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Abstract 
Background: Transcriptional target genes show functional enrichment of genes. 

However, how many and how significantly transcriptional target genes include functional 

enrichments are still unclear. To address these issues, I predicted human transcriptional 

target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of 

transcription factors in databases, and examined functional enrichment and gene 

expression level of putative transcriptional target genes. 

 

Results: Gene Ontology annotations showed four times larger numbers of functional 

enrichments in putative transcriptional target genes than gene expression information 

alone. To compare the number of functional enrichments of putative transcriptional target 

genes between cells or search conditions, I normalized the number of functional 

enrichment by calculating its ratios in the total number of transcriptional target genes. 

With this analysis, native putative transcriptional target genes showed the largest 

normalized number of functional enrichments, compared with target genes including 5 – 

60% of randomly selected genes. The normalized number of functional enrichments was 

changed according to the criteria of enhancer-promoter interactions such as distance from 

transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse 

orientation of CTCF-binding sites showed significantly higher normalized number of 

functional enrichments than the other orientations. The median expression level of 

transcriptional target genes changed according to the criteria of enhancer-promoter 

assignments (i.e. interactions) and was correlated with the changes of the normalized 

number of functional enrichments of transcriptional target genes. 

 

Conclusions: Human putative transcriptional target genes showed significant functional 

enrichments. The normalized number of functional enrichments of human putative 

transcriptional target genes changed according to the criteria of enhancer-promoter 

assignments and correlated with the median expression level of the target genes. These 
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analyses and characters of human putative transcriptional target genes would be useful to 

examine the criteria of enhancer-promoter assignments and to predict the novel 

mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-

promoter interactions. 

 

Keywords: transcriptional target genes, functional enrichment, gene expression, 

transcription factors, enhancer, open chromatin regions, ChIP-seq, CTCF 

 

Background 
     More than 400 types of cells have been found in the human body. Human 

development is accompanied by the differentiation of stem cells into various cell types, 

leading to a diversification of their phenotypes and functions. For example, the 

development of the immune system involves differentiation and diversification of stem 

cells into various types of mature immune cells. The functions of monocytes include 

phagocytosis and antigen presentation. CD4+ T cells, however, play a central role in cell-

mediated immunity and are involved in the activation of phagocytes and antigen-specific 

cytotoxic T-lymphocytes, and the release of various cytokines in response to an antigen. 

The CD20+ B cells are involved in the production of antibodies against antigens. 

     Differentiation of cells is often triggered by the expression of transcription factors 

(TF) followed by the expression of their target genes, which results in the transformation 

of cells into other cell types. For example, the transcription factors PU.1 and CCAAT 

enhancer-binding protein α (C/EBPα) play a critical role in the expression of myeloid-

specific genes and the generation of monocytes and macrophages [1, 2]. The transcription 

factor GATA-3 is essential for early T cell development and the differentiation of naive 

CD4+ T cells into Th2 effector cells [3]. E2A, EBF1, PAX5, and Ikaros are among the 

most important transcription factors that control early development in mice, thereby 

conditioning homeostatic B cell lymphopoiesis [4]. 

     We previously examined the differentiation of monocytes and macrophages in mice, 
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and discovered that the transcription factor IRF8 was essential for cellular differentiation 

[5]. An analysis of transcription factor-binding sites (TFBS) revealed that IRF8 regulated 

the expression of KLF4 through the IRF8 transcriptional cascade. Functional enrichment 

analyses revealed that the target genes of IRF8 showed functional enrichment for antigen 

presentation, whereas those of KLF4 showed functional enrichments for phagocytosis 

and locomotion. These results suggested that the transcriptional cascades of IRF8 and 

KLF4 included different functional modules of target genes.  

     Functional enrichments of transcriptional cascades of IRF8 and KLF4 appeared to 

be related to the cellular functions of monocytes and macrophages. Although several 

transcription factors were expressed in monocytes and macrophages, the number of these 

transcriptional target genes that resulted in functional enrichments remains unknown. 

Whether transcriptional target genes in other human cells show functional enrichments 

remain unclear. If the transcriptional target genes showed significant functional 

enrichment, analyzing transcriptional target genes would be useful in identifying genes 

involved in a specific cellular function. Using the budding yeast, previous studies 

examined the functional enrichments on a genome-scale genetic interaction map using 

the GeneMANIA algorithm [6-8]. Using bacterial systems, the analyses of functional 

enrichments of predicted regulatory networks were performed using Gene Ontology 

annotations [9]. Various databases of functional annotations of genes and pathways exist. 

Analysis of functional enrichments is expected to be useful for understanding the 

association of genes involved in similar functions and same pathways, and for predicting 

unknown gene functions such as non-protein-coding RNAs. In addition, the extent of 

enhancer region contribution to functional enrichments of transcriptional target genes 

remains unknown.  

     In this study, transcriptional target genes were predicted using public databases of 

open chromatin regions of human monocytes, naive CD4+ T, CD20+ B, H1-hESC, and 

iPS cells and ChIP-seq data of human H1-hESC cells and known transcription factor 

binding sequences. Functional enrichment analyses of putative transcriptional target 
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genes were conducted using 10 different annotation databases of functional annotations 

and pathways. The gene expression level of transcriptional target genes was examined in 

the cells. 

 

Results 
Prediction of transcriptional target genes 

     To examine functional enrichments of transcriptional target genes in a genome 

scale, transcriptional target genes were predicted in human monocytes, CD4+ T cells, and 

CD20+ B cells. Searches for known transcription factor binding sequences, which were 

collected from various databases and papers, were conducted in open chromatin regions 

of the promoter sequences of RefSeq transcripts (Figure 1, see Methods). Among 5,277 

transcription factor binding sequences derived from vertebrates, 4,391 were linked to 971 

TF transcripts computationally (see Methods). To maintain the sensitivity of the searches 

for transcription factor binding sites and as some transcription factors will recognize 

multiple distinctly different sequence motifs, transcription factor binding sequences that 

targeted the same genes were recognized as redundant, and one of the sequences was used 

[10] (see Methods). In total, 3,337 transcription factor binding sequences in human 

monocytes, 3,652 in CD4+ T cells, and 3,187 in CD20+ B cells were identified with their 

target genes, which were selected from highly expressed genes in a cell (top 30% 

expression level, see Methods). 

     The total numbers of unique highly expressed target genes of transcription factor 

binding sequences were 4,481, 7,558, and 4,753 in monocytes, CD4+ T cells, and CD20+ 

B cells respectively using promoters. The mean target genes of a transcription factor were 

124, 164, and 144 in monocytes, CD4+ T cells, and CD20+ B cells, respectively, with the 

corresponding medians being 24, 33, and 24, respectively. With regard to the genomic 

localizations of TFBS, 51%, 65%, and 61% of TFBS were located within promoters (±5 

kb of TSS) of target genes in monocytes, CD4+ T cells, and CD20+ B cells, respectively 

(according to association rule 1, see Methods). 
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Functional enrichments of putative transcriptional target genes 

     Functional enrichments of the putative target genes were examined. The 

distribution of functional enrichments in transcriptional target genes was predicted using 

genome sequences of promoters in the three cell types (Figure 1 and Table 1, see 

Methods). Furthermore, the effect of transcriptional target genes including randomly 

selected genes on functional enrichments was investigated using DNase-DGF data of 

monocytes, CD4+ T cells and CD20+ B cells and ChIP-seq data of H1-hESC (Figure 2A 

and B, see Methods). The native putative transcriptional target genes not including 

randomly selected genes showed the highest functional enrichments using Gene Ontology, 

GO Slim, KEGG, Pathway Commons, WikiPathways, InterPro and UniProt functional 

regions (Domains) in both DNase-DGF and ChIP-seq data of the four types of cells. Of 

the 10 databases used in this analysis, the Gene Ontology database consists of three types 

of functional annotations, i.e., 20,836 biological processes, 9,020 molecular functions, 

and 2,847 cellular components. The numbers of functional enrichments of Gene Ontology 

annotations in target genes of a transcription factor were 2,902, 4,077, and 2,778 in 

monocytes, CD4+ T cells, and CD20+ B cells, respectively. An examination of functional 

enrichments of highly expressed genes (top 30% expression level) independent of the 

transcriptional target genes revealed 237, 301, and 239 ‘unique’ Gene Ontology 

annotations in monocytes, CD4+ T cells, and CD20+ B cells, respectively (Table 1). 

Further, the examination of functional enrichments of highly expressed target genes (top 

30% expression level) in target genes revealed 1,271, 1,654, and 1,192 ‘unique’ Gene 

Ontology annotations in monocytes, CD4+ T cells, and CD20+ B cells, respectively i.e., 

These numbers were four times larger than functional enrichments identified by gene 

expression information alone, suggesting that transcriptional target genes were frequently 

associated with similar functions or pathways (Table S3 and S4). 

     Functional enrichments of transcriptional target genes from other databases were 

also examined (Table 1). KEGG, Target genes of transcription factors, Disease Ontology, 
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GO Slim, Pathway Commons, Cellular biomarkers, Target genes of microRNAs, Protein 

domains, and WikiPathways had 95, 16, 127, 12, 242, 17, 97, 303, and 105 unique 

functional annotations, respectively. The numbers of functional enrichments of 

transcriptional target genes in the other annotation databases except for microRNAs and 

Protein domains were significantly higher than gene expression information alone as well 

as Gene Ontology annotations (Table 1). The functional enrichments of transcriptional 

target genes from Pathway Commons for monocytes, CD4+ T cells, and CD20+ B cells 

are shown in Table 2 and Table S5. Functional enrichments were found to be related to 

cellular functions, e.g., interferon signaling, GMCSF (Granulocyte-macrophage colony-

stimulating factor, a kind of cytokine)-mediated signaling events, antigen processing-

cross presentation in monocytes; TCR (T-cell receptor) signaling in naive CD4+ T cells, 

IL-12 (Interleukin-12, a kind of cytokine)-mediated signaling events, and downstream 

signaling in naive CD8+ T cells in CD4+ T cells; interferon alpha/beta signaling, IL8- and 

CXCR2 (Chemokine receptor type 2, a kind of cytokine)-mediated signaling events, and 

BCR (B cell antigen receptor) signaling pathway in CD20+ B cells. WikiPathways also 

revealed that functional enrichments were associated with cellular functions (Table S6). 

 

Effect of enhancer-promoter association rules on functional enrichments 

     To understand the effect of ‘promoter and extended regions for enhancer-promoter 

association (EPA)’ on the functional enrichments of target genes, the rule of extended 

regions was modified according to four criteria (Figure 3A and see Methods) [11], and 

functional enrichments were investigated. 

     According to the association rule (1), the means of target genes were 177, 217, and 

175 in monocytes, CD4+ T cells, and CD20+ B cells, respectively, whereas the 

corresponding medians were 55, 58, and 37, respectively (Table S7). The numbers of 

functional enrichments of Pathway Commons annotations using promoter regions were 

1,005, 1,806, and 821 in monocytes, CD4+ T cells, and CD20+ B cells, respectively (Table 

S8). With the use of EPA (association rule 1), the numbers of functional enrichments of 
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Pathway Commons annotations were 3,087, 7,216, and 3,900, representing 3.07-, 4.00-, 

and 4.75-fold increases, respectively, in the three cells types. Additionally, the numbers 

of ‘unique’ Pathway Commons annotations with promoter regions were 321, 415, and 

329 in monocytes, CD4+ T cells, and CD20+ B cells, respectively; the corresponding 

numbers with the use of EPA (association rule 1) were 364, 437, and 364, representing 

1.13-, 1.05-, and 1.11-fold increases, respectively, in the three cell types. The normalized 

numbers of functional enrichments of Pathway Commons annotations were 44.75, 84.51, 

and 59.32, representing 1.84-, 2.80-, and 3.32-fold increases, respectively, in the three 

cell types (association rule 1, Table 3).  

     The normalized numbers of the functional enrichments of transcriptional target 

genes showed association rule (4) as the highest number, followed by association rule (1) 

and (2) in the three cell types. Although association rule (3) was the longest among the 

four criteria, it showed the lowest number of functional enrichments in the three cell types 

(Figure 3A and Table 3). ChIP-seq data of 19 TF in H1-hESC (Human embryonic stem 

cells) also showed almost the same tendency (difference between association rule (4) and 

(1) was not statistically significant, due to small number of target genes of 19 TF, whereas 

target genes of 971 TF were examined using open chromatin regions) (Table S9, see 

Additional file). 

     Differences in functional enrichments using Pathway Commons were examined 

between promoters versus EPA (association rule 1) (Table S10). A comparison of 321 and 

364 functional enrichments using the promoters and EPA, respectively, in monocytes 

revealed that 152 (47% in promoters, 42% in extended regions) of them were common. 

For example, IFN-gamma (Interferon gamma) pathway, GMCSF (Granulocyte-

macrophage colony-stimulating factor, a kind of cytokine)-mediated signaling events, 

and PDGF (Platelet-derived growth factor) receptor signaling network were enriched 

using extended regions (association rule 1) as opposed to promoters (Table S10). The 

comparison of 415 (promoters) and 437 (extended regions) functional enrichments in 

CD4+ T cells revealed that 163 of them (39% in promoters, 37% in extended regions) 
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were common. IFN-gamma pathway, TCR (T-cell receptor) signaling in naive CD4+ T 

cells, and IL3 (Interleukin-3, a kind of cytokine)-mediated signaling events were enriched 

using extended regions. The comparison of 329 (promoters) and 364 (extended regions) 

functional enrichments in CD20+ B cells revealed that 171 of them (52% in promoters, 

47% in extended regions) were common. IL5-mediated signaling events, IL4-mediated 

signaling events, and cytokine signaling in immune system were enriched in CD20+ B 

cells using extended regions. Only about 40% of functional enrichments of Pathway 

Commons annotations were unchanged between promoters and EPA. EPA significantly 

affected the functional enrichments of transcriptional target genes. These results showed 

that new functional enrichments related to cellular functions could be identified using 

‘extended regions for enhancer-promoter association’. 

 

Effect of CTCF-binding sites on functional enrichments 

     CTCF have the activity of insulators to block the interaction between enhancers 

and promoters [12]. Recent studies identified a correlation between the orientation of 

CTCF-binding sites and chromatin loops (Figure 3B) [13]. Forward–reverse (FR) 

orientation of CTCF-binding sites are frequently found in chromatin loops. To examine 

the effect of forward–reverse orientation of CTCF-binding sites on functional 

enrichments of target genes, ‘promoter and extended regions for enhancer-promoter 

association (EPA)’ were shortened at the genomic locations of forward–reverse 

orientation of CTCF-binding sites, and transcriptional target genes were predicted from 

the shortened regions using TFBS (see Methods). The numbers of functional enrichments 

of target genes were investigated. According to EPA (association rule 4) that were 

shortened at genomic locations of forward–reverse orientation of CTCF-binding sites, the 

means of target genes were 67, 64, and 77 in monocytes, CD4+ T cells, and CD20+ B cells, 

respectively, whereas the corresponding medians were 23, 21, and 20, respectively (Table 

S11). The normalized numbers of functional enrichments of Pathway Commons 

annotations using EPA were 71.42, 108.08, and 90.99 in monocytes, CD4+ T cells, and 
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CD20+ B cells, respectively (Table 4). With the use of EPA shortened at forward–reverse 

orientation of CTCF-binding sites, the normalized numbers of functional enrichments of 

Pathway Commons annotations were 196.58, 220.54, and 220.77, representing 2.75-, 

2.04-, and 2.43-fold increases, respectively, in the three cells types. Additionally, the 

normalized numbers of functional enrichments of ‘unique’ Pathway Commons 

annotations with EPA were 5.09, 5.34, and 6.00 in monocytes, CD4+ T cells, and CD20+ 

B cells, respectively; the corresponding normalized numbers with the use of EPA 

shortened at forward–reverse orientation of CTCF-binding sites were 9.88, 10.72, and 

9.10, representing 1.94-, 2.01-, and 1.52-fold increases, respectively, in the three cell 

types (Table S12). The normalized numbers of functional enrichments were significantly 

increased between EPA and EPA shortened at forward–reverse orientation of CTCF-

binding sites in Gene Ontology, Disease Ontology, Pathway Commons, GO Slim, 

WikiPathways, KEGG, InterPro and UniProt functional regions (Domains) annotations. 

These increases were also significant, compared with EPA shortened at CTCF-binding 

sites without the consideration of their orientation. 

     Differences in functional enrichments obtained using EPA versus EPA shortened at 

forward–reverse orientation of CTCF-binding sites were examined using the functional 

enrichments of Pathway Commons (Additional file). Transcriptional target genes 

predicted from EPA shortened at the CTCF-binding sites tended to include the similar 

function of genes. About 40 – 80% of functional enrichments were unchanged between 

promoters and EPA shortened at forward–reverse orientation of CTCF-binding sites, and 

the functional enrichments observed in EPA shortened at forward–reverse orientation of 

CTCF-binding sites as opposed to promoters included various immunological terms. 

These results showed that new functional enrichments related to cellular functions could 

be identified using forward–reverse orientation of CTCF-binding sites. 

 

Comparison of expression levels of putative transcriptional target genes 

     To examine the relationship between functional enrichments and expression levels 
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of target genes, the expression levels of target genes predicted from promoters and three 

types of ‘promoter and extended regions for enhancer-promoter assignment (EPA)’ were 

investigated in monocytes, CD4+ T, H1-hESC and iPS cells (Figure 4). Median expression 

levels of the target genes of the same transcription factor binding sequences were 

compared between promoters and three types of EPA. Red and blue dots in Figure 4 show 

statistically significant difference of the distribution of expression levels of target genes 

between promoters and EPA. Additionally, ”red dots” show the median expression level 

of target genes of a TFBS was ‘higher’ in EPA than promoters, and “blue dots” show the 

median expression level of target genes of a TFBS was ‘lower’ in EPA than promoters. 

The ratios of red dots were higher in EPA (association rule 4) that were shortened at 

forward–reverse orientation of CTCF-binding sites versus promoters than EPA 

(association rule 4) versus promoters in monocytes and CD4+ T cells. The ratios of blue 

dots were higher in EPA (association rule 4) that were shortened at forward–reverse 

orientation of CTCF-binding sites versus promoters than EPA (association rule 4) versus 

promoters in H1-hESC and iPS cells. Moreover, the ratio of the sum of median expression 

levels between the three types of EPA and promoters in monocytes and CD4+ T cells was 

the highest in EPA shortened at forward–reverse orientation of CTCF-binding sites (Table 

S14). Conversely, the ratio of the sum of median expression levels between the three types 

of EPA and promoters in H1-hESC and iPS cells was the lowest in EPA shortened at 

forward–reverse orientation of CTCF-binding sites. 

     EPA shortened at forward–reverse orientation of CTCF-binding sites changed (i.e. 

increased or decreased) the expression levels of target genes more than the other types of 

EPA. This implied that gene expression tended to be activated in monocytes and CD4+ T 

cells, but repressed in H1-hESC and iPS cells by enhancers. EPA shortened at forward–

reverse orientation of CTCF-binding sites also showed the highest normalized number of 

functional enrichments of transcriptional target genes, as shown in the previous 

paragraphs. 
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Discussion 
     Genome-wide functional enrichments and gene expression levels of putative target 

genes of human transcription factors were investigated. Human putative transcriptional 

target genes showed significantly larger numbers of functional enrichments than gene 

expression information alone, independent of transcriptional target genes. Moreover, 

when the number of functional enrichments of human putative transcriptional target genes 

was normalized by the total number of transcriptional target genes, native putative 

transcriptional target genes showed the highest ratio of functional enrichments, compared 

with target genes partially including randomly selected genes. The ratio of functional 

enrichments was decreased according to the increase of the ratio of randomly selected 

genes in target genes. These tendencies were observed in putative transcriptional target 

genes predicted from both open chromatin regions and ChIP-seq data of transcription 

factors. Prediction of transcriptional target genes from open chromatin regions include 

false positives, since DNase I cleavage bias affect the computational analysis of DNase-

seq experiments [14]. However, the detection of ChIP-seq peaks is also changed 

depending on the methods to identify them and the depth of DNA sequencing of ChIP-

seq experiments [15]. Though human putative transcriptional target genes include false 

positives, they showed significantly the largest number of functional enrichments, 

compared with target genes including 5 – 60% of randomly selected genes (Figure 2).  

     The median expression level of human putative transcriptional target genes was 

changed according to the criteria of enhancer-promoter assignments, and was correlated 

with the normalized number of functional enrichments. The median expression level of 

transcriptional target genes was ‘decreased’ significantly in transcriptional target genes 

predicted using enhancers, compared with those predicted using promoters in H1-hESC 

and iPS cells, and the median expression level was ‘increased’ significantly in target 

genes predicted using enhancers, compared with those predicted using promoters in 

immune cells. These results implied that transcription factors bound in enhancers act as 

repressors in H1-hESC (ES) and iPS cells, but those act as activators in immune cells. 
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The change of functional roles of transcription factors depending on the cell types would 

be analyzed and reported elsewhere. 

     The median expression level was increased significantly in target genes predicted 

using enhancers, compared with those predicted using promoters in immune cells using 

gene expression data (Blueprint RNA-seq RPKM data; GSE58310), but smaller number 

of target genes showed the increase of median expression level using gene expression 

data (ENCODE; GSM984609). The results of the analyses may be slightly different 

depending on gene expression data. H1-hESC (ES) and iPS cells showed a strong 

tendency of decrease of median expression levels of transcriptional target genes between 

enhancers and promoters. 

     The gene symbols of transcription factors were sometimes different among 

databases, because more than one gene symbol are assigned to some transcription factors 

and some gene symbols are spelled in several different ways. These differences need to 

be identified with manual curations. This analysis will be required to predict 

transcriptional cascades by associating transcription factors with transcriptional target 

genes consisting of transcription factors. In the analyses of transcriptional cascades, to 

reduce false positive predictions of enhancer-promoter associations from open chromatin 

regions, the identification of DNase peaks will be modified using a new tool such as HINT 

[16]. 

     In this study, I focused on three types of immune cells and stem cells such as H1-

hESC and iPS cells to examine transcriptional target genes in a genome scale, since in 

my previous study, I examined transcriptional cascades involved in the differentiation of 

immune cells as introduced in Background section [5]. I plan to promote the analyses in 

this study using other types of cells to confirm the features of functional enrichment and 

gene expression level of putative transcriptional target genes are commonly found in other 

cell types. 

     It is difficult to predict enhancer-promoter associations using a single parameter, so 

that machine learning methods to combine several parameters have been proposed [17] 
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[18] [19]. These methods showed high accuracy in predicting enhancer-promoter 

associations (I tried to use some of the tools, but they did not work properly. I am waiting 

for the authors to update the tools). However, molecular mechanisms of enhancer-

promoter interactions are not clearly understood. CTCF has been found to bind at 

chromatin interaction anchors and form chromatin interactions [12]. About 20-40% of 

chromatin interaction anchors included DNA binding sequences of CTCF, when I 

examined public Hi-C experimental data [20] [21]. Among 33,939 RefSeq transcripts, 

7,202 (21%), 4,404 (13%), and 6,921 (20%) (p-value < 10-5 in the search for CTCF-

binding motifs using FIMO) to 9,608 (28%), 5,806 (17%), and 9,137 (27%) (p-value < 

10-4) of transcripts had forward–reverse orientation of CTCF-binding sites within 1 Mb 

from transcriptional start sites in the three immune cell types, respectively. These analyses 

implied that other factors might be involved in chromatin interactions. ZNF143 has been 

reported to locate at promoter regions of chromatin interaction anchors [22]. To predict 

the other factors and molecular mechanisms, the analyses in this study would be useful 

to examine further the criteria in predicting enhancer-promoter associations. Machine 

learning methods need the information what parameters should be used for prediction, so 

it would be better to choose parameters involved in predicting enhancer-promoter 

associations. To improve the prediction and understand the molecular mechanisms of 

enhancer-promoter interactions, I am promoting the analyses of chromatin interaction 

anchors and the results of the analyses will be reported elsewhere. 

 

Conclusion 
     In this study, human transcriptional target genes were predicted using open 

chromatin regions, ChIP-seq data, and DNA binding sequences of transcription factors in 

databases. Human putative transcriptional target genes showed significant functional 

enrichments. The normalized number of functional enrichments of human putative 

transcriptional target genes changed according to the criteria of enhancer-promoter 

assignments and correlated with the median expression level of the target genes.     
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The normalized numbers of functional enrichments of transcriptional target genes did not 

show the highest number in the criterion of enhancer-promoter assignments covering the 

longest distance from transcriptional start site among four criteria. This suggested that 

there is a criterion of enhancer-promoter assignments that shows the highest normalized 

number of functional enrichments. The median expression level of transcriptional target 

genes was decreased significantly in transcriptional target genes predicted using 

enhancers, compared with those predicted using promoters in H1-hESC and iPS cells, 

and the median expression level was increased significantly in target genes predicted 

using enhancers, compared with those predicted using promoters in immune cells. These 

results implied that transcription factors bound in enhancers act as repressors in H1-hESC 

(ES) and iPS cells, but those act as activators in immune cells. These analyses and 

characters of human putative transcriptional target genes would be useful to examine the 

criteria of enhancer-promoter assignments and to predict the novel mechanisms and 

factors such as DNA binding proteins and DNA sequences of enhancer-promoter 

interactions. 

 

Methods 
Searches for transcription factor binding sequences from open chromatin regions 

     To examine transcriptional regulatory target genes, bed files of hg19 narrow peaks 

of ENCODE DNase-DGF and DNase data for Monocytes-CD14+_RO01746 

(GSM1024791; UCSC Accession: wgEncodeEH001196), CD4+_Naive_Wb11970640 

(GSM1014537; UCSC Accession: wgEncodeEH003156), CD20+_RO01778 

(GSM1014525; UCSC Accession: wgEncodeEH002442), H1-hESC (GSM816632; 

UCSC Accession: wgEncodeEH000556) and iPS (GSM816642; UCSC Accession: 

wgEncodeEH001110) from the ENCODE website 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDgf/) were 

used. For comparison with transcriptional target genes predicted using ChIP-seq data, bed 

files of hg19 narrow peaks of ENCODE ChIP-seq data for 19 transcription factors (TF) 
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(BACH1, BRCA1, C/EBPbeta, CHD2, c-JUN, c-MYC, GTF2I, JUND, MAFK, MAX, 

MXI1, NRF1, RAD21, RFX5, SIN3A, SUZ12, TBP, USF2, ZNF143) in H1-hESC from 

the ENCODE website (https://genome.ucsc.edu/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeAwgTfbsUniform) were utilized. 

     To identify transcription factor binding sites (TFBS) from the DNase-DGF data, 

TRANSFAC (2013.2), JASPAR (2010), UniPROBE, BEEML-PBM, high-throughput 

SELEX, Human Protein-DNA Interactome, and transcription factor binding sequences of 

ENCODE ChIP-seq data were used [23-29]. Position weight matrices of transcription 

factor binding sequences were transformed into TRANSFAC matrices and then into 

MEME matrices using in-house Perl scripts and transfac2meme in MEME suite [30]. 

Transcription factor binding sequences of transcription factors derived from vertebrates 

were used for further analyses. Searches were conducted for transcription factor binding 

sequences from the central 50-bp regions of each narrow peak using FIMO with p-value 

threshold of 10−5 [31]. Transcription factors corresponding to transcription factor binding 

sequences were searched computationally by comparing their names and gene symbols 

of HGNC (HUGO Gene Nomenclature Committee) -approved gene nomenclature and 

31,848 UCSC known canonical transcripts 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/knownCanonical.txt.gz), as 

transcription factor binding sequences were not linked to transcript IDs such as UCSC, 

RefSeq, and Ensembl transcripts. 

 

Prediction of transcriptional target genes 

     Target genes of a transcription factor were assigned when its TFBS was found in 

DNase-DGF narrow peaks in promoter or extended regions for enhancer-promoter 

association of genes (EPA). Promoter and extended regions were defined as follows: 

promoter regions were those that were within distances of ±5 kb from transcriptional start 

sites (TSS). Promoter and extended regions were defined as per the following four 

association rules, which are similar or same as those defined in a previous study [11]: (1) 
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the basal plus extension association rule assigns a basal regulatory domain to each gene 

regardless of other nearby genes. The domain is then extended to the basal regulatory 

domain of the nearest upstream and downstream genes, and includes a 5 kb + 5 kb basal 

region and an extension up to 300 kb or the midpoint between the TSS of the gene and 

that of the nearest gene upstream and downstream; (2) 5 kb + 1 kb basal region and an 

extension up to 1 Mb; (3) the two nearest genes association rule, which extends the 

regulatory domain to the TSS of the nearest upstream and downstream genes without the 

limitation of extension length; and (4) the single nearest gene association rule, which 

extends the regulatory domain to the midpoint between the TSS of the gene and that of 

the nearest gene upstream and downstream without the limitation of extension length. 

Association rule (1) was used in our previous study [5]. Association rule (2), (3), and (4) 

were the same as those in Figure 3A of the previous study [11], however, association rules 

(3) and (4) did not have the limitation of extension length in this study. The genomic 

positions of genes were identified using ‘knownGene.txt.gz’ file in UCSC bioinformatics 

sites [32]. The file ‘knownCanonical.txt.gz’ was also utilized for choosing representative 

transcripts among various alternate forms for assigning promoter and extended regions 

for enhancer-promoter association of the genes. From the list of transcription factor 

binding sequences and transcriptional target genes, redundant transcription factor binding 

sequences were removed by comparing the target genes of a transcription factor binding 

sequence and its corresponding transcription factor; if identical, one of the transcription 

factor binding sequences was used. When the number of transcriptional target genes 

predicted from a transcription factor binding sequence was less than five, the transcription 

factor binding sequence was omitted. 

 

Gene expression analyses 

     For gene expression data, RNA-seq reads mapped onto human hg19 genome 

sequences were obtained, including ENCODE long RNA-seq reads with poly-A of 

monocytes CD14+ cells, CD20+ B cells, H1-hESC, and iPSC (GSM984609, GSM981256, 
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GSE26284, GSM958733, GSM2344099, and GSM2344100), and UCSF-UBC human 

reference epigenome mapping project RNA-seq reads with poly-A of naive CD4+ T cells 

(GSM669617). Two replicates were present for monocytes CD14+ cells, CD20+ B cells, 

H1-hESC, and iPSC and a single one for CD4+ T cells. RPKMs of the RNA-seq data were 

calculated using RSeQC [33]. For monocytes, Blueprint RNA-seq RPKM data 

(GSE58310, GSE58310_GeneExpression.csv.gz, Monocytes_Day0_RPMI) was also 

used [34]. Based on RPKM, UCSC transcripts with expression levels among top 30% of 

all the transcripts were selected in each cell type.  

 

Functional enrichment analyses 

     The functional enrichments of target genes of a TFBS and its corresponding 

transcription factor were examined using GO-Elite v1.2.5 with p-value threshold at 1, and 

after GO-Elite analyses a false discovery rate (FDR) test was performed with q-value 

threshold at 10-3 to correct for multiple comparisons of thousands of groups of 

transcriptional target genes in each cell type and condition [35]. For examining functional 

enrichments of high or low expressed genes independent of transcriptional target genes, 

the p-value threshold was set to 0.01 or 0.05 to confirm that the results were not 

significantly changed. UCSC gene IDs were transformed into RefSeq IDs prior to GO-

Elite analyses. GO-Elite uses 10 databases for identifying functional enrichments: (1) 

Gene Ontology, (2) Disease Ontology, (3) Pathway Commons, (4) GO Slim, (5) 

WikiPathways, (6) KEGG, (7) Transcription factor to target genes, (8) microRNA to 

target genes, (9) InterPro and UniProt functional regions (Domains), and (10) Cellular 

biomarkers (BioMarkers). To calculate the normalized numbers of functional 

enrichments of target genes, the numbers of functional enrichments were divided by the 

total number of target genes in each cell type and condition, and were multiplied by 105. 

In tables showing the numbers of functional enrichments in 10 databases, heat maps were 

plotted according to Z-scores calculated from the numbers of functional enrichments of 

each database using in-house Excel VBA scripts. In the comparisons of the normalized 
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numbers of functional enrichments of target genes in cell types and conditions, if the 

number of a functional annotation in a cell type or condition was two times larger than 

that in the other cell type or condition, the functional annotation was recognized as more 

enriched than the other cell type or condition. 

     To investigate whether the normalized numbers of functional enrichments of 

transcriptional target genes correlate with the prediction of target genes, a part of target 

genes were changed with randomly selected genes with high expression level (top 30% 

expression level), and functional enrichments of the target genes were examined. First, 

5%, 10%, 20%, 40%, and 60% of target genes were changed with randomly selected 

genes with high expression level in monocytes, CD4+ T cells, and CD20+ B cells. Second, 

as another randomization of target genes, the same number of 5%, 10%, 20%, 40%, and 

60% of target genes were selected randomly from highly expressed genes, then added 

them to the original target genes, and functional enrichments of the target genes were 

examined. All analyses were repeated three times to estimate standard errors (Figure 2A 

and B, and Table S1). The same analysis was performed using DNase-DGF data and 

ChIP-seq data of 19 TF in H1-hESC. Transcriptional target genes were predicted from 

promoter and extended regions for enhancer-promoter association (association rule 4) 

(Tables S2). 

 

CTCF-binding sites 

     CTCF ChIP-seq data for monocytes CD14+ cells 

(GSM1003508_hg19_wgEncodeBroadHistoneMonocd14ro1746CtcfPk.broadPeak.gz), 

CD4+ T cells (SRR001460.bam), CD20+ B cells 

(GSM1003474_hg19_wgEncodeBroadHistoneCd20CtcfPk.broadPeak.gz), and H1-

hESC (wgEncodeAwgTfbsUtaH1hescCtcfUniPk.narrowPeak.gz) were used. 

SRR001460.bam was sorted and indexed by SAMtools and transformed into a bed file 

using bamToBed of BEDTools [36, 37]. ChIP-seq peaks were predicted by SICER-rb.sh 

of SICER with optional parameters ‘hg19 1 200 150 0.74 200 100’ [38]. Extended regions 
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for enhancer-promoter association (association rule 4) were shortened at the genomic 

locations of CTCF-binding sites that were the closest to a transcriptional start site, and 

transcriptional target genes were predicted from the shortened enhancer regions using 

TFBS. Furthermore, promoter and extended regions for enhancer-promoter association 

(association rule 4) were shortened at the genomic locations of forward–reverse 

orientation of CTCF-binding sites. When forward or reverse orientation of CTCF-binding 

sites were continuously located in genome sequences several times, the most external 

forward–reverse orientation of CTCF-binding sites were selected. 

 

Abbreviations 
TF: transcription factors 

TFBS: transcription factor binding sites 

TSS: transcriptional start sites 

ENCODE: encyclopedia of DNA elements 

ChIP-seq: ChIP-sequencing, chromatin immunoprecipitation followed by massively 

parallel DNA sequencing 

RNA-seq: RNA-sequencing 

EPA: promoter and extended regions for enhancer-promoter association 

FR: forward-reverse 

RF: reverse-forward 

FF: forward-forward 

RR: reverse-reverse 
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Figure 1. Analyses of functional enrichments of putative transcriptional target genes. 

Transcriptional target genes were predicted using open chromatin regions (DNase-DGF) 

and known transcription factor binding sequences. Functional enrichments of target genes 

were analyzed using 10 annotation databases, and were changed based on the criteria of 

enhancer regions. To compare with the tendency of the normalized numbers of functional 

enrichments, the median expression levels of target genes were examined using enhancer 

and promoter regions. 
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Figure 2. Effect of randomly selected genes on functional enrichments. (a) Effect of 

randomly selected genes on functional enrichments using DNase-DGF data. 

Transcriptional target genes were predicted using DNase-DGF data in human monocytes, 

CD4+ T cells, and CD20+ B cells. The ratio of randomly selected genes in the target genes 

of each TF was changed between 5% and 60%. Native target genes showed the most 

functional enrichments. (b) Effect of randomly selected genes on functional enrichments 

using ChIP-seq data. Transcriptional target genes were predicted using ChIP-seq data of 

19 TF in H1-hESC. Native target genes showed the most functional enrichments. 
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Figure 3. Criteria of promoter and extended regions for enhancer-promoter 

association and features of chromatin interactions. (a) Computationally-defined 

regulatory domains [11]. The transcription start site (TSS) of each gene is indicated as 

an arrow. The corresponding regulatory domain for each gene is shown in a matching 

color as an arrowed line. A basal regulatory domain to each gene was assigned 

regardless of nearby genes (thick line). (see Methods). (b) Forward–reverse orientation 

of CTCF-binding sites are frequently found in chromatin interactions. Figures adapted 

from [13], [39]. 
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orientation exist in >60% neighboring TAD boundaries (Fig-
ure S4D), suggesting that the boundary reverse-forward CBS
pairs play an important role in the formation of most of TADs.
For example, there is a CBS pair in the reverse-forward orienta-
tion in a Chr12 genomic region of H1-hESC cells, located at or
very close to each of the six TAD boundaries (boundaries 1–6),
except for boundary 5, which has only one closely located
CBS in the forward orientation (Figure S4E). These data, taken
together, strongly suggest that directional binding of CTCF to
boundary CBS pairs in the reverse-forward orientations causes
opposite topological looping and thus appears to function as
insulators.

The Human b-globin Locus Provides an Additional
Example of CBS Orientation-Dependent Topological
Chromatin Looping
Based on the location and orientation of CBSs, as well as their
CTCF/cohesin occupancy, we identified four CCDs (domains
1–4) in the well-characterized b-globin cluster (Figure 5A). The
b-globin gene cluster is located between CBS3 (50HS5) and
CBS4 (30HS1) in domain1 (Figure 5A) (Hou et al., 2010; Splinter
et al., 2006). We generated a series of CBS4/5 mutant K562
cell lines using CRISPR/Cas9 with one or two sgRNAs (Li et al.,

A

B

C D E

Figure 4. The Role of CBS Location and
Orientation in CTCF-Mediated Genome-
wide DNA Looping
(A) Diagram of CTCF-mediated long-range chro-

matin-looping interactions between CBS pairs in

the forward-reverse orientations. The color charts

represent 19,532 interactions of CBS pairs in K562

cells. The number and percentage of CBS pairs in

the forward-reverse (FR), forward-forward (FF),

reverse-reverse (RR), and reverse-forward (RF)

orientations are shown.

(B) The percentage of CBS pairs in the forward-

reverse orientations increases from 67.5% to

90.7% as the chromatin-looping strength is

enhanced.

(C) Schematic of the two topological domains in the

HoxD locus. The orientations of CBSs are indicated

by arrowheads. CTCF/cohesin-mediated looping

interactions and the two resulting topological do-

mains (CCDs) are also shown.

(D) Cumulative patterns of CBS orientations of to-

pological domains in the human genome.

(E) Distribution of genome-wide orientation con-

figurations of CBS pairs located in the boundaries

between two neighboring domains in the human

K562 genome. Note that the vast majority (90.0%)

of boundary CBS pairs between two neighboring

domains are in the reverse-forward orientation.

See also Figure S4 and Tables S1, S2, S3, S4, S5,

and S6.

2015) (Figures S2B and S2C). In the
CRISPR cell lines D3, D7, and D19 (out
of 38 clones screened) in which the inter-
nal CBS4 (30HS1) was deleted (Fig-
ure S2B), chromatin-looping interactions
between CBS3 (50HS5) in the forward

orientation and the boundary CBS5 in the reverse orientation in
domain1 persisted, although its interaction with the CBS4
(30HS1) region was abolished (Figures S5A and S5B). As ex-
pected, the interactions between CBS6/7 and CBS8/9 in
domain2 were unchanged (Figure S5C). Strikingly, however, in
the CBS4 (30HS1) and CBS5 double-knockout CRISPR cell lines
C2, C4, and C14 (out of 49 clones screened) (Figure S2C), novel
chromatin-looping interactions between CBS3 (50HS5) in the for-
ward orientation of domain1 and CBS8/9 in the reverse orienta-
tion of the neighboring domain2 were observed, suggesting that
these two domains merge as a single domain in CRISPR cell
lines with CBS4/5 double knockout (Figure S5B). Similarly,
when CBS8 was used as an anchor, this reverse-oriented CBS
in domain2 establishes new long-range chromatin-looping inter-
actions with CBS1–3 in the forward orientation of domain1 in the
CBS4/5 double-deletion CRISPR cell lines (Figure S5C). We
conclude that cross-domain interactions can be established
after deletion of CBSs up to the boundary of topological do-
mains, but not after deletion of the internal CBS in the b-globin
locus.
To further test the functional significance of this organization

of CBSs, we again performed CRISPR/cas9-mediated DNA-
fragment editing in theHEK293T cells and screened 198CRISPR
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ure S4D), suggesting that the boundary reverse-forward CBS
pairs play an important role in the formation of most of TADs.
For example, there is a CBS pair in the reverse-forward orienta-
tion in a Chr12 genomic region of H1-hESC cells, located at or
very close to each of the six TAD boundaries (boundaries 1–6),
except for boundary 5, which has only one closely located
CBS in the forward orientation (Figure S4E). These data, taken
together, strongly suggest that directional binding of CTCF to
boundary CBS pairs in the reverse-forward orientations causes
opposite topological looping and thus appears to function as
insulators.

The Human b-globin Locus Provides an Additional
Example of CBS Orientation-Dependent Topological
Chromatin Looping
Based on the location and orientation of CBSs, as well as their
CTCF/cohesin occupancy, we identified four CCDs (domains
1–4) in the well-characterized b-globin cluster (Figure 5A). The
b-globin gene cluster is located between CBS3 (50HS5) and
CBS4 (30HS1) in domain1 (Figure 5A) (Hou et al., 2010; Splinter
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ure S2B), chromatin-looping interactions
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orientation and the boundary CBS5 in the reverse orientation in
domain1 persisted, although its interaction with the CBS4
(30HS1) region was abolished (Figures S5A and S5B). As ex-
pected, the interactions between CBS6/7 and CBS8/9 in
domain2 were unchanged (Figure S5C). Strikingly, however, in
the CBS4 (30HS1) and CBS5 double-knockout CRISPR cell lines
C2, C4, and C14 (out of 49 clones screened) (Figure S2C), novel
chromatin-looping interactions between CBS3 (50HS5) in the for-
ward orientation of domain1 and CBS8/9 in the reverse orienta-
tion of the neighboring domain2 were observed, suggesting that
these two domains merge as a single domain in CRISPR cell
lines with CBS4/5 double knockout (Figure S5B). Similarly,
when CBS8 was used as an anchor, this reverse-oriented CBS
in domain2 establishes new long-range chromatin-looping inter-
actions with CBS1–3 in the forward orientation of domain1 in the
CBS4/5 double-deletion CRISPR cell lines (Figure S5C). We
conclude that cross-domain interactions can be established
after deletion of CBSs up to the boundary of topological do-
mains, but not after deletion of the internal CBS in the b-globin
locus.
To further test the functional significance of this organization
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fragment editing in theHEK293T cells and screened 198CRISPR
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Figure 4. Comparison of the median expression levels of transcriptional target genes. 

The median expression levels of the target genes of the same transcription factor binding 

sequences were compared between promoters and three types of promoter and extended 

regions for enhancer-promoter association (EPA). Red and blue dots show statistically 

significant difference of the distribution of expression levels of target genes between 

promoters and EPA. Red dots show the median expression level of target genes was 

higher in EPA than promoters, and blue dots show the median expression level of target 

genes was lower in EPA than promoters. 
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Tables 
 

 
 

*�

Table 1. Number of functional enrichments and unique functional enrichemnts of putative transcriptional target genes.
�

Monocyte 349 107 209 114 2,902 1,005 42 451 1,202 242
CD4+ T cell 317 135 278 77 4,077 1,806 47 754 1,401 405 ��

CD20+ B cell 323 103 170 88 2,778 821 39 948 950 288

Gene expression information alone
 Monocyte 43 0 35 11 237 101 7 314 404 58
 CD4+ T cell 47 0 19 9 301 165 9 136 397 81
 CD20+ B cell 42 0 27 12 239 247 6 370 409 65
Putative transcriptional target genes
 Monocyte 95 16 127 12 1,271 242 17 97 303 105
 CD4+ T cell 105 26 146 23 1,654 415 24 224 585 133
 CD20+ B cell 93 23 96 23 1,192 329 16 231 397 106

Number of unique functional enrichments of gene expression information alone and putative transcriptional target genes.
* Wilcoxon signed-rank test p < 0.01 (except for MicroRNA and Domains)

Number of functional enrichments of putative trancriptional target genes

Z
-s

co
reKEGG TF

Targets
CTD

Ontology
GO
Slim GO Pathway

Commons BioMarkers MicroRNA Domains WikiPathways
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Monocyte - Pathway Commons No. of TFs
Proteoglycan syndecan-mediated signaling events 18
Regulation of CDC42 activity 15
LKB1 signaling events 14
Glypican pathway 13
Interferon Signaling 13
Sphingosine 1-phosphate (S1P) pathway 13
IL5-mediated signaling events 12
Syndecan-1-mediated signaling events 12
IL3-mediated signaling events 11
Mitotic Prophase 11
Golgi Cisternae Pericentriolar Stack Reorganization 11
Interferon alpha/beta signaling 11
IFN-gamma pathway 10
Signaling events mediated by Hepatocyte Growth Factor Receptor (c-Met) 10
Recruitment of mitotic centrosome proteins and complexes 10

CD20+ B cell - Pathway Commons No. of TFs
Interferon alpha/beta signaling 12
Alpha6Beta4Integrin 11
Validated targets of C-MYC transcriptional activation 11
IL8- and CXCR2-mediated signaling events 10
Antigen processing-Cross presentation 9
BCR signaling pathway 9
IL6-mediated signaling events 9
Cell junction organization 9
ER-Phagosome pathway 8
Regulation of CDC42 activity 8
CXCR4-mediated signaling events 8
CDC42 signaling events 8
Syndecan-4-mediated signaling events 8
Noncanonical Wnt signaling pathway 7
Class I MHC mediated antigen processing & presentation 7

CD4+ T cell - Pathway Commons No. of TFs
TCR signaling in naive CD8+ T cells 36
IL12-mediated signaling events 24
Downstream signaling in naive CD8+ T cells 21
TCR signaling in naive CD4+ T cells 21
IL12 signaling mediated by STAT4 20
Validated transcriptional targets of AP1 family members Fra1 and Fra2 19
CXCR4-mediated signaling events 17
ATF-2 transcription factor network 15
Thrombin/protease-activated receptor (PAR) pathway 14
TCR signaling 14
PAR1-mediated thrombin signaling events 14
Downstream TCR signaling 14
Internalization of ErbB1 13
Urokinase-type plasminogen activator (uPA) and uPAR-mediated signaling 13
ErbB receptor signaling network 13

Table 2. Functional enrichments of putative transcriptional target genes using
Pathway Commons
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*�

* *�

* *

*

�

Monocyte ��

 Promoter 8.46 5.07 2.76 70.34 24.36 29.13 5.87
 Association rule 1 10.44 6.48 2.01 133.54 44.75 42.19 11.10
 Association rule 2 9.03 6.29 1.45 125.13 38.69 40.17 8.30
 Association rule 3 8.06 5.29 1.37 106.60 24.25 38.96 7.62
 Association rule 4 11.47 8.22 2.46 164.18 71.42 47.85 12.78
CD4+ T cell
 Promoter 5.30 4.64 1.29 68.11 30.17 23.41 6.77
 Association rule 1 13.60 7.07 2.74 142.40 84.51 43.78 13.65
 Association rule 2 13.57 6.69 3.05 141.15 86.36 46.33 12.02
 Association rule 3 12.40 5.89 2.50 115.76 68.84 41.85 10.00
 Association rule 4 16.40 7.86 4.03 177.55 108.08 53.86 16.72
CD20+ B cell
 Promoter 7.02 3.70 1.91 60.39 17.85 20.65 6.26
 Association rule 1 8.88 6.21 2.59 104.55 59.32 34.34 8.29
 Association rule 2 8.60 5.32 1.55 105.34 57.31 38.05 9.95
 Association rule 3 9.01 5.28 1.42 88.85 26.49 35.17 8.26
 Association rule 4 9.95 6.62 3.07 134.46 90.99 41.30 10.67

CTD
Ontology

Wiki
Pathways Z

-s
co

re

Table 3. Normalized number of functional enrichments of putative transcriptional target
genes using promoter and extended regions for enhancer-promoter association.
* Wilcoxon signed-rank test p < 0.05

KEGG GO Slim GO Pathway
Commons Domains

*

*

*

*

*
*

*
*

* *

�

Monocytes ��

 Association rule 4 11.47 8.22 2.46 164.18 71.42 47.85 12.78
 CTCF (FR+RF+FF+RR) 13.19 10.39 2.74 134.26 34.37 44.46 12.96
 CTCF (FR) 42.92 19.53 5.66 509.86 196.58 112.14 35.11

CD4+ T cells
 Association rule 4 16.40 7.86 4.03 177.55 108.08 53.86 16.72
 CTCF (FR+RF+FF+RR) 26.33 8.73 5.11 206.05 130.71 57.53 23.56
 CTCF (FR) 69.39 14.66 24.91 560.44 220.54 133.26 46.54

CD20+ B cells
 Association rule 4 9.95 6.62 3.07 134.46 90.99 41.30 10.67
 CTCF (FR+RF+FF+RR) 8.78 4.22 2.78 94.13 27.70 28.55 7.08
 CTCF (FR) 28.86 9.72 6.61 304.01 220.77 99.89 22.68

H1-hESC
 Association rule 4 8.22 4.07 3.46 133.30 34.04 43.09 4.67
 CTCF (FR+RF+FF+RR) 13.06 5.03 2.85 130.99 23.41 45.89 7.52
 CTCF (FR) 28.08 10.62 10.19 334.14 70.10 160.05 17.15
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reTable. 4 Normalized number of functional enrichments of putative transcriptional target genes

using CTCF binding sites. * Wilcoxon signed-rank test p < 0.05
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