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1. Abstract 
Hierarchical temporal memory (HTM) provides a theoretical 
framework that models several key computational principles 
of the neocortex. In this paper we analyze an important 
component of HTM, the HTM spatial pooler (SP). The SP 
models how neurons learn feedforward connections and form 
efficient representations of the input. It converts arbitrary 
binary input patterns into sparse distributed representations 
(SDRs) using a combination of competitive Hebbian learning 
rules and homeostatic excitability control. We describe a 
number of key properties of the spatial pooler, including fast 
adaptation to changing input statistics, improved noise 
robustness through learning, efficient use of cells and 
robustness to cell death. In order to quantify these properties 
we develop a set of metrics that can be directly computed 
from the spatial pooler outputs. We show how the properties 
are met using these metrics and targeted artificial simulations. 
We then demonstrate the value of the spatial pooler in a 
complete end-to-end real-world HTM system. We discuss the 
relationship with neuroscience and previous studies of sparse 
coding. The HTM spatial pooler represents a neurally inspired 
algorithm for learning sparse representations from noisy data 
streams in an online fashion.     

2. Introduction 
Our brain continuously receives vast amounts of information 
about the external world through peripheral sensors that 
transform changes in light luminance, sound pressure, and 
skin deformations into millions of spike trains. Each cortical 
neuron has to make sense of a flood of time-varying inputs by 
forming synaptic connections to a subset of the presynaptic 
neurons. The collective activation pattern of populations of 
neurons contributes to our perception and behavior. A central 
problem in neuroscience is to understand how individual 
cortical neurons learn to respond to specific input spike 
patterns, and how a population of neurons collectively 
represents features of the inputs in a flexible, dynamic, yet 
robust way. 

Hierarchical temporal memory (HTM) is a theoretical 
framework that models a number of structural and algorithmic 
properties of the neocortex (Hawkins et al., 2011). HTM 
networks can learn time-based sequences in a continuous 
online fashion using realistic neuron models that incorporate 
nonlinear active dendrites (Antic et al., 2010; Major et al., 
2013) with thousands of synapses (Hawkins and Ahmad, 
2016). When applied to streaming data, HTM networks 
achieve state of the art performance on anomaly detection 
(Lavin and Ahmad, 2015; Ahmad and Purdy, 2016) and 
sequence prediction tasks (Cui et al., 2016a).  

The success of HTM relies on the use of sparse distributed 
representations (SDRs) (Ahmad and Hawkins, 2016). Such 
sparse codes represent a favorable compromise between local 
codes and dense codes (Földiák, 2002). It allows simultaneous 
representation of distinct items with little interference, while 
still has a large representational capacity (Kanerva, 1988; 

Ahmad and Hawkins, 2015). Existence of SDRs have been 
documented in auditory, visual and somatosensory cortical 
areas (Vinje and Gallant, 2000; Weliky et al., 2003; 
Hromádka et al., 2008; Crochet et al., 2011). HTM spatial 
pooler (SP) is a key component of HTM networks that 
continuously encodes streams of sensory inputs into SDRs. 
Originally described in (Hawkins et al., 2011), the term 
"spatial pooler" is used because input patterns that share a 
large number of co-active neurons (i.e. that are spatially 
similar) are grouped together into a common output 
representation. Recently there has been increasing interest in 
the mathematical properties of the HTM spatial pooler 
(Pietroń et al., 2016; Mnatzaganian et al., 2017) and machine 
learning applications based on it (Thornton and Srbic, 2011; 
Ibrayev et al., 2016). In this paper we explore several 
functional properties of the HTM spatial pooler that have not 
yet been systematically analyzed.  

The HTM spatial pooler incorporates several computational 
principles of the cortex. It relies on competitive Hebbian 
learning (Hebb, 1949), homeostatic excitability control (Davis, 
2006), topology of connections in sensory cortices (Udin and 
Fawcett, 1988; Kaas, 1997) and activity-dependent structural 
plasticity (Zito and Svoboda, 2002). The HTM spatial pooler 
is designed to achieve a set of computational properties that 
support further downstream computations with SDRs. These 
properties include (1) preserving the semantic similarity of the 
input space by mapping similar inputs to similar outputs, (2) 
continuously adapting to changing statistics of the input 
stream, (3) forming fixed sparsity representations, (4) being 
robust to noise, and (5) being fault tolerant. As an integral 
component of HTM, the outputs of the SP can be easily 
recognized by downstream neurons and contribute to 
improved performance in an end-to-end HTM system. 

The primary goal of this paper is to provide a thorough 
discussion of the computational properties of the HTM spatial 
pooler and demonstrate its value in end-to-end HTM systems. 
The paper is organized as follows. We first introduce the 
HTM spatial pooler algorithm. We discuss the computational 
properties in detail and then describe a set of metrics to 
quantify them. We demonstrate how these properties are 
satisfied, first using specific isolated simulations, and then in 
the context of an end-to-end HTM system. In the discussion, 
we propose potential neural mechanisms and discuss the 
relationship to existing sparse coding techniques. 

3. Model 
The spatial pooler is a core component of HTM networks 
(Fig. 1A). In an end-to-end HTM system, the spatial pooler 
transforms input patterns into SDRs in a continuous online 
fashion. The HTM temporal memory learns temporal 
sequences of these SDRs and makes predictions for future 
inputs (Cui et al., 2016a; Hawkins and Ahmad, 2016). A 
single layer in an HTM network is structured as a set of mini-
columns, each with a set of cells (Fig. 1B). The HTM neuron 
model incorporates dendritic properties of pyramidal cells in 
neocortex (Spruston, 2008), where proximal and distal 
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dendritic segments on HTM neurons have different functions 
(Fig. 1C) (Hawkins and Ahmad, 2016). Patterns detected on 
proximal dendrites lead to action potentials and define the 
classic receptive field of the neuron. Patterns recognized by a 
neuron's distal synapses act as predictions by depolarizing the 
cell without directly causing an action potential.  

In HTM theory different cells within a mini-column represent 
this feedforward input in different temporal contexts. The 
spatial pooler models synaptic growth in the proximal 
dendritic segments. Since cells in a mini-column share the 
same feedforward classical receptive field (Buxhoeveden, 
2002), the SP models how this common receptive field is 
learned from the input. The SP output represents the 
activation of mini-columns in response to feedforward inputs. 
The HTM temporal memory models a cell’s distal dendritic 
segments and learns transitions of SDRs by activating 
different sets of cells depending on the temporal context 
(Hawkins and Ahmad, 2016). The output of HTM temporal 
memory represents the activation of individual cells across all 
mini-columns. 
The SP models local inhibition among neighboring mini-
columns. This inhibition implements a k-winners-take-all 
computation (Majani et al., 1988; Makhzani and Frey, 2015). 
At any time, only a small fraction of the mini-columns with 
the most active inputs become active. Feedforward 

connections onto active cells are modified according to 
Hebbian learning rules at each time step. A homeostatic 
excitatory control mechanism operates on a slower time scale. 
The mechanism is called "boosting" in (Hawkins et al., 2011), 
because it increases the relative excitability of mini-columns 
that are not active enough. Boosting encourages neurons with 
insufficient connections to become active and participate in 
representing the input. 

Each SP mini-column forms synaptic connections to a 
population of input neurons. We assume that the input 
neurons are arranged topologically in an input space. The 
location of the jth input neuron is denoted as 𝐱! . The 
dimensionality of the input space depends on applications. 
For example, the input space is 2-dimensional if the inputs are 
images and 1-dimensional if the inputs are scalar numbers. A 
variety of encoders are available to deal with different data 
types (Purdy, 2016). The output neurons are also arranged 
topologically in a different space; we denote the location of 
the ith SP mini-column as 𝐲!.  
We use HTM neuron models in the SP (Fig. 1B). A complete 
description of the motivation and supporting evidence for this 
model can be found in (Hawkins and Ahmad, 2016). In this 
model, the learning rule is inspired by neuroscience studies of 
activity-dependent synaptogenesis (Zito and Svoboda, 2002). 
The synapses for the ith SP mini-column are located in a 

Figure 1 HTM Spatial Pooler. A. An end-to-end HTM system consists of an encoder, the HTM spatial pooler, the 
HTM temporal memory and an SDR classifier. B. The HTM spatial pooler converts inputs (bottom) to SDRs (top). 
Each SP mini-column forms synaptic connections to a subset of the input space (gray square, potential connections). A 
local inhibition mechanism ensures that a small fraction of the SP mini-columns that receive most of the inputs are 
active within the local inhibition radius (shaded blue circle). Synaptic permanences are adjusted according to the 
Hebbian rule: for each active SP mini-column, active inputs (black lines) are reinforced and inactive inputs (dashed 
lines) are punished. C. An HTM neuron (left) has three distinct dendritic integration zones, corresponding to different 
parts of the dendritic tree of pyramidal neurons (right). The SP models the feedforward connections onto the proximal 
dendrite. D. The excitability of a SP mini-column depends on its past activation frequency. 
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hypercube of the input space centered at 𝐱!!  with an edge 
length of 𝛾. Each SP mini-column has potential connections 
to a fraction of the inputs in this region. We call these 
"potential" connections because a synapse is connected only if 
its synaptic permanence is above the connection threshold. 
The set of potential input connections for the ith mini-column 
is, 

 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐼𝑛𝑝𝑢𝑡 𝑖 =  𝑗 I 𝐱!; 𝐱!! , 𝛾 𝑎𝑛𝑑  

𝑍!" < 𝑝} 

(1) 

I(𝐱!; 𝐱!! , 𝛾) is an indicator function that returns one only if 𝐱! 
is located with a hypercube centered at 𝐱!! with an edge length 
of 𝛾.  𝑍!"~𝑈(0, 1) is a random number uniformly distributed 
in [0, 1], p is the fraction of the inputs within the hypercube 
that are potential connections.  
 

We model each synapse with a scalar permanence value and 
consider a synapse connected if its permanence value is above 
a connection threshold. We denote the set of connected 
synapses with a binary matrix 𝐖,   
 𝑊!" =

1 𝑖𝑓 𝐷!" ≥ 𝜃!
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

where 𝐷!" gives the synaptic permanence from the jth input to 
the ith SP mini-column. The synaptic permanences are scalar 
values between 0 and 1, which are initialized to be 
independent and identically distributed according to a uniform 
distribution between 0 and 1 for potential synapses.  

 𝐷!" =
U(0, 1) 𝑖𝑓 𝑗 ∈ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐼𝑛𝑝𝑢𝑡(𝑖)
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

 (3) 

The connection threshold 𝜃!  is set to be 0.5 for all 
experiments, such that initially 50% of the potential synapses 
are connected. Performance of the SP is not sensitive to the 
connection threshold parameter.  
 

Neighboring SP mini-columns inhibit each other via a local 
inhibition mechanism. We define the neighborhood of the ith 
SP mini-column 𝐲! as 

 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖) = { 𝑗 | 𝐲! − 𝐲! < 𝜙, 𝑗 ≠ 𝑖} (4) 

where 𝐲! − 𝐲!  is the Euclidean distance between the mini-
column i and j. Since local inhibition occurs among 
neighboring mini-columns, the parameter  𝜙  controls the 
inhibition radius. Local inhibition is important when the input 
space has topology, that is, when neighboring input neurons 
represent information from similar subregions of the input 
space. The inhibition radius is dynamically adjusted to ensure 
local inhibition affects mini-columns with inputs from the 
same region of the input space. That is, 𝜙 increases if the 
average receptive field size increases. Specifically, 𝜙  is 
determined by the product of the average connected input 
spans of all SP mini-columns and the number of mini-
columns per input. If SP inputs and mini-columns have the 
same dimensionality, 𝜙= 𝛾 initially.  In practice we also deal 
with input spaces that have no natural topology, such as 
categorical information (Purdy, 2016). In this case there is no 
natural ordering of inputs and we use an infinitely large 𝜙 to 
implement global inhibition.  
 

Given an input pattern z, the activation of SP mini-columns is 
determined by first calculating the feedforward input to each 
mini-column, which we call the input overlap 

 𝑜! = 𝑏! 𝑊!"𝑧𝒋
!

 (5) 

𝑏! is a positive boost factor that controls the excitability of 
each SP mini-column.  

A SP mini-column becomes active if the feedforward input is 
above a stimulus threshold 𝜃!"#$  and is among the top s 
percent of its neighborhood, 
 𝑎! = 1 𝑖𝑓 o! ≥ prctile 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑖 , 1

− 𝑠   𝑎𝑛𝑑 o! ≥ 𝜃!"#$ 
(6 

We typically set 𝜃!"#$  to be a small positive number to 
prevent mini-columns without sufficient input to become 
active.  prctile( ∙ , ∙ ) is the percentile function. 
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑖)  is the overlap values for all 
neighboring mini-columns of the ith mini-column. 

 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑖) = {𝑜!|𝑗 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)} (7) 

s is the target activation density (we typically use s=0.02). 
The activation rule (Eq. 6-7) implements k-winners-take-all 
computation within a local neighborhood. It has been 
previously shown that such computation can be realized by 
integrate-and-fire neuron models with precise spike timings 
(Billaudelle and Ahmad, 2015a). In this study we use discrete 
time steps to speed up simulation. 
The feedforward connections are learned using a Hebbian rule. 
For each active SP mini-column, we reinforce active input 
connections by increasing the synaptic permanence by 𝑝!, 
and punish inactive connections by decreasing the synaptic 
permanence by 𝑝!.  The synaptic permanences are clipped at 
the boundaries of 0 and 1.  

To update the boost factors, we compare the recent activity of 
each mini-column to the recent activity of its neighbors. We 
calculate the time-averaged activation level for the each mini-
column over the last T inputs as  

 
𝑎!(𝑡) =

(𝑇 − 1) ∗ 𝑎!(𝑡 − 1) + 𝑎!(𝑡)
𝑇

 
(8) 

where 𝑎!(𝑡) is the current activity of the ith mini-column at 
time t. T controls how fast the boost factors are updated. 
Because the activity is sparse it requires many steps before we 
can get a meaningful estimate of the activation level. 
Typically we choose T to be 1000. The time-averaged 
activation level in Eq. 8 can be approximated by low-pass 
filtering of the voltage signal or intracellular calcium 
concentration. Similar calculations have been used in previous 
models of homeostatic synaptic plasticity (Clopath et al., 2010; 
Habenschuss et al., 2013). 
 

The recent activity in the mini-column’s neighborhood is 
calculated as 

 < 𝑎!(𝑡) >=
1

|𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)|
𝑎!(𝑡)

!∈!"#$!!"#(!)

 (9) 

The boost factor 𝑏! is then updated based on the difference 
between 𝑎! 𝑡  and < 𝑎!(𝑡) > as shown in Fig. 1D. 
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 𝑏! = 𝑒!!(!!(!)!!!!(!)!) (10) 

Here 𝛽 is a positive parameter that controls the strength of the 
adaptation effect. The above boosting mechanism is inspired 
by numerous studies of homeostatic regulation of neuronal 
excitability (see (Davis, 2006) for a review). The mechanism 
encourages efficient use of mini-columns. The exact formula 
is not critical; we chose Eq. (10) due to its simplicity. 
 

4. Properties of the HTM spatial pooler 
In this section we describe a set of desirable properties for the 
HTM spatial pooler. These properties ensure flexible and 
robust representations of input streams with changing 
statistics, and are important for downstream neural 
computation.  

The first property of the SP is to form fixed-sparsity 
representations of the input. To contribute to further neural 
computation, the outputs of the SP have to be recognized by 
downstream neurons. A cortical neuron recognizes 
presynaptic input patterns by initiating nonlinear dendritic 
spikes (Major et al., 2013) or somatic action potentials (Bean, 
2007), with thresholds depending on intrinsic cellular 
properties. It has been previously shown that recognition of 
presynaptic activation patterns is robust and reliable if the 
presynaptic inputs have a fixed level of sparsity (Ahmad and 
Hawkins, 2016). However, if the sparsity is highly variable, 
input patterns with high activation densities would be more 
likely to cause dendritic spikes or action potentials in 
downstream neurons, whereas patterns with low activation 
densities would be much harder to detect. This will contribute 
to high false positive error for high density patterns and false 
negative error for low density patterns. A fixed sparsity is 
desirable because it ensures all input patterns can be equally 
detected.  

A second desirable property is that the system should utilize 
all available resources to learn optimal representations of the 
inputs. From an information theoretic perspective, neurons 
that are almost always active and neurons that do not respond 
to any of the input patterns convey little information about the 
inputs. Given a limited number of neurons, it is preferable to 
ensure every neuron responds to a fraction of the inputs such 
that all neurons participate in representing the input space. 
The boosting mechanism in the SP (Eq. 8-10) is designed to 
achieve this goal. We quantify this property using an entropy 
metric (see details below).  

A third desirable property is that output representations 
should be robust to noise in the inputs. Real-world problems 
often deal with noisy data sources where sensor noise, data 
transmission errors, and inherent device limitations frequently 
result in inaccurate or missing data. In the brain, the responses 
of sensory neurons to a given stimulus can vary significantly 
(Tolhurst et al., 1983; Faisal et al., 2008; Masquelier, 2013; 
Cui et al., 2016c). It is important for the SP to have good 
noise robustness, such that the output representation is 
relatively insensitive to small changes in the input.  

A fourth property is that the system should be flexible and 
able to adapt to changing input statistics. The cortex is highly 
flexible and plastic. Regions of the cortex can learn to 
represent different inputs in reaction to changes in the input 
data. If the statistics of the input data changes, the spatial 

pooler should quickly adapt to the new data by adjusting its 
synaptic connections. This property is particularly important 
for applications with continuous data streams that has fast-
changing statistics (Cui et al., 2016b). 

Finally, a fifth property is that the system should be fault 
tolerant. If part of the cortex is damaged, as might occur in 
stroke or traumatic brain injury, there is often an initial deficit 
in perceptual abilities and motor functions which is followed 
by substantial recovery that occurs in the weeks to months 
following injury (Nudo, 2013). It has also been documented 
that the receptive fields of sensory neurons reorganize 
following restricted lesions of afferent inputs, such as retinal 
lesions (Gilbert and Wiesel, 1992; Baker et al., 2005). The 
spatial pooler should continue to function in the event of 
system faults such as loss of input or output neurons in the 
network. 

5. Spatial pooler metrics 
In addition to gauging performance in end-to-end HTM 
systems, we would like to quantify the performance of spatial 
pooler as a standalone component. Since the spatial pooler is 
an unsupervised algorithm designed to achieve multiple 
properties, we describe several statistical metrics that can be 
directly calculated based on the inputs and outputs of the 
spatial pooler. Such metrics are particularly useful if 
configurations of the spatial pooler caused the end-to-end 
HTM system to have poor performance.  
 
Metric 1: sparseness. We define the population sparseness as 
 

𝑠! =
1
𝑁

𝑎!!
!

!!!

 
(11) 

𝑎!! is the activity of the ith mini-column at time step t, 𝑁 is the 
number of SP mini-columns. This metric reflects the 
percentage of active neurons at each time step. Since we 
consider binary activations (Eq. 6), the sparsity is 
straightforward to calculate. This metric has the same spirit as 
other population sparseness metrics for scalar value 
activations (Willmore and Tolhurst, 2001). We can quantify 
how well the spatial pooler achieves a fixed sparsity by 
looking at the standard deviation of the sparseness across time.  
 

Metric 2: entropy. Given a dataset of M inputs, the average 
activation frequency of each SP mini-column is 

 
𝑃(𝑎!) =

1
𝑀

𝑎!!
!

!!!

 
(12) 

The entropy of the ith SP mini-column is given by the binary 
entropy function 
 𝑆! = −𝑃(𝑎!) log!𝑃(𝑎!) − (1 − 𝑃(𝑎!)) log!(1

− 𝑃(𝑎!)) 
(13) 

If 𝑃(𝑎!) equals zero or one, we set 𝑆!  to zero following 
convention. We define the entropy of the spatial pooler as  

 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑆!

!

!!!
 

(14) 

Since the average sparseness is almost constant in SP, the 
entropy is maximized when every SP mini-column has equal 
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activation frequency. The spatial pooler will have low entropy 
if a small number of the SP mini-columns are active very 
frequently and the rest are inactive. Therefore, the entropy 
metric quantifies whether the SP efficiently utilizes all mini-
columns. 
 

Metric 3: noise robustness. We test noise robustness by 
measuring the sensitivity of the SP representation to varying 
amount of input noise. We denote a clean input and a noise 
contaminated input as zi and 𝐳!!(𝑘)  respectively, where k 
denotes the amount of noise added to the input. The 
corresponding SP outputs are denoted as ai and 𝐚!!(𝑘) 
respectively. In our simulations, we randomly flip k percent of 
the active input bits to inactive, and flip the corresponding 
number of inactive input bits to active. This procedure 
randomizes inputs while maintaining constant input sparsity. 
We vary the amount of noise between 0 and 100%, and 
measure the fraction of shared active mini-columns in the SP 
output, averaged over a set of M inputs. The noise robustness 
index is defined as 

 𝑁𝑜𝑖𝑠𝑒𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠

=
1
𝑀

𝐚𝒊 ∘ 𝐚!
!(𝑘) !

𝐚𝒊 !
d𝑘

!

!!!

!

!!!

 

(15) 

The L0-norm ∙ ! gives the number of non-zero bits in a 
binary vector; the ∘  operator represents element-wise 
multiplication. Note that with binary vectors the L0-norm is 
identical to the L1-norm. The noise robustness index 
measures the area under the output overlap curve in Fig. 2C. 
The fraction of shared active mini-columns start at 100% 
when noise is zero, and decreases towards 0 as the amount of 
noise increases. The noise robustness thus lies between 0 and 
1.  
 

Metric 4: stability. Since the spatial pooler is a continuously 
learning system, it is possible that the representation for a 
given input changes over time or becomes unstable. 
Instability without changes in the input statistics could 
negatively impact downstream processes. We measure 
stability by periodically disabling learning and presenting a 
fixed random subset of the input data. The stability index is 
the average fraction of active mini-columns that remained 
constant for each input.  
 

Denote the SP output to the ith test input at the jth test point 
as 𝐚!

!, the stability index at test point j is given as, 

 
𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑗) =

1
𝑀

𝐚!
! ∘ 𝐚!

!!!
!

𝐚!
!!!

!

!

!!!

 
(16) 

M is the number of inputs tested. The stability lies between 0 
and 1, and equals 1 for a perfectly stable spatial pooler. Note 
that the superscript j is the index for test points instead of time 
steps in Eq. 16. We compute the percentage overlap between 
the SP outputs to the same test inputs across consecutive test 
points. We train the SP on the entire set of training data 
between test points. 

6. Simulation details 
We ran a number of different simulations (datasets described 
below). We used either a 2-dimensional spatial pooler with 
32x32 mini-columns for experiments with topology, or a 
dimensionless spatial pooler with 1024 mini-columns for 
experiments without topology. The complete set of spatial 
pooler parameters is given in Table 1. The source code for all 
experiments are openly available at: 

https://github.com/numenta/nupic.research/tree/master/project
s/sp_paper  
 
Table 1 Parameters for the HTM spatial pooler 

Common parameters Value 

Activation density 

Connection threshold for synaptic permanence 
𝜃! 

Synaptic permanence increment 𝑝! 

Synaptic permanence decrement 𝑝! 
Boosting strength 𝛽 

Activation frequency duty cycle 𝑇 

Stimulus threshold 𝜃!"#$ 
Fraction of potential inputs p 

2% 
0.5 
0.1 
0.02 
100 
1000 
1 
1 

Parameters for the 1-dimensional spatial 
pooler (no topology) 

 

Column dimensions 

Potential input radius 𝛾 

1024x1 

∞ 

Parameters for the 2-dimensional spatial 
pooler (with topology) 

 

Column dimensions 
Potential input radius 𝛾 

32x32 
5 

 
 

We presented each dataset in a streaming online fashion. Each 
dataset is presented to the SP in one or more epochs. We 
define an epoch as a single pass through the entire dataset in 
random order. Note that this definition of epoch is different 
from batch training paradigm because the SP receives one 
input pattern at a time and does not maintain any buffer of the 
entire dataset. We measured SP metrics between epochs on a 
random subset of the input data with learning turned off. In 
practice, the metrics could also be monitored continuously 
during learning.   
 
We used the following datasets: 

Random Sparse Inputs. In this experiment we created a set of 
100 random inputs with varying sparsity levels. Each input is 
a 32x32 image where a small fraction of the bits are active. 
The fraction of active inputs is uniformly chosen between 2% 
to 20%. This dataset employs a spatial pooler with topology 
and is used in Figs. 2-3.  
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Random Bars and Crosses. The random bar dataset consists 
of 100 pairs of random bars. Each random bar pair stimuli is a 
10x10 image, with a horizontal bar and a vertical bar placed at 
random locations. The bars have a length of 5 pixels. Each 
random cross stimuli is a 10x10 image with a single cross. 
The random cross dataset consists of 100 cross patterns at 
random locations, where each cross consists of a horizontal 
bar and a vertical bar that intersect at the center. Each bar has 
a length of 5 pixels. This dataset is used in Fig. 4A-B. 
 

MNIST. We trained a spatial pooler without topology on the 
MNIST database of handwritten digits (Lecun et al., 1998). 
We present the full training set of 60,000 examples in a single 
epoch to the spatial pooler. We visually examined the 
receptive field structures of a subset of randomly selected SP 
mini-columns after training. This dataset is used in Fig. 4C. 
 

Fault tolerance with topology. For the fault tolerance 
experiment (Fig. 5), we used images of random bar sets as 
input. The input space has dimensionality of 32x32 and each 
input contains 6 randomly located horizontal or vertical bars. 
Each bar has a length of 7. We used an SP with a two-
dimensional topology and 32x32 mini-columns. We first 
trained the intact SP on the random bars input until it 
stabilized (after 18000 inputs). We then tested two different 
types of trauma: simulated stroke or simulated input lesion. 
During the simulated stroke experiment, we permanently 
eliminated 121 SP mini-columns that lie in an 11x11 region at 
the center of the receptive field. For the simulated input lesion 
experiment, we did not change the SP during the trauma. 
Instead, we permanently blocked the center portion of the 
input space (121 inputs that lie in an 11x11 region at the 
center of the input space). For both experiments, we 
monitored the recovery of the SP for another 42000 steps.  
 

NYC taxi passenger count prediction. In addition to the above 
artificial datasets, we also tested the SP in an end-to-end real-
world HTM system. We chose the problem of demand 
prediction for New York City taxis. The dataset is publicly 
available via the New York City Metropolitan Authority. Full 
details are described in our previous paper (Cui et al., 2016a). 
As described in Fig. 1, the input data stream is first converted 
to binary representations using a set of encoders (Purdy, 
2016). The spatial pooler takes the output of the encoders as 
input and forms sparse distributed representations. The HTM 
sequence memory then learns sequences of SDRs and 
represents sequences with a sparse temporal code. Finally, we 
use a single layer feedforward classification network to map 
outputs of HTM sequence memory into real-time predictions 
for future inputs. The task is to model a continuous stream 
within the context of a real-time application. As such the 
spatial pooler, temporal memory, and classifier all learn 
continuously. It is important for the spatial pooler to output 
robust and efficient representations in order for the 
downstream components to learn.  
Following  (Cui et al., 2016a), we aggregated the passenger 
counts in New York City taxi rides at 30-minute intervals. We 
encoded the current passenger count, time of day and day of 
week into binary vectors using scalar and date-time encoders 

(Purdy, 2016). A spatial pooler with global inhibition was 
trained continuously on the outputs of encoders and provided 
input to the HTM sequence memory (Cui et al., 2016a). To 
evaluate the role of learning and boosting in SP, we compared 
the prediction accuracy in three scenarios (1) SP without 
learning or boosting, (2) SP with learning but not boosting, 
and (3) SP with both learning and boosting. 

7. Results 
We first discuss results on the Random Sparse Inputs dataset 
with respect to the metrics (Figs. 2 and 3). The input patterns 
are presented repeatedly to the HTM spatial pooler in a 
streaming fashion.  In our simulation, the population sparsity 
of the spatial pooler is always close to the target level of 2%, 
even though the input sparsity varies widely in the range of 
2%~20% (Fig. 2A).  This is an inherent property of the 
network due to the use of local k-winners-take-all activation 
rules.  

We measured the average entropy across all mini-columns 
(see Spatial Pooler Metrics). Since the overall activation 
sparsity is fixed in our network, the entropy is maximized if 
all mini-columns have the same activation probability. In this 
experiment, the entropy increases from 0.1221±0.0013 
bits/mini-column to 0.1320±0.0007 bits/mini-column with 
training. The difference is highly significant across repeated 
experiments with different set of random inputs (p<10-8, 
n=10, paired t-test). As a reference, the maximum possible 
entropy is 0.1345 bits/mini-column with the same sparsity 
levels. The increase of entropy is due to efficient use of all 
mini-columns. Before learning, a significant fraction of the 
mini-columns (~30%) were not active for any of the input, 
whereas a small fraction of the mini-columns were much 
more active than others. After learning, almost every mini-
column was active for 2% of the time.  

Figs. 2D and 2E demonstrate noise robustness as a function of 
SP learning. Before learning, a small change in the input will 
cause a large change in the SP output, suggesting high noise 
sensitivity (Fig. 2D, blue). After learning, the noise robustness 
gradually improves. After 40 repetitions of the dataset, there 
is no change on the SP output even if 40% of the active input 
bits are changed. The average noise robustness index (Eq. 15) 
correspondingly improves from 0.254±0.004 to 0.652±0.007 
(Fig. 2E, p<10-16, n=10, paired t-test). The improved noise 
robustness is due to the Hebbian learning rules. A set of SP 
mini-columns forms reliable connections to active input 
neurons during learning. The same set of SP mini-columns 
can be activated even if some of the input neurons are 
affected by noise after learning. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/085035doi: bioRxiv preprint 

https://doi.org/10.1101/085035
http://creativecommons.org/licenses/by-nc/4.0/


 7 

 
Figure 2 Spatial pooler forms SDRs with fixed sparsity 
and good noise robustness. A. We trained SP on a set of 100 
randomly generated inputs (top). The input sparsity varies 
between 2% to 20%. The sparsity of the SP output lies close 
to 2% (bottom), despite the large variation of input sparsity.  
B. Entropy before and after learning, averaged across 10 
repeated experiments (* p<10-16, n=10, paired t-test). The 
maximum possible entropy is shown as the black dashed line. 
C. The distribution of activation frequency of SP mini-
columns. Before learning (left), a significant fraction of the 
SP mini-columns (~30%) are not being used at all, while 
other mini-columns are active much more frequently. After 
learning (right), almost every mini-column is active for 2% of 
the time, suggesting every SP mini-column participate in 
representing the input. As a result, the entropy of the 
distribution is much higher. D-E Noise robustness of SP. We 
tested SP on noisy inputs during learning. D. The change of 
the SP outputs is plotted as a function of the noise level. 
Before learning, a small amount of noise will lead to 
significant change in the SP output (blue), whereas after 
learning, there is almost no change in the SP output when 
50% of the input bits changed. E. Average noise robustness 
before and after learning (* p<10-16, n=10, paired t-test).  

To test whether the spatial pooler can adapt to changing 
inputs, we train the spatial pooler until it stabilizes on one set 
of inputs. We then present a completely different input dataset 
(Fig. 3A). Right after we switch to a new dataset, the entropy 
and noise robustness drops sharply (Fig. 3B, 3D). At this 
point a large fraction of the SP mini-columns are not 
responsive to any input in the new dataset (Fig. 3C, left). 
Once learning resumes the spatial pooler quickly adapts to the 
new input dataset and the performance metrics recover back 
to the levels before the change (Fig. 3B, 3D). The SP adapts 

to the new dataset by first forming many more new synapses 
(Fig. 3A, 4th row) and then pruning unnecessary connections 
later (Fig. 3A, 5th row).  
 

 
Figure 3 Continuous learning with HTM spatial pooler. 
SP continuously adapts to the statistics of the input data. SP is 
trained on a set of random inputs (described in Fig. 2) until it 
stabilizes. We then switch to a new set of inputs (black dashed 
line) and monitor the continuous adaptation of SP to the new 
dataset. A. Statistical metrics on SP during continuous 
learning: top: stability, 2nd row: entropy; 3rd row: noise 
robustness; 4th row: formation of new synapses; 5th row: 
removal of synapses. B. The entropy decreases right after the 
change of the input dataset (epoch=50), and recovers 
completely after the SP is trained on the new dataset for long 
enough time (epoch=120). The black dashed line showed the 
theoretical limit for entropy given the sparsity constraint. C. 
Distribution of activation frequency of SP mini-columns right 
after the change in dataset (left) and after recovery (right). D. 
Noise robustness before change (epoch=49), right after 
change (epoch=50) and after recovery (epoch=120). E. The 
noise robustness decreases right after the change of the input 
dataset (blue vs. green), and recovers completely after the SP 
is trained on the new dataset for long enough time (red). 
The spatial pooler achieves these properties by continuously 
adapting feedforward connections to the input data. To 
illustrate how receptive field structures of SP are shaped by 
the input data, we trained the spatial pooler on the Random 
Bars dataset. In this experiment, the training data consists of 

in
p

u
t 

#
in

p
u

t 
#

0.00 0.10 0.20

0.00 0.05

...

...

Sparsity

SparsityA

0 50 100 150

0

20

40

60

80

Input Vectors

0 50 100 150

0

20

40

60

80

SP outputs

0.0 0.2 0.4 0.6 0.8 1.0

Noise Level

0.0

0.2

0.4

0.6

0.8

1.0

C
h

a
n

g
e

 o
f 

S
P

 O
u

tp
u

t

Epoch=0 Epoch=49B C

0.00 0.02 0.04 0.06 0.08 0.10

Activation Frequency

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
ac

tio
n 

of
 S

P 
Co

lu
m

ns

0.00 0.02 0.04 0.06 0.08 0.10

Activation Frequency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

epoch 0

epoch 5

epoch 10

epoch 20

epoch 40

E
p
o
ch

=
0

E
p
o
ch

=
5
0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

En
tr

op
y 

(b
its

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
oi

se
 R

ob
us

tn
es

s

E
p
o
ch

=
0

E
p
o
ch

=
5
0

E D

*

*

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/085035doi: bioRxiv preprint 

https://doi.org/10.1101/085035
http://creativecommons.org/licenses/by-nc/4.0/


 8 

either pairs of randomly generated bars, or a single cross at a 
random location.  

We plot example receptive fields from a random subset of SP 
mini-columns in Fig. 4. For this dataset the receptive field 
typically contains horizontal and vertical bar structures at 
random locations (Fig. 4A). Each SP mini-column responds to 
more than one bar in order to achieve the target activation 
frequency of 2%. When trained on the random cross data 
stream, the resulting receptive field consists of cross 
structures that resemble statistics of the inputs (Fig. 4B).  
Note that the resulting receptive field also depends on the 
ratio of synaptic permanence decrement and increment (p-/p+). 
If we increase p- to 0.05, most of the receptive field contains 
single bar segment when trained on the random bar pairs 
dataset (data not shown). 

We also trained the spatial pooler on the MNIST dataset. In 
this case the receptive field contains digit-like structures (Fig. 
4C). Although some receptive fields clearly detect single 
digits, others are responsive to multiple digits. This is because 
individual SP mini-columns do not behave like "grandmother 
cells" -- they are not meant to detect single instances of the 
inputs. Instead a single input is collectively encoded by a set 
of SP mini-columns. When trained on complex natural 
datasets, we expect to see a diversity of receptive structures 
within the spatial pooler, which may not resemble specific 
input instances. 

 
Figure 4 Example receptive fields of SP. The receptive 
fields of SP mini-columns capture statistics of the input data. 
We define receptive field as the set of inputs that are 
connected to a mini-column. A. Example SP Receptive fields 
trained on random bar pairs. B. Example SP receptive fields 
trained on random crosses. C. Example SP receptive fields 
trained on MNIST dataset. 

7.1. Fault tolerance 

We evaluated whether the HTM spatial pooler has the ability 
to recover from lesion of the afferent inputs (input lesion 

experiment) or damage to a subset of the SP mini-columns 
(stroke experiment).  

In the stroke experiment, the center portion of the input space 
becomes much less represented right after the trauma because 
the corresponding SP mini-columns are eliminated. The 
network partially recovers from the trauma after a few 
hundred epochs, with each epoch consisting of 100 inputs. 
During the recovery process, SP mini-columns near the 
trauma region shift their receptive field toward the trauma 
region and start to represent stimuli near the center (Fig. 5C, 
supplemental movie 1). The network forms many more new 
synapses in the center, which is accompanied by loss of 
synapses in the non-trauma region (Fig. 5B, top). There is a 
clear recovery on the coverage of the trauma region (Fig. 5D, 
bottom).  

In the input lesion experiment, the center portion of the input 
space is blocked. Since there is no change on the SP mini-
columns or the associated synaptic connections, there is no 
immediate change on the input space coverage (Fig. 5A, 
bottom) or the receptive field center distributions (Fig. 5C, 
bottom). However, the SP mini-columns quickly reorganize 
their receptive field within a few epochs. The SP mini-
columns that respond to the center inputs starts to respond to 
inputs on the surrounding, non-damaged areas (Fig. 5C, 
supplemental movie 2). Almost all the connections to the 
lesion region are lost after the reorganization (Fig. 5B, 
bottom).  

These demonstrate the fault tolerance and flexibility of the SP. 
The fixed sparsity and the homeostasis excitability control 
mechanism of the SP ensure that the input space is efficiently 
represented by all SP (undamaged) mini-columns. It is 
interesting to note that the different recovery speeds from the 
two simulations coincide with experimental studies. It has 
been reported that after focal binocular retinal lesions, the 
receptive field sizes increases within a few minutes for 
cortical neurons that lie near the edge of the retinal scotoma 
(Gilbert and Wiesel, 1992). In contrast, if part of the cortex is 
damaged, the recovery is partial and occurs on a much slower 
time scale (Nudo, 2013). 
 

7.2. The spatial pooler in a real-world 
streaming analytics task 

In this section we evaluate the role of the SP in an end-to-end 
real-world HTM system. We consider the problem of real-
time prediction of the number of taxi passenger in New York 
City (Fig. 6A, see Methods).  We have previously shown that 
HTM systems with a fixed pre-trained spatial pooler achieves 
state-of-the-art performance on this task (Cui et al., 2016b).  
Here we consider the role of learning in the spatial pooler and 
evaluate three scenarios: using a randomly initialized SP 
without learning, allowing SP learning but without boosting, 
and using a SP with both continuous learning and boosting.  

A B

C

Trained on Random Bar Pairs Trained on Random Crosses
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We fed the inputs in a single pass to mimic the scenario of 
real-time online prediction. The time-averaged prediction 
error for the three cases is plotted as a function of training 
time (Fig. 6B).  At the beginning of learning, the prediction 
error rapidly decreases, representing the initial learning phase 
of the system. The occasional increases in error reflect real 
world changes that correspond to events and holidays (e.g., 
Thanksgiving, Christmas, New York City Marathon, etc.). 

The spatial pooler with both learning and boosting achieves 
the best performance throughout the prediction task. The 
spatial pooler with learning but without boosting is roughly 
comparable to a random static SP. This suggests the 
importance of both continuous Hebbian learning and 
homeostatic excitability control. The difference in 
performance can be understood by observing the distribution 
of activation frequency across SP mini-columns. Without the 
homeostatic excitability control, a large fraction of the SP 
mini-columns are not being used at all (Fig. 6C).  It is more 
error-prone for the HTM sequence memory to learn 
transitions of such ill-behaved SDRs.  

 
Figure 6 The role of HTM spatial pooler in prediction task. 
A. A complete HTM system of encoder -> spatial pooler -> 
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Figure 5 Recovery of HTM spatial pooler after damage and input lesion. During the simulated stroke, a fraction of SP 
mini-columns that are connected to the center region of the input space is killed. During the simulated retinal lesion, the 
center portion of the input space is blocked while the spatial pooler and its feedforward inputs are kept intact. A. The 
number of SP mini-columns connected to each input bits before trauma (left), right after trauma (middle) and after recovery 
(right). The simulated stroke experiment is shown at the top and the simulated retinal lesion experiment is shown at the 
bottom. B. Growth and elimination of synapses during the recovery process for the simulated stroke (top) and retinal lesion 
(bottom) experiment. C. Receptive field centers of all SP mini-columns before trauma (left), right after trauma (middle) and 
after recovery (right). D. Number of mini-columns connected to the center region (green square in Fig. 5C) and a 
neighboring region (blue square) during the recovery process. The recovery is very fast for the retinal lesion experiment 
(bottom), and slower for the simulated stroke experiment (top). 
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sequence memory -> classifier is used for predicting the NYC 
taxi passenger count. B. Prediction error with an untrained 
random SP (blue), a SP with continuous learning but without 
boosting (green), and a SP with both continuous learning and 
boosting (red). C. Distribution of activation frequency of SP 
mini-columns. A large fraction of SP mini-columns are not 
being used for an untrained SP or for a SP without boosting. 
In contrast, almost all mini-columns are active for about 2% 
of the time when boosting is enabled. 

8. Discussion and Conclusions 
In this paper, we described properties of the HTM spatial 
pooler, a neurally inspired algorithm for learning sparse 
distributed representations online. Inspired by computational 
principles of the neocortex, the goal of the HTM spatial 
pooler is to create SDRs and support essential neural 
computations such as sequence learning and memory. The 
model satisfies a set of important properties, including tight 
control of output sparsity, efficient use of mini-columns, 
preserving similarity among inputs, noise robustness, fault 
tolerance and fast adaptation to changes. These properties are 
achieved using competitive Hebbian learning rules and 
homeostatic excitability control mechanisms. We demonstrate 
the effectiveness of SP in an end-to-end HTM system on the 
task of streaming data prediction. The HTM spatial pooler 
leads to a flexible sparse coding scheme that can be used in 
practical machine learning applications. 

8.1. Relationship with other sparse coding 
techniques 

The spatial pooler learns sparse distributed representations for 
inputs. It is related to the broad class of sparse coding 
techniques, which uses activation of a small set of neurons to 
encode each item. One theory of sparse coding suggests that 
sparse activations in sensory cortices reduce energy 
consumption of the brain while preserving most of the 
information (Földiák, 2002; Olshausen and Field, 2004). 
Early studies of sparse coding explicitly optimize a cost 
function that combines low reconstruction error and high 
sparseness (Olshausen and Field, 1996a, 1997). When applied 
to natural images, these techniques lead to receptive fields 
that resemble those of V1 neurons (Olshausen and Field, 
1996a; Lee et al., 2006), suggesting that the functionality of 
early sensory neurons can be explained by the sparse coding 
framework.  Sparse coding has been implemented previously 
with biologically plausible local learning rules. Földiák 
showed that a neural network could learn a sparse code using 
Hebbian forward connections combined with a local threshold 
control mechanism (Földiák, 1990).  It has been recently 
shown that such learning rules can be derived analytically (Hu 
et al., 2014).  

Many of the properties we analyzed in this paper have also 
been discussed in previous studies of sparse coding. It has 
been shown that sparse representations are naturally robust to 
noise and can be used for robust speech recognition (Sivaram 
et al., 2010; Gemmeke et al., 2011), robust face recognition 
(Wright et al., 2009) and super resolution image 
reconstruction (Jianchao Yang et al., 2010). Online sparse 
coding and dictionary learning techniques have been proposed 
in previous studies in order to handle dynamic datasets 

(Mairal et al., 2010). It is known that representations learned 
from traditional sparse coding techniques have low entropy, 
as the probability distribution of activity of an output unit is 
peaked around zero with heavy tails (Olshausen and Field, 
1996b). In this study we found that although the entropy is 
low compared to dense representations, it increases with 
training in the HTM spatial pooler. This is because the 
homeostatic excitability control mechanism encourages 
neurons in the SP to have similar activation frequencies, thus 
increasing the representational power of the network. 

Most previous studies propose the goal of sparse coding is to 
avoid information loss, reduce energy consumption, and form 
associative memory with minimum cross talk (Olshausen and 
Field, 2004). A commonly used criterion is how well one can 
reconstruct the inputs given the sparse activations and a set of 
learned basis vectors. Although these studies explain 
receptive structure in primary visual cortex and lead to 
practical machine learning algorithms for feature selection 
(Gui et al., 2016) and data compression (Pati et al., 2015), the 
purpose of neural computation is more than preserving 
information. In this paper, we take a different perspective and 
ask how computational properties of the HTM spatial pooler 
contribute to downstream cortical processing in the context of 
HTM systems.  Instead of reconstruction error, we define the 
performance of SP in terms of a set of properties, including 
population entropy, noise robustness, stability, and fault 
tolerance. It is important to perform a multi-dimensional 
assessment of the SP in order to ensure that it forms robust 
sparse distributed representations that capture semantic 
similarity of the inputs. We demonstrated that the HTM 
spatial pooler achieves these properties and that these 
properties contribute to improved performance in an end-to-
end system. It is important to note that no single metric is 
sufficient to ensure SP is behaving properly. For example, one 
can achieve good noise robustness by always using a small set 
of SP mini-columns, but that will give bad entropy. It is easy 
to achieve high entropy by using a random output at each time 
step, but that will cause bad stability. It is important to 
consider all the metrics together. As a result, the learning 
algorithm of SP cannot be easily derived by optimizing a 
single objective function. 
The Hebbian learning rules of HTM spatial pooler resemble 
many previous sparse coding algorithms (Földiák, 1990; 
Zylberberg et al., 2011; Hu et al., 2014) and associative 
memory models (Willshaw et al., 1969; Hecht-Nielsen, 1990; 
Bibbig et al., 1995). There are several differences. First, we 
include homeostatic excitability control as a gain modulation 
mechanism. The role of homeostasis is to make sure that the 
distribution of neural activity is homogeneous. It has been 
previously proposed that homeostasis is crucial in providing 
an efficient solution when learning sparse representations 
(Perrinet, 2010). Some models of synaptic plasticity do 
include homeostatic components in the learning rule that 
control the amount of synaptic weight change (Clopath et al., 
2010; Habenschuss et al., 2013). The homeostatic excitability 
regulation mechanism in the SP achieves a similar effect 
without directly affecting the synapse modification process. 
Second, we use a local inhibition circuit that implements k-
winners-take-all computation to have tight control over the 
output sparseness. This is important when SP activations are 
used by downstream neurons with dendrites that have 
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threshold nonlinearities.  Finally, we use binary synapses and 
learning via synaptogenesis (Zito and Svoboda, 2002). The 
use of binary synapses can dramatically speed up the 
computation. Overall the HTM spatial pooler algorithm is a 
suitable candidate for learning sparse representations online 
from streaming data. 
 

8.2. Potential Neural Mechanisms of spatial 
pooler 

A layer in a HTM system contains a set of mini-columns. 
Each mini-column contains cells with the same feedforward 
receptive field. The mini-column hypothesis has been 
proposed for several decades (Mountcastle, 1997; 
Buxhoeveden, 2002), but the utility of mini-columns remains 
controversial due to a lack of theoretical benefit (Horton and 
Adams, 2005). According to HTM theory cells within the 
same mini-column have the same feedforward connections 
but different lateral connections, thus representing the same 
feedforward input in different temporal contexts (Hawkins 
and Ahmad, 2016). We propose the spatial pooler models 
feedforward receptive field learning at the mini-column level. 
Experimental studies have shown that neurons within the 
same mini-column have almost identical receptive field 
locations, sizes and shapes, whereas RFs of neurons in 
neighboring mini-columns can differ significantly (Jones, 
2000). This variability cannot be explained by the difference 
in feedforward inputs, because the extent of arborization of 
single thalamic afferent fibers, which can be as much as 900 
µm in cats (Jones, 2000), is significantly more extensive than 
the dimensions of minicolumns, which typically have 
diameters around 20-60 µm (Buxhoeveden, 2002). (Favorov 
and Kelly, 1996; Jones, 2000). It requires dedicated circuitry 
mechanism to ensure that cells in the same mini-column 
acquire the same receptive field. 
We propose two possible neural circuit mechanisms for the 
spatial pooler and discuss their anatomical support. In the first 
proposal (Fig. 7B, left), the feedforward thalamic inputs 
innervate both excitatory pyramidal neurons as well as an 
inhibitory neuron (green). This inhibitory neuron can 
indirectly activate the pyramidal neurons through a disynaptic 
dis-inhibition circuit. It acts as a "teacher" cell that guides the 
receptive field formation of excitatory neurons. There are 
many distinct classes of inhibitory neurons in the cortex. 
Some classes, such as bipolar cells and double bouquet cells 
exclusively innervate cells within a cortical mini-column 
(Markram et al., 2004; Wonders and Anderson, 2006). It is 
well documented that feedforward thalamacortical input 
strongly activates specific subtypes of inhibitory neurons 
(Gibson et al., 1999; Porter et al., 2001; Swadlow, 2002; 
Kremkow et al., 2016). It is possible these inhibitory neurons 
participate in defining and maintaining the feedforward 
receptive field of cortical mini-columns. 

In the second proposal, a single excitatory cell receives 
thalamic inputs and innervates all excitatory cells in a mini-
column. This excitatory neuron guides the receptive field 
formation of other excitatory cells in the mini-column. A 
similar circuit has been observed during early development. 
Subplate neurons, a transient population of neurons, receive 

synaptic inputs from thalamic axons, establishing a temporary 
link between thalamic axons and their final targets in layer IV 
(Friauf et al., 1990; Ghosh and Shatz, 1992; Kanold et al., 
2003). It remains to be tested whether a similar circuit exists 
in adult brain.  

The spatial pooler relies on several other neural mechanisms. 
The learning rule is based on competitive Hebbian learning. 
Such learning can be achieved in the brain via synaptic 
plasticity rules such as long-term potentiation (Teyler and 
DiScenna, 1987), long-term depression (Ito, 1989), or spike-
time dependent plasticity (Song et al., 2000). Homeostatic 
excitability control mechanisms, analogous to the spatial 
pooler’s boosting rule, have been observed in cortical neurons 
(Davis, 2006). Finally, the k-winners-take-all computation in 
the SP can be implemented using leaky integrate-and-fire 
neuron models (Billaudelle and Ahmad, 2015b). 

 
Figure 7 Neural mechanism of HTM Spatial pooler.  A. 
Spatial pooler requires local across mini-column inhibition to 
ensure that a small fraction of the mini-columns are active at 
any time. B. Potential mechanisms to ensure neurons within 
the same mini-column share the same feedforward receptive 
field. left: the green inhibitory neuron controls the receptive 
fields of excitatory pyramidal neurons (gray triangles) 
through a dis-inhibition circuit. right: A single (or small 
number of) excitatory neurons (yellow) controls the receptive 
field of excitatory neurons. In both cases, PNs indirectly 
inhibit other PNs in the same mini-column through the within 
mini-column inhibition (blue).  
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