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Abstract 

One of the most important roles of cells is performing their cellular tasks properly for survival.  
Cells usually achieve robust functionality, for example cell-fate decision-making and signal 
transduction, through multiple layers of regulation involving many genes.  Despite the 
combinatorial complexity of gene regulation, its quantitative behavior has been typically studied 
on the basis of experimentally-verified core gene regulatory circuitry, composed of a small set of 
important elements. It is still unclear how such a core circuit operates in the presence of many 
other regulatory molecules and in a crowded and noisy cellular environment.  Here we report a 
new computational method, named random circuit perturbation (RACIPE), for interrogating the 
robust dynamical behavior of a gene regulatory circuit even without accurate measurements of 
circuit kinetic parameters.  RACIPE generates an ensemble of random kinetic models 
corresponding to a fixed circuit topology, and utilizes statistical tools to identify generic 
properties of the circuit.  By applying RACIPE to simple toggle-switch-like motifs, we observed 
that the stable states of all models converge to experimentally observed gene state clusters even 
when the parameters are strongly perturbed.  RACIPE was further applied to a proposed 22-gene 
network of the Epithelial-to-Mesenchymal transition (EMT), from which we identified four 
experimentally observed gene states, including the states that are associated with two different 
types of hybrid Epithelial/Mesenchymal phenotypes.  Our results suggest that dynamics of a 
gene circuit is mainly determined by its topology, not by detailed circuit parameters.  Our work 
provides a theoretical foundation for circuit-based systems biology modeling.  We anticipate 
RACIPE to be a powerful tool to predict and decode circuit design principles in an unbiased 
manner, and to quantitatively evaluate the robustness and heterogeneity of gene expression. 
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Introduction 

State-of-the-art molecular profiling techniques[1–4] have enabled the construction or inference 

of large gene regulatory networks underlying certain cellular functions, such as cell 

differentiation[5,6] and circadian rhythm[7,8].  However, it remains a challenge to understand 

the operating principles of these regulatory networks and how they can robustly perform their 

tasks, a prerequisite for cell survival. Mathematical and computational systems biology 

approaches are often applied to quantitatively model the dynamic behaviors of a network[9–20]. 

Yet, quantitative simulations of network dynamics are usually limited due to several reasons. 

First, a proposed network might contain inaccurate or missing regulatory genes or links, and 

modeling an incomplete network might produce inaccurate predictions. Second, kinetic 

parameters for each gene and regulatory interaction, which are usually required for quantitative 

analyses, are difficult to be obtained directly for all of them from in vivo experiments[21]. To 

deal with this problem, network parameters are either inferred from existing data [22,23] or 

educated guesses, an approach which could be time-consuming and error-prone.  This approach 

is hard to extend to very large gene networks due to their complexity.  

 

Alternatively, a bottom-up strategy has been widely used to study the regulatory mechanisms of 

cellular functions. First, one performs a comprehensive analysis and integration of experimental 

evidence for the essential regulatory interactions in order to construct a core regulatory circuit, 

typically composed of only a small set of essential genes.  The core gene circuit is then modeled 

either by deterministic or stochastic approaches with a particular set of parameters inferred from 

the literature.  Due to the reduced size of the systems and the inclusion of data derived directly 

from the literature, the bottom-up approach suffers less from the above-mentioned issues. 
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Examples of the bottom-up approach include the modeling of biological process such as 

Epithelial-to-Mesenchymal transition (EMT)[24–26], cell cycles[27,28], and circuit design in 

synthetic biology, such as genetic toggle switch[29], and repressilator[30]. 

 

Due to the success of these and other circuit-based modeling studies, we hypothesize that a core 

circuit module should emerge from a complex network and dictate the decision-making process. 

It is reasonable to assume that a large gene network could be decomposed into a core gene circuit 

and a peripheral part with the residual genes.  The core would then be the driving force for the 

network dynamics and should be robust against cell-to-cell variability and extrinsic fluctuations 

in stimuli arising from cell signaling, while the peripheral genes would act to regulate the 

signaling status for the core circuit and probably also enhance the robustness of the core 

dynamics by introducing redundancy.  This scale-separation picture is consistent with ideas such 

as the existence of master regulators and network modularity[31,32]. 

 

On the basis of this conceptual framework, we developed a new computational method, named 

random circuit perturbation (RACIPE), for modeling possible dynamic behaviors that are 

defined by the topology of a core gene regulatory circuit.  In RACIPE, we focus the modeling 

analysis on the core circuit and regard the effects of the peripheral genes and external signaling 

as random perturbations to the kinetic parameters. In contrast to traditional modeling 

methods[33], RACIPE generates an ensemble of mathematical models, each of which has a 

different set of kinetic parameters representing variations of signaling states, epigenetic states, 

and genetic backgrounds (including cells with genetic mutations leading to disease). Here we 

randomize the model parameters by one or two orders of magnitude and utilize a specially 
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designed parameter sampling scheme (details in Methods) to capture the key role of circuit 

topology. This random field approach allows the inclusion of the contributions from the 

peripheral genes to the network dynamics and the evaluation of their roles in modulating the 

functions of the core circuit. From the in silico generated data, we apply statistical analysis to 

identify the most probable features within all of the models, a process which can uncover the 

most robust functions of the core circuit.  It is worth-noting that RACIPE is unique in the way it 

utilizes perturbation and the integration of statistical tools, compared to the traditional parameter 

sensitivity analysis[34–38]  and the previous studies on random circuit topology[39,40]. 

 

In the following, we will first describe in detail the RACIPE method, and then present the results 

of applying RACIPE to several simple standalone circuit motifs and also coupled toggle switch 

motifs.  In addition, we will show the application of RACIPE to a 22-component network for the 

decision-making core of the Epithelial-to-Mesenchymal Transition (EMT). We will see that 

RACIPE is capable of identifying accessible gene states via statistical analysis of the in silico 

generated data, from which we can further decode the design principles and evaluate the 

robustness of the core gene circuit.  We therefore expect RACIPE to be a powerful tool to 

analyze the dynamic behavior of a gene network and to evaluate the robustness and accuracy of 

proposed network models. 

 

Methods 

We developed a new computational method, namely random circuit perturbation (RACIPE), for 

modeling a gene network. The procedure of RACIPE is illustrated in Fig. 1. The input of 

RACIPE is the topology of the core circuit under study, which can be constructed according to 
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either the literature, interaction databases (e.g. Ingenuity pathway analysis (IPA®, QIAGEN 

Redwood City, www.qiagen.com/ingenuity), KEGG[41], GO[42]), or computational 

methods[43]. From the circuit topology, we establish a set of mathematical equations for the time 

evolution of the levels of all the genes. We then generate an ensemble of models where the 

parameters from the rate equations are sampled by a carefully designed randomization procedure 

(see below for details) so that these kinetic models can capture the behavior of the circuits under 

different conditions. Each model is subject to standard analysis to discover possible dynamics of 

the circuit (Fig. 1B).  The dynamics could converge to a stable steady state, a stable oscillation, 

or chaotic behavior.  To find all possible behaviors for a gene network, we typically choose 

many different sets of initial conditions (randomly sampled on a logarithmic scale) and 

numerically solve the rate equations for each case.  This ODE-based method is particularly 

useful for identifying all the distinct stable steady states for a multi-stable system.  The procedure 

is repeated for many times to collect sufficient data for statistical analysis.  In particular, for a 

multi-stable system, the RACIPE method generates a large amount of simulated gene expression 

data, which can be further analyzed by biostatistics tools (Fig. 1C). RACIPE is also compatible 

with other types of modeling methods such as the stochastic approach, but this is not discussed in 

this study.  In the following, we will illustrate RACIPE in the context of a multi-stable gene 

circuit by deterministic analysis.   

 

As an example, we start with the deterministic rate equations for a toggle switch circuit (Fig. 2) 

with mutually inhibitory genes A and B. The kinetic model takes the form: 

   

!A = gAH S (B, BA0 ,nBA,λBA
− )− kA A

!B = gB H S ( A, AB0 ,nAB ,λAB
− )− kB B

,  (1) 
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where A and B represent the expression levels of gene A and B respectively. gA  and gB  are the 

basal production rates (the production rate for the gene without any regulator bound to the 

promoter). Ak  and Bk  are the innate degradation rates. Regulation of gene B expression by A is 

formulated as a non-linear shifted Hill function ( 0( , , , )S
AB ABH A AB n l- ), defined as 

0(1 ) ( , , )AB AB ABH A AB nl l- - -+ - , where   H
− = 1/ (1+ ( A / AB0 )nAB )  is the inhibitory Hill function, 

  AB0  is the threshold level for A,  nAB  is the Hill coefficient of the regulation, ABl-
 is the 

maximum fold change of the B level caused by the inhibitor A ( 1ABl- < ).  In the case of an 

activator, the fold change is represented by ABl +  (  λAB
+ >1 ).  The inhibitory regulation of gene A 

by gene B can be modeled in an analogous way. 

 

In RACIPE, randomization is performed on all five types of circuit parameters: two of them are 

associated with each gene, including the basal production rate ( g ) and the degradation rate ( k ); 

and three of them are associated with each regulatory link, including the maximum fold change 

of the gene expression level ( ), the threshold level of the regulation (   X0 ) and the Hill 

coefficient  (n).  

 

Our parametric randomization procedure is designed to ensure that the models can represent all 

biologically relevant possibilities.  In detail, the Hill coefficient  is an integer selected from 1 

to 6, and the degradation rate  k  ranges from 0.1 to 1 (See S1 Table for the explanation of the 

units).  Here each parameter is assigned by randomly picking values from either a uniform 

distribution or some other distributions, for example the Gaussian distribution.  The fold change 

l +  ranges from 1 to 100 if the regulatory link is excitatory, while l-  was varied from 0.01 to 1 

λ

n
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if the regulatory link is inhibitory.  Note that for the latter case, a probability distribution (e.g. a 

uniform distribution) is sampled for the inverse of l- , i.e. 1/ l- , instead of l-  itself.  By doing 

so, we make sure that the mean fold change is about 0.02, instead of ~ 0.5.  The choice of such a 

wide range of  values ensures the consideration of both strong and weak interactions. 

 

In addition, two assumptions are made in RACIPE to ensure that it generates a representative 

ensemble of models for a specific circuit topology.  First, the maximum production rate of each 

gene should lie roughly within the same range (from 1 to 100 in this study, see S1 Table), as the 

maximum rate is determined by how fastest the transcriptional machinery can work.  For a gene 

regulated by only one activator, the maximum production rate is achieved when the activator is 

abundant, and thus the basal production rate of the gene g =G / λ+ .  For a gene regulated by only 

one inhibitor, the maximum rate is achieved in the absence of the inhibitor, i.e. g G= .  This 

criterion can be generalized to genes regulated by multiple regulators.  Therefore, in practice, we 

directly randomize the maximum production rate (G) instead of the basal production rate (g), and 

then calculate the value of g according to the above criterion.  The ranges of these parameters are 

summarized in details in S1 Table.  The RACIPE randomization procedure allows a gene to have 

a relative expression ratio of up to 1,000 for two sets of parameters, even when it is not regulated 

by other genes. 

 

Second, we also assume that, for all the members of the RACIPE model ensemble, each 

regulatory link in the circuit should have roughly equal chance of being functional or not 

functional, referred to as the half-functional rule.  For example, in the case that gene A regulates 

gene B, all the parameters are selected in such a way that for the RACIPE ensemble, the level of 

λ

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2016. ; https://doi.org/10.1101/084962doi: bioRxiv preprint 

https://doi.org/10.1101/084962
http://creativecommons.org/licenses/by-nc-nd/4.0/


A at the steady states has roughly 50% chance to be above and 50% chance to be below its 

threshold level.  Otherwise, if the threshold level is too large or too small, the regulatory link is 

either not functional most time or constitutively active, thereby changing the effective circuit 

topology. 

 

To achieve this, we estimate the range of the threshold levels by a mean-field approximation.  

For a regulatory link from gene A (regulator) to gene B (target), the threshold level AB0  can be 

estimated as follows.  We first estimate the range of expression of gene A without considering 

any of its regulators.  The A level without regulation satisfies 

  !A = G − kA ,  (2) 

By randomizing both  G  and  by the aforementioned protocol (S1 Table), we generate an 

ensemble of random models, from which we obtain the distribution of the steady state levels of 

gene  (Fig. 2A).  To meet the half-functional rule, the median of the threshold level should be 

chosen to be the median of this distribution.  When gene A is regulated by some other genes (i.e. 

its upstream regulators), we estimate the median threshold level by considering the inward 

regulators of A, and assume that the levels of all these regulators (e.g. gene B, C etc.) follow the 

same distribution as an isolated gene (top right panels in Fig. 2A section 2).  We set the threshold 

of every inward regulation to be 0.02M to 1.98M, where M is the median of the distribution of 

an isolated gene.  With all of the information, we can again generate a new ensemble of models, 

from which we calculate the distribution of gene A (bottom panel in Fig. 2A section 2) and its 

median. For every target gene regulated by the gene A, we select the threshold levels of the 

regulations in the range from 0.02M to 1.98M, where M is the above obtained median level of 

gene A.  The same approach is used to estimate the threshold levels of the other genes.  It is 

k

A
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worth-noting that this self-consistent strategy works quite well for the cases we have tested (Fig. 

2B) according to the half-functional rule. 

 

In the following, we will first demonstrate the application of RACIPE to some simple toggle-

switch-like motifs, then to a set of motifs of coupled toggle-switch circuits, and eventually to a 

more complex EMT transcription regulatory network.  For each case, we will illustrate how we 

can utilize an ensemble of RACIPE models to identify the dynamic behavior of a gene circuit.  

 

Results 

RACIPE as an unbiased method to predict robust gene states for a gene circuit 

We first tested RACIPE on several basic toggle-switch-like circuit motifs (Fig. 3A).  These 

circuit motifs are considered to be some of the main building blocks of gene regulatory 

networks[44].  A genetic toggle switch (TS), composed of two mutually inhibitory genes, is 

commonly considered to function as a bi-stable switch - it allows two stable gene states, each of 

which is characterized by dominant expression of one gene.  The TS has been shown to be a 

central piece of decision-making modules for cell differentiation in several incidences[45–47].   

 

Here we apply RACIPE to the TS motif.  We created an ensemble of 10,000 models (Fig. 3A) 

and we observed that about 20% of models allow two coexisting stable steady states (bi-stability), 

while the remainder allow only one steady state (mono-stability).  The observation that only a 

small fraction of TS models work as a bi-stable system is consistent with a previous study[39].  

Next, we tested RACIPE on a toggle switch with an extra excitatory auto-regulatory link acting 

on only one of the genes (a toggle switch with one-sided self-activation, or TS1SA).  The circuit 
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motif now has ~ 50% chances of being bi-stable, much larger than the original TS motif.  

Interestingly, TS1SA also has ~1% chance of having three co-existing stable steady states (tri-

stability), so it can potentially act as a three-way switch[44].  Hence, the RACIPE analysis 

suggests that TS1SA is more robust than TS for functioning as a switch.  Moreover, adding 

excitatory auto-regulatory links on both sides of the TS motif (TS2SA) further increases the 

likelihood of bi-stability to ~60%, and meanwhile dramatically increases the likelihood of tri-

stability to ~13%.  This suggests that TS2SA has more of an ability than these other motifs to 

function as a three-way switch.  Indeed, TS2SA has been proposed to be the core decision-

making motif for several cell differentiation processes, and many of these processes exhibit 

multi-stability[45,46].  Thus, statistical analysis of the ensemble of random models generated by 

RACIPE can identify the most robust features of a circuit motif. 

 

Another way to utilize RACIPE is to evaluate the possible gene expression patterns of a circuit 

motif.  We can construct a large set of in silico gene expression data, consisting of the gene 

expression levels of the circuit at every stable steady state for each RACIPE model.  In the 

dataset, the column corresponds to the genes and the rows corresponds to stable steady states.  

For a RACIPE model with multiple stable steady states, we enter the data in multiple rows.  The 

expression dataset takes a form similar to typical experimental microarray data, and so it can be 

analyzed using common bioinformatics tools.  For each of the above two-gene cases, we 

visualized the expression data by a scatter plot of the levels of the two genes (Fig. 3B).  

Surprisingly, despite large variations in the circuit parameters across the RAICPE model 

ensemble, the expression data points converge quite well into several robust clusters.  For 

example, the TS circuit data has two distinct clusters, where one has a high expression of gene A 
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but a low expression of gene B and the other vice versa. The TS2SA circuit has not only the 

above two clusters but also an additional cluster with intermediate expression of both genes.  

These patterns have also been observed in previous experimental[29] and theoretical[44,45,48] 

studies of the same circuits.  Interestingly, if we only include models with a fixed number of 

stable states (e.g. restrict the ensemble to mono-stable models, or bi-stable models), a similar 

pattern of clusters can still be observed (Fig. S1).  These clusters represent distinct patterns of 

gene expression that the circuit can support, so we will refer to these clusters as “gene states”.  

These gene states are robust against large perturbations of circuit parameters because the circuit 

topology restricts possible gene expression patterns.  RACIPE in a sense takes advantage of this 

feature to interrogate the circuit so that we can unbiasedly identify the robust gene states.  Since 

these states may be associated with different cell phenotypes during cell differentiation or 

cellular decision-making processes, RACIPE can be especially helpful in understanding the 

regulatory roles of the circuit during transitions among different states.  

 

These simple cases demonstrate the effectiveness of RACIPE in revealing generic properties of 

circuit motifs.  Recall that our basic hypothesis is that the dynamic behaviors of a circuit should 

be mainly determined by circuit topology, rather than a specific set of parameters. The rich 

amount of gene expression data generated by RACIPE allows the application of statistical 

learning methods for the discovery of these robust features.  For example, as shown in Fig. 3C, 

we applied unsupervised hierarchical clustering analysis (HCA) to the RACIPE gene expression 

data, and again we identified similar gene state clusters for each circuit.  
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Notably, the predictions of these gene states by RACIPE should be robust against different 

sampling distributions and different ranges of kinetic parameters. To verify this, we tested on the 

TS circuit versions of RACIPE created with three different distributions (uniform, Gaussian and 

exponential distribution) and three different ranges of parameters (Fig. 4).  Even though the 

precise shape of gene states appears to be slightly different for the different cases, the number 

and the locations of these gene states are consistent (Fig. 4).  For the cases with exponential 

distribution, when the range of the parameters is reduced, the mean decreases as well; therefore, 

the two gene states become closer (Fig. 4). We also found that the expansion of the parameter 

ranges still results in similar gene states (Fig. S2).  

 

The application of RACIPE to coupled toggle-switch motifs 

To evaluate the effectiveness of RACIPE on larger circuits, we further applied the method to 

circuits with two to five coupled toggle-switch (CTS) motifs (Fig. 5).  Different from the above 

simple circuit motifs, the gene expression data obtained by RACIPE for these CTS motifs are 

now high-dimensional; thus in the scatter plot analysis we projected these data onto the first two 

principal components by principal component analysis (PCA).  For each circuit, we observed 

distinct gene states from PCA for the RACIPE models (Fig. 5A).  More interestingly, the number 

of gene states found via PCA increases by one each time one more toggle switch is added to the 

circuit.  Moreover, we applied HCA to the gene expression data, from which we identified the 

same gene states as from PCA (Fig. 5B). At this stage, we can also assign high (red circles), 

intermediate (blue circles) or low expression (black circles) to each gene for every gene state.  

Unlike in Boolean network models, the assignment in RACIPE is based on the distribution of 

expression pattern from all the models in the ensemble (Fig S3-S4).   
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We can easily understand the meaning of each gene state.  In each case, the rightmost cluster in 

the scatter plot (Fig. 5A) corresponds to the topmost cluster in the heatmap (Fig. 5B), a state 

where all the A genes have high expression and all the B genes have low expression.  Similarly, 

the leftmost cluster in the scatter plot corresponds to the bottommost cluster in the heatmap.  

These two clusters are the most probable ones, and represent the two extreme states of the 

coupled toggle switch network.  As also illustrated in the scatter plots, for circuits with additional 

toggle switches, these two states separate from each other and the circuit now allows 

intermediate states.  By closely examining these intermediate states, we found that they (from top 

to bottom) correspond to a cascade of flips of the state of each consecutive toggle switch.  This 

explains why we observe one additional gene state every time we include an additional toggle-

switch motif.  In addition, intermediate expression levels were frequently observed for genes 

lying in the middle toggle-switch motifs, instead of those at the edge.  The tests on CTS circuits 

demonstrate again the power of RACIPE in identifying robust features of a complex circuit. 

 

The application of RACIPE to the EMT circuit 

The above examples were used for illustrative purposes and do not immediately reflect any 

actual biological process. In our last example, we apply RACIPE to a more realistic case, the 

decision-making circuit of EMT (Fig. 6).  EMT is crucial for embryonic development, wound 

healing and metastasis[49], a major cause for 90% cancer-related deaths[50]. Cells can undergo 

either a complete EMT to acquire mesenchymal phenotype or partial EMT to attain hybrid E/M 

phenotype[51,52], which maintains both E and M traits. Transitions among the Epithelial (E), 

Mesenchymal (M) and hybrid epithelial/mesenchymal (E/M) phenotypes have been widely 
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studied either experimentally or theoretically[52].  Here, we utilized data from the literature and 

Ingenuity Pathway Analysis (see details in SI) to construct a core gene regulatory circuit model 

of EMT (Fig. 6A), which contains 13 transcriptional factors (TFs), 9 microRNAs (miRs) and 82 

regulatory links among them.  Among the gene components, we have two biomarkers – CDH1 

and VIM – that are commonly used to distinguish different phenotypes during EMT, and one 

signaling gene TGF-β.  The circuit is a much-extended version of several previous EMT 

models[24,25], which consist of only four gene families and one input signal.  It is similar in 

terms of scale to a recently proposed Boolean model of EMT[53], but as stressed here our 

models allow for continuous expression levels. 

 

For simplicity, we modeled the EMT circuit with the same approach as above, i.e. all the genetic 

components were coupled with Hill functions, typical of transcriptional control. This may not be 

completely accurate for translational regulation by microRNA (miR), but we leave this 

complication for future study. Even with this simplification, RACIPE can already provide 

insightful information of the EMT regulation.  Consistent with what we learned from the test 

cases, unsupervised HCA of the RACIPE gene expression data can reveals distinct gene states 

(Fig. 6B). Here there are four such states. We can map these gene states to different cell 

phenotypes possible during EMT – an E phenotype with high expression of the miRs, low 

expression of TFs, and CDH1HIVIMLO; a M phenotype with low expression of the miRs, high 

expressions of TFs, and CDH1LOVIMHI; and two hybrid E/M phenotypes with intermediate 

expression of both miRs, TFs and CDH1/VIM.  The E/M I state lies closer to the E state, and the 

E/M II state lies closer to the M state.  More intriguingly, we found SNAI1 and SNAI2 become 

highly expressed in the E/M I phenotype while ZEB1 and ZEB2 are not fully expressed until the 
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E/M II or the M phenotype (Fig. 6C), which is a possibility supported by recent experimental 

results[25]. 

 

Moreover, RACIPE can help to find genes of similar function and filter out less important genes 

in the core circuit. As shown in Fig. 6B, genes are grouped into two major clusters according to 

their expression levels throughout all the RACIPE models – miRs/CDH1 and TFs/VIM.  The 

former genes are highly expressed mainly in E phenotypes while the latter are highly expressed 

in M phenotypes.  We also found three microRNAs (miR-30c, miR-205 and miR-9) to be 

randomly expressed in the RACIPE models, indicating these three microRNAs are less important 

to these EMT phenotypes.  From the topology of the circuit, we see that these three microRNAs 

lack feedback regulation and act solely as inputs.   

 

A typical approach taken in cell biology is to use two biomarkers to identify cells of different 

states in a mixed population by fluorescence-activated cell sorting (FACS).  To mimic the 

analysis, we projected the gene expression data of the RACIPE models onto the two axes of 

important genes, as shown in the scatter plots in Fig. 6D-F.  In all of the three cases, the E and 

the M phenotypes can be distinguished.  However, for the hybrid phenotypes, the E/M I and the 

E/M II states overlap in the CDH1-VIM plot (Fig. 6D).  These two hybrid phenotypes can be 

separated more easily in the ZEB1-miR200b plot (Fig. 6E).  In the SNAIL1-miR34a plot (Fig. 

6F), however, the two E/M states overlap with the M state.  The theoretical prediction that the 

SNAIl1-miR34a axis is less efficient at distinguishing the states is supported by transcriptomics 

data from the NCI-60 cell lines[54] (Fig. 6G-I). We see here that either VIM-CDH1 or the 

ZEB1-miR200b axes are indeed better than the SNAIL1-miR34a axes in separating different 
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EMT phenotypes. Our results are also consistent with our previous theoretical finding that ZEB1 

is more crucial than SNAIL1 in the decision-making of EMT[25]. 

 

Discussion 

Recently, the rapid development of genomic profiling tools has allowed the mapping of gene 

regulatory networks.  Yet, it remains a challenge to understand the operating mechanisms and the 

design principles of these networks.  Conventional computational modeling methods provide 

insightful information; however, their prediction power is usually limited by the incompleteness 

of the network structure and the absence of reliable kinetics.  To deal with these issues, we have 

developed a new computational modeling method, called RACIPE, which allows unbiased 

predictions of the dynamic behaviors of a complex gene regulatory circuit.  Compared to 

traditional methods, RACIPE uniquely generates an ensemble of models with distinct kinetic 

parameters.  These models can faithfully represent the circuit topology and meanwhile capture 

the heterogeneity in the kinetics of the genetic regulation.  By modeling the dynamics of every 

RACIPE model, we can utilize statistical analysis tools to identify the robust features of network 

dynamics.  We have successfully tested RACIPE on several theoretical circuit motifs and a 

proposed core Epithelial-to-Mesenchymal Transition (EMT) gene regulatory circuit.  In each 

circuit, RACIPE is capable of predicting the relevant gene states and providing insights into the 

regulatory mechanism of the decision-making among gene states.  

 

Unlike other methods that utilize randomization strategies to explore the parameter sensitivity for 

gene circuit[34–37], RACIPE adopts a carefully designed sampling strategy to randomize circuit 

parameters over a wide range. Instead of looking for the sensitivity of the circuit function to 
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parameter variations, we focused on uncovering conserved features remaining in the ensemble of 

RACIPE models. This was carried out by statistical learning methods such as hierarchical 

clustering analysis.  We showed the power of RACIPE to predict the robust gene states for a 

circuit with a given topology.  However, the rich data generated by RACIPE can be further 

analyzed for more hidden information.  Moreover, it is easy to implement gene modifications 

such as knockdown or overexpression treatments with the RACIPE method to learn the 

significance of each gene or link in the circuit.  Therefore, RACIPE provides a new way to 

model a gene circuit without knowing the detailed circuit parameters.  

 

Another parameter-independent approach people often use for gene circuit modeling is Boolean 

network model[55], which digitalizes the gene expression into on and off states and uses logic 

functions to describe the combinatorial effects of regulators to their targets.  Compared with the 

Boolean network model, RACIPE is a continuous method, so it is not restricted to the on and off 

values.  Instead, RACIPE enables us to find the intermediate levels of gene expressions beyond 

the on and off states, as we showed in Fig. 5B and Fig. 6C.  From the ensemble of RACIPE 

models, we can predict the expression distribution of the gene, which can be directly compared 

with experimental expression data.  In addition, in RACIPE, we not only obtain in silico gene 

expression data, but we also know the kinetic parameters for each model.  From these parameter 

data, we can directly compare the parameter distributions for different gene states, from which 

we can learn the driving parameters that are responsible for the transitions among the states. 

 

To conclude, here we have introduced a new theoretical modeling method, RACIPE, to 

unbiasedly study the behavior of a core gene regulatory circuit under the presence of intrinsic or 
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extrinsic fluctuations.  These fluctuations could represent different signaling environments, 

epigenetic states, and/or genetic backgrounds of the core circuit and can cause cell-cell 

heterogeneity in a population. By approximating these fluctuations as variations of the model 

parameters, RACIPE provides a straightforward way to understand the heterogeneity and to 

explain further how gene circuits can perform robust functions under such conditions.  Moreover, 

RACIPE uniquely generates a large set in silico expression data, which can be directly compared 

with experimental data using common bioinformatics tools.  RACIPE enables the connection of 

traditional circuit-based bottom-up approach with profiling-based top-down approach.  We 

expect RACIPE to be a powerful method to identify the role of network topology in determining 

network operating principles.   
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Fig 1. Schematics of the random circuit perturbation (RACIPE) method.  
(A) The gene regulatory network for a specific cellular function is decomposed into two parts – a 
core gene circuit modeled by chemical rate equations and the other peripheral genes whose 
contribution to the network is regarded as random perturbations to the kinetic parameters of the 
core circuit; (B) RACIPE generates an ensemble of models, each of which is simulated by the 
same rate equations but with randomly sampled kinetic parameters. For each model, multiple 
runs of simulations are performed, starting from different initial conditions, to identify all 
possible stable steady states; (C) The in silico gene expression data derived from all of the 
models are subject to statistical analysis. 
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Fig 2. Randomization scheme to estimate the ranges of the threshold parameters. 
(A) Schematics of the procedure to estimate the ranges of the threshold parameters, so that the 
level of a regulator has 50% chance to be above or below the threshold level of each regulatory 
link (“half-functional rule”).  First, for a gene A without any regulator, the RACIPE models are 
generated by randomizing the maximum production rate and the degradation rate according to S1 
Table.  The distribution of A level is obtained from the stable steady state solutions of all the 
RACIPE models (top left panel, yellow histogram).  Second, for a gene A in a gene circuit, the 
distribution of A level is estimated only on the basis of the inward regulatory links (i.e. the B to 
A activation and the C to A inhibition in the bottom left panel).  The distributions of the levels of 
the inward regulators B and C are assumed to follow the same distributions as a gene without 
any regulator (bottom left panel, blue and red distribution); the threshold levels for these inward 
links are chosen randomly from (0.02M to 1.98M), where M is the median of their gene 
expression distributions. Finally, the distribution of A level is obtained by randomizing all the 
relevant parameters.  That includes the levels of B and C, the strength of the inward regulatory 
links, the maximum production rate and the degradation rate of the A, and the threshold for any 
regulatory link starting from A is chosen randomly from (0.02M to 1.98M), where M is the 
median level of the new distribution of A level (orange in the bottom panel). The same procedure 
is followed for all other genes. (B) Tests on several simple toggle-switch-like circuit motifs and 
the Epithelial-to-Mesenchymal Transition (EMT) circuit show that the “half-functional rule” is 
approximately satisfied with this randomization scheme.  For each RACIPE model, we computed 
the ratio (x/x0) of the level of each gene X at each stable steady state (x) and the threshold (x0) 
for the outward regulations from gene X.  The yellow region shows the probability of x/x0 > 1 for 
all the RACIPE models, and the green region shows the probability of x/x0 < 1. 
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Fig 3. RACIPE identifies robust features of toggle-switch-like motifs. 
RACIPE was tested on three circuits – a simple toggle-switch (TS, top left) which consists of 
genes A and B that mutually inhibit each other (solid lines and bars), a toggle-switch with one-
sided self-activation (TS1SA) which has an additional self-activation link on gene B, and a 
toggle-switch with two-sided self-activation (TS2SA) which has additional self-activation links 
on both genes. (A) Probability distributions of the number of stable steady states for each circuit. 
(B) Probability density maps of the gene expression data from all the RACIPE models. Each 
point represents a stable steady state from a model. For any RACIPE model with multiple stable 
steady states, all of them are shown in the plot. (C) Average linkage hierarchical clustering 
analysis of the gene expression data from all the RACIPE models using the Euclidean distance. 
Each column corresponds to a gene, while each row corresponds to a stable steady state from a 
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model. The analysis shows that the gene expression data could be clustered into distinct groups, 
each of which is associated with a gene state, as highlighted by different colors on the right of 
the heatmaps. 
 

 
Fig 4. The gene states of the toggle-switch motif are robust against different types of 
distributions used to sample the parameters. 
(A) Uniform distributions in three different ranges were used to sample the kinetic parameters of 
the RACIPE models.  The top panels show the range of the distribution (left panel: the full range; 
middle panel: half; right panel: 1/4).   The bottom panels show the probability density maps of 
the gene expression data from all the RACIPE models. Similarly, panels (B) and (C) show the 
use of a Gaussian distribution and an exponential distribution, respectively.  For the Gaussian 
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distribution (B), its standard deviation was shrunk by a factor of two from left to right. For the 
Exponential distribution (C), its mean was reduced by a factor of two from left to right. 

 
Fig 5. Application of RACIPE to coupled toggle-switch circuits. 
RACIPE was tested on coupled toggle-switch circuits, as illustrated at the top of the figure. (A) 
2D probability density map of the RACIPE-predicted gene expression data projected to the 1st 
and 2nd principal component axes. (B) Average linkage hierarchical clustering analysis of the 
gene expression data from all the RACIPE models using the Euclidean distance. Each column 
corresponds to a gene, while each row corresponds to a stable steady state. The clustering 
analysis allows the identification of several robust gene states, whose characteristics were 
illustrated as circuit cartoons to the right of the heatmap. The expression levels of each gene in 
these gene states are illustrated as low (grey), intermediate (blue), or high (red, see SI for the 
definition). 
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Fig 6. RAICPE identifies multiple EMT cell states from gene network analysis.  
(A) A proposed Epithelial-to-Mesenchymal Transition (EMT) circuit is constructed according to 
the literature; the circuit consists of 13 transcriptional factors (circles), 9 microRNAs (red 
hexagons) and 82 regulatory links. The blue solid lines and arrows represent transcriptional 
activations the red solid lines and bars represent transcriptional inhibition, and the green dashed 
lines and bars stand for translational inhibition. Two readout genes CDH1 and VIM are shown as 
green circles while the other transcriptional factors are shown in blue. (B) Average linkage 
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hierarchical clustering analysis of the gene expression data from all the RACIPE models using 
the Euclidean distance. Each column corresponds to a gene, and each row corresponds to a stable 
steady state. Four major gene states were identified and highlighted by different colors. 
According to the expression levels of CDH1 and VIM, the four gene states were associated with 
epithelial (E in red), mesenchymal (M in grey) and two hybrid epithelial/mesenchymal (E/M I in 
purple and E/M II in brown) phenotypes. (C) The gene expression distribution of each gene state. 
The gene expression distribution of each gene for all of the RACIPE models is shown in blue, 
while that for each gene state is shown in red (50 bins are used to calculate the histogram of each 
distribution).  For clarity, each distribution is normalized by its maximum probability. Each row 
represents a gene and each column represents a gene state. (D-F) Gene expression data were 
projected to either CDH1/VIM, miR-200b/ZEB1, or miR-34a/SNAI1 axes.  Different gene states 
are highlighted by the corresponding colors and enclosed by the ellipses.  (G-I) Transcriptomics 
data from the NCI-60 cell lines were projected to either CDH1/VIM, miR-200b/ZEB1, or miR-
34a/SNAI1 axes. The NCI-60 cell lines have been grouped into E, E/M and M phenotypes 
according to the ratio of the protein levels of CDH1 and VIM. Different gene states are 
highlighted by the corresponding colors and enclosed by the ellipses.   
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