; yellow and red indicate increasing 
numbers of pairs sharing similar properties. (B) Expression patterns of example bidirectional genes of the 
same or different gene biotype. Spearman’s correlation coefficient is reported for each pair. (C) Genomic 
location (circos) and expression pattern (line plot) of two independent co-expressed groups of 5 or more 
contiguous genes sharing correlated expression (r>0.5). 
 
Figure 4. Augmented temporal resolution of ncRNA expression in cellular differentiation. (A) 
Hierarchical clustering of lncRNAs (dark blue) with time-dependent protein coding genes (light blue) by 
their expression patterns over time. Dendrogram was manually colored to reflect gene expression levels of 
the top-level clusters. (B) K-means clustered expression profiles of protein coding genes compared to the 
same number of lncRNA gene expression clusters. Common profiles are marked with arrows. (C) Expression 
profiles of four lncRNAs predicted to have regulatory roles in ES development as well as the genome 
location & pathways enriched in their gene targets.  Malat1 and IRX3os display a positive association with 
their targets, whereas 1700057H21Rik and 1700042O10Rik have a putative repressive impact. 
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Supplementary Table and Figure Legends 
Supplementary Table S1: Counts of Genes by biotype  
Supplementary Table S2: Periodic Genes 
 
Supplementary Figure S1. Global evaluation of high-resolution transcriptomic data. (A) Histogram of 
mapped read number distribution per sample (pooled from biological replicates). (B) Comparison of 
expression levels and principle components analysis measurd 24 hourly between this study and Hirst 2006 
(C) Heatmap of expression levels for genes only expressed outside of 24 hourly timepoints, clustered by 
expression pattern. (D) Evidence of differential expression within one 24 hour period vs. any change across 
all 24hourly times (p <0.0001). (E) Comparing whether the 24 hourly measures “summarize” that 24 hour 
window by comparing mean expression for that window with the 24 hour time point 
 
Supplementary Figure S2. Highlighting unique knowledge gained from increased temporal 
resolution. (A &B) Fully annotated DREM schematic of estimated TF activity of key ESC related TFs at 
6hourly (A) vs. 24 hourly (B). (C) GO term enrichment (adjusted p<0.05) for genes corresponding branch 
points designated as early (co-observed with change in POU expression) and late (observed after POU5f1 
Expression changes) highlighted by the blue boxes in Figure 2A. Black boxes represent similar terms 
identified in figure 2D. (D) Schematic of differential expression analysis design used to identify slRNAs. (E) 
Correlation of slRNA expression in (20). (F) Comparison of slRNAs and cycRNAs. Venn diagram of the 
overlap observed and examples from each class. 
 
Supplementary Figure S3. Temporal offsets in transcription factor (TF)- target gene expression. (A) 
Curated TF/gene targets were downloaded from chea (http://amp.pharm.mssm.edu/lib/chea.jsp) for Myc, 
Nanog, Pou5f1, Sox2 and Suz12 (N=number of target genes). Expression of target genes were tested for 
correlation with their TF at different temporal offsets (0-36 hours) and compared to 500 random selections 
of the same number of genes (Null). Where absolute correlations of predicted targets exceeded the null 
distribution (arrow), (B) the number of genes achieving a maximal absolute correlation of >0.8 and the 
offset required to reach these maxima was plotted against the 5th and 95thquantiles of the same results 
from the null distribution. Where the number of target genes exceeded the null distribution, the lists of 
genes in each offset were tested for enrichment of Reactome pathways relative to the total predicted target 
list (enrichment). (C) Example expression patterns of genes displaying these attributes were plotted. 
 
Supplementary Figure S4. Bidirectional and co-expression analysis of mouse ES development. (A) 
Expression profile of EVX1 and its antisense (and positively correlated) transcript EVX1AS- the peak at 6-18 
hours has not been observed previously. (B) Distribution of correlation coefficients of bidirectional gene 
pairs (red) compared to similar numbers of randomly chosen genes pairs, randomly chosen genes from the 
same chromosome and, randomly selected neighbouring genes (dotted lines). ks=Kolmogorov–Smirnov test 
(bidirectional vs. random neighbouring gene pairs). (C) Characteristics of bidirectional gene pairs 
(Correlation coefficient, Distance between TSS and Difference of median expression (log scale) based on 
annotated gene-biotype. (D) Counts of bidirectional gene pairs of differing biotypes achieving an improved 
correlation coefficient of >0.15 (to at lease 0.25) over that at time zero, colored by the biotype of the 
“following” gene or by the temporal offset required to achieve the improvement. (E) Comparison of 
responding gene biotype to the temporal offset for lincRNA and antisense biotypes. (F) Number of 
topological associated domains (TADS, HindIII data mapped to mm10 using liftOver from mm9) associated 
with each co-expressed gene cluster. (G) Clustering of co-regulated gene clusters by correlation coefficient 
visualized by network diagram and hierarchical clustering of the correlation matrix. (H) The imprinted 
H19/IGF2 cluster identified as a co-expressed gene cluster with gene expression data for measured genes. 
Some genes did not have expression data (no data). 
Supplementary Figure S5. Temporal relationships of highly correlated coding-noncoding 
bidirectional pairs. (A) Bar chart of the temporal offset required to reach a maximum correlation >0.8 and 
whether the noncoding gene preceded the protein coding gene or vice versa. (B) Example gene expression 
profiles of bidirectional paired gene over the time course. Gene profiles are arranged and colored as the bar 
chart. 
 
Supplementary Figure S6. LncRNAs and their role in ES development. (A) Reactome pathway 
enrichment for 5/6 k-means clusters of time-dependent protein coding genes. (B) Expression profiles for 
characterized lncRNAs described in text. (C) Reactome pathway enrichment for putative gene targets 
positively or negatively associated with candidate lncRNAs (top 4 pathways, enrichment adj. pval.<0.05). 
 
Supplementary Figure S7. Sampling density impact on gene expression observations (A) The impact 
of increasing temporal resolution on the number of genes observed to be expressed. (B) The number of 
conditions in which each gene observed is expressed above background in both replicates across the time 
course. ~150 new genes are observed at a single timepoint. 
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