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Abstract 

To characterize the role of the left ventral occipito-temporal cortex (lvOT) during visual word 
recognition in a quantitatively explicit and testable manner, we propose the lexical categorization 
model (LCM) according to which lvOT categorizes perceived letter strings into words or non-words. 
LCM simulations successfully replicate nine benchmark results from human functional brain imaging. 
Empirically, using functional magnetic resonance imaging and electroencephalography, we 
demonstrate that quantitative LCM simulations predict lvOT activation and brain activation at an 
expected time window, respectively. In addition, we found that word-likeness, which is assumed as 
input to LCM, is represented posterior to lvOT and before the lexical categorization. In contrast, a 
dichotomous word/non-word contrast, which is the assumed as output of the LCM, could be localized 
to upstream frontal brain regions. Thus, we propose a ventral-visual-stream processing framework for 
visual word recognition involving word-likeness extraction followed by lexical categorization, prior to 
the extraction of word meaning.  
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Introduction 

Reading is a crucial cultural achievement, and efficient recognition of written words is at its core. 
Insights have been gained into the cognitive and brain systems involved in visual word recognition, 
including the identification of a word-sensitive region of the left ventral occipito-temporal cortex 
(lvOT). This region is often also referred to as the visual word form area (VWFA1); it is reliably 
activated by written words2, its structure and function is compromised in developmental reading 
disorders3,4, lvOT lesions result in severe reading deficits5, and electrical stimulation of this area can 
impair word recognition6. However, there is at present no agreed-upon mechanistic understanding of 
which process is implemented in lvOT while recognizing visual words7. Here, we propose a simple 
computational model of lvOT function during reading, i.e., the lexical categorization model (LCM), 
which integrates insights from cognitive psychology and psycholinguistic research, to explicitly model 
the response profile of lvOT to different types of (lexical and non-lexical) orthographic stimuli.  

 The lvOT is part of the ventral-visual processing stream8. It was proposed that lvOT receives 
converging bottom-up visual input from both hemispheres and processes abstract representations of 
recurring letter sequences – including sublexical units and small words1,9. This proposal is in part 
based on the finding that lvOT is sensitive to word-similarity10, in the sense of decreasing lvOT 
activation (measured with functional magnetic resonance imaging/fMRI) with decreasing word-
similarity of non-words (i.e., high activation for non-words containing letter sequences that frequently 
occur in real words, e.g. ‘ous’ in mousa and low activation for non-words containing orthographically 
illegal letter combinations; e.g. mkzsq). Seemingly contradictory, it was reported that more familiar 
(i.e., more frequently occurring) words showed less lvOT activation as compared to words of low 
frequency of occurrence11. In sum, empirical data indicates that while word-similarity (in the sense of 
sub-lexical orthographic similarity) increases lvOT activation, word-familiarity (in the sense of word 
frequency) decreases lvOT activation. This seemingly counterintuitive set of results suggests that 
lvOT responds in a non-linear fashion to the ‘word-likeness’ of orthographic strings, showing greatest 
activity for words of intermediate word-likeness (e.g. words with low word-familiarity and non-words 
with high word-similarity) and least activity both for highly word-like, frequent words as well as for 
orthographically illegal and rarely co-occurring (‘word-un-like’) strings of letters.  

 The non-linear response profile of lvOT to different types of orthographic stimuli resembles 
the relationship between word-likeness and behavioral performance in word recognition tasks. Using a 
lexical decision task (categorical word/non-word decisions), Balota and Chumbley12 observed that 
lexical decisions for letter strings with intermediate levels of word-likeness were more difficult (in 
terms of higher error rates and longer response times) than decisions to very familiar words or very 
‘word-un-like’ non-words (see also13). Based on these results, they proposed that categorical 
recognition can be achieved for frequently occurring words and for non-words that are very word-un-
like (see above) exclusively on the basis of their word-likeness. In contrast, at intermediate word-
likeness levels (e.g., for rarely occurring words, words of a foreign language, or – as used in 
psychological experiments – orthographically legal but meaningless pseudowords), uncertainty exists 
concerning the lexical nature of the letter strings. This ambiguity is reduced by further analytic 
processing, e.g., based on sublexical unit processing (letters or syllables) or word-spellings.  

We here propose that lvOT implements an analogous process, i.e., computing a dichotomous 
lexical categorization based on the word-likeness of perceived orthographic strings, thereby filtering 
out uninformative non-words preventing further linguistic processing. This proposal is consistent with 
one of the core computational functions of the ventral-visual-stream, i.e., the categorization of 
percepts into different categories of objects. A recent proposal described a hierarchical categorization 
framework of nested, spatially distinguishable cortical levels to differentiate between objects14. For 
example, animate vs. inanimate objects activate separable ventral-stream regions, while spatially 
dissociable sub-regions represent different lower-level features, such as faces or eyes for the animate 
subcategory. Just as this architecture allows us to differentiate between objects, it is also known to 
efficiently categorize between letter strings and non-orthographic objects6,15,16. Within the framework 
of hierarchically organized ventral-stream processing, it is plausible to assume that a categorical 
distinction between existing words and non-words is computed at the next level of resolution – as a 
basis for subsequent linguistic processing.  
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We propose that lvOT categorizes orthographic strings into words vs. non-words based on the 
word-likeness of the input letter strings. This categorization, we assume, precedes the retrieval of word 
meaning (in psychology often called ‘lexical access’), e.g., to save neuronal resources by preventing 
attempts of further linguistic processing of non-words. Importantly, as reviewed above, lvOT activity 
does not directly reflect word-likeness, but rather a non-linear transformation of word-likeness that 
represents the level of uncertainty associated with the word/non-word categorization. We hypothesize 
that the behavioral pattern shown in lexical decision tasks is a reflection of the processes that compute 
lexical status, thus providing a mechanistic explanation for the observed non-linear activation pattern 
of lvOT. Based on the above-discussed hierarchical organization of the ventral-visual-stream, we in 
addition derive the novel hypothesis that a dichotomous lexicality effect in the face of a wide range of 
word-likeness in the input stimulus set should be detectable not in lvOT proper, but in regions 
upstream to the classical localization of the visual word form area.  

 To characterize the lvOT’s role for word recognition in a quantitatively explicit and testable 
manner, we implemented this hypothesis in a simple computational model, the lexical categorization 
model (LCM) of lvOT function, designed to predict the BOLD response of lvOT dependent on the 
word-likeness of the input letter string. Current conceptions of lvOT functioning in visual word 
recognition are verbal-descriptive, suggesting that lvOT activation reflects the overlap of a presented 
letter string with stored representations9,10, a word-frequency-based whole-word lexicon search 
process11,17,18, or a predictive coding process in which lvOT activation reflects the error in relation to 
internally generated predictions19 (for details and implemented versions see Supplement 1). In contrast, 
a computational implementation has the advantage that the simulations can be quantitatively 
evaluated, thereby enabling direct falsification. We here model lvOT activation without considering 
task context, in order to explore how much of its response profile can be explained by differences in 
the stimulus characteristics only. Simulations of the LCM will be evaluated against nine benchmark 
effects reported in the literature. Following this, we report empirical evaluations of the LCM, i.e., two 
fMRI studies to evaluate if the uncertainty of a lexical categorization is represented in lvOT activation, 
while dichotomous lexicality is represented upstream to lvOT, and an electrophysiological study 
(EEG) investigating our hypothesis that the lexical categorization is represented before or at the same 
time as effects related to the extraction of word meaning in the amplitudes of event related potentials 
(ERP).  

LCM implementation 

To implement the LCM, we first derived the word-likeness distributions of a large set of 
orthographic strings. We estimated word-likeness (OLD2020) of all German five letter uppercase 
words (3,110; example: Augen) and the same number of pseudowords (e.g., Augon) and consonant 
strings (e.g., Zbgtn). The distributions (Fig. 1a) of words and pseudowords overlap strongly in 
intermediate familiarity ranges (consistent with12). High word-likeness indicates that letter strings are 
highly likely words, whereas low word-likeness levels indicate consonant strings. For these items, 
word-likeness allows word/non-word categorizations with high degrees of certainty. In contrast, at 
intermediate word-likeness levels, lexical status is ambiguous and additional evidence is needed for 
word/non-word categorization. Given the assumption that lvOT implements a filter process that drives 
a dichotomous categorization of every perceived letter string into words vs. unknown letter strings, 
and given the uncertainty associated with this categorization function in the face of overlapping word-
likeness distributions at intermediate levels of word-likeness, we here propose that the non-linear 
response profile of lvOT is very well-described by lexical categorization uncertainty, here 
implemented using the information theoretical concept of entropy (Fig. 1b; see Methods). This 
conception receives some preliminary support from an fMRI study21 which showed lvOT sensitivity to 
both lexical status (word/non-word) and orthographic similarity of letter strings (with the caveat of a 
limited set of words and pseudowords).  
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Figure 1. Description of the lexical categorization model (LCM). (a) Word-likeness distributions 
(kernel density estimates), based on the orthographic Levenshtein distance (OLD2020) or words (gray), 
pseudowords (blue), and consonant strings (yellow) including an example for each category. (b) 
Probability that a letter string with a given an OLD20 value is a word (gray line) or a non-word (blue 
line). The black line represents the estimated entropy (Equation 1), which combines the probabilities 
of being a word or non-word, across all possible OLD20 values. The LCM’s central hypothesis is that 
this entropy function reflects lvOT activation across all possible levels of word-likeness, effectively 
representing the lexical categorization uncertainty. 

 
Results 

Evaluation 1: LCM simulations of benchmark effects 

As a first critical test, the LCM was used to simulate published data, i.e., lvOT activation 
contrasts between different types of visually presented letter strings. This was realized by transforming 
the word-likeness of each letter string via the entropy function depicted in Figure 1b (reflecting lexical 
categorization uncertainty) into a simulated activation value. Figure 2 displays LCM simulations for 
different types of letter strings (see Methods) that successfully reproduce published benchmark effects: 
pseudowords>words22; words>consonant strings2; pseudowords>words>consonant strings23; 
pseudohomophones>words and pseudohomophones=pseudowords17; pseudowords>words matched on 
multiple lexical characteristics24; word similarity effect: low word similarity<intermediate word 
similarity<high word similarity=words10; increasing lvOT activation with decreasing word frequency11 
including pseudowords (note that when only words were used, the latter effect was still negative but 
reduced: -0.40 and -0.17, respectively; see also25,26 and Supplement 2 for additional information); 
bigram frequency effect: increasing lvOT activation with increasing bigram frequency27. Thus, on the 
basis of a descriptive comparison, we conclude that LCM simulations capture the benchmark effects 
of visual word recognition very well. Simulations of implementations of alternative accounts1,11,19 of 
lvOT function are reported in the Supplement 1. As Figure 2 in comparison to Supplement 1 shows, 
only the LCM was able to successfully simulate all nine identified benchmark effects; none of the 
single process alternative models could account for more than six benchmark effects. Given that the 
most obvious feature that distinguishes the LCM from the other models pertains to the implementation 
of the inverted-u shaped entropy function, we here propose that this non-linearity is a key property of 
the lvOT response to visual words. 
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Figure 2. Evaluation 1 of the LCM based on simulations of lvOT benchmark effects from the fMRI 
literature. Simulated lvOT activation for all groups of letter strings is presented using bar graphs 
depicting their respective mean activation (upper row) and corresponding boxplots depicting the 
medians, distributions, and outliers of each group of letter strings (lower row). In addition, horizontal 
black bars in the upper row indicate significant differences of the simulation results between letter 
string categories, as derived from linear models (Bonferroni corrected). LCM simulated lvOT 
activation is presented, from left to right, for words (W), pseudowords (PW), consonant strings (CS), 
pseudohomophones (PH), words and pseudowords matched on number of syllables, number of 
Coltheart's orthographic neighbors, frequency of the highest frequency neighbor, initial bigram 
frequency, final bigram frequency, and summated bigram frequency (mW, mPW), and the word 
similarity effect comparing words (cmW: comparative matched words) to non-words with high word 
similarity (matched on quadrigram frequency; hWS), to non-words with intermediate word similarity 
(matched on bigram frequency; iWS), and, to non-words with low word similarity (lWS). In addition, 
the word frequency effect (for all words and pseudowords) and the bigram frequency effect are 
presented as scatter plots with a linear regression line. Each dot represents one letter string, the more 
saturated the blue gets, the more letter strings are included. See text for more detailed description of 
the replicated benchmark effects including the specific stimulus sets used. 

 
Evaluation 2: LCM simulation predict lvOT activity 

To test whether or not quantitative LCM predictions capture activity in lvOT, we used fMRI 
(cf. Methods for acquisition parameters and preprocessing). Participants viewed a set of letter strings 
covering a wide range of word-likeness (i.e., words, pseudowords, consonant strings, and strings of 
scrambled letters) in a block design with condition-specific blocks. Participants pressed a button 
whenever they detected a target (‘#####’). Scrambled items were generated from the words by 
randomly replacing 90% of pixels of the monochrome images; this condition was assumed to be 
maximally unfamiliar and therefore a very low word-likeness was assumed. For all stimuli, the 
predicted lvOT activation was equivalent to the lexical categorization uncertainty as described above. 
fMRI analysis involved a predictor with item onsets as events of interest, independent of condition; 
item-specific LCM simulations were then used as a continuous predictor for the fMRI data without 
explicitly accounting for condition differences. 

If the proposed categorization process is realized in lvOT, quantitative LCM simulations 
should predict activation in this area. Our results support this prediction: Across the brain, only lvOT 
(Fig. 3a; Table 1) shows a positive relationship between LCM simulations and BOLD response. 
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Condition-specific LCM-simulated (Fig. 3b) and empirically measured (Fig. 3c) activation patterns at 
the peak voxel of the lvOT cluster were comparable, with the exception that the model did not predict 
the significantly lower activation for words in contrast to pseudowords (peak voxel analysis: LMM 
estimate = -0.27; SE = 0.08; t = 3.6; see Methods for details on the linear mixed models/LMM28 
analysis). Figure 3d shows the positive linear relationship between LCM-simulated and empirically 
observed lvOT activation overall and for all subjects individually (LMM estimate = 0.10; SE = 0.02; t 
= 6.0).  
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 Figure 3. Evaluation 2: fMRI. (a) BOLD-activation from Experiment 1: LCM simulations predict 
lvOT activation in whole brain analysis. Saturated-yellow highlights the only significant cluster. Note, 
de-saturated colors show the distribution of non-significant beta-values. (b) LCM predicted and (c) 
empirically observed lvOT activation for words (W), pseudowords (PW), consonant strings (CS), and 
scrambled letters (SL), extracted from the peak voxel. As in Figure 2, for each condition, we present 
the means (upper row; error bars represent one standard error of the mean) and corresponding boxplots 
for the simulations and peak-voxel percent signal change. (d) The linear relationship between lvOT 
activation and LCM-simulations overall (top; black line) and for each individual (bottom; beige lines). 
Note, there is no variance between participants on the x-axis, as each participant’s empirical BOLD-
responses were compared against the same LCM simulation. (e) Points show the entropy values for 
each string in relation to word-likeness from the LCM in the upper and from the blocked design 
adjusted LCM (LCM_Block) in the lower panel. (f) Simulation results from LCM_Block, (g) 
corresponding whole brain analysis, and (h) the linear relationship of lvOT activation and 
LCM_Block-simulated activation overall and individually. (i) LCM-predicted and (j) empirically 
observed BOLD-activation from lvOT in Experiment 2 (peak voxel from Experiment 1) for words 
(W) and pseudowords (PW); condition means and corresponding boxplots. Whole-brain results for (k) 
the dichotomous words>pseudowords contrast and (l) the word-likeness (OLD20) effect. Thresholds 
for all whole brain analyses: voxel level: p< .001 uncorrected; cluster level: p< .05 family-wise error 
corrected. 

 
 
 These findings indicate that the LCM indeed characterizes BOLD activation patterns of lvOT 
during visual word processing. The detected activation cluster is consistent with previous localizations 
of the VWFA (including published MNI peak coordinates such as -48, -56, -1610). The only obvious 
discrepancy was observed for words, for which LCM predicted a larger activation than empirically 
observed. It is worth noting that the presentation of the letter strings was organized in conditions-
specific blocks (i.e., 16 items of the same category in a succession), so that the predictability of the 
next item concerning word/non-word categorization was high. Given that task is not explicitly taken 
into account in the LCM, we speculate that while words and pseudowords were matched in their word 
likeness, the blocked design may have strategically reduced the amount of processing devoted to 
identifying items as words (which is implemented in the LCM as entropy), thereby leading to the 
reduced activity relative to the model prediction.  

To investigate if the categorical predictability influences lvOT processing, we implemented a 
second LCM (LCM_Block; see Methods for details). The LCM_Block accounts for the categorical 
predictability of stimuli in the block design by decreasing/increasing the word-likeness (OLD20) 
values for words/non-words, respectively, by a constant, thereby effectively increasing both the 
probability of being a word or non-word within each block. Currently no literature is available that 
gives an indication for the magnitude of this effect. Therefore, the exact value was derived from a fit 
to the empirical peak voxel activation (Fig. 3c). Inspecting the categorization uncertainty of each letter 
string for the LCM (Fig. 3e upper panel) indicates that simulated activation of both words and 
pseudowords were distributed along the left flank of the entropy function before accounting for block. 
When accounting for the blocked design (Fig. 3e lower panel), pseudowords moved up the left flank, 
towards the highest entropies, while words moved down, resulting in a larger simulated activation 
difference, with lower activations for words than for pseudowords (see Fig 3f for simulation results). 
As Fig. 3gh show, this task-adjusted version of LCM provides a better representation of empirical 
lvOT activation as well as a number of additional brain regions (e.g., left middle temporal; Fig. 3g; 
Table 1) showing similar but less pronounced activation patterns. In the current conception of the 
LCM, these regions might contribute to the proposed additional information extraction for letter 
strings with high categorization uncertainty, and therefore support categorization processes in lvOT 
(similar as indicated by19).  

In a second fMRI study we realized an event related design, presenting words and 
pseudowords (that were matched for word-likeness) in random order, with 39 participants reading 
these letter stings silently and responding to catch trials (detect the German word Taste - button). LCM 
simulations for these stimuli predicted high lvOT activation for both conditions with only very subtle 
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condition differences (Words>Pseudowords; Fig. 3i). lvOT (here analyzed as region of interest cluster 
from Experiment 1; cf. Fig. 3a) showed high activation levels with no differences between words and 
pseudowords. At a very liberal uncorrected threshold, in line with the LCM predictions, a higher 
activation for words was found (p < .5; i.e., at -40, -42, -18; T = 2.1; see Fig. 3j; no effects in the 
opposite direction). Crucially, a dichotomous lexicality effect (i.e., words>pseudowords independent 
of word-likeness) was found in left frontal regions (Fig. 3k; Table 1), which is consistent with our 
hypothesis that brain regions upstream to lvOT represent the result of the word/non-word 
categorization implemented in lvOT. Finally, a reliable activation cluster in inferior occipital cortex 
(i.e., posterior lvOT) responded to the word-likeness of the stimuli (Figure 3l; Table 1), consistent 
with our proposal that the input to lvOT is driven by word-likeness.  

In sum, the LCM simulations (Figs. 2, 3b, and 3i) are in line with observed lvOT activation 
patterns. Across the entire brain, the simulation of the LCM predicted activity in the often-replicated 
word-sensitive cluster in lvOT. Remaining differences between LCM predictions and peak voxel 
activation in study 1 could be attributed to specific features of the experimental task in that study. 
Study 2 replicated the good convergence between model simulation and brain activation and 
furthermore showed a direct neural correlate of word-likeness in posterior lvOT and dichotomous 
lexicality effects independent of word-likeness upstream to lvOT (for similar analysis of experiment 1 
see Supplement 3). These results support our proposal that lvOT computes, in a non-linear fashion, a 
dichotomous lexical categorization, using word-likeness as input. 
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Table 1. Reliable activation clusters from both Experiments of Evaluation 2 with respective anatomical labels (i.e., most 
likely regions from the Harvard-Oxford atlas50), cluster size, T-statistics, and peak voxel coordinates (MNI space). 

Hemisphere 
Cluster 
extent 

[N voxel] 
T x y z 

Experiment 1: LCM based analysis 

Temporal occipital fusiform cortex / 
Lateral occipital cortex, inferior division / 
Occipital fusiform gyrus 

L 122 6.7 -39 -49 -17 

  5.2 -42 -67 -2 

  4.8 -39 -61 -8 

Experiment 1: LCM-block design based analysis 

Superior temporal gyrus, posterior division 
/ Temporal occipital fusiform cortex / 
Inferior temporal gyrus 

L 518 8.8 -60 -40 4 

  8.1 -42 -49 -17 

  8.0 -45 -58 -14 

Inferior temporal gyrus, anterior division / 
Inferior frontal gyrus, pars opercularis / 
Precentral gyrus 

L 231 7.13 -48 -4 -37 

  7.0 -42 8 19 

  5.8 -48 -10 43 

Precentral gyrus / Inferior frontal gyrus, 
pars opercularis  

R 37 6.0 42 5 22 

  4.8 45 11 16 

Precentral gyrus / Middle frontal gyrus R 68 5.7 48 -4 43 

  5.3 51 2 34 

  5.0 33 -1 49 

Superior parietal lobule L 87 5.6 -27 -58 49 

   5.2 -33 -52 49 

   4.7 -27 -52 37 

Juxtapositional lobule cortex (former 
supplementary motor cortex) 

L/R 47 4.9 0 -1 61 

  4.8 -6 2 55 

Experiment 2: Words > Pseudowords 

Frontal orbital cortex / Inferior frontal 
gyrus, pars triangularis 

L 588 6.0 -36 34 -18 

  5.4 -54 26 -2 

  5.2 -40 28 -8 

Superior frontal gyrus / Frontal pole L 268 4.9 -6 52 34 

  4.3 -10 60 24 

  3.6 -10 50 44 

Experiment 2: Words < Pseudowords 

Precuneous cortex R 178 4.4 14 -60 28 

   4.1 12 -60 40 

Experiment 2: word-likeness based analysis 

Lateral occipital cortex, inferior division L 99 4.69 -34 -90 -10 

  4.44 -38 -80 -12 

Note. Cluster-level FWE-corrected at p < .05, Voxel-level uncorrected at p < .001 
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Evaluation 3: Time course specificity of LCM predictions - EEG data 
 Finally, we investigated the temporal succession of cognitive processes in visual word 
recognition using electrophysiological (EEG) data. In line with general notions of ventral-visual-
stream organization8, LCM assumes a succession of processes from posterior occipital to frontal 
regions. Posterior occipital regions, accordingly, should process low-level features of incoming visual 
information (which we quantify by the amount of the visual information in pixel; i.e. AVI). 
Subsequently, we assume the estimation of word-likeness, which then serves as input to the next 
processing step, i.e., lvOT’s lexical categorization process as described by LCM. Support for these 
assumptions would be obtained if AVI, word-likeness, and LCM simulations can satisfyingly account 
for EEG data in this temporal sequence (for similar accounts see29 and30). Finally, higher levels of 
information extraction from words are initiated, here reflected by the effects of lexicality (words vs. 
non-words) or word frequency31 (see also Supplement 2). As lexicality effects were identified in brain 
regions anterior to lvOT, we here predict that lexicality and frequency effects should temporally 
follow the time window of the LCM effect.  
 31 participants silently read 200 words, 100 pseudowords, and 100 consonant strings, while 
ERPs were recorded from 64 electrodes (cf. Methods). Figure 4a presents the grand-average ERP, with 
scalp-topographical maps showing the succession of the classic ERP components P100, N170, and 
N400. For analysis we used multiple linear regression estimating multiple parameters in a single 
statistical model including five predictors (cf. Fig. 4bcd; see also32–34): amount of visual information 
(total number of black pixels of all letters of the item), word-likeness (OLD20), LCM-simulated 
activation (Fig. 4b), as well as lexical status and word frequency31 (with the exception of lexicality, all 
predictors were continuous; frequency of non-words was set to 0). LCM predicts that activation for 
words is lower than for pseudowords but higher than for consonant strings (Fig. 4b). The five-
parameter model is estimated separately for each time point (500 ms pre- to 800 ms post-stimulus 
onset; 1 ms resolution) and sensor. Correlations among predictors (Fig. 4c) are accounted for by 
estimating all predictors at the same time and a correction for multiple comparisons was implemented 
by a cluster based permutation test35. Importantly, LCM simulations had no high correlation with any 
of the other predictors (all r’s < .2). OLD20 was associated with lexicality and frequency (r < -.6), and 
lexicality and frequency were strongly related (r = .9), which results from coding non-words with zero 
on both parameters. Figure 4d demonstrates that ERP amplitudes at a left frontal electrode (AF7) at 
470 ms post stimulus-onset are positively related to LCM simulations and negatively associated with 
OLD20. 
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Figure 4. Evaluation 3: EEG. (a) Grand-average ERPs from all sensors (each line represents one 
sensor; within-plot topographical map color-codes scalp position), averaged across (i) all letter stings 
presented and (ii) all participants, with topographic maps for the P100, N170 and N400 components. 
(b) Means and boxplots (see Fig. 2) for LCM simulations for the three letter-string conditions used in 
this study, i.e., words (W), pseudowords (PW), and consonant strings (CS). (c) Pearson correlation 
matrix for the five predictors used in the statistical linear model for the ERP: Amount of visual 
information (AVI), OLD20 (OLD), LCM simulation (LCM), lexicality (Lex.) and word frequency 
(Freq.). Saturated and de-saturated colors indicate high and low correlations, respectively. Red 
indicates positive and cyan negative correlations; numeric values represent the exact correlation 
coefficient. (d) Exemplary ERP data from a left frontal EEG sensor (AF7) at 470 ms with respective 
linear regression lines for the LCM and OLD20 effects. (e-j) Estimated effect sizes from the 
regression analysis presented as time courses for each sensor and point in time including topographical 
maps at 200, 320, 420, and 530 ms (left column), as well as time course plots with one line per 
channel, masked by significance in a cluster-based permutation significance test, (e, f) for OLD20, (g, 
h) for LCM simulations, and (i, j) for word frequency. Color scale bars represent the effect size for 
both the statistical masked and topographic plots. EEG channels are displayed from front to back 
within each subplot of the right column. 
 
 
 Figures 4e,g,i present, for each electrode, the time course of estimated effect size for word-
likeness, LCM simulation, and word frequency, respectively, with topographical maps reflecting the 
effects’ scalp distributions. Figures 4f,h,j show the significant effects as determined using permutation 
tests on the effect sizes derived from the linear regression model35. No significant effect of luminance 
and lexicality was found (the latter due to the high correlation with word frequency indicating that 
frequency describes meaning extraction better; see also Supplement 2). Starting from ~170ms, word-
likeness (Fig. 4f) significantly predicted ERP amplitudes, followed at ~300ms by LCM simulations 
(Fig. 4h) and by word frequency ~400ms (Fig. 4j). In addition, a statistical model comparison between 
the present model and a model without the LCM-predictor, exemplarily for electrodes Pz and Fz at the 
critical time window ~320ms, LMM analysis including the LCM simulations had a significantly better 
fit than the model without the LCM factor (Akaike information-criterion at Pz: 168532 vs. 168566; 
χ2(1) = 35.7; p < .001; Fz: 171428 vs. 171454; χ2(1) = 27.7; p < .001), indicating that the LCM 
simulations are an integral part of the description of the EEG data over and above stimulus luminance, 
word-likeness, word frequency and lexicality. Of note, the late word frequency effect (relative to 
e.g.32) can be attributed to the simultaneous modeling of multiple predictors, since when frequency 
was introduced as the only predictor, a significant frequency effect was present already ~200ms (see 
Supplement 4). In sum, ERP results are in line with the LCM-predicted sequence of events, starting 
with word-likeness estimation, which is then used for the lvOT-based process of lexical 
categorization, ultimately resulting in a late differentiation between meaningful words and non-words. 
 

Discussion 

We propose that the word-sensitive cortical area in lvOT implements a categorization of perceived 
orthographic strings into words vs. non-lexical orthographic strings, and formalize this process in the 
lexical categorization model. The computational implementation of this categorization process is 
fundamental to the understanding of lvOT’s complex activation pattern in response to a variety of 
types of letter strings irrespective of their task context (compare10 and11). Evaluations of the LCM 
found that it is capable of simulating multiple published benchmark fMRI findings, provides a very 
good prediction of empirical fMRI activations in lvOT, and predicts ERP amplitudes at an expected 
time window, in a highly plausible temporal sequence of processing stages. The present findings, thus, 
suggest that during reading, in a first step, word-likeness is estimated by left occipital regions, 
followed by the lexical categorization of perceived orthographic strings by lvOT. Finally, word-
specific processes are realized, such as the extraction of word meaning, at downstream cortical sites 
including frontal cortex (Fig. 5).  

We see the LCM as a quantitatively explicit extension of previous visual word recognition 
models of lvOT1,11,19. Our work differs from previous approaches by the explicit consideration of a 
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wide range of word-likeness and by the utilization of an optimal word-likeness estimate (OLD2020; see 
Supplement 5 for LCM model simulations based on alternative word-likeness estimates). Based on 
these two elements, a non-linear categorization uncertainty function could be implemented, that 
captures both the activation increase with decreasing word-familiarity (in high-to-intermediate word-
likeness), predicted by lexicon search models11,17, as well as the activation decrease with decreasing 
word-similarity predicted by the visual word form area model1. The OLD20 word-likeness estimate is 
also theoretically meaningful, as it is a reasonable proxy for the perceptual familiarity that one 
acquires while becoming an efficient reader. Thus, person-specific implementations of the LCM based 
on individual word knowledge will be important future avenues for this research. 

 At its core, the LCM-simulated activation reflects the uncertainty of the lexical categorization. 
This uncertainty is low for letter strings of very high and very low word-likeness, enabling efficient 
lexical categorization of letter strings. At intermediate word-likeness levels, however, lexical 
categorization uncertainty is high since word-likeness distributions of words and non-words overlap – 
which discards word-likeness as the basis for lexical categorization and thus requires the inclusion of 
additional information. Spelling information was brought forward as one possibility to reduce 
categorization uncertainty12, which was also associated with lvOT36. In addition, from the LCM-
adaptation for the blocked design (Evaluation 2) we learned that a network co-activates with lvOT, 
which may represent a support structure in case additional information is needed. Interestingly, white 
matter connectivity of a similar network prior to literacy acquisition was shown to predict individual 
differences in the location of the letter string-sensitive lvOT region37 and a similar network is 
structurally connected to adult lvOT38. Given that detailed letter string processing (e.g. grapheme-to-
phoneme conversion18) is critical to literacy acquisition, this developmental perspective could be 
adopted to suggest that detection of unknown words by lvOT (as implemented in LCM), at the 
beginning of reading acquisition, motivates information search and thereby supports the acquisition of 
new vocabulary39.  

In conclusion, the LCM – which is conceptually inspired by general models of a ventral visual 
processing stream from occipital to anterior temporal and frontal regions - is the first computationally 
explicit model that reliably describes lvOT activation patterns in relation to a wide range of different 
letter strings. Empirical evaluations of the LCM support a framework starting with early word-likeness 
estimations in posterior regions, feeding this information into lvOT as the basis for lexical 
categorization. Activation in the lvOT reflects the uncertainty of the lexical categorization process. 
When the uncertainty is high, more in-depth analysis of the orthographic stimulus is assumed. Finally, 
after non-words are filtered out, higher-level cognitive processes, such as extraction of word meaning, 
are postulated to occur in downstream areas including frontal cortex. This framework (Figure 5), 
including the LCM as central cognitive process, is a large step towards brain-based computational 
accounts40 for information processing in reading.  
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Figure 5. Schematic description of ventral visual stream processing during visual word recognition as 
assumed in the lexical categorization model, including (i) word-likeness estimations, (ii) lexical 
categorization, and (iii) the extraction of word meaning in most anterior regions. For the lexical 
categorization process implemented in lvOT the uncertainty is presented, visualizing the assumption 
that higher degrees of categorization uncertainty – in areas of intermediate word-likeness – may 
require further elaborative processing to reach a lexical categorization. 
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Methods 

LCM implementation 

Given that previous work indicated a relationship between lvOT processing and word-similarity10 or 
word-familiarity11, the implementation of the LCM relies on an optimal measure of word-likeness – 
the mean Levenshtein distance over the 20 nearest words (i.e., the 20 words with the lowest distance; 
OLD20)20. Word-likeness distributions were derived for a larger number of orthographic strings by 
first estimating the Levenshtein distance, i.e., a measure of the similarity of any two strings of letters 
based on the number of insertions, deletions, substitutions, and/or transpositions of two adjacent 
letters41. Word-likeness was quantified as the mean Levenshtein distance over the 20 nearest words20. 
OLD20 is considered superior to other established lexical measures20 such as e.g. Coltheart’s N, as it 
was shown to be the better predictor of behavioral word recognition performance. In addition, this 
measure allows to differentiate between a large range of orthographic stimuli (compare, e.g., Fig. 1a 
with the left panels of Supplement 5). For example, most non-words and a large number of words have 
zero orthographic neighbors. This indicates that the number of neighbors assigns the same parameter 
value (zero) to qualitatively very different letter strings (e.g. words as well as consonant strings; 
Supplement 5). In contrast, the OLD20 overcomes the inability to differentiate between large numbers 
of very different letter strings as the described (see above) allows to catch up much more subtle 
differences in word-likeness, which results in much more normally distributed word-likeness values 
that allows for the most part at least a clear differentiation between words and consonant strings 
(Figure 1a). The OLD20 is potentially a useful proxy of perceptual familiarity since the size of the 
lexicon used to estimate the OLD20 strongly determines word-likeness estimation (e.g. with a small 
lexicon the probability to find a high number of similar words is very low since the estimation 
includes the 20 nearest words; see Supplement 6 for simulations). OLD20 was estimated for all 
German five letter uppercase words (n = 3,110; extracted from N = 377,524 words of the SUBTLEX 
database31; estimated using the old20 function of the vwr-package42 in GNU R). For each of the 
selected words (e.g., Augen - eye), we also generated a pseudoword by replacing vowels to form 
phonotactically and orthographically legal but meaningless letter strings (e.g., Augon). Pseudowords 
were created automatically by replacing the vowels with other vowels until the string could not be 
found in the SUBTLEX database any more. Pseudowords were then revised manually based on visual 
inspection in order to identify illegal letter combinations. Consonant strings (i.e., orthographically 
illegal strings of letters; e.g. Zbgtn) were formed by replacing all vowels with randomly selected 
consonants, before also computing OLD20 for each item. 

 Figure 1a displays the word-likeness (OLD20) distributions of these three groups of letter 
strings and displays the variability of this word-likeness estimate (compare Supplement 5 for 
distributions of the same words for alternative word-likeness estimations): Some words like Leben 
(Life) are more prototypical (i.e., high word-likeness; OLD20 = 1) while others, such as Fazit, even 
though valid lexical items, are less prototypical (i.e. have lower word-likeness: OLD20 = 2.3; higher 
values representing less word-like letter strings). Some pseudowords like Mades (base word 
Modus/mode) are highly similar to existing words (resulting in intermediate word-likeness; OLD20 = 
1.6), while most consonants strings are dissimilar to the existing words (low word-likeness for Zbgtn: 
OLD20 = 2.95). Figure 1a demonstrates that OLD20 distributions of words (grey) and pseudowords 
(blue) overlap strongly in intermediate familiarity ranges, consistent with the description provided by 
Balota and Chumbley12. Letter strings with the highest word-likeness are words and expectedly, 
consonant string non-words (yellow) have lowest levels of word-likeness. Thus, the LCM rests on the 
assumption that for these items, lexical categorizations (word non-word decisions) can be derived with 
high certainty while it is difficult at intermediate word-likeness levels.  

Given the assumption that lvOT implements lexical categorization to filter out perceived letter 
strings that are not known, and given the uncertainty associated with this filter function in the face of 
overlapping distributions at intermediate levels of word-likeness, we propose that the non-linear 
response profile of lvOT can be described by the information theoretical concept of entropy. 
Originally, this measure was used to determine the information value of an upcoming event in a time 
series. For example, in a binary categorization, if at a time point t the received information already 
allows a perfect categorization, the expected additional information value of t+1 is low (i.e., low 
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entropy). In contrast, if previous information is ambiguous and does not allow a categorization better 
than chance, the expected additional information at t+1 is high (i.e., high entropy) as this information 
might be critical for a categorization43. For the present implementation, the previous information is 
defined by all known words – i.e., by the mental lexicon, here approximated by 3,110 five-letter words 
as described above. Each perceived letter string – be it a word or a non-word – can be characterized by 
its word-likeness, which can be quantified relative to the existing lexical knowledge, approximated in 
the present model by the OLD20 measure. The estimated entropy, then, reflects the uncertainty of the 
lexical categorization given the word-likeness of the letter string. Note, that these estimations are an 
approximation, based only on a subset of all possible non-words with five letters (i.e., same number of 
words, pseudowords, and consonant strings: 3,110), as the total number of possible 5-letter strings 
would be around 2.5 million, resulting in infeasible high computation efforts.  

As displayed in Figure 1b, real words (grey line) most words have a high probability of being 
categorized as words as words tend to have high word-likeness (Fig. 1a). On the other hand, non-
words (blue line) tend to be less word-like and are thus clearly less likely to be categorized as words. 
As outlined above, the lexical categorization uncertainty is particularly high at intermediate levels of 
word-likeness. This relationship between word-likeness and lexical categorization uncertainty is 
captured well by the entropy estimation, represented by the black line in Figure 1b: Entropy is low 
when the word-likeness estimate allows a certain categorization (as either word or non-word) and high 
when the word-likeness estimate indicates a large uncertainty concerning the lexical categorization. Of 
note, the shape of the entropy function over word-likeness strongly resembles the non-linear response 
profile of lvOT discussed in the Introduction section, so that we here propose as a central postulate of 
the LCM that neuronal activity in lvOT is driven by the entropy during a lexical categorization that 
lvOT performs based on the word-likeness of a given letter string. Importantly, this entropy (Ei) 
function allows to formalize the non-linear activation profile of lvOT: 

Equation 1: 

𝐸!  =  − 𝑝! 𝑊 𝑂𝐿𝐷20! ∙ 𝑙𝑜𝑔! 𝑝! 𝑊 𝑂𝐿𝐷20! −  𝑝! 𝑛𝑊 𝑂𝐿𝐷20! ∙ 𝑙𝑜𝑔! 𝑝! 𝑛𝑊 𝑂𝐿𝐷20!   

The computational implementation of the LCM consists of the entropy function (Figure 1b, 
black line) derived from the probability (pi) of a letter string i being a word (W) or nonword (nW) 
given the specific letter string’s OLD20 (𝑙𝑜𝑔! indicates a logarithm on the basis of 2). 𝑝! 𝑊 𝑂𝐿𝐷20!  
was derived by (i) taking all letter strings of a given OLD20 (e.g. OLD20 = 1.5; N = 137), (ii) 
identifying the words, (iii) counting them (n = 116), and (iv) calculating the probability of being a 
word given the OLD20 value (𝑝! 𝑊 𝑂𝐿𝐷20! = .85; 𝑝! 𝑛𝑊 𝑂𝐿𝐷20!  is the inverse, i.e., 1 - .85 = 
.15). The code will be published when accepted. 

LCM_Block implementation 

In the second version of the LCM we accounted for the task-dependent categorical 
predictability of items as words or non-words in a block design as used in fMRI study 1. The increased 
categorical predictability of the upcoming item in a block should increase the probability of being a 
word (𝑝! 𝑊 𝑂𝐿𝐷20! ) or non-word (𝑝! 𝑛𝑊 𝑂𝐿𝐷20! ), depending on task condition, which was 
implemented by increasing the word-likeness for words (OLD20words - constant) and reducing word-
likeness for non-words (OLD20non-words + constant), after the first item of each block. Importantly, as 
categorical predictability should not differ between different types of letter strings, the constant was 
identical for all letter string types. We are currently not aware of systematic investigations of the 
influence of categorical predictability in a block design on the lvOT activation. As a consequence we 
had to estimate the effect size of the categorical predictability. We realized this by adjusting the 
constant, which reflects the effect size of the categorical predictability, so as to obtain an optimal fit of 
the simulation to the lvOT peak voxel data (Fig. 3c), resulting in a numerical value of the constant of 
0.2 (lowest R2 of all tested values from 0.1 to 1 in 0.1 steps). Importantly, the pattern 
pseudowords>words>consonant strings23 was conserved (but the numeric condition differences 
varied) for the whole range of investigated values, indicating that the assumption of a categorical 
predictability influence allows to fit the observed data much better. The latter cannot be taken as 
granted since the position of the letter strings on the entropy curve determines the condition 
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differences. For example, if both the words and pseudowords were located in the right flank in 
contrast to the left flank of the entropy curve (see Figure 3e), this procedure would lead to the exact 
opposite: an increasing activation for word and a decreasing activation for pseudowords. The 
LCM_Block demonstrates that the LCM provides a framework for systematic investigations of task 
effects of interest, which might in the future be used to systematically investigate influences of task or 
stimulus sequences.  

Participants.  
15, 39, and 31 healthy volunteers (age from 18 to 39) participated in Experiments 1 and 2 of 
Evaluation 2 (fMRI) and Experiment 1 of Evaluation 3 (EEG), respectively. All had normal reading 
speed (reading score above 20th percentile estimated by a standardized screening; unpublished adult 
version of44), report absence of speech difficulties, had no history of neurological diseases, and normal 
or corrected to normal vision. Participants gave their written informed consent and received student 
credit or financial compensation (10€/h) as incentive for participating in the experiments. The research 
was approved by the ethics board of the University of Salzburg (EK-GZ: 20/2014; fMRI studies) and 
Goethe-University Frankfurt (#2015-229; EEG study).  

Materials and stimulus presentation. 

Evaluation 1. (i) Pseudowords>words contrast was implemented by contrasting LCM simulations of 
the 3,110 words and 3,110 pseudowords presented in Figure 1a. (ii) Words>consonant strings was 
implemented by contrasting LCM simulations of the 3,110 words and 3,110 consonant strings 
presented in Figure 1a. (iii) Pseudohomophones>words and (iv) pseudohomophones=pseudowords 
contrasts were realized by contrasting LCM simulations of 3,110 words, 3,110 pseudowords, and 52 
pseudohomophones (e.g., Taksi), which encompassed all 5-letter pseudohomophones presented by18. 
(v) Matched pseudowords>matched words were matched on multiple lexical characteristics, i.e., 
number of syllables, number of Coltheart's orthographic neighbors, frequency of the highest frequency 
neighbor, initial bigram frequency, final bigram frequency, and summated bigram frequency (N = 108 
vs. 108), as described in the original study reporting this benchmark effect24. (vi) Word similarity 
effect simulations are realized with three non-word conditions including 332 letter strings with low 
word similarity, 4,034 letter strings with intermediate word similarity, and 220 letter strings with high 
word similarity, as well as 267 words. The words and non-words with high word similarity were 
matched on quadrigram frequency, whereas words and non-words with intermediate word similarity 
were matched on bigram frequency. Note that we selected the maximum possible number of items in 
each group in order to realize the match. (vii) The word frequency effect was realized as described in 
the original benchmark study11, with N = 3,110 words and pseudowords each; the frequency of 
pseudowords was set to zero. (viii) Bigram frequency effect simulations are realized including 3,110 
words, pseudowords, and consonant strings each. LCM predictions of lvOT BOLD signal strength 
were computed as described above. 

Evaluation 2: Experiment 1. 90 five-letter words, pseudowords, consonant strings, and words of 
scrambled letters were presented. In addition, 90 checkerboards and 16 catch trials consisting of hash 
marks (“#####”) were presented; to which participants responded by a button press and which were 
excluded from the analysis. Words and pseudowords were matched on characteristics like the OLD20, 
the number of syllables, and the mean bi-/tri-gram frequency (based on the SUBTLEX frequency 
database31). In addition, words, pseudowords, and consonant strings were matched on letter frequency. 
Stimuli were presented using Presentation software (Neurobehavioral Systems Inc., Albany, CA, 
USA) in black courier new font on a white background for 350 ms (1,000 ms inter-stimulus 
interval/ISI), in six blocks per stimuli category with 16 items each. After two blocks, a fixation cross 
was presented for 2 s. In addition, six rest blocks (fixation cross) were interspersed. Each block lasted 
for 16 s, which resulted in approximately 10 min of recording time.  

Evaluation 2: Experiment 2. 60 critical five-letter words and pseudowords were presented. In addition, 
120 different pseudowords (not analyzed here), 10 practice trials, and 30 catch trials consisting of the 
German word Taste (Button) were presented. Participants responded to catch trials by a button press; 
these trials were excluded from the analysis. All words and pseudowords consisted of 2 syllables and 
were matched on OLD20 and mean bigram frequency. Letter strings were presented by the 
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Experiment Builder software (SR-Research, Ontario, Canada) for 800ms (yellow Courier New font on 
gray background; ISI 2,150 ms). To facilitate estimation of the hemodynamic response, an asynchrony 
between the TR (2,250 ms) and the stimulus presentation was established. In addition, 60 null events 
(fixation cross as in the ISI) were interspersed among trials. The sequence of presentation was 
determined by a genetic algorithm45, which optimized for maximal statistical power and psychological 
validity. The fMRI session was divided in 2 runs with a duration of approximately 8 min each.  

Evaluation 3: 200 five-letter words, 100 pseudowords, and 100 consonant strings were presented. In 
addition, 10 practice trials and 60 catch trials (detecting the word German Taste; procedure as 
described for Evaluation 2) were presented. In Evaluation 3, stimulus presentation was optimized to 
estimate event related potentials. Stimuli were presented on a 19″ CRT monitor with a resolution of 
1024 × 768 pixels and a refresh rate of 150Hz. Before stimulus presentation, two black vertical bars on 
white background were presented for a time interval between 500 and 1,000 ms to reduce stimulus 
onset expectancies. Next, letter strings were presented by the Experiment Builder software (SR-
Research, Ontario, Canada) for 800 ms in a pseudo-randomized order (black on white background, 
Courier-New font, .3° of visual angle per letter), followed by an 800 ms blank screen and a 1,500 ms 
hash mark presentation, which marked an interval in which the participants were instructed to blink if 
necessary. Event related potentials were measured in relation to the stimulus onset. Note that all 
stimuli including lexical characteristics will be available online. 

 
Data acquisition and analysis. 
LCM simulations. Statistical comparisons for the simulations presented in Figure 2 were realized with 
the lm function in R and p-values were Bonferroni-corrected for multiple comparisons. In total, nine 
benchmark effects were tested of which the contrast pseudowords>words>consonant strings23 was a 
combination of the pseudowords>words22 and the words>consonant strings2 contrast and therefore p-
values were only divided by eight and not by nine. Significant differences were marked in Figure 2 
(also realized for alternative models presented in the Supplement 1 and 5 with a black horizontal bar 
when the direction of the effect was expected from the literature and a red bar when the expected 
effect direction was violated. Figures 1 and 2 were realized using ggplot2 in R, as were all scatter, bar 
and box plots of Figure 3 and 4 and the correlation matrix in Figure 4. 

fMRI data. A Siemens Magnetom TRIO 3-Tesla scanner (Siemens AG, Erlangen, Germany) equipped 
with a 12-channel head-coil (Experiment 1) or a 32-channel head-coil (Experiment 2) was used for 
functional and anatomical image acquisition. The BOLD signal was acquired with a T2*-weighted 
gradient echo-planar imaging (EPI) sequence (TR = 2250 ms; TE = 30 ms; Flip angle = 70°; 
Experiment 1: 64 x 64 matrix; FoV = 210 mm; Experiment 2: 86 x 86 matrix; FoV = 192 mm). Thirty-
six descending axial slices with a slice thickness of 3 mm and a slice gap of 0.3 mm were acquired 
within the TR. In addition, for each participant a gradient echo field map (TR = 488 ms; TE 1 = 4.49 
ms; TE 2 = 6.95 ms) and a high-resolution structural scan (T1-weighted MPRAGE sequence; 1 x 1 x 
1.2 mm) was acquired. Stimulus presentation was realized by a MR-compatible LCD screen 
(NordicNeuroLab, Bergen, Norway) with a refresh rate of 60 Hz and a resolution of 1024x768 pixels. 

SPM8 software (http://www.fil.ion.ucl.ac.uk/spm), running on Matlab 7.6 (Mathworks, Inc., 
MA, USA), was used for preprocessing and statistical analysis. Functional images were realigned, 
unwarped, corrected for geometric distortions by use of the FieldMap toolbox, and slice-time 
corrected. In Experiment 1 the high-resolution structural image was pre-processed and normalized 
using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm8). The image was segmented into gray 
matter, white matter and CSF, denoised, and warped into MNI space by registering it to the DARTEL 
template of the VBM8 toolbox using the high-dimensional DARTEL registration algorithm46. Based 
on these steps, a skull-stripped version of the structural image was created in native space. The 
functional images were co-registered to the skull-stripped structural image and then the parameters 
from the DARTEL registration were used to normalize the functional images to MNI space. In 
Experiment 2 the images were co-registered to the high-resolution structural image, which was 
normalized to the MNI T1 template image. The functional images were further resampled to isotropic 
3 × 3 × 3 mm voxels in Evaluation 2, Experiment 1, and 2 × 2 × 2 mm voxels in 2, Experiment 2, and 
smoothed with a 6 mm full width half maximum Gaussian kernel.  
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For statistical analysis a two-stage mixed effects model was used. The first level is subject–
specific and models stimulus onsets with a canonical hemodynamic response function and its temporal 
derivative. Movement parameters from the realignment step and catch trials were modeled as 
covariates of no interest. A high-pass filter with a cut off of 128 s was applied to the functional 
imaging data and an AR(1) model47 corrected for autocorrelation. For the statistical analysis of ROI 
data, LMMs28 were calculated in R (see below). 

 
EEG data. The EEG of Evaluation 3 was recorded from 64 active Ag/Ag-Cl electrodes mounted 
according to the 10-20 system on an actiCAP system (BrainProducts, Germany). FCz served as 
common reference and the EOG was recorded from the outer canthus of each eye as well as from 
below the left eye. A 64-channel Brainamp (BrainProducts, Germany) amplifier with a 0.1–1000 Hz 
band pass filter sampled the amplified signal with 500Hz. The impedances of the electrodes were kept 
below 5kΩ. Offline, the EEG data were re-referenced to the average of all channels. The amplifier 
registered the stimulus onset time via the parallel port. EEG data were preprocessed using MNE-
Python48. Data were high pass filtered at .1 Hz and low pass filtered at 30 Hz. ICA was used to remove 
ocular artifacts. For each subject, epochs from 0.5 s before to 0.8 s after word onset were analyzed 
after rejecting trials with extreme (>50uV peak-to-peak variation) values, and baselined by subtracting 
the pre-stimulus mean. For illustration, ERPs were calculated by averaging within subjects, and then 
averaging these mean ERPs across subjects. For statistical analysis, multiple regression analysis was 
conducted and a cluster based permutation test35 was used for significance testing. 1024 label 
permutations were conducted to estimate the distribution of thresholded clusters of temporo-spatially 
(across electrode and time) adjacent time points under the null hypothesis to estimate the statistical 
reliability of effects while correcting for multiple tests.  All clusters with a probability of less than an 
assumed alpha value of 0.05 under this simulated null hypothesis were considered statistically 
significant. 
Linear mixed model (LMM) analysis is a linear regression analysis that is optimized to estimate 
statistical models with crossed random effects for items28. These analyses result in effect size 
estimates with confidence intervals (SE) and a t-value. t-values larger than 2 are considered significant 
since this indicates that the effect size ±2 SE does not include zero49.  
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Supplementary material 

 
Supplementary figure 1. Simulated lvOT activation from computational implementations of alternative 
models to the lexical categorization model. Horizontal black bars in the upper rows of each subplot 
indicate significant differences of the simulation results between letter string categories, as derived 
from linear models. Red line indicates the same but the effect was found in the opposite direction as 
expected from previous evidence. In the following the details of each alternative model will be 
described, which allow to evaluate the LCM in contrast to alternative models of lvOT function. We 
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implemented three accounts based on the verbal proposals of Kronbichler11,17 (a; lexicon model), 
Dehaene and Cohen1,9 (b; visual word form area model; which is essentially based on the assumptions 
from10), and Price and Devlin19 (c; interactive account model). In contrast to the LCM, the lexicon and 
visual word form area models implemented linear relationships between lvOT activation and the word 
characteristics that are central to the respective model. The lexicon model conceptualizes the processes 
implemented in lvOT as a search in an orthographic lexicon. This lexicon is arranged by word 
frequency; accordingly, frequent words are found fast, resulting in fast response times and low lvOT 
activation, whereas it takes substantially longer to identify infrequent words, resulting in prolonged 
response times and high activation. lvOT activation (𝐴!"#$; cf. Supplementary equation 1) decreases 
linearly by about 1 activation level (arbitrary unit) per 1 log frequency (𝑓!"#$%&) unit (read out from 
Figure 2: Midfusiform/Posterior fusiform in11; 𝑓!"#$%&: frequency of the letter string, with frequencies 
of pseudo- and nonwords set to zero11; 𝑓!"#: highest frequency in the lexicon).  

Supplementary equation 1: 

𝐴!"#$  =   𝑙𝑜𝑔 𝑓!"#  −  𝑙𝑜𝑔 𝑓!"#$%&  

As shown in in the upper panel of Supplementary Figure 1, the implementation of this model 
can account for only three out of eight benchmark effects. Specifically, this ‘frequency ordered lexical 
search’ model obviously accounts for the word frequency effect but also for the lower activation for 
words in contrast to pseudowords irrespective if they were matched for OLD20 or not (black lines in 
Suppl. Fig. 1a). For the difference between words and pseudohomophones, the simulation is based on 
the frequencies of the base words (i.e., the words from which pseudohomophones were generated), 
predicting reduced activation for pseudohomophones, which is not in correspondence with the 
literature17. In case one assumes that these letter strings have a frequency of zero (i.e. are not present in 
the lexicon) the simulation results in the exact same values as for pseudowords. This would be in line 
with previous studies and would add another correctly simulated benchmark effect for the lexicon 
search model. None of the benchmark effects including consonant strings or word similarity 
manipulations (i.e., bigram frequency and word similarity effect) could be captured by this model. 

 The VWFA model1 postulates that lvOT stores sublexical and lexical multi-letter 
representations (up to a length of about four letters). When a letter string is presented that contains 
these multi-letter combinations, their neural representations are activated irrespective of the lexicality 
of the string. Therefore, higher activations are predicted for often-occurring letter combinations in 
contrast to rare letter combinations. As formalized in Suppl. Equation 2, this is modeled by a linear 
increase of 0.4 per log quadrigram frequency (Qfstring). The specific value for this increase function 
was read out from Figure 4 of10 (left hemisphere, y = -56;).  

Supplementary equation 2: 

𝐴!"#$  =  𝑙𝑜𝑔 𝑄𝑓!"#$%& ∙ 0.4  

This ‘(sub-) lexical storage/activation’ model of lvOT accounts for only three benchmark tests 
(Supplementary Fig. 1b), albeit a different set of results: The VWFA model predicts increased 
activation for words relative to consonant strings, as well as effects of word similarity and bigram 
frequency. None of the benchmark effects explained by the lexicon model could be explained by the 
VWFA model and vice versa. Note that the patterns of predictions generated by these two models do 
not depend on the numeric values chosen for the change in activation, which were read out from the 
results figures of the original publications. Given that these two models are simple linear 
transformations of the respective lexical measure, the effect directions would be similar irrespective of 
which specific constant number would be used to predict lvOT activation in Supplementary Equations 
1 and 2.  

The interactive account of Price and Devlin19 adopts a predictive coding perspective and 
postulates that lvOT activation reflects an interaction between top-down and bottom-up processes, in 
the sense of a prediction error that represents difference between, in the case of single word 
presentation, non-strategic general expectations derived from general word knowledge and the actual 
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bottom-up visual orthographic input. Here we implement this by assuming bottom-up information as a 
constant (I = 1) for all strings. This reflects that bottom-up information is, in standard single word 
presentations, not predictable based on contextual cues. As a consequence this bottom-up information 
is contrasted to the probability of being a word given a specific word likeness (cf. gray line Fig. 1b; 
𝑝 𝑊 𝑂𝐿𝐷20 ), which reflects the probability to be possibly predicted based on general word 
knowledge. The latter is an approximation of how good such non-strategic predictions might be able 
to predict the bottom-up signal. For letter strings with very high OLD20 this might be reasonable, but 
letter strings with a low word likeness cannot sufficiently be predicted, resulting in a high error. In 
addition, it is a reasonable assumption that this relationship is not strictly linear since predicting a 
larger number of letter strings might not be neuronal efficient and thus contradict the general 
assumption of predictive coding models that such prediction processes serve to increase processing 
efficiency. Therefore, the model is implemented in a way that a small number of highly familiar words 
can be reasonably predicted while less familiar letter strings are rather not predicted. This is achieved 
by assuming that the probability of being a word given a specific word likeness of the input string (cf. 
grey line in Fig. 1b) is subtracted from the constant I representing the bottom-up information (this 
constant is always one and can be reduced on the basis of which familiarity the letter string is; i.e. if a 
highly familiar letter string is presented the to be processed information amount is reduced by the 
amount of which the non-strategic prediction matches the bottom-up information since this is used to 
optimize the amount of information to be processed; if a unfamiliar string is presented the string 
cannot be predicted non-strategically and a high activation is predicted since the amount the 
information can be reduced is low) in the perceived letter string (Supplementary equation 3); the result 
of this subtraction is equivalent to the blue line of Figure 1b. Note that an implementation based on a 
linear trend (rather than 𝑝 𝑊 𝑂𝐿𝐷20 ) would have resulted in similar results as the lexicon search 
model presented above.  

Supplementary equation 3: 

𝐴!"#$  =  𝐼 −  𝑝 𝑊 𝑂𝐿𝐷20  

Still this predictive coding model results in a very similar activation pattern as the lexicon model, with 
the expectation that it cannot capture the empirical observation that pseudohomophones elicit similar 
lvOT activation as pseudowords17 (Suppl. Fig. 1c). Four out of eight benchmark effects could be 
accounted for by this implementation.  

Additionally, in their proposal, Price and Devlin19 discussed a second process that might 
influence lvOT function and activation patterns, i.e., that to some letter strings the lvOT is engaged in 
processing and to others, like consonant strings, not. This assumption was motivated by the fact that 
the visual word recognition system including lvOT was not trained for such strings during literacy 
acquisition (i.e., as we only very rarely encounter consonant strings without any vowels). In the first 
place we had refrained from including this second parameter since the implementation of a further 
factors allows to describe more complex patterns, which makes the comparison to the less complex 
single process models introduced above hard. To give an idea of how this additional factor would 
influence the simulation of benchmark effects, we set the simulated lvOT activation from the model 
presented above (Supplementary equation 3) to zero for consonant strings. The simulations including 
this engagement factor result, in contrast to the simulations presented above, in a correct simulation of 
the words>consonant strings contrast and the word similarity contrast. Nevertheless, this adjusted 
model still predicts greater activity for pseudowords relative to pseudohomophones and a negative 
bigram frequency effect, which is not in line with the evidence in the literature. 

To summarize, in contrast to the LCM simulations displayed in Figure 2, we learn that only 
the LCM was able to simulate all tested benchmark effects. Given that the most obvious feature that 
distinguishes the LCM from the other models pertains to the implementation of the inverted-u shaped 
entropy function, we here propose that this non-linearity is a key property of the lvOT activation 
pattern. In addition to these neurocognitive accounts, lvOT processing has previously been related to 
processing stages or modules that are assumed in prominent visual word recognition models (e.g., 
see18,22,26). Often, lvOT processing was related to orthographic processing (e.g., by postulating lvOT as 
the seat of an orthographic lexicon22, similar as in the lexicon account). Most notable is a study by 
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Laszlo and Plaut29, who used a computationally implemented interactive activation model and 
simulated an orthographic similarity contrast reflected in the N400 amplitude of the EEG (for a 
summary of similar approaches see30). Relating these very detailed explicit models, which were 
originally designed to explain behavioral data, to brain activation data, is very complex. This was a 
motivational factor for us to implement highly descriptive single process models based on neuronal 
data, as the LCM, instead.  
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Supplementary figure 2. The word frequency effect in lvOT. Two previous studies25,26 reported binary 
contrasts of groups of high frequent words compared to a groups of low frequent words, and both did 
not find a reliable lvOT activation difference between the conditions but rather showed effects of word 
frequency in brain areas, such as the left posterior inferior frontal gyrus. The LCM using words from 
similar frequency ranges (Fiebach: high = from 1.3 to 2.3, n = 1080, low = from .4 to .9 log frequency, 
n = 588; Carreiras: High = from 2 to 3, n = 280, Low = smaller than .4, n = 724) also predicted only 
very subtle activation differences (higher activation for low frequent words in contrast to high frequent 
words; Supplementary Figure 2). Different from these two studies25,26 the parametric manipulation of 
Kronbichler et al.11 also showed reliable reduction of lvOT activation with increasing word frequency 
(see Introduction). Critical to note is that this parametric manipulation has a higher power than both 
binary contrast from the studies by Carreiras and Fiebach and colleagues, and that both these studies 
used only words. In contrast, the parametric manipulation of Kronbichler et al. used five levels 
comparing a group of pseudowords and four groups of words. As shown in the LCM simulations in 
Figure 2 implementing the parametric manipulation of word frequency by including pseudowords, a 
frequency effect is predicted for lvOT. Also when pseudowords were excluded, the LCM predicted a 
negative frequency effect (-0.40 and -0.17, respectively; 43% effect size reduction). Similarly, 
Kronbichler et al.11 showed a reduction of the frequency effect in lvOT when pseudowords were 
excluded from analysis (53% effect size reduction, see Table 2 of11). In contrast, only an inferior 
frontal region showed an increase in effect size when the pseudowords were omitted. This pattern 
strongly suggests that word frequency is an accurate predictor to the activation in left inferior frontal 
regions and therefore more likely causally related to the processes in these regions. An obvious 
candidate process would be lexical access associated with higher level linguistic processing. In 
contrast, the present proposal and the simulation results presented in this Supplement indicate that the 
frequency effect in lvOT is much weaker and, therefore, only secondary or correlative to lexical 
categorization uncertainty. This is also suggested when Evaluation 3 is contrasted to Supplementary 
figure 4, which indicates that early frequency effects vanish when lexical categorization uncertainty 
and word-likeness are estimated in the same regression model.  
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 Supplementary Figure 3. Word-likeness and lexicality effects for fMRI study 1 (Evaluation 2). In the 
main text, we reported an effect of word likeness in occipito-temporal regions posterior to the word-
sensitive lvOT cluster in out second fMRI experiment (event-related single trial design; Fig. 3l). While 
the blocked design of fMRI study 1 was not primarily designed to demonstrate such stimulus-specific 
effects, we nevertheless also subjected this data set to an event-related analysis of word-likeness. 
Word-likeness, modeled as a continues factor, produced a more widespread activation effect in fMRI 
study 1, distributed over occipital regions of left and right hemisphere, with greater activity for more 
word-like letter strings (two significant clusters: Cluster 1: peak voxel at x = -12, y = -73, z = 1; Left 
lingual gyrus; T =7.34; 514 voxels; Cluster 2: peak voxel at x = -6, y = -88, z = 37; Left precuneus; T 
= 4.0; 67 voxels). From the ventral view of the left hemisphere it is visible that the cluster extended 
into the posterior lvOT, which is not the case in the right hemisphere (Activation effects are visualized 
at voxel level p< .001 uncorrected; cluster level p< .05 family-wise error corrected). In addition, we 
tested the words>pseudowords contrast: no significant activation difference between words and 
pseudowords was found. Only when neglecting the cluster correction, a small activation cluster was 
found in left frontal cortex (x = -39, y = 38, z = 25; Left frontal pole; T = 3.7; 7 voxel). To summarize, 
consistent with the second fMRI experiment, an effect of word-likeness on brain activation was found 
posterior to lvOT, while the (weak) lexicality effect was observed anterior to lvOT, i.e., in 
downstream regions of the frontal lobe. 
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 Supplementary figure 4. Effect sizes and respective significant activation clusters from a regression 
model including only one predictor, i.e., word frequency. While our EEG study (Evaluation 3) resulted 
in a relatively late effect of word frequency (i.e., between 400 and 600 ms post word onset; cf. Fig. 
3i,j), some previous publications have reported frequency effects earlier in the course of the ERP 
elicited by visually presented words (see33 for a summary of evidence). We hypothesized that such 
early word frequency effects are the result of the fact that word frequency is correlated with other 
important predictor variables such as lexicality or OLD20, which may be processed in the brain earlier 
in time. In contrast, our ERP analysis involved a multiple regression model that takes into account 
multiple relevant predictors, which we postulate as the cause of the late word frequency effect. As a 
consequence, we predict that also in our data set, word frequency effects should appear earlier in time 
when modeled separately. Supplementary Figure 4 shows effect sizes and respective significant 
activation clusters form a regression model only including word frequency. As predicted, a significant 
word frequency effect is found in this analysis already around 200 ms, lasting at least until 800 ms 
post word onset. Contrasting this regression analysis to the model we report in the main text (Fig. 4) 
indicates that this early frequency effects can be better explained by word-likeness and lexical 
categorization uncertainty derived from the LCM, and therefore vanishes when all these predictors are 
included.  
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Supplementary Figure 5. LCM implementations on the basis of three alternative word-likeness 
measures, plus the simulations of benchmark effects from the literature (Evaluation 1). In the main 
text, we report an implementation of the LCM using OLD2020 as a measure of word likeness that has 
been reported in the literature to outperform other measures of word likeness REF. However, it is also 
possible to implement the LCM based on alternative measures of word-likeness. Here, we report three 
simulations of the benchmark effects tested in Evaluation 1 (cf. Figure 2), using (a) Coltheart’s 
neighbors, (b) trigram frequency, and (c) quadrigram frequency, as bases for the LCM simulations. 
The left-most columns show the distributions of the respective word-likeness measure for different 
types of letter strings as we well as the probabilities of being a word or not and the resulting entropy 
(categorization uncertainty), analogous to Figure 1 in the main text. It is visible that all three measures 
are less well able to distinguish between words, pseudowords, and consonant strings than OLD20 (Fig. 
1a) does. As a result, the resulting entropy function has a different shape than the one derived from 
OLD20.  The LCM implementation based on OLD20 (Figure 1 and 2) clearly outperformed (in terms 
of correctly predicted effects and estimated effect sizes) these models based on alternative word-
likeness measures. When inspecting the pseudoword>words22 contrast, only the model based on 
Coltheart’s N (Suppl. Fig. 5a) was able to predict this difference; on the other hand, this was the only 
model that did not predict the contrast words>consonant strings2. For description of labels see Figure 1 
and 2.  
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Supplementary figure 6. Effect of lexicon size on word-likeness estimations and LCM simulations. 
We assumed that lexicon size influences word-likeness estimations (i.e. the number of items in the 
lexicon to which e.g. the OLD20 is estimated to influences the OLD20 estimation) and LCM 
simulations. First, word-likeness distributions for words, pseudowords, and consonant strings, which 
were used for the LCM model (see Fig 1 & 2; see Materials section), are presented for lexica 
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consisting of the most frequent 100, 1,000, 10,000 and 100,000 words of the SUBTLEX database. 
When comparing the word-likeness distributions, it becomes obvious that increasing the size of the 
lexicon results in a better differentiation between letter string categories (e.g., stronger differentiation 
between words and consonant strings). Simulations from LCM models derived from these 
distributions (compare to Figure 1 & Supplement Figure 5), in the lower panels (line graphs show 
median LCM simulated activation), showed that the model predicted no difference between categories 
with very small lexicons. Lexicons with intermediate size already allow a differentiation between 
consonant strings (yellow) and the other stimulus categories. Starting from lexicons with 10,000 
words, clearer differentiation between words (gray) and pseudowords (blue)/pseudohomophones 
(green) was present. In part, besides established effects such as acquired letter knowledge or grapheme 
to phoneme conversion (for example22), these simulations demonstrate that the increasing lexicon size 
may account for critical patterns of developmental change during literacy acquisition; our present 
work, in this context, suggests that the lvOT may be an important mediator of such developmental 
processes. 
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