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Abstract

The Sequence Kernel Association Test (SKAT) is widely used to test for associations between

a phenotype and a set of genetic variants, that are usually rare. Evaluating tail probabilities

or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix

related to the genotype covariance between markers. Extracting the full set of eigenvalues of

this matrix (an n × n matrix, for n subjects) has computational complexity proportional to

n3. As SKAT is often used when n > 104, this step becomes a major bottleneck in its use in

practice. We therefore propose fastSKAT, a new computationally-inexpensive but accurate ap-

proximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype

covariance matrix or the largest singular values of a weighted genotype matrix are extracted,

and a single term based on the Satterthwaite approximation is used for the remaining eigenval-

ues. While the method is not particularly sensitive to the choice of k, we also describe how to

choose its value, and show how fastSKAT can automatically alert users to the rare cases where

the choice may affect results. As well as providing faster implementation of SKAT, the new

method also enables entirely new applications of SKAT, that were not possible before; we give

examples grouping variants by topologically assisted domains, and comparing chromosome-wide

association by class of histone marker.

Keywords: genetic association,stochastic singular value decomposition, randomized trace esti-

mator, Lanczos algorithm, convolution
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Introduction

The Sequence Kernel Association Test (SKAT) (Wu et al., 2011) is widely-used to test for as-

sociations between a phenotype and a set of genetic variants. SKAT provides a pooled test of

multiple rare variants, and so is distinct from methods such as BOLT (Loh et al., 2015) and EM-

MAX (Kang et al., 2010) that provide large numbers of single-variant associations. SKAT, a form

of variance-components test, is particularly popular in analysis of rarer variants (e.g. minor al-

lele frequency<0.05) where variant-by-variant analyses would have poor power, due to the large

multiple-testing burden. Compared to tests that combine a region’s genotypes into a single “bur-

den”, SKAT retains power better when the true associations are heterogeneous (Lee et al., 2014).

SKAT was initially developed for linear regression analyses in unrelated samples, but due to its

popularity has been extended to analysis with logistic regression, proportional hazards regression

and related subjects (Wu et al., 2010, 2015; Lee et al., 2012b,a; Chen et al., 2013a, 2014), among

others.

With the advent of large-scale whole-genome sequencing (WGS) data (Cirulli and Goldstein, 2010),

SKAT has been suggested for use testing for phenotype-genotype association, either in pre-specified

regions of interest (Sung et al., 2014) or in ‘sliding windows’ (Morrison et al., 2013) across the entire

genome. However, the computational burden of current SKAT code limits the number of variants

that a single analysis can use. The rate-limiting step is calculating the eigenvalues of the covariance

matrix of the genotypes, or those of a closely-related matrix—the computational complexity of

which scales with the cube of the number of variants (m) or the number of subjects (n), whichever

is smaller (Golub and Van Loan, 1996). In current large-scale WGS studies where n may currently

be 20, 000 or more, this means a SKAT analysis of m=10,000 variants requires a million times more

computing resources than one with m=100 variants. Using faster implementations of standard

algorithms will not solve this problem; the matrix code used (e.g. LAPACK Anderson et al. (1999)

or BLAS (Blackford et al., 2002)) is already heavily optimized (e.g. the high-performance version

of level-3 BLAS (Goto and Van De Geijn, 2008)). Cluster-computing approaches—i.e. using a

million times more processors—are prohibitively expensive, as well as being currently unavailable

in pre-packaged software. But analyzing sets of m=10,000 variants is not unrealistic for WGS
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samples, where hundreds of millions of variants are observed. Moreover, sample sizes for WGS

studies are increasing rapidly, so even when n is smaller than m, analyses will be hampered by this

computational bottleneck. Novel statistical methods that avoid this problem are needed now.

To address this problem, we propose the fastSKAT method, that provides a highly-accurate approx-

imation of SKAT’s p-value with orders of magnitude smaller computational burden than current

methods. FastSKAT achieves this in part using recent advances in random matrix theory (Halko

et al., 2011; Tropp, 2011) that compute just the leading eigenvalues terms in the SKAT test. In this

sense it is similar to the work of Galinsky et al. (2016), who similarly speed up principal components

analysis. But fastSKAT also uses a form of Satterthwaite approximation to obtain p-values, that

computes the most important terms exactly and uses a simple and expedient approximation for the

remaining terms. Where standard SKAT’s computational burden grows with the cube of m (or n

if smaller), the random-projection version grows only with the square of m. As well as the obvious

speedup for SKAT analysis with large m, fastSKAT makes SKAT analyses possible for far larger

sets of variants than are currently feasible. This means it can be used for entirely new forms of

analysis, of which we give two examples. First, we perform SKAT analyses that group variants by

topologically assisted domains (TADs), regions whose high conservation across species makes them

a compelling way to cluster potential signals, but whose large size (10,000–20,000 rare variants)

makes current SKAT analysis impractical. We also implement SKAT chromosome-wide, assessing

the association of outcomes with different histone regulatory marks, and so learning which classes

of variants to prioritize for subsequent localized inference.

Material and Methods

Overview of Methods

We first describe the SKAT (Wu et al., 2011) approach; its formulation, test statistic, and the null

sampling distribution for that statistic. Our major focus is the computational burden of evaluating

all eigenvalues of the genotype matrix, which is a limiting factor in SKAT analysis of WGS data.

We then describe the fastSKAT method, which computes just the leading eigenvalues terms in
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the SKAT test using random projection methods (Halko et al., 2011; Tropp, 2011) and related

tools. Instead of evaluating every eigenvalue, these methods focus on evaluating just the leading

(i.e. largest) eigenvalues, by examining the eigensystem of a random projection of the original

matrix. The projection is low-dimension, and so its eigenvalues can be computed quickly, but

as the leading eigenvalues are those best-preserved under projection, they are the ones a random

projection is most likely to be informative about. Averaging the process over different randomly-

chosen projections, the error in the approximation of these leading eigenvalues quickly becomes

negligible. We describe various options within fastSKAT that can further optimize its speed and

accuracy in different applied settings. Finally, we also describe the settings for simulation-based

evaluation of fastSKAT, and its practical application.

An R package implementing fastSKAT and providing further examples of its use is available from

https://github.com/tslumley/bigQF.

SKAT

SKAT (Wu et al., 2011) can be derived as a score test of the null distribution that all variants

have no association versus the alternative that their effects follow a Gaussian distribution. In the

absence of covariates, it uses an m× n genotype matrix G, where m is the number of variants and

n is the number of individuals (e.g., each row is a variant, each column is a sample). Each entry

in this matrix takes its values from {0, 1, 2} indicating the count of variant alleles for a sample at

a variant. From this matrix we generate g, the m-vector of observed minor allele frequencies gj for

variant j = 1, 2, . . . ,m. SKAT also uses phenotypes vector Y (of length n) and corresponding vector

µ of predicted means, either a constant vector or taken from a linear model that uses adjustment

variables denoted X. The SKAT test statistic is

T =

m∑
j=1

wj
1

2σ̂2

(
n∑
i=1

(Yi − µ̂i)Gmn

)2

, (1)

where σ̂2 is the sample variance of Y − µ̂, and the weights denoted by m-vector w are a function

of g and possibly of annotation data; in the default version of SKAT, the ‘Wu weights’ use wj =

25(1− gj)24.
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Under a classical linear model (or just under mild regularity conditions, in large samples) and

under the null hypothesis of no genetic effects, the distribution of T can be described as a sum of

independent χ2 variables, specifically

T ∼
m∑
j=1

λjKj , (2)

where the λj are the eigenvalues of an m×m matrix (described below) that is closely related to the

covariance of the genotypes, and are ordered from largest to smallest. Given these λj , to efficiently

compute tail probabilities and quantiles of T , we can use the exact methods of Davies (1980);

Farebrother (1984), or approximate them with high accuracy using saddlepoint methods (Kuonen,

1999), with computation proportional to m in all cases.

An important preliminary step is the calculation of the λj . One succinct way to write them is as

the eigenvalues of H = G̃G̃T , where

G̃ =
[
(w �G)(In −X(XTX)−1XT )

]
/
√

2, (3)

in which In denotes an identity matrix, � denotes the Hadamard (elementwise) product, and X

is the usual ‘design’ matrix of adjustment covariates, including an intercept. Equation (3) is not

a computational formula – for example, the projection orthogonal to the range of X given by the

matrix (I −X(XTX)−1XT ) can be computed more efficiently using the QR decomposition of X.

(The computation of the elements of H and the relevant decomposition of G̃ is further discussed

in Appendix 1.) But regardless of how matrix H is evaluated, calculating all the eigenvalues of

an m ×m matrix in general has computational complexity proportional to m3. If n � m we can

instead work with the n × n matrix H∗ = G̃T G̃ (Price et al., 2006) and compute the n non-zero

eigenvalues in O(n3) time, but for WGS applications both n and m tend to be large.

fastSKAT: Satterthwaite approximations

We propose to compute p-values for SKAT tests using a form of Satterthwaite approximation (Lum-

ley, 2011). The basic Satterthwaite approach approximates the reference distribution of T by a
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single scaled χ2 distribution, i.e.

T
approx∼ aχ2

ν ,

with scaling factor a and degrees of freedom ν selected by moment-matching arguments, so that

a = (
∑

λ2i )/(
∑

λi),

and ν = (
∑

λi)
2/(
∑

λ2),

where the summation is over all m or n eigenvalues. Unfortunately, for SKAT tests the basic

Satterthwaite approximation tends to be anticonservative (see e.g. Schifano et al. (2012)), often mis-

stating p-values in the vicinity of 10−6 by an order of magnitude. Details are given in Appendix 2,

but briefly the χ2
ν distribution, for any ν, has tails that are too light compared to the weighted sum

of χ2
1 distributions given in (2). The basic Satterthwaite approximation is sufficiently accurate for

filtering—if it gives a p-value larger than, say, 10−3 in a genome-wide scan no further computation

is needed—but this method alone cannot be sufficiently accurate for final decision-making.

To improve on the basic Satterthwaite approach, we propose instead using

T ∼

(
k∑
i=1

λiχ
2
1

)
+ akχ

2
νk
, (4)

where λi, . . . , λk are the largest k eigenvalues of H. Moment-matching arguments for the scaling

and degrees of freedom in the ‘remainder’ term give

ak = (
m∑

i=k+1

λ2i )/(
m∑

i=k+1

λi),

and νk = (
m∑

i=k+1

λi)
2/(

m∑
i=k+1

λ2). (5)

Since
∑
λ =

∑
iHii and

∑
λ2 =

∑
i,j H

2
ij this takes time proportional to m2, with a small constant

of proportionality.

In the Results section we compare fastSKAT’s approximation to a simpler low-rank approximation

with no remainder term. We also consider the four-moment approximation of Liu et al. (2009),

which is one option in the SKAT package (Lee et al., 2016). This estimator does not require
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individual eigenvalues, but does require the trace of powers of H up to H4, and calculating these

matrices explicitly is as expensive as extracting the full set of eigenvalues.

fastSKAT: fast eigenvalue calculations

For the problem of calculating λ1, . . . , λk in (4) we propose using a random projection using the

Subsampled Random Hadamard Transform (Tropp, 2011), which multiplies each row of H by a

random sign, applies the Fast Hadamard Transform to the matrix, and samples k+p rows at random

from the result. Let Ω be the matrix corresponding to this linear transformation. When working

with H we use the QR decomposition of (ΩH)T to produce an orthonormal matrix Q and compute

the eigenvalue decomposition of QHQT . When working with G̃ we similarly compute Q from ΩG̃

and then take the singular value decomposition of QG̃. The k largest eigenvalues of QHQT and

singular values of QG̃ will be good approximations to those of H and G̃ respectively.

Still better approximations are available by working (implicitly) with the matrix (HHT )qH. After

forming Q = Q0 from (ΩH)T , we compute HTQ and do a QR decomposition to extract Q̃, then

form HQ̃ and do a QR decomposition to extract an improved Q1, or by iterating the procedure q

times, Qq(Halko et al., 2011, Algorithm 4.4). Our implementation defaults to q = 3. Each iteration

takes O(nmk) operations, so the total time complexity is proportional to q + 1.

Because of the use of the Fast Hadamard Transform the construction ofHΩ takes onlyO(m2 log(m))

operations, and the entire approximate singular value decomposition (SVD) only O(m2 log(m) +

mk2). Working with G̃, the complexity is O(nm log n+ (m+ n)k2), and the iterated improvement

changes the leading term to O(nmk), much smaller than the min(m3, n3) needed for a complete

eigendecomposition.

For situations where H is too large to fit in memory, Halko et al. (2011, Section 5.5) describe

single-pass versions of the algorithm; we do not consider these here but they may become useful in

the future.

Another approach for estimating eigenvalues is Lanczos-type algorithms, which generalize the power

algorithm (Golub and Van Loan, 1996). Briefly, this uses an arbitrary starting vector v, transform-

ing the vectors Av,A2v,A3, . . . , Akv into an orthogonal basis in which the matrix A will be tridi-
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agonal and its eigenvalues easily computed. The basic power algorithm is prohibitively inaccurate

with finite-precision arithmetic, but a variety of modified algorithms have been constructed that

give the k largest eigenvalues accurately, though with more than k matrix multiplications. Here,

for comparison with fastSKAT’s Satterthwaite approach, we use the nu-TRLAN implementation

of the thick restarted Lanczos algorithm (Yamazaki et al., 2010), as provided in the svd package

for R (Korobeynikov et al., 2016).

fastSKAT: fast trace estimators

FastSKAT uses Satterthwaite approximation to calculate the ‘remainder’ term in the distribution of

T . Write F = H−QQTH for the remainder when the low-rank approximation is subtracted from H.

The approximation requires the trace of F and of F TF and their low-rank approximations.

The former is computationally straightforward, as the diagonal of H can be computed in O(mn)

time, followed by subtracting the k leading eigenvalues (in O(k) time). The most efficient way to

compute the latter exactly is to construct H and use
∑m

i,j=1H
2
ij , but this would take mn2 time.

Instead, we approximate it by a version of Hutchinson’s randomized trace estimator (Hutchinson,

1990).

Specifically, let vi be m random m-vectors with E[vi] = 0, E[‖vi‖22] = m and Cov[vi, vj ] = 0. Define

ui = G̃vi and ũi = ui −Q(QTui), so that ũi is the projection of vi orthogonal to Q. An estimator

of the trace of the remainder of HTH using only multiplications by G̃ and G̃T is

t̂rh(F TF ) =
1

r

r∑
i=1

ũTi ũi.

The estimator takes O(rmn) time to compute, and by the central limit theorem has relative error

Op(r
−1/2).

fastSKAT: stabilizing ratio estimates

FastSKAT’s Satterthwaite approximation, given in (5), uses the ratio of terms that are traces. We

can therefore increase their accuracy by calculating them using a survey ratio estimator (Fuller,
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2011, Section 2.1). Using a randomized trace estimator with the same random vi to obtain an

estimate t̂rh(H), since tr(H) =
∑

ij G̃
2
ij is available exactly, we can compute

t̂rr(H
TH) = t̂rh(HTH)

tr(H)2

t̂rh(H)2
.

As the Monte Carlo errors in t̂rh(HTH) and t̂rh(H) are correlated, the ratio estimator has increased

accuracy.

fastSKAT: ‘matrix-free’ methods for unrelated individuals

The matrices H and G̃ from (3) will not typically be sparse, but in unrelated individuals G̃ is the

product of a sparse matrix and a projection orthogonal to a matrix of low rank. The projection is on

to residuals for the adjustment model, and so for p adjustment variables can be computed in O(np2)

time from the QR decomposition of X that was computed to fit the adjustment model.

In order to take advantage of this representation we can replace the implicit random matrix Ω

(from the material above on fast eigenvalue calculations) by an explicit n × (k + p) matrix of

random standard Normal variables. Forming HΩ now takes k + p matrix-vector multiplications

by H, followed by the same QR decomposition and eigenvalue decomposition as before. We also

need to replace the implicit random matrix in the trace estimator by an explicit matrix, and again

we use random standard Normal variables. Finally, when there is an adjustment model, use the

randomized trace estimator for both
∑m

i=1 λi = tr(H) and
∑m

i=1 λ
2
i = tr(HTH). The cost of

computing HΩ is now proportional to mnkα, where α is the fraction of non-zero entries in G. We

call this approach ‘matrix-free’; while not described in detail here a similar approach can be used

with the Lanczos-type algorithms. Both are supported by our R package.

fastSKAT: special methods for family data

Adaptations of SKAT’s test statistic (1) and its distribution (2) are available for use with family

data, under a polygenic model for residual phenotype variance (Chen et al., 2013b). Let Φ be the

n × n kinship matrix and Σ̂ = σ̂2GΣ + σ̂2EI be the phenotype covariance matrix, estimated under

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/085639doi: bioRxiv preprint 

https://doi.org/10.1101/085639
http://creativecommons.org/licenses/by/4.0/


the null of no SNP effects. Replacing Y − µ̂ in (1) by Σ̂−1(Y − µ̂), G is then defined by

G̃ =
[
(w �G)Σ̂−1/2(I − Σ̂−1/2X(XT Σ̂−1X)−1XT Σ̂−1/2)

]
/
√

2, (6)

and the distribution of T in (1) holds. Analogous results for a binary phenotype and logistic

adjustment model are provided by Wu et al. (2010).

When Σ̂ is based on expected kinship (pedigree) rather than on observed identity-by-state it is

often sparse, with a sparse Cholesky factorization. The sparseness allows Σ̂−1/2v, for a vector v,

to be computed in O(nf2) time where f is the size of the largest pedigree – with sharper bounds

possible using the distribution of pedigree sizes. In the setting of (6) this means that, if the size of

the largest pedigree is bounded, the time complexity for large m, n only exceeds that for unrelated

individuals by only a constant factor, when m and n are of the same order.

Data analysis settings and simulation framework

Comparison with standard SKAT

We performed standard SKAT and fastSKAT analysis of data from CHARGE-S, an early, small-

scale WGS study in unrelateds (Lin et al., 2014) conducted by investigators from the CHARGE

consortium (Psaty et al., 2009). The disease outcome is low density lipoprotein (LDL), adjusted

to account for lipid-lowering medication use, and analyses residualized out effects of age, cohort,

study site and 5 principal components of ancestry (Morrison et al., 2013) before inverse-Normal

transformation. Tests were performed on regions of typical size centered on known genes (transcript

±50Kb). The fastSKAT method used k=100 eigenvalues and B=600 random projections.

Comparing versions of fastSKAT

To assess the performance of the fastSKAT approximation (4) to other SKAT implementations, and

to assess the speed and accuracy of the various versions of fastSKAT, we used simulated human

genome sequence data. The data was generated using the Markov Coalescent Simulator (Chen

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/085639doi: bioRxiv preprint 

https://doi.org/10.1101/085639
http://creativecommons.org/licenses/by/4.0/


et al., 2009), fixing n and choosing the sequence length to given m ≈ n. We discarded variants with

minor allele frequency over 5%. The resulting genotype matrix has about 98% zero entries.

We perform fastSKAT using the proposed approximation and a low-rank approximation with no

remainder term. To provide a fair assessment of each approximation’s performance, this comparison

is based on a full eigendecomposition of H and so does not include any Monte Carlo error from the

randomized trace estimator or similar algorithms.

Unless specified otherwise, we evaluated the approximations at the point where the Satterthwaite

inequality gave a p-value of 10−6, for a continuous phenotype, unrelated samples, and no adjustment

variables.

Simulations were conducted on an iMac with 8GB memory and a 3.4GHz Intel Core i5 processor,

using R 3.2.1(R Core Team, 2016).

Data analysis

To illustrate fastSKAT analysis of much larger regions than standard SKAT, we provide results

from analysis of the CHARGE-S LDL data as described above, but aggregating rare variants by

“topologically associated domains” (TADs). TADs, typically 1Mb wide, are regions that mark

higher order chromatin interaction (Yao et al., 2015) and are found across the human genome. In

this example we use Human ES Cell TADs (Dixon et al., 2012), which in this setting typically

contain 10,000-20,000 rare variants.

We also used fastSKAT in chromosome-wide analyses, to examine the relative contribution of rare

(below 1% MAF) variants that fall within regulatory marks of six histones annotated in adult liver

and within 500Kb of known lipid loci. This was done for the same CHARGE-S LDL data as above,

but now producing a single SKAT test for each chromosome, for each of the six histones. Random-

selected sets of the same number of SNPs drawn from the same regions, chromosome-wide, were

tested for comparison.
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Results

Comparison with standard SKAT

Figure 1 shows a comparison of fastSKAT and standard SKAT, in the setting of the CHARGE-S

study – where standard SKAT is computationally feasible. The analysis gave 28912 tests overall,

for which standard SKAT took approximately 190 CPU hours, while fastSKAT took only 10 CPU

hours. As shown, the agreement between methods is perfect for all practical purposes. As a

positive control, we note that the eight gene regions where SKAT gave significant results (after

Bonferroni correction) all surround the APOE locus. The agreement between the methods means

that their statistical properties (e.g. Type I error rate, power) can be considered equivalent; for

statistical properties of fastSKAT we therefore refer to the literature on standard SKAT (Lee et al.,

2014).

[Figure 1 about here.]

Comparing versions of fastSKAT

As Figure 2 shows, the approximations using a remainder term perform much better with much

lower values of k than an approximation with no remainder term. Figures 3 and 4 show the total

computation time and relative error in the log10 p-value (log10 p fastSKAT − log10 pSKAT) for

various approximations when H is assumed to be already available (and hence not included in the

timing calculations), and when computing H is included. It shows that ‘matrix-free’ fastSKAT is

much faster than SKAT, with little approximation error, and that when H is not already available,

computing it is a computational bottleneck. The moment-based approximations have substantially

greater approximation error at these extreme p-values than fastSKAT, and are not importantly

faster.

Figures 5 and 6 are similar, but with M = 104 and n ≈ 7500. Initial experimentation showed

that the 100-eigenvalue approximation was not as good as with m = 5000, having typical error of

0.1 on the log10 p scale. These simulations used 200 eigenvalues, giving better approximation than

100 eigenvalues for m = 5000 had done. To put the magnitude of these errors in perspective, the
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random fluctuation in signals is much larger. For example, with a signal where a comparison to χ2
1

gives median p-value= 10−6, we would expect − log10 p to vary between 2.47 and 11.14 in 95% of

repeat experiments.

Figure 7 show the impact of parameter choice on approximation accuracy, where the full eigende-

composition is not available. The left panel is for the algorithms using H, the right panel is for the

algorithms using G̃. Since H = G̃T G̃, an increase of 1 in q in the left panel has the same effect as

an increase of 2 in the right panel. Clearly q ≥ 1 is desirable for stochastic SVD of H and q ≥ 2

for G̃. We chose q = 1 and 100 eigenvalues when using H; q = 3 and 100 eigenvalues when using

G̃.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

Comparing choice of k

As Figures 2 and 7 show, the accuracy of the approximation is not sensitive to k as long as k is large

enough. As a simple criterion, we recommend checking if k and 2k give similar results in a selection

of genes; if so, k can be assumed large enough to give the correct results. Our implementation

defaults to k = 100 eigenvectors and r = 500 random projections.

The choice of k is more important when M or N is very small. Although there is no direct benefit

to using the approximation for min(m,n) < 200, there is an advantage to having a consistent

computational pipeline, so we investigated the small example (n = 2000,m = 67) provided with

the SKAT package(Lee et al., 2016). In this example using the full eigendecomposition gives a

p-value of 0.01875. The leading-eigenvalue approximation based on H (and otherwise using the
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default settings) gives p-values with an error of less than 1 in the third decimal place, for all k from

5 to 60. Using G̃ and the randomized trace estimator, the accuracy is at a similar level; it appears

safe to use fastSKAT even when it is not necessary for computation.

[Figure 8 about here.]

Data analysis: aggregating by TADs

The results are shown in Figure 9, and are in close accordance with what would expected under

the null, as might be expected from this small-scale WGS study. After correction for the number

of regions (n=2977) no region’s association, as measured by SKAT, was statistically significant.

However, the top TAD signal (p=8.2e-5) contains the known lipid gene APOE, a well-known LDL

gene.

In terms of computation, the entire fastSKAT run took 16 CPU hours, reduced to 15 minutes by

parallelization. Using standard SKAT it would have taken approximately 260 CPU days, with

corresponding greater costs even if parallelized.

[Figure 9 about here.]

Data analysis: chromosome-wide association by histone class

The results are shown in Figure 10. Computation of the whole analysis took approximately 1 CPU

hour. Two chromosome-wide aggregations of histone variants were significant after correcting for

the number of chromosomes and histones, variants within H3K4me1 on chromosome 19 (p=1.3e-4)

and H3K36me3 (p=2.0e5). Random variants from the same regions were associated at 0.02 and

p=0.08 respectively. No systematic differences in association strength were detected across histone

marks. As well as suggesting that chromosome 19 is the most promising location for more detailed

examination of the data, the results highlight the considerable strength of evidence brought by a

priori knowledge – in this case histone-related variants over random selection of variants.

[Figure 10 about here.]
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Discussion

We have provided the fastSKAT method, that implement the well-known SKAT test with large

numbers of variants and/or large sample sizes. The fastSKAT method is approximate, but is

sufficiently accurate for routine use with little to no tuning by the user. As well as providing notable

speed increases for analyses that can currently be done, fastSKAT enables entirely new forms of

analysis to be done, such as our aggregation by TADs or even across entire chromosomes.

A number of further refinements are available in special circumstances. If matrix H is already

available (or the genotype covariance matrix, from which H can be computed rapidly), using it

provides a substantial speedup, but computing H just to do the test is not efficient. Similar

conclusions apply to computing H to examine population substructure or to look for duplicates,

where similar leading-eigenvalue algorithms can be used. Taking advantage of the sparseness of

G in genome sequence data can reduce computation time and memory use by a further large

factor.

If there is uncertainty about the number of eigenvalues needed, e.g. for very much larger data

sets than those considered here, we recommend increasing the number until the estimated p-value

stabilizes. If k is too small, the results will change rapidly with increasing k and then stabilize

for k � (m,n). Such approaches are common in other approximation algorithms, e.g. quadra-

ture (Fitzmaurice et al., 2012, Pg 411).

As seen here, the stochastic SVD and Lanczos algorithms have broadly similar performance. The

stochastic algorithm is much easier to implement, but production-quality free implementations of

Lanczos-type algorithms are available, making this less important. While not explored here, the

stochastic SVD is easier to parallelize, which may be important in still-larger applications.

Finally, the Lanczos-type algorithms and randomized algorithms in linear algebra are not well

known to applied statisticians. Based on our example, and the work of Galinsky et al. (2016) on

principal components analysis, these methods have considerable potential and are likely to have

many useful applications in analysis of large-scale genetic data.
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Appendix 1: Complexity of calculating H

It remains to consider the complexity of calculating H. To simplify notation, we will assume m is

not of smaller order than n and that k > log n; the latter assumption is likely to be true and the the

former is no loss of generality as we can work with the transpose of H∗ instead of H. Computing

H directly, if it is not needed for other reasons, has complexity proportional to m2n. While the

proportionality constant is small, the task will eventually dominate the computational effort if m

and n are both large. In that situation, it is possible to work with the singular value decomposition

of G̃ directly. Computing λ1, . . . , λk then takes O(mnk +mk2) time.

Appendix 2: Theoretical behavior in the right tail

The anti-conservatism of the Satterthwaite approximation in the extreme tail is a general phe-

nomenon, as can be proved using Theorem 3.1 of Berman et al. (1992) on tails of convolutions.

Suppose two independent random variables have density functions f(x) and g(x) with exponential

tails, in the sense that the limits

lim
x→∞

− d

dx
log f(x) = cf

lim
x→∞

− d

dx
log g(x) = cg

exist and are finite and non-zero. The theorem states that if cf < cg the sum of the variables also

has a density h(x) with an exponential tail, and limx→∞ f(x)/h(x) exists and is finite and non-zero,

and consequently limx→∞ g(x)/h(x) = 0.

Multiples of chi-squared densities have exponential tails, and if f is the density of aχ2
ν , the tail

rate cf = (2a)−1 depends only on the multiplier, not on the degrees of freedom. Thus, the extreme

tail of the density of T is exponential with rate (2λ1)
−1, the extreme tail of the Satterthwaite

approximation is exponential with rate (2a)−1. Since a < λ1 unless all the non-zero λi are equal,

the Satterthwaite approximation is increasingly anti-conservative in the extreme tail.

In our proposed approximation, increasing k by 1 takes the Satterthwaite remainder term akχ
2
νk

,

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/085639doi: bioRxiv preprint 

https://doi.org/10.1101/085639
http://creativecommons.org/licenses/by/4.0/


which is asymptotically lighter-tailed than the true distribution, and replaces it with a sum of two

terms that has the correct asymptotic tail behavior. We can thus expect increasing k to improve

the approximation for small p-values and large m, n, though not necessarily for large p-values or

when k approaches min(m,n).

Supplementary Figure 11 shows how the accuracy of the Liu–Tang–Zhang, Satterthwaite, and

leading-eigenvalue approximations compares across different p-values, using a single example with

N = 5000. The advantage of the leading-eigenvalue approximation increases further out into the

tail.

[Figure 11 about here.]
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Figure 1: Scatterplot of fastSKAT versus standard SKAT p-values (-log10 scale) for pilot LDL
analysis using CHARGE-S data.
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Figure 2: Comparing a rank-k approximation to H (dotted line) to the proposed approximation
(solid line) for a single simulated dataset with m = 4028, n = 5000.
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Figure 3: Computation time and error for a p-value near 10−6 when the square matrix H = G̃T G̃
is already available (n = 5000, m ≈ 4000). Solid points are deterministic approximations, hollow
points are based on sampling. Lanczos and SSVD use 100 eigenvalues.
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Figure 4: Computation time and error for a p-value near 10−6 including the cost of computing
H when needed (n = 5000, m ≈ 4000). Lanczos and SSVD use 100 eigenvalues. Solid points
are deterministic approximations, circles are based on sampling, triangles based on G̃, and squares
based on sparse G.
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Figure 5: Computation time and error for a p-value near 10−6 when the square matrix H = G̃T G̃
is already available (n = 104, m ≈ 7500). Solid points are deterministic approximations, hollow
points are based on sampling. Lanczos and SSVD use 200 eigenvalues.
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Figure 6: Computation time and error for a p-value near 10−6 including the cost of computing
H when needed (n = 104, m ≈ 7500). Lanczos and SSVD use 200 eigenvalues. Solid points are
deterministic approximations, circles are based on sampling, triangles based on G̃, and squares
based on sparse G.
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Figure 7: Dependence of accuracy on number of eigenvalues used and on the iteration parameter q,
with n = 5000, m = 4151. Left panel: using H, right panel: using G̃. A difference of 1 in q in the
left panel is equivalent to a difference of 2 in the right panel. The dashed line indicates the p-value
based on a full eigendecomposition.
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Figure 8: Small-sample behavior of matrix-free fastSKAT: k = 1, 2, 3, . . . , 65
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Figure 9: Genome-wide results for LDL association with rare variants aggregated by TADs.
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Figure 10: Chromosome-wide results for the autosomes, for SKAT association tests for all rare
variants within regulatory markers of the six listed histones, and withing 500Kb of known loci. The
dashed line indicates Bonferroni correction of level 0.05 for 22 autosomes × 6 histones.
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Figure 11: [Supplemental Figure] Dependence of accuracy on quantile, with n = 5000
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