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ABSTRACT 19	

Geographic isolation that drives speciation is often assumed to slowly increase over time, for 20	

instance through the formation of rivers, the formation of mountains or the movement of 21	

tectonic plates. Cyclic changes in connectivity between areas may occur with the 22	

advancement and retraction of glaciers, with water level fluctuations in seas between islands 23	

or in lakes that have an uneven bathymetry. These habitat dynamics may act as a driver of 24	

allopatric speciation and propel local diversity. Here we present a parsimonious model of the 25	

interaction between cyclical (but not necessarily periodic) changes in the environment and 26	

speciation, and provide an ABC-SMC method to infer the rates of allopatric and sympatric 27	

speciation from a phylogenetic tree. We apply our approach to the posterior sample of an 28	

updated phylogeny of the Lamprologini, a tribe of cichlid fish from Lake Tanganyika where 29	

such cyclic changes in water level have occurred. We find that water level changes play a 30	

crucial role in driving diversity in Lake Tanganyika. We note that if we apply our analysis to 31	

the Most Credible Consensus (MCC) tree, we do not find evidence for water level changes 32	

influencing diversity in the Lamprologini, suggesting that the MCC tree is a misleading 33	

representation of the true species tree. Furthermore, we note that the signature of habitat 34	

dynamics is found in the posterior sample despite the fact that this sample was constructed 35	

using a species tree prior that ignores habitat dynamics. However, in other cases this species 36	

tree prior might erase this signature. Hence we argue that in order to improve inference of the 37	

effect of habitat dynamics on biodiversity, phylogenetic reconstruction methods should 38	

include tree priors that explicitly take into account such dynamics. 39	

 40	

  41	
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INTRODUCTION 42	

 43	

Environmental changes such as the formation of mountain ridges, the formation of rivers and 44	

the movement of tectonic plates have long been known to be important drivers of speciation 45	

(Coyne and Orr 2004). Repeated environmental changes may thus lead to diversification 46	

patterns. Cyclic changes in the environment can cause populations to continuously switch 47	

between an allopatric and sympatric stage, providing a continuously renewed potential for 48	

speciation. And these cyclic changes can in turn drive diversity towards levels unexpected 49	

given the current geography, sometimes referred to as a “species pump” (Heaney 1985; 50	

Rossiter 1995). Examples of species pumps include environmental fluctuations fragmenting 51	

habitats on the slopes of mountains (Weir 2006; Sedano and Burns 2010; Hutter et al. 2013), 52	

glaciations and postglacial secondary contacts (Barnosky 2005), sea level changes causing 53	

the fusion and fragmentation of islands (Glor et al. 2004; Thorpe et al. 2008, but see 54	

Papadopoulou and Knowles 2015), and fluctuations in water level causing fragmentation and 55	

fusion of lakes with uneven bathymetry, as in the African Rift Lakes (Cohen et al. 1997b; 56	

Alin et al. 1999; McGlue et al. 2008; Ivory et al. 2016). 57	

 58	

The African Rift Lakes provide a good starting point in studying the interplay between cyclic 59	

habitat dynamics and speciation, because they have been subject to frequent water level 60	

changes (Cohen et al. 1997b; Alin and Cohen 2003; Ivory et al. 2016), and are well known 61	

for their tremendous biodiversity (Seehausen 2000, 2006; Turner et al. 2001; Wagner et al. 62	

2012, 2014; Brawand et al. 2014). An estimated number of 2000 cichlid fish species (Turner 63	

et al. 2001) have evolved in the African Rift Lakes over the past 10 million years (Genner et 64	

al. 2007; Meyer et al. 2016), and comprise one of the most spectacular adaptive radiations 65	
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(Seehausen 2006). The most prominent water level changes took place in Lake Tanganyika, 66	

where the water level has dropped substantially on multiple occasions over the past million 67	

years, sometimes splitting the lake into multiple smaller lakes (Lezzar et al. 1996; Cohen et 68	

al. 1997a, 2007). Being the oldest lake of the three large rift lakes (Cohen et al. 1993), Lake 69	

Tanganyika contains the highest behavioral diversity (Konings 2007) and is the only lake 70	

with a highly resolved phylogeny for cichlid fish. Evidence for the influence of changing 71	

water levels comes from analysis of mitochondrial DNA, which shows that for Tropheus 72	

species, some populations have experienced secondary contact upon changes in water level, 73	

potentially increasing genetic diversity and driving speciation (Sturmbauer et al. 2001; 74	

Koblmüller et al. 2011; Sefc et al. 2017). Similar patterns were found for Variabilichromis 75	

moorii and Ophthalmotilapia nasuta (Sturmbauer et al. 2001), Telmatochromis temporalis 76	

(Winkelmann et al. 2016), and Altolamprologus (Koblmüller et al. 2016). Comparison of 77	

mitochondrial DNA between populations from deep and shallow areas emphasizes that the 78	

deep areas are habitats that are more persistent over time, with lower genetic variation 79	

(Nevado et al. 2013). Furthermore, Eretmodus lineages identified using mitochondrial DNA 80	

are strongly associated with the bathymetric basins of Lake Tanganyika (Verheyen et al. 81	

1996), suggesting that they have independently diversified at low water level.  82	

 83	

Aguilée et al. (2013) developed a model for the African Rift Lakes in which populations at 84	

different locations diverge from each other depending on the local habitat, and at the same 85	

time allowed for sympatric speciation by implementing assortative mating that allows for a 86	

single branching point in trait values. Over time the different locations become separated or 87	

are reconnected, and this may drive the formation of new species. The authors conclude that 88	

stable numbers of diversity are best obtained by a fragmented habitat with recurrent merged 89	

states and rapid fluctuations. However, Aguilée et al. (2013) do not compare their results to 90	
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empirical data. By contrast, Pigot et al (2010) used a spatially explicit model of landscape 91	

fragmentation, where consecutive splitting of species’ geographic ranges drives speciation, 92	

and compared phylogenies generated with their model, with known bird phylogenies. They 93	

found that including this geographical context of speciation explains a large part of the 94	

features exhibited by the reconstructed avian trees. Hence, including a geographical context 95	

of speciation seems a promising research avenue. 96	

 97	

Here, we provide a method to infer whether or how cyclic changes in the environment 98	

influence both the generation and the maintenance of biodiversity. We use an extension of the 99	

standard constant-rates birth-death model. Because deriving an expression for the likelihood 100	

of this model for a given set of phylogenetic branching times is difficult, but simulation of 101	

phylogenies under the model is easy, we used approximate Bayesian computation (ABC) 102	

based on sequential Monte Carlo sampling (SMC) to estimate parameters from phylogenies. 103	

We applied our approach to an updated phylogeny of the Lamprologini, a tribe of cichlid fish 104	

from Lake Tanganyika in order to assess the importance of these habitat dynamics in shaping 105	

the current biodiversity of cichlids in Lake Tanganyika.  106	

 107	

 108	

  109	
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METHODS 110	

Model 111	

To model the interaction between environmental change and speciation, we envisage a lake 112	

that consists of a single pocket at high water level, but that splits into two pockets when the 113	

water level drops. When the water level drops, we assume that all species distribute 114	

themselves equally over the two pockets; similarly, when the water level rises, all species 115	

previously contained in the two pockets are combined into the single pocket. Allopatric 116	

speciation can only occur when the water level is low. We assume a constant probability rate 117	

for allopatric speciation, and hence the waiting time until the next speciation event is 118	

exponentially distributed. After this waiting time, one of the two incipient species in either 119	

pocket can speciate into a new species. If this allopatric speciation does not occur before the 120	

water level rises again, i.e. reflecting that there has not been enough genetic divergence, the 121	

two incipient species in the two pockets merge back into one species. This is conceptually 122	

similar to the idea of protracted speciation (Etienne and Rosindell 2012): the water level drop 123	

initiates the speciation process whereas the allopatric speciation event is the completion of 124	

speciation under the protracted speciation model. Sympatric speciation can always occur in 125	

our model, either at high water level in the lake, or in both pockets when the water level is 126	

low. Extinction is considered to be a background process that occurs locally, i.e. within a 127	

pocket. If the water level is high, this causes extinction of a species, if the water level is low, 128	

this causes local extinction in one of the pockets.  129	

We implemented our model using a Gillespie algorithm, where the time steps are chosen 130	

depending on the rate of possible events. In the model there are five possible events: 131	

1) A water level change event, inducing incipient species or merger of incipient species. 132	

2) Sympatric speciation event at high water level, with rate 𝜆!! 133	
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3) Sympatric speciation event at low water level, with rate 𝜆!!  134	

4) Allopatric speciation(-completion) event, at low water level, with rate 𝜆!!   135	

5) Extinction event, with rate 𝜇 136	

When the water level drops, all species distribute themselves over both pockets.  Thus, 137	

immediately after a water level drop, the number of incipient species is equal to twice the 138	

number of species. When the water level rises, all incipient species that belong to the same 139	

species merge into a single species. During a sympatric speciation event, a single species 140	

splits into two new species, and the original (incipient) species is consumed in the process. 141	

Here we assume that local disruptive selection causes divergence, similar to the 142	

implementation of speciation  by Aguilee (Aguilée et al. 2011, 2013).  If sympatric speciation 143	

occurs when the water level is low, the species in the other pocket is retained, and thus three 144	

new lineages arise: the first branching point occurs at the water level drop while the second 145	

occurs at the sympatric speciation event (Figure 1).  146	

 147	

Figure 1. Schematic representation of the consequences of the three different types of 148	
speciation. Time proceeds from left to right. The dotted blue lines indicate water level 149	
changes. (a) During a sympatric speciation at high water level event, diversification is not 150	
aligned with any associated water level change. (b) During allopatric speciation at low water 151	
level, speciation initiation (incipient species are indicated with a dotted line) coincides with 152	
the water level drop, causing branching events (if speciation-completion occurs before water 153	
level rise) to line up in time. Branching events are conditionally independent of the time of 154	
speciation completion, hence, even when the actual speciation completion events occur at 155	
different time points, branching events in the species tree are identical. (c) During a sympatric 156	
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speciation event at low water, the speciation event is independent of the water level changes. 157	
Because the original species is consumed in the process, a new branching event is also added 158	
at the water level change event. Hence, both speciation-completion (b) and sympatric 159	
speciation at low water level (c) cause branching times to line up at the time of water level 160	
drop. Please note that (a) and (c) represent the reconstructed species tree, but (b) does not; the 161	
reconstructed species tree for (b) would not show the branching event in the uppermost part 162	
of the tree. 163	

During an extinction event, one (possibly incipient) species is removed from the simulation. 164	

If the water level is low, this need not lead to the extinction of a species, because the sister 165	

incipient species might remain in the other pocket, ensuring survival of the species. 166	

Maximum Likelihood 167	

Without water level changes, our model reduces to the constant rates birth-death model (Nee 168	

et al. 1994). As a reference therefore, we estimated parameters of the standard birth-death 169	

model using Maximum Likelihood. The likelihood of the birth-death model was calculated 170	

using the function “bd_ML” from the R package DDD. (Etienne et al. 2012).  171	

 172	

Fitting the model to empirical data 173	

We performed two different fitting procedures: firstly, we performed a model selection 174	

procedure, where three different water level scenarios were fitted simultaneously to the data 175	

(more information about the chosen scenarios can be found in the next section). The model 176	

selection procedure simultaneously estimates parameter estimates and assesses the fit of the 177	

models. However, because the model selection procedure primarily samples the best fitting 178	

model (by design), it does not allow for the comparison of parameter estimates across 179	

different models. Therefore, we also fitted the three different water level scenarios 180	

independently to the empirical data, and obtained posterior distributions for the parameters 181	

relevant to these scenarios. 182	
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We fitted our model to 100 trees randomly sampled from the MCMC chain obtained from the 183	

*BEAST analysis (see below), and to the Most Credible Consensus (MCC) tree. 184	

Water level scenarios  185	

The main focus of our approach is to assess the impact of water level changes on the 186	

diversification rate. Lake Tanganyika experienced low water level stands 35 - 40 k years ago 187	

(kya) (-160 meter), 169 - 193 kya (-250 meter), 262 - 295 kya (-350 meter) , 363 - 393 kya (-188	

350 meter) and 550 - 1100 kya (-650 – 700 meter) (Lezzar et al. 1996; Cohen et al. 1997a). 189	

The southern and northern basin of Lake Tanganyika are separated from each other by a ridge 190	

at a depth of 500 meter below present level. Although some of these water level changes may 191	

not have split up the lake completely, we assume here that these water level changes still 192	

caused sufficient disruption of migration between the northern and southern basin, to be 193	

equivalent to physical separation. Consequently, high water levels occurred between 0 – 35 194	

kya, 40 – 169 kya, 193 – 262 kya, 295 - 363 kya and 393 – 550 kya. Unfortunately the 195	

geological record does not reveal whether any low water level stands occurred beyond 1.1 196	

million years ago (Ma). This leaves us with two alternative scenarios: either no low water 197	

level stands occurred beyond 1.1 Ma, or these low water level stands have not been preserved 198	

accurately in the geological record.  199	

In order to capture these two scenarios we performed inference using two alternative water 200	

level implementations. Firstly we used the exact literature values, assuming a high water 201	

level stand until 1.1 Ma. We refer to this scenario as LW (Literature Waterlevels). Secondly 202	

we assumed that before 1.1. Ma, water level changes occurred at the same average rate of 203	

water level change in the most recent 1.1 million years. In the recent 1.1 million years, the 204	

lake experienced 5 high water level stands, and 5 low water level stands, which amounts to 205	

10 water level changes in total. To extrapolate water level changes to more than 1.1 Ma, we 206	
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drew waiting times until the next water level change from an exponential distribution with 207	

rate 10. We refer to this scenario as EW (Extrapolated Water levels). Thirdly we also tested 208	

the null expectation: no effect of water level changes on speciation, we refer to this scenario 209	

as NW (No Water levels). Without water level changes, the model reduces to the constant-210	

rates birth death model. 211	

Parameter estimation 212	

To fit the model to empirical data we used Approximate Bayesian Computation, in 213	

combination with a Sequential Monte Carlo scheme (ABC-SMC) (Toni et al. 2009). 214	

As summary statistics for the ABC analysis we chose the normalized Lineages Through Time 215	

statistic (Janzen et al. 2015), tree size, Phylogenetic Diversity (AvPD, Schweiger et al. 2008) 216	

and the γ statistic (Pybus and Harvey 2000). On all parameters (𝜆!!, 𝜆!! , 𝜆!! , 𝜇) we chose 217	

uniform priors U(-3, 2), on a 10log scale, such that the eventual prior distribution spans (10-3, 218	

102). A 10log scale was chosen to explore parameter space uniformly, and put extra emphasis 219	

on low values. The standard deviation of the normal distribution used to perturb the 220	

parameters was chosen to have a mean of 0, and a standard deviation of 0.05 (on the 10log 221	

transformed parameter), and we updated one parameter each time (e.g. jumps were only made 222	

in one dimension, to avoid extremely low acceptance rates). The number of particles used per 223	

SMC step was 10,000, where a particle is a data structure containing the model choice and 224	

the parameter estimates. To assess the fit of the model to the data we calculated the Euclidian 225	

distance between the summary statistic of the simulated data and the empirical data. To 226	

ensure that the differences in summary statistics were on the same scale, we normalized the 227	

differences. Differences were normalized by dividing each difference by the standard 228	

deviation of that summary statistic of 1,000,000 trees simulated using parameter values 229	

sampled from the prior.  230	

231	
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Model selection 232	

To identify which model best explains the data, we performed ABC model selection, as 233	

described in Toni et al. (2009; 2010). The main difference between standard ABC-SMC and 234	

ABC-SMC including model selection is that the latter adds one parameter, which keeps track 235	

of the model. As jumping kernel between models we assumed a 50% probability of staying at 236	

the same model, and a 25% probability of jumping to either other model. We assumed a 237	

uniform prior across all three models; this translates to a probability of 1/3 for each model in 238	

the first iteration of the ABC-SMC procedure, and hence an expected number of 3333 239	

particles assigned to each model in the first iteration. This reversible jump ABC-SMC model 240	

selection procedure results in a posterior distribution over the three models, where the model 241	

with most support is the model selected most across all particles. We can calculate the Bayes 242	

factor by taking the ratio of the number of particles assigned to the respective models (Toni et 243	

al. 2009). For example, the Bayes factor of LW/EW is the number of particles assigned to the 244	

model with literature water level changes divided by the number of particles assigned to the 245	

model with extrapolated water level changes. Because a model can receive zero particles, we 246	

set the Bayes factor for each model compared to the model with zero particles to the 247	

maximum support possible, which is the total number of particles: 10,000. To calculate the 248	

posterior support for a model, we calculate 2 ln (Bayes factor), following Kass and Raftery 249	

(1995). A transformed Bayes factor over a value of 2 then corresponds to substantial support 250	

for the considered model (Kass and Raftery 1995).  251	

Model selection validation 252	

To assess whether our ABC-SMC method can accurately infer the correct model, we 253	

simulated 100 datasets for each model (NW, LW & EW), with parameter values drawn from 254	

the prior. We report the median Bayes factor across the 100 replicates. If our method can 255	
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accurately infer the correct model, we expect the median Bayes Factor (after 2 ln 256	

transformation) to be above 2 when comparing posterior support for the model with which 257	

the data was simulated to the other two models.  258	

 259	

Measurement uncertainty 260	

A phylogeny generated with a high rate of allopatric speciation and a high rate of water level 261	

changes tends to have multiple speciation events that are aligned in time (Figure 1, b). This is 262	

due to the fact that the onset of speciation is given by the time of water level change. 263	

Phylogenetic reconstruction methods such as BEAST (Bouckaert et al. 2014) currently do not 264	

allow for simultaneous branching events. Hence, when fitting the model, trees are generated 265	

that are by definition dissimilar from the empirical tree constructed using BEAST, even if 266	

underlying events are close to the original events. To circumvent this we perturbed the 267	

branching time of each node in the trees simulated using our model. In this way speciation 268	

events that were previously aligned in time now occur on slightly different time points, as in 269	

a tree from a BEAST analysis. We perturbed branching times by adding a random number 270	

drawn from a truncated normal distribution with mean 0, standard deviation 𝜎, truncated by 271	

the minimum distance to either the daughter or the parent species. If there were no daughter 272	

lineages present, and the node gave rise to an extant species, the normal distribution was 273	

truncated to the minimum distance to the parent or the present time. Nodes were perturbed 274	

from past to present (leaving the crown in place, to ensure a phylogenetic tree with the same 275	

age as the empirical tree). The standard deviation of the perturbation kernel was included as 276	

an extra parameter to be inferred, with a uniform prior on (10-3,100).  277	

 278	
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Empirical data 279	

We fitted our model to the phylogenetic tree of the tribe of Lamprologini, the most diverse 280	

tribe within Lake Tanganyika, containing 79 species of cichlids in Lake Tanganyika (Day et 281	

al. 2007; Koblmüller et al. 2007; Sturmbauer et al. 2010). The Lamprologini are endemic to 282	

Lake Tanganyika and its surrounding rivers and all species are substrate brooders with shared 283	

paternal and maternal care. In contrast to the mouthbrooding species from the 284	

Haplochromini, the Lamprologini show little sexual dimorphism and dichromatism, which 285	

are well-known indicators for sexual selection (Kraaijeveld et al. 2011). We therefore expect 286	

that the Lamprologini is a good candidate for picking up signals from water level changes.  287	

We reconstructed a new Lamprologini tree following the workflow of the most complete 288	

Lamprologini tree to date, which is a consensus tree based on the mitochondrial ND2 gene 289	

(Sturmbauer et al. 2010), but we added three newly described species (Lepidiolamprologus 290	

mimicus (Schelly et al. 2007), Neolamprologus timidus (Kullander et al. 2014b) and 291	

Chalinochromis cyanophleps (Kullander et al. 2014a)). Using phyloGenerator (Pearse and 292	

Purvis 2013), we downloaded sequences from GenBank for nine genes (GenBank access 293	

numbers can be found in the Supplementary Information). Genes were selected on the basis 294	

of species coverage (at least 25% of the 79 Lamprologini species for which molecular data is 295	

available), and whether or not the gene was crucial for inclusion of a species (e.g. for a 296	

number of species, the only available gene was ND2). After selection, our full dataset 297	

consisted of three mitochondrial genes: the NADH dehydrogenase subunit 2 (ND2 gene, 298	

sequences from Kocher et al. 1995; Klett and Meyer 2002; Clabaut et al. 2005; Duftner et al. 299	

2005; Schelly et al. 2006; Day et al. 2007; Koblmüller et al. 2007, 2016; Schwarzer et al. 300	

2009; Wagner et al. 2009; Sturmbauer et al. 2010; O’Quin et al. 2010; Kullander et al. 2014b; 301	

Weiss et al. 2015). The cytochrome b (cytb) gene (sequences from Salzburger et al. 2002; 302	

Nevado et al. 2009; Wagner et al. 2009; O’Quin et al. 2010; Matschiner et al. 2011, 2016; 303	
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Kullander et al. 2014b; Shirai et al. 2014) and the cytochrome c oxidase subunit I (COI gene, 304	

sequences from Sparks and Smith 2004; Nevado et al. 2013; Kullander et al. 2014a, 2014b; 305	

Breman et al. 2016; Matschiner et al. 2016) and six nuclear genes: the nuclear locus 38A 306	

(38A, sequences from Muschick et al. 2012; Meyer et al. 2016), the 18S ribosomal RNA 307	

internal-transcribed spacer 1–2 with 5.8S and 28S ribosomal RNA partial sequences (18S, 308	

sequences from Nevado et al. 2009; Koblmüller et al. 2016), the recombinase activating 309	

protein 1 (rag1, sequences from Clabaut et al. 2005; Nevado et al. 2009; Kullander et al. 310	

2014b; Shirai et al. 2014; Koblmüller et al. 2016; Meyer et al. 2016), the endothelin receptor 311	

B1 gene (ednrb1, sequences from Muschick et al. 2012; Santos et al. 2014), the ribosomal 312	

protein S7 (rps7, sequences from Schelly et al. 2006; Meyer et al. 2016)) gene and the rod 313	

opsin gene (RH1, sequences from Sugawara et al. 2002; Spady et al. 2005; Nagai et al. 2011; 314	

Meyer et al. 2015). GenBank access numbers for the used sequences can be found in the 315	

supplementary material.  316	

Sequences were aligned using MAFFT (setting: --auto) (Katoh and Standley 2013), and 317	

subsequently, sequences were cleaned using trimAI (sites with >80% data missing were 318	

removed, e.g. setting –gt 0.2) (Capella-Gutiérrez et al. 2009). Rather than concatenating the 319	

alignments, we partitioned the data into subsets with independent sequence evolution models, 320	

which is more suitable for a dataset which is expected to show incomplete lineage sorting or 321	

hybridization (Meyer et al. 2016). To prepare alignments for use with partitionFinder, 322	

alignments were combined using SequenceMatrix 1.8 (Vaidya et al. 2011). The best 323	

partitioning found by partitionFinder 2.1.1 (Lanfear et al. 2012, 2016), partitioned the data 324	

into 5 subsets (unlinked branches, AICc selection criterion), with all nuclear genes into one 325	

subset (Rps7, ednrb1, 38A, 18S, RAG1 and RH1), with substitution model HKY+I+Γ. The 326	

remaining three mitochondrial genes (ND2, COI and cytb) were placed in separate subsets, 327	

each with a GTR+I+ Γ substitution model.  328	
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Using *BEAST (Heled and Drummond 2010) within the BEAST 2 package (Bouckaert et al. 329	

2014), we inferred the time-calibrated species tree. We used an uncorrelated log-normal 330	

relaxed clock and applied two calibration points. Firstly, we calibrated the crown of the 331	

Lamprologini to be 4 million years old (log-normal prior, mean of 4 Myr 95% conf interval: 332	

[3, 5]), based on the results from Meyer et al. (2016). Secondly, we included two riverine 333	

Lamprologini species (L. congoensis and L. teugelsi), and calibrated the onset of their 334	

branching event at 1.7 Ma (offset 1.1, log normal distribution with mean 1.7, 95% conf 335	

interval [1.15, 3.47], “use originate = true”), following Koblmuller (2010). We applied 1/X 336	

priors on the clock rates, and log-normal priors on the substitution rates. All other priors were 337	

left at their default setting. As tree model we used the birth death model.  The used BEAST 338	

configuration file (the Beauti xml) can be found in the supplementary material.  339	

We ran 10 independent STARBEAST MCMC chains, of 750M trees each. Each chain was 340	

verified to have ESS values of at least 100 for all parameters. The first 10M trees were 341	

pruned from these chains as burn-in and then they were combined (we used the species tree, 342	

rather than the individual gene trees) into one large chain (of 7400M trees). Chains were 343	

thinned by taking only each 5,000th tree. Using TreeAnnotator (from the BEAST 2 suite) we 344	

constructed a Maximum Clade Credibility tree (using all 1.48M trees after thinning), storing 345	

the mean heights.  346	

We then pruned the tree from riverine species to obtain the pure Lamprologini tree on which 347	

we fitted our model. Instead of performing one ABC-SMC inference on the obtained MCC 348	

tree using a huge number of particles, which would be more accurate but computationally 349	

extremely demanding, we performed 100 parallel inferences using 10,000 particles each. We 350	

report the mean Bayes factor across these replicates.  351	

 352	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 7, 2017. ; https://doi.org/10.1101/085431doi: bioRxiv preprint 

https://doi.org/10.1101/085431


Branching time uncertainty in the empirical tree 353	

To account for uncertainty in the estimates of branching times in the Lamprologini tree we 354	

sampled 100 trees from the posterior distribution obtained by *BEAST. Sampling was 355	

performed at random, irrespective of the likelihood of the trees. In the Supplementary 356	

material we show that the distribution of summary statistics of the subset of 100 trees is 357	

similar to the distribution of the thinned chain. The 100 sampled trees were, like the 358	

Maximum Clade Credibility tree, also pruned to remove the riverine taxa and stored 359	

separately. For all 100 trees we performed both the ABC-SMC model selection algorithm and 360	

the ABC-SMC parameter estimation algorithm, to determine the impact of different 361	

branching times on the inferred water level model and associated parameters, and to 362	

determine whether the MCC tree is a good representation of the underlying variability.   363	
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RESULTS 364	

Lamprologini phylogeny 365	

 366	

The onset of diversification within the Lamprologini is estimated to be around 3.96 Ma (95% 367	

Highest Posterior Density interval (HPD): [3.09, 4.91]), which is very close to the prior we 368	

put on the node age, based on previous estimates (Meyer et al. 2016). Furthermore, we 369	

estimate the branching off of the Congo species (N. congoensis and N. teugelsi) from the 370	

Lamprologini in Lake Tanganyika to have occurred around 1.35 Ma (HPD: [1.12, 1.68]), 371	

which is a bit younger than previously obtained estimates (1.70 Ma, (Sturmbauer et al. 372	

2010)). The topology of the Maximum Clade Credibility tree is largely consistent with 373	

previous findings (Sturmbauer et al. 2010) (Figure 1). Placement of Neolamprologus 374	

fasciatus as a close relative to N. wauthioni seems to re-iterate previously published evidence 375	

for introgressive hybridization (Koblmüller et al. 2007). For the three species not previously 376	

included in the Lamprologini phylogeny, Lepidiolamprologus mimicus was placed as a close 377	

relative to the other species within the genus Lepidiolamprologus, Chalinochromis 378	

cyanophleps was placed as a sister species to Chalinochromis brichardi, within the group of 379	

Chalinochromis and Julidochromis species, and in agreement with previous analysis 380	

(Kullander et al. 2014b). In contrast to previous findings (Kullander et al. 2014b), 381	

Neolamprologus timidus is not placed as a sister species to Neolamprologus furcifer, but 382	

rather associates with N. mondabu and N. falcicula.  Again, in contrast to other previous 383	

findings (Gante et al. 2016), we place N. olivaceous outside the brichardi complex, which 384	

includes the model system species N. brichardi and N. pulcher. (but see the DensiTree 385	

representation, which shows that this is not true for all trees). Interestingly, we also do not 386	

infer N. savoryi to be phylogenetically clustered within the brichardi complex (the ‘Princess 387	

cichlids’ (Gante et al. 2016)), in contrast to Gante et al. (2016). We should take into account 388	
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however that the analysis by Gante et al. is based on on full genome sequences from only a 389	

small group of species, in contrast to the limited number of markers from a large number of 390	

species that we used.  391	

As a reference we inferred speciation and extinction using the constant-rates birth-death 392	

model (Nee et al. 1994). Using Maximum Likelihood (the function bd_ML in the DDD 393	

package (Etienne et al. 2012)), we obtained an estimate of 1.871 myr-1 for the speciation rate, 394	

and an estimate of 0.993 myr-1 for the extinction rate, for the MCC tree. We find an estimate 395	

of 0.87 myr-1 for the diversification rate (speciation - extinction) and an estimate of 0.531 396	

myr-1 for the turnover rate (extinction / speciation). For the 100 trees sampled from the full 397	

chain, we obtain estimates of 3.02 myr-1 (95% HPD: [1.608, 4.947]) for the speciation rate 398	

and 2.409 myr-1 (95% HPD: [0.884, 4.530]) for the extinction rate. This translates into 399	

estimates of 0.61 myr-1 (95% HPD: [0.313, 0.985]) for the diversification rate, and 0.765 myr-400	

1 (95% HPD: [0.518, 0.930]) for the turnover rate. Estimates for the birth-death model 401	

obtained during reconstruction of the tree using BEAST indicate an estimate of 0.864 myr-1 402	

(95% HPD: [0.287, 1.459]) for the speciation rate and an estimate of 0.613 myr-1 (95% HPD: 403	

[0.181, 0.953]) for the relative death rate, which translates into an estimate for the extinction 404	

rate of 0.52 myr-1 (95% HPD: [0.156, 0.823]) per million years. This yields estimates of 405	

0.334 myr-1 and 0.613 myr-1for the diversification and turnover rate respectively. The BEAST 406	

inferences include the riverine species, so speciation and extinction rates are expected to be a 407	

bit different.  408	
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 409	

Figure 2. Phylogenetic hypothesis for the Lamprologini and outgroups, based on 3 410	
mitochondrial and 6 nuclear genes, and two calibrations: 4 million years for the root of the 411	
Lamprologini clade, and 1.1 - 3.5 million years for the Congo Lamprologini species. Left 412	
panel: DensiTree (Bouckaert and Heled 2014) representation of the MCMC chain obtained 413	
using *BEAST. Shown are trees from a thinned posterior chain, after selecting every 414	
100,000th tree. Riverine species are indicated in grey. Right panel: Maximum Clade 415	
Credibility tree. Bars around the node span the 95% HPD for each node. Please note that for 416	
the dual display of both the densitree representation and the MCC phylogeny, some tips of 417	
the MCC phylogeny might appear slightly misaligned. A high resolution version of both the 418	
Densitree representation and the MCC phylogeny can be found in the supplementary 419	
information.  420	

 421	

Parameter estimation 422	

We estimated parameter values for the three models for all 100 trees sampled from the 423	

posterior. We report the parameter values across the combined posterior across all 100 trees. 424	

Note that variation in the parameter estimates results from two sources of variation: 425	

branching time variation across the 100 trees, and secondly variation in the parameter 426	

estimate within each ABC-SMC inference.  427	

The model without water level changes is identical to the constant-rates birth-death model, 428	

and we find that our ABC-SMC estimates for sympatric speciation at high water level (𝜆!!) 429	

are slightly lower than the Maximum Likelihood estimate of the birth rate under the constant 430	

rates birth-death model (2.644 Myr-1(95% HPD: [1.208, 4.633], see also Table 1) versus 3.02, 431	
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see also Table 1). Similarly, we infer the extinction rate (µ) to also be slightly lower (1.950  432	

Myr-1 (95% HPD: [0.188, 4.101]) versus 2.409, see also Table 1). We obtain estimates of 433	

0.694 and 0.738 for diversification and turnover respectively, which are close to the estimates 434	

obtained using Maximum Likelihood (a diversification rate of 0.610 and a turnover rate of 435	

0.765 respectively). Taking into account the 95% confidence intervals on the obtained 436	

parameter estimates and the fact that the ABC-SMC estimates are potentially affected by the 437	

prior while the ML estimates are not, we are confident that estimates obtained using our 438	

ABC-SMC method for the model without water level changes are consistent with the 439	

maximum likelihood estimates under the constant-rates birth-death model.  440	

Using the LW model, which implements water level changes following the literature (e.g. 441	

high water level until ~1.1 Ma, after which a series of water level changes took place), we 442	

infer a lower rate of sympatric speciation at high water level (0.871 Myr-1 (95% HPD: [0.227, 443	

3.642])), which is compensated with a high rate of allopatric speciation (6.412 Myr-1 (95% 444	

HPD: [0.001, 14.195])) but not with a high rate of sympatric speciation at low water level 445	

(0.028 Myr-1 (95% HPD: [0.001, 0.651])), suggesting that water level dynamics are important 446	

drivers of biodiversity, but only through allopatric speciation.  Extinction is inferred to be low 447	

(0.037 Myr-1 (95% HPD: [0.001, 2.133])). Because of the non-trivial relationship between 448	

speciation at high and low water level, we can no longer calculate diversification and 449	

turnover rates. 450	

Using the EW model, where water level changes are extrapolated beyond 1.1 Ma, we observe 451	

that the rate of sympatric speciation at high water level is inferred to be similar to without 452	

water level changes (2.753 Myr-1 (95% HPD: [1.347, 4.383])). Extinction, however, is lower 453	

(0.111 Myr-1 (95% HPD: [0.001, 1.627])), and allopatric speciation and sympatric speciation 454	

at low water level are both inferred to be much lower than for the literature water scenario 455	
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(0.022 Myr-1 (95% HPD: [0.001, 0.466])  and 0.033 Myr-1 (95% HPD: [0.001, 0.504])  456	

respectively).  457	

Across the three water level models we observe that the distribution of the post-hoc 458	

perturbations 𝜎 does not differ substantially from the prior for the NW and EW water models, 459	

with low estimates (0.036 (95% HPD: [0.001, 0.569])  and 0.030 (95% HPD: [0.001, 0.484])  460	

for the NW and EW model respectively, Table 1). We notice a much higher value of 𝜎 461	

associated with LW (0.174, (95% HPD: [0.001, 0.680])), which also has a much higher 462	

estimate for allopatric speciation at low water level. Allopatric speciation at low water level 463	

potentially causes temporal alignment of branching times and we introduced the parameter 𝜎 464	

to correct simulated phylogenies for this, to allow comparison with phylogenies generated by 465	

*BEAST, which does not allow for temporally aligned branching times. Hence, the higher 466	

inferred value of 𝜎 for the LW model confirms the validity of the application of our post-hoc 467	

perturbation.   468	

 469	

470	
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Table 1. Median posterior density estimate, for sympatric speciation at high water (𝜆!!), 471	
extinction (𝜇), perturbation (𝜎), sympatric speciation at low water (𝜆!! ) and allopatric 472	
speciation (𝜆!! ). Shown are results for the model with no water level changes (NW), literature 473	
values for water level changes (LW) and water level changes extrapolated beyond the 474	
literature range (EW). The 95% credibility interval is shown between square brackets. All 475	
values are rates per million years. 476	

 𝝀𝒔𝒉 𝝁 𝝈 𝝀𝒂𝒍  𝝀𝒔𝒍  

NW 2.644 [1.208, 4.633] 1.950 [0.188, 4.101] 0.036 [0.001, 0.569]   

LW 0.871 [0.227, 3.642] 0.037 [0.001, 2.133] 0.174 [0.001, 0.68] 6.412 [0.001, 14.195] 0.028 [0.001, 0.651] 
EW 2.753 [1.347, 4.383] 0.111 [0.001, 1.627] 0.030 [0.001, 0.484] 0.022 [0.001, 0.466] 0.033 [0.001, 0.504] 

 477	

 478	

Figure 3. Posterior densities of the pooled posterior distribution across 100 randomly drawn 479	
trees from the posterior MCMC chain. Shown are estimates for the three water level 480	
scenarios (no water level changes (NW), literature values for water level changes (LW) and 481	
extrapolated values for water level changes (EW)). Shown are the posterior density (black 482	
line) and the 95% credibility interval (shaded area, blue for NW, gold for LW and green for 483	
EW. X-axes are on a 10log scale. The first column shows a sample water level profile, with 484	
the water level on the y-axis, and the time before present (in million years) on the x-axis. 485	
Note that for the EW model, for each simulation a new profile was generated, and that the 486	
shown profile is only one example of such a profile. Because without water level changes, 𝜆!!  487	
and 𝜆!!  have no meaning, their posterior distribution is not shown for the NW scenario. 488	

 489	

 490	

491	
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Model fitting 492	

 493	

Figure 4. Model selection results on 100 trees randomly drawn from the *BEAST posterior of 494	
the Lamprologini tree. The top row shows 2 ln (Bayes factors) comparing posterior support 495	
of the LW (literature water changes) model with the NW (no water level changes) model, the 496	
bottom row shows 2 ln (Bayes factors) of the comparison between the posterior support for 497	
the LW model with the EW (extrapolated water level changes) model. A 2ln(Bayes factor) 498	
higher than 2 is generally considered to provide substantial evidence in favor of the 499	
respective model (Kass and Raftery 1995), which is indicated by the solid lines. The thin 500	
dotted line indicates the median 2 ln (Bayes factor) obtained for the MCC tree, for which we 501	
do not find substantial support for any of the three models. The thick dotted line indicates the 502	
median 2 ln (Bayes factor) for the trees drawn from the *BEAST posterior (e.g. the median of 503	
the distribution shown), which is in both cases above 2, indicating substantial support for the 504	
LW model compared to the other two models.  2 ln(Bayes factors) higher than 10 are grouped 505	
together into one category.  506	

 507	

 508	

509	
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Model selection 510	

When we apply the model selection algorithm to the MCC tree, we find median Bayes factors 511	

(we report here not the raw numbers, but 2 ln(Bayes factor), but for brevity refer to them as 512	

Bayes factors) of 1.64 and 0.9 when comparing the LW model with the NW and EW model 513	

respectively. We thus find no convincing evidence for any of the three models, when fitting 514	

our model to the MCC tree. Alternatively, when we fit to 100 trees randomly sampled from 515	

the *BEAST posterior, we find Bayes factors of 3.60 and 3.65 when comparing LW model 516	

with the NW and EW model respectively. Furthermore, in 77 out of the 100 trees we select 517	

the LW model as the most likely model (based on the Bayes factor), in 17 out of 100 trees we 518	

select the EW model, and only in 6 out of 100 trees we select the model without any water 519	

level changes.    520	

 521	

522	
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Validation of the model selection procedure 523	

 524	

Figure 5. Validation of the ability of our ABC-SMC algorithm to infer the correct model. 100 525	
replicate datasets were generated for each water level model (no water level changes NW, 526	
water level changes from the literature LW, or water level changes extrapolated beyond the 527	
literature range, EW). The plots show the distribution of the 2 ln(Bayes factor) across all 100 528	
replicate inferences. The dotted line indicates the median 2 ln(Bayes factor). A 2ln(Bayes 529	
factor) higher than 2 is generally considered to provide substantial evidence in favor of the 530	
respective model (Kass and Raftery 1995). 2 ln(Bayes factors) higher than 10 are grouped 531	
together into one category.  532	

 533	

Model validation shows that when we simulated data using the NW model, the NW model 534	

was selected using our model validation algorithm more than the other two models (59 out of 535	

100 replicates). Median Bayes factors are both higher than 2, with a median of 5.28 and 3.83 536	

versus the LW and EW model respectively, supporting considerable support for the NW 537	
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model over the other two models. When data was simulated with the LW model, we selected 538	

the correct model in the majority of 100 replicates (84 out of 100 replicates). The Bayes 539	

factors reflect this, with medians of 18.4 (this is the maximum score) versus both the NW and 540	

EW model. Lastly, when we simulated data using the EW model, we selected the correct 541	

model more than the other two models, in 65 out of 100 replicates. This was reflected by the 542	

Bayes factors as well, as the median Bayes factor versus the NW model was 18.4, and the 543	

median Bayes factor versus the LW model was 7.47.  544	

More interesting is the correct detection rate of a model, which is given by the number of 545	

trees simulated by the model that is selected for that tree. This is equal to asking whether, 546	

given posterior support for a respective model, we also find that the tree for which we find 547	

this support was simulated with the respective model. If our model selection procedure can 548	

not detect models accurately, we expect a detection rate of around 50%, as support is always 549	

divided between two (not three) models. Detection rates larger than 50% support the 550	

conclusion that our model selection procedure can adequately infer the correct model.   551	

We find that across the 300 simulated trees, 120 trees received considerable support for the 552	

LW model over the NW model (e.g. 2 ln (BF LW/NW) > 2), of these 120 trees, 92 trees were 553	

simulated with the LW model, which leads to a correct detection rate of 77% (See  Figure 6). 554	

Furthermore, out of 107 trees that received considerable support for the LW model over the 555	

EW model, we find that 83 trees were simulated using the LW model, which translates to a 556	

detection rate of 78%. We find similar detection rates for the NW model: 90% against the 557	

LW model (62 out of 69 detected trees) and 83% against the EW model (54 out of 65 558	

detected trees). Lastly, detection rates for the EW model mirror these findings: a detection 559	

rate of 79% against the NW model (79 out of 100 detected trees), and of 86% against the LW 560	

model (68 out of 79 detected trees). 561	

562	
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 563	

Figure 6. Accuracy of assignment of models depending on their posterior support. A: The 564	
relative fraction of trees simulated with either LW (dark) or NW (light), receiving support for 565	
LW (2ln(Bayes Factor LW/NW) > 2), support for NW (2ln(Bayes Factor LW/NW) < -2), or 566	
receiving no support for either model. B: The relative fraction of trees simulated with either 567	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 7, 2017. ; https://doi.org/10.1101/085431doi: bioRxiv preprint 

https://doi.org/10.1101/085431


LW (dark) or EW (light), receiving support for LW (2ln(Bayes Factor LW/EW) > 2), support 568	
for EW (2ln(Bayes Factor LW/EW) < -2), or receiving no support for either model. C: The 569	
relative fraction of trees simulated with either NW (dark) or EW (light), receiving support for 570	
NW (2ln(Bayes Factor NW/EW) > 2), support for EW (2ln(Bayes Factor NW/EW) < -2), or 571	
receiving no support for either model.  572	

573	
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DISCUSSION 574	

We have presented a model that infers past speciation and extinction rates, and their 575	

interactions with changes in the environment, from a given phylogeny. We have shown that 576	

our model is able to accurately select between different scenarios, including or excluding 577	

environmental change. We applied our model to an updated phylogeny of the cichlid fish 578	

tribe of Lamprologini and found evidence that past water level changes have shaped current 579	

cichlid diversity in Lake Tanganyika, when we applied our model to a sample from the 580	

posterior distribution of trees of the Lamprologini, as inferred by *BEAST. We asked the 581	

model to select the best fitting of three scenarios: a scenario without any water level changes, 582	

a scenario using the values found in the literature, and a scenario using the mean rate of water 583	

level change found in the literature to extrapolate water level changes beyond the range of 584	

literature values available. We found that the model following literature water levels received 585	

most support, which suggests that water level changes have been an important driver of 586	

diversity in the Lamprologini. We note that a model without effect of water level changes on 587	

diversification (NW) can sometimes generate patterns that resemble the predictions of the 588	

preferred model (LW). Yet, we find when fitting our model to trees drawn from the *BEAST 589	

posterior that the distribution of Bayes Factors is skewed towards the model following 590	

literature water levels (LW) and we find support for the model without an effect of water 591	

level changes on diversification (NW) only for a small number of trees, suggesting that this 592	

effect is relatively small.  593	

 594	

When we applied our model selection algorithm on the Most Credible Consensus (MCC) 595	

tree, we found contrasting results. Support for both models including water level changes 596	

diminished, and posterior support for the model without any water level changes increased. 597	
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Nevertheless, no single model could yield enough support to convincingly reject the other 598	

two. Moreover, results using the MCC tree are markedly different from those using trees 599	

sampled from the posterior. We conclude therefore that the MCC tree, at least for the 600	

Lamprologini, but most likely more generally, provides a poor summary of the true species 601	

tree and of the underlying variation in branching patterns. Hence, we suggest to avoid 602	

reporting MCC trees, and instead to provide the reader with the full posterior distribution, for 603	

instance through a DensiTree plot (Bouckaert and Heled 2014). Posterior inference, for 604	

instance of speciation and extinction rates should preferentially also be performed on multiple 605	

independent samples from the posterior, rather than on the MCC tree, as the underlying 606	

variation might lead to very different results, as we have shown here. 607	

 608	

Discrepancies between the MCC tree and the posterior distribution of trees could also 609	

potentially clarify previously recovered inconsistencies when studying diversification, for 610	

example in shrews in the Philippines. The Philippines have been subject to strong sea level 611	

fluctuations, causing the fission and fusion of several islands, primarily during the 612	

Pleistocene (Brown et al. 2013). Population genetic evidence has convincingly shown that the 613	

location of such fused islands correlates strongly with genetic divergence between 614	

populations in many different species (Evans et al. 2003; Linkem et al. 2010; Siler et al. 615	

2010; Oaks et al. 2013). Phylogenetic analysis however, has failed to show any evidence of 616	

diversification associated with Pleistocene water level changes (Esselstyn and Brown 2009).  617	

The basis for this phylogenetic analysis however, was an MCC tree. Repeating the analysis 618	

on the posterior distribution underlying the MCC tree could mitigate these problems, and 619	

could clarify the impact of Pleistocene water level changes on diversification in the 620	

Philippines archipelago. 621	
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 622	

When allopatric speciation rates are high, the resulting phylogenetic trees have internal nodes 623	

that have synchronized branching times, e.g. branching times that align with episodes of 624	

water level change. Although Phylogenetic reconstruction software is able to infer 625	

simultaneous branching events, it typically uses only two parameters (birth and death) to infer 626	

all branching events of the tree. Therefore, if it can accommodate the simultaneous events, it 627	

is unlikely to fit well to the non-simultaneous events, and vice-versa. Our finding of evidence 628	

for a substantial role of habitat dynamics in diversification can therefore be regarded as 629	

conservative. To improve the fit of trees generated by our model with trees generated by 630	

*BEAST we included an a posteriori perturbation parameter in our model. This parameter 631	

determines the standard deviation of a Gaussian perturbation kernel that is applied to each 632	

node after the simulation has completed. By perturbing each node, we minimized the 633	

probability that branching times align in time. We found that standard deviation increased in 634	

size with an increase in allopatric speciation, as expected. A less ad hoc solution to deal with 635	

the alignment of branching times in the tree would be to incorporate the model presented here 636	

as a tree prior in phylogenetic reconstruction software. Although this need not introduce any 637	

significant differences in the tree topology, the distribution of branching times could be 638	

substantially influenced, and any subsequent inference focusing on such patterns could be 639	

very different. Including such models in tree reconstruction software may require 640	

incorporation of ABC methods, and will be extremely computationally demanding, but our 641	

results justify such an endeavor. 642	

 643	

Given that water level changes are only prevalent during the last million years before present, 644	

we cannot exclude the possibility that increased diversification due to reasons other than 645	
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changing water levels has driven diversification during this period. On average, the LW 646	

model could be represented by a simple birth-death model with a rate shift around one 647	

million years ago. We expect however that although such a model could accommodate the 648	

increased average diversification, it cannot replicate temporal alignment in branching events 649	

due to water level changes. To examine this in more detail, we fitted a simple birth-death 650	

model with a rate shift around one million years ago to the trees obtained from the posterior 651	

(see Supplementary Information).. In the absence of a likelihood for the LW model, we 652	

compared the nLTT statistic for the rate-shift model with that of the LW model, as the nLTT 653	

statistic should be sensitive to detecting temporal alignment of branching events, We find that 654	

our model is much closer to the empirical data than the rate shift model. We attempted to 655	

improve the fit of the rate-shift model by allowing the speciation rate in the model to shift up 656	

and down in line with the literature values of the water level changes. The two rates inferred 657	

by the model then represent speciation at low, and at high water level respectively. Although 658	

we do find an increase in the rate of speciation at low water level, the fit of this rate-shift 659	

model is still worse than that of the LW model. This supports our conclusion that water level 660	

changes influence the phylogeny not only through an increased speciation rate, but also 661	

through temporal alignment of branching times.  662	

 663	

Although we refer in our model to the different implementations of speciation as sympatric 664	

and allopatric, care should be taken in interpreting these forms of speciation. We consider 665	

here allopatric speciation only on a large scale, where populations become allopatric over 666	

stretches of hundreds of kilometers (Sturmbauer et al. 2001). Large-scale isolation might not 667	

be necessary for cichlids, as some species can already be limited in gene flow by a sand 668	

stretch of 50 meters separating populations (Rico and Turner 2002). Such micro-allopatric 669	

speciation events are not captured by the allopatric speciation rate in our model. Rather, these 670	
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local scale events are captured in our model by sympatric speciation. Hence, sympatric 671	

speciation in our model covers all degrees of speciation ranging from full sympatry to 672	

allopatry, providing that geographical isolation is smaller than that imposed by a water level 673	

change. Allopatric speciation in our model then solely refers to speciation events caused by 674	

geographical isolation over a large distance, driven by changes in water level, and inducing 675	

simultaneous branching events.  676	

 677	

In our model we have assumed that when the water level drops, species distribute themselves 678	

equally over the two pockets of water that survive the water level drop. A more realistic 679	

model would allow for a skew towards one of the pockets, either dependent on the respective 680	

sizes of the pockets, the distribution of the species over the lake at high water level, or both. 681	

We have here refrained from including a parameter that regulates the distribution of species 682	

over the two pockets in order to avoid over fitting. Another possible extension of our model 683	

would lie into extending the approach towards three or more pockets, possibly combined with 684	

a parameter governing the distribution of species across these three pockets during a water 685	

level drop. Bathymetric maps of Lake Tanganyika suggest that for some water level changes 686	

it might split into three lakes (Coulter 1991). How a split of a species into three populations, 687	

and associated allopatric divergence and speciation, affects phylogenetic structure and affects 688	

temporal alignment in branching times remains currently unexplored and would be an 689	

interesting avenue for future work.    690	

 691	

Our results are strongly in line with population genomic analyses in a number of cichlid 692	

species including Eretmodus cyanostictus (Verheyen et al. 1996), Tropheus moorii  693	

(Koblmüller et al. 2011; Nevado et al. 2013; Sefc et al. 2017), Variabilichromis moorii 694	
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(Nevado et al. 2013), Altolamprologus (Koblmüller et al. 2016) and Telmatochromis 695	

temporalis (Winkelmann et al. 2016), and resonate with population genomic findings across 696	

the three African Rift Lakes (Sturmbauer et al. 2001). Furthermore, population genetic 697	

studies have shown that water level fluctuations in Lake Malawi have been associated with 698	

population expansion in cichlid species (Arnegard et al. 1999; Sturmbauer et al. 2001; 699	

Genner et al. 2010), suggesting a potential role for water level changes in Lake Malawi as 700	

well. Phylogenetic reconstruction for Malawi cichlid species is problematic however, 701	

partially due to the young age of the species. However, considering that the geological record 702	

of Lake Malawi spans a much larger part of the total lifespan of the lake (Delvaux 1995; 703	

Lyons et al. 2015; Ivory et al. 2016) and thus provides a much better record about water level 704	

fluctuations since the colonization of the lake by cichlids, we expect that modern genetic 705	

developments will soon allow for a thorough understanding of the impact of water level 706	

changes on cichlids in Lake Malawi as well. 707	

  708	

Conclusion 709	

Our model integrates standard constant-rate birth-death mechanics with environmental 710	

change and with speciation induced by geographical isolation. We analyzed the phylogeny of 711	

the tribe of Lamprologini to see whether past water level changes in Lake Tanganyika have 712	

contributed to the current diversity of cichlid fish in Lake Tanganyika. We find an important 713	

role for environmental changes in driving diversity, and find evidence that past water level 714	

changes have shaped current standing diversity in the tribe of Lamprologini. However, we 715	

found that inference of past environmental changes from a single phylogeny, and more 716	

specifically, from the MCC tree, tends to lead to unreliable results. We therefore advocate 717	

caution when using the MCC tree as a basis for further analysis. Furthermore, we argue for 718	
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the inclusion of more detailed branching models in phylogenetic reconstruction software, 719	

which allow for the inclusion of an interaction between the environment, and speciation rates. 720	
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