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In recent years, several large-scale whole-genome projects sequencing tens of thousands of 

individuals were completed, with larger studies are underway. These projects aim to 

provide high-quality genotypes for a large number of whole genomes in a cost-efficient 

manner, by sequencing each genome at low coverage and subsequently identifying alleles 

jointly in the entire cohort. Here we present Ref-Reveel, a novel method for large-scale 

population genotyping. We show that Ref-Reveel provides genotyping at a higher accuracy 

and higher efficiency in comparison to existing methods by applying our method to one of 

the largest whole-genome sequencing datasets presently available to the public. We further 

show that utilizing the resulting genotype panel as references, through the Ref-Reveel 

framework, greatly improves the ability to call genotypes accurately on newly sequenced 

genomes. In addition, we present a Ref-Reveel pipeline that is applicable for genotyping of 

very small datasets. In summary, Ref-Reveel is an accurate, scalable and applicable 

method for a wide range of genotyping scenarios, and will greatly improves the quality of 

calling genomic alterations in current and future large-scale sequencing projects. 

Several large-scale whole-genome sequencing projects have been completed, while even 

more extensive efforts are currently underway (The 1000 Genomes Project Consortium, 2010; 

The UK10K Consortium, 2015; CHARGE Consortium, 2009; CONVERGE consortium, 2015; 

http://www.haplotype-reference-consortium.org; https://www.genomicsengland.co.uk/). These 

projects were designed to characterize human genetic variation across various populations, 

enabling subsequent association studies that aim to identify the underlying mechanisms that 

drive human hereditary disease. For each one of these studies, once the large cohorts are defined, 

collected, and sequenced, genotype calling is applied on a massive volume of whole genome 

sequencing data. The accuracy at which the genomic variation is identified strongly influences 
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the quality and statistical power of downstream analyses. Given the size of such projects, 

conducted in both academia and industry, there is a growing need for the ability to infer the 

genotypes across a very large sequencing datasets (4,000 – 1,000,000 whole genomes). As the 

size of the data size increases, traditional population genotype calling methods become 

prohibitively slow. As such, an accurate and scalable computational method for population 

genotype calling is urgently needed. 

To characterize human genetic variation, significant research efforts and massive 

resources have been expended in these projects to sequence a large number of whole genomes 

and to call genotypes of the sequenced genomes at polymorphic sites. Individual-level genomic 

data from these projects is available to the scientific community. These resources, beyond their 

value in the original projects and genome-wide association studies, can be used to enhance the 

quality of population genotyping in future genome sequencing projects. The genotypes identified 

capture the linkage disequilibrium (LD) structure of multiple populations. Cohorts that will be 

sequenced in future projects are likely to share a similar LD structure with one or more studied 

cohorts. Given the fact that this insight is being leveraged today in many haplotyping and 

imputation methods (Delaneau et al., 2014; Huang et al., 2015), the genotype calls from 

completed projects can be used as a reference panel in future genotype calling process. 

While advancements in sequencing technology have enabled a sharp reduction in 

sequencing cost, the cost becomes prohibitive again once hundreds of thousands, or even 

millions, of individuals are targeted for sequencing. In such scenarios, low-coverage whole 

genome sequencing of a large cohort provides a promising path forward, enabling the efficient 

identification of genomic alterations. Many recent sequencing projects, including the ones 

mentioned above, have employed the low-coverage/large-dataset strategy. For instance, the 1000 
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Genomes Project sequenced 2,504 whole genomes at a mean depth of 7.4x; the UK10K Cohorts 

Project sequenced 3,781 whole genomes at a mean read depth of 7x. This strategy inevitably 

induces the loss of information at every single site, which is one of the main difficulties in the 

process of genotype calling. Without incorporating prior information from additional sources, the 

coverage requirement of population sequencing projects can hardly be further reduced. 

Reference-guided genotype calling, which incorporates such priors, has the potential to enable a 

low-coverage sequencing without sacrificing genotype calling accuracy. In other words, larger 

studies can be supported, sequencing additional individuals, and enabling an even broader 

investigation of the underlying genetic makeup. 

A number of population genotyping methods have been proposed to call genotypes from 

large-scale low-coverage whole genome sequencing data. The examples include 

glfMultiples+Thunder (Li et al., 2011), which employs a hidden Markov model that leverages 

LD information across a cohort to genotype likely polymorphic sites; SNPTools (Wang et al., 

2013), which estimates genotyping likelihoods using a BAM-specific binomial mixture model 

and then utilizes a hidden Markov model (HMM) approach based on the statistical LD pattern 

model proposed in (Li and Stephens, 2003) to infer genotypes and haplotypes; and Beagle 

(Browning and Yu, 2009), which builds a HMM-based haplotype frequency model to capture 

LD pattern. These methods analyze all the sequenced samples in a cohort jointly, because calling 

genotypes from the data of a single low-coverage sequenced sample yields poor results. Despite 

the considerable success of these methods, using HMM-based models inevitably involves 

undesirable scalability and tendency to weaken long-distance LD, which is critical for calling the 

genotypes of rare variants (Huang et al., 2016). Both issues make these methods less suitable for 

large-scale population genotyping. 
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To address these issues, we present reference-based Reveel (or Ref-Reveel), a novel 

population genotyping method. Compared to previous methods, Ref-Reveel provides higher 

genotyping accuracy across the allele frequency spectrum, especially at rare variants, while 

maintaining a low computational overhead. Additionally, when a cohort of genotyped reference 

individuals is available, Ref-Reveel can leverage these genotypes as a reference panel to 

accurately infer the genotypes of a newly low-coverage sequenced cohort of individuals, referred 

to as query genomes. 

Ref-Reveel provides significant enhancements over our previous methods, Reveel 

(Huang et al. 2016). In our new method, Ref-Reveel effectively incorporates genotypes from 

completed projects, if applicable, to improve the genotyping quality of new datasets while 

maintaining low computational costs. Ref-Reveel creates a family of weak learners that exhibit 

low computational cost, and learns the promising combination through an AdaBoost-based 

(Freund and Schapire, 1997) meta-algorithm for every marker from the newly sequenced 

genomes. Furthermore, by incorporating a reference panel, Ref-Reveel achieves high genotyping 

quality when applied very small datasets. Finally, several computational challenges are resolved 

to enable the application of Ref-Reveel on thousands to tens of thousands of whole genomes, 

simultaneously, resulting in the producing of accurate calls within a reasonable time-frame. 

Results 

Genotype calling the whole genomes of 3,910 UK10K samples. We first show that Ref-Reveel 

is a practical infrastructure for inferring the genotypes of a large number of whole genomes. 

When applied to one of the largest data sets that are currently publicly available, Ref-Reveel 

outperformed state-of-the-art methods, both in terms of genotyping quality as well as efficiency. 

In this experiment, we applied Ref-Reveel to the genotype likelihoods of 3,910 UK10K samples 
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from two British cohorts, the Avon Longitudinal Study of Parents and Children and TwinsUK, to 

infer the genotypes of these samples. This input dataset included 61,897,468 unfiltered sites 

across the whole genome. The input genotype likelihoods were calculated from low-coverage 

sequencing data (average read depth 7x) using SAMtools and BCFtools by the UK10K 

Consortium. 

We performed this experiment in parallel on Sanger Institute’s computing farm. To do so, 

we first partitioned the whole genome into 4,720 non-overlapped genomic segments. The 

chromosomes were chunked by marker numbers; the maximum number of markers per segment 

was set to 12,000. Then, Ref-Reveel was applied to each segment separately. A total of 

61,167,575 sites were genotyped by Ref-Reveel across the entire genome; the other 729,893 sites 

were identified by Ref-Reveel as invariant reference alleles across the studied cohort. Ref-Reveel 

produced genotype likelihoods at common and low-frequency variation sites and genotypes at 

rare and invariant sites. The genotype likelihoods at common and low-frequency variation sites, 

which were roughly 13% of all the genotyped sites, were fed into Beagle (version 3.3.2) for the 

final refinement. The refined genotypes were merged with the genotypes at rare and invariant 

sites. The total running time for the combined pipeline, when applied on the above dataset, was 

85,211 CPU hours, out of which Ref-Reveel consumed 49,856 CPU hours (59% of the total 

running time); the memory usage was 18.6 GB. 

We compared the panel (labelled as R) with the haplotypes of 3,781 UK10K samples 

reported by the UK10K Consortium (labelled as 10K). The 10K panel was created as follows by 

the UK10K Consortium (The UK10K Consortium, 2015). The SNP calls in panel 10K were 

made using SAMtools and BCFtools, then recalled using the GATK (version 1.3-21) 

UnifiedGenotyper, and filtered using the GATK VariantRecalibrator followed by GATK 
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ApplyRecalibration. The missing and low confidence genotypes were then refined using Beagle 

4 (rev909). The UK10K Consortium reported 42,001,233 polymorphic sites that passed the filter; 

the haplotypes at these sites were included in the panel. 

We measured the quality of these two reference panels on 66 TwinsUK samples that were 

both low-coverage whole-genome sequenced and high read-depth exome sequenced. The 

genotype calls from high read-depth exome sequencing reported by TwinsUK were used as 

benchmarks, including 160,119 sites. We evaluated genotyping accuracy, sensitivity and 

precision as defined in Table 1 at the polymorphic sites discovered from the exome sequencing 

data. 

Figure 1 clearly shows that panel R achieved higher quality in comparison to panel 10K. 

A closer examination shows that panel R had moderately lower precision and significantly 

higher sensitivity than panel 10K. The result was expected, because when Ref-Reveel was used 

to generate a reference panel, its SNP discovery parameter was set to a very low value to infer as 

many likely variation sites as possible. Despite its higher false positive rate, we used this 

parameter setting as our experiments show that a panel with high SNP discovery rate benefited 

the downstream reference-based genotype calling (see Incorporating reference panels to 

facilitate genotype calling of CEU samples). 

To compare the Ref-Reveel-called panel and panel 10K at the same precision level, we 

applied four hard filters described in Online Methods to reduce the false positive rate of panel R. 

Across the whole genome 2,310,217 sites (3.78%) were removed by these filters. As shown in 

Figure 1(C), the sensitivity of the filtered Ref-Reveel-called panel was higher than that of panel 

10K. 
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The superiority of panel R over panel 10K was observed across the whole allele 

frequency (AF) spectrum, but the advantage at the sites with minor allele frequency (MAF) <0.1% 

and MAF≥1% was particularly significant (Figure 1(D)). For rare variants, Ref-Reveel had 

higher genotyping accuracy because of its unique capability of identifying the most informative 

sites in a way that is less sensitive to genetic distance. Other methods, by contrast, implicitly 

weaken the association between remote sites when they build their models. For high AF variants, 

we attributed the high genotyping accuracy of Ref-Reveel to its another important feature, that is, 

Ref-Reveel provided high-quality genotype probabilities at high AF sites. Applying the hard 

filters to panel R cancelled the advantage at the very rare sites, implying that a good amount of 

very rare variants was removed by the hard filters. This could weaken the power of panel R as a 

reference panel. Applying the hard filters also reduced the accuracy at common variants. Even 

though, the filtered R panel still had higher quality than panel 10K at those sites. 

Incorporating reference panels to facilitate genotype calling of CEU samples. To 

demonstrate the improved performance of Ref-Reveel gained through the incorporation of a 

reference panel, we applied our method on real low-coverage data, contrasting our calls against 

an orthogonal validation set. In this experiment, we applied Ref-Reveel on 99 CEU samples from 

the 1000GP Phase 3. The BAM files corresponding to the low-coverage sequencing data were 

retrieved from the 1000GP website (retrieved on 01/13/2016). Sequentially, we applied 

SAMtools (version 1.2)’ mpileup command to generate the genotype likelihoods. We used the 

application of reference-free Ref-Reveel as the baseline for our comparison, denoted as R-

baseline. 

 We assessed the performance of Ref-Reveel using three reference panels. The first two 

reference panels were panel 10K and panel R, as described above. The third reference panel, 
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denoted as 1000GP, contained the haplotypes of 2,405 non-CEU 1000GP samples from the 

integrated call set reported by the 1000GP Phase 3 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). The resulting genotype calls using 

these three reference panels were labelled as R-10K, R-R, and R-1000GP, respectively. 

 We compared Ref-Reveel against three state-of-the-art pipelines. In the first pipeline, we 

combined SNPTools (Wang et al., 2013) and Beagle (Browning and Browning, 2009), denoted 

as S+B. To estimate the genotype likelihoods at polymorphic sites, we used SNPTools (v1.0)’ 

bamodel→poprob commands. We then applied Beagle 4 (r1399) to infer the final set of 

genotypes. For the second pipeline, we combined GATK (DePristo et al., 2011; McKenna et al., 

2010) with Beagle, denoted as G+B. Namely, Beagle 4 (r1399) used the genotype likelihoods 

generated by GATK UnifiedGenotyper (v3.3) to infer the final set of genotypes. Finally, our 

third pipeline was glfMultiples+Thunder (Li et al., 2011), denoted as g+T. While Thunder is 

computationally intensive, it has demonstrated improved genotyping accuracy when applied to 

the output of glfMultiples. All methods were applied using default parameters, unless otherwise 

specified. 

 To assess performance, we contrasted the generated calls against the genotypes reported 

in the Complete Genomics (CG) dataset (retrieved on 01/13/2016). A total of 63 samples, out of 

the initial 99 samples described above, were reported in the CG dataset. We measured 

genotyping accuracy at all the sites where the CG data reported heterozygous and homozygous 

alternate, that is, het-accuracy defined in Table 1. 

 The performance of R-baseline, R-10K, R-R, and R-1000GP as evaluated across the 

entire human genome is outlined in Table 2. We focused on the sites that were both reported by 

the CG data and genotyped by Ref-Reveel. Besides measuring the overall performance, we 
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further divided the sites into four categories: common variants, denoted as 𝑆common ; low 

frequency variants, denoted as 𝑆loF; rare variants, denoted as 𝑆rare; and finally, invariant sites, 

denoted as 𝑆invariant, for sites that do not appear in the integrated call set of the 1000GP Phase 3. 

The performance was evaluated for each variant category separately. 

 Given the above dataset, Ref-Reveel discovered 25,261,018 likely polymorphic sites, and 

reported invariant alleles at remaining sites. A general trend shows that using a reference panel 

improved the performance across the entire allele frequency spectrum compared to R-baseline. 

Compared to the baseline, using the UK10K samples as references improved the genotyping 

accuracy. The observed improvement in genotyping accuracy and sensitivity was not surprising 

since the British cohort and the CEU samples exhibited low genetic divergence (Eyheramendy et 

al., 2015; The 1000 Genomes Project Consortium, 2015). As such, we expected that indeed the 

UK10K reference panel would provide a proper approximation of the LD structure in the CEU 

population. Notably, R-R exhibited a higher genotyping accuracy in comparison to the R-10K, 

although both reference panels originated from the UK10K dataset. We attributed the observed 

result to the improved genotyping quality of panel R. At the common variants, using panel R 

reduced the genotyping error rate from 0.88% to 0.63%, corresponding to the genotypes of 7,847 

markers per sample corrected; at the low-frequency variants, we observed the reduction from 

1.54% to 0.96%, corresponding to the genotypes at 1,089 markers per sample corrected; at the 

rare variants, the error rate was reduced from 2.57% to 1.82%, corresponding to the genotypes at 

878 markers per sample corrected. It is important to note that while the 1000GP reference panel 

originated from a more heterogeneous set of reference populations, when that panel was utilized 

for genotype calling, compared to the baseline we observed a 21.1%, 17.0%, 12.8% reduction in 

the genotyping error rate at common, low-frequency, and rare variants, respectively. This could 
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imply that the LD structure of the variants with sufficiently high AF were likely to be captured 

by this reference panel, and that with the AF decrease the LD structure became less likely to be 

captured. 

 We contrasted the performance of Ref-Reveel against state-of-the-art methods over 

chromosome 20, which was roughly 2% of the whole genome; assessing the performance of the 

alternative methods across the entire genome was computational prohibitive. The performance 

was evaluated at all the sites where the CG data reported either heterozygous or homozygous 

alternate on this chromosome. As shown in Figure 2, Ref-Reveel, with or without a reference 

panel, outperformed previous state-of-the-art methods. The SNPTools+Beagle and 

GATK+Beagle pipelines performed worse than any setting of Ref-Reveel in terms of het-

accuracy. The third pipeline, glfMultiples+Thunder, achieved higher accuracy in comparison to 

the two previous ones, yet exhibited a lower performance in comparison to the R-baseline results. 

 As shown in Table 3, R-baseline had the lowest CPU running time of 7.36 CPU days 

when evaluating calls across the entire genome, and a total of 134 minutes when evaluating calls 

on chromosome 20 alone. Incorporating the reference panels roughly doubled the running time. 

When panel R was used, Ref-Reveel’s computational time was 12.79 CPU days on the whole 

genome, and 353 minutes on chromosome 20. This computational overhead is practical, even 

when a single core is used. Given the fact that Ref-Reveel is parallelizable in a straightforward 

manner (by analyzing independent genomic regions in parallel). A cluster can be used to reduce 

the end-to-end running time to less than a day. 

 Among the state-of-the-art methods, SNPTools+Beagle was the only one that had 

efficiency comparable with that of Ref-Reveel. According to our experiment on chromosome 20, 

GATK+Beagle was 4.2 times slower than R-R, whereas glfMultiples+Thunder was 62.1 times 
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slower. Extrapolating from these results, one can estimate that the running time of these two 

pipelines on the entire genome will be approximately 53 CPU days and 794 CPU days 

respectively. We conclude that Ref-Reveel provides substantial accuracy and efficiency 

improvements in population genotyping, and enables the accurate and efficient genotyping of a 

sequenced cohort using a previously genotyped reference panel cohort. 

 We also conducted a simulation study to demonstrate the effectiveness of incorporating 

reference panels on a larger query sample size (Supplementary Note 1, Supplementary Figure 

S1 and Supplementary Table S1). The genotyping quality was greatly improved across the 

allele frequency spectrum for all three cases in which the query sample sizes were 100, 500, and 

1000. In the meantime, although parsing the reference VCF file and incorporating the reference 

haplotypes into the genotyping process introduced additional computation overhead, the 

additional running time scaled well with the increase of sample size. 

Ref-Reveel powers high-accuracy calls on small datasets. Utilizing reference panels enables 

the genotype calling of a small (<50 samples), low-coverage dataset, which is a challenging 

scenario for all the population-genotyping tools we have reviewed including Reveel. Genotype 

calling from low-coverage sequencing data highly relies on the ability of genotype caller to 

discover the underlying complex LD structures. A small query dataset will cause inaccurate or 

even misleading estimation of linkage disequilibrium based on limited data. Incorporating a 

reference panel is a promising way to overcome this difficulty. 

When the query samples come from heterogeneous, unknown populations, the scenario 

becomes even more challenging because picking a reference panel that matches the query 

samples is not straightforward. A poor representation of the query cohort by the reference panel 

will hamper the ability of genotype callers to leverage the underlying complex LD structure in 
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the datasets. Ideally, the reference panel is composed of samples from the same population or 

ancestry group as the query samples. 

To demonstrate the performance of the Ref-Reveel pipeline (Online Methods) to very 

small datasets, we conducted experiments as follows. We created the query dataset by randomly 

selecting ten samples from the 1000GP samples. These ten samples come from ten distinct 

populations from Africa, East Asia, Europe, and South Asia. Only the genotype likelihoods, 

generated using SAMtools, of these samples were included in the query dataset. The integrated 

call set reported by the 1000GP Phase 3, excluding the genotypes of these ten samples, was used 

as the reference panel. The resulting reference panel contained the genotypes of 2,494 samples, 

representing the original 26 populations. We evaluated the performance on a 5-Mbp region on 

chromosome 20 (43,000,000-48,000,000). In the experiment, for every query sample we picked 

five populations that are most similar with the query sample based on 𝐹-statistics and combined 

the 1000GP samples from these populations with that sample. This step gives a reasonable 

number of samples in the combined VCF file, ranging from 462 to 515. The running time of the 

first step was 3.65 minutes on a 2.40GHz Intel Xeon processor. The second step had negligible 

running time. Finally, the third step run time was 2.02 hours, per run. 

 We measured the genotyping performance of these query samples using the Omni 

genotype data as benchmarks. The performance was evaluated at 4,359 overlapped polymorphic 

sites. Beyond the estimated genotyping accuracy, we further measured the non-reference 

discordance (NRD), RR discordance, RA discordance, and AA discordance, as defined in Table 

1. As shown in Table 4, the pipeline achieved a superior performance in all the query samples. 

Except for NA19430 (sample 9), the genotyping accuracy of all the samples ranged between 

99.36 and 99.93%. Out of 10 query samples, 4 samples had NRD < 1%, 5 samples had NRD 1-
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2%, and only a single sample, NA19430, had an NRD 3.14%. Examination of these numbers 

indicated that the sequencing depth strongly affected the genotyping performance. To support 

this hypothesis, we downsampled the BAM files of the query samples to 83.3%, 66.7%, 50%, 

and 33.3% of the original coverage level, recalculated the genotype likelihoods using SAMtools, 

and repeated the analysis above. The results for the three sets of query samples, each containing 

10 query samples, are illustrated in Figure 3. Each gray curve in the plot corresponds to the 

performance of a query sample, whereas each colored curve corresponds to an aggregated 

performance of the samples originating from a single continent. The figure clearly shows the 

correlation between the sequencing depth and the genotyping performance. The populations from 

which the samples originated, on the other hand, was not a critical factor. As shown in Figure 3, 

the aggregated curve of four continents nearly overlaps. The evaluation can be used to provide 

guidance when one wishes to initiate a sequencing project focusing on a new cohort. When we 

call genotypes of a very small set of query samples using the above described pipeline, a 

sequencing depth of 4x or higher is expected to result in a sample’s genotyping accuracy of 

>99%; a sequencing depth of 2x is sufficient to achieve a mean genotyping accuracy of 99% 

across a cohort. Finally, a sequencing depth of 8x or higher will often reduce the NRD below 

1%. When the pipeline is applied to a larger query dataset, we expect the coverage requirement 

to be further reduced. 

 We also evaluated the genotyping performance of the samples in the combined VCF files, 

using the CG data as benchmarks. In every combined dataset, the number of samples that existed 

in the CG dataset as well ranged from 32 to 65. We measured the genotyping accuracy at the 

sites where the CG data reported heterozygous and homozygous non-reference. The 

measurement reflected the performance not only at common polymorphic sites, but also at rare 
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variants sites, as the CG data was sequenced at a sufficiently high coverage. We further 

measured the sensitivity and precision, and reported the results in Table 4. 

Discussion 

Scalability. Whole-genome sequencing of large cohorts continues to become a promising trend. 

As such, developing an accurate genotype-calling method that is applicable at high scale, and 

practical for a very large number of individuals (for example, 1,000,000 individuals), becomes 

critical. In this paper, we introduced a novel method for large-scale variant calling, and 

demonstrated its applicability on one of the largest publicly available datasets, the UK10K data, 

which contains 3,910 whole genomes. When applying our method to a million whole genomes, a 

main bottleneck will be the pairwise LD estimation; the time complexity of this step is 𝑂ሺ݉ଶ݊ሻ. 
However, when the sample size scales up to such a large number, our method does not require 

the entire dataset for LD estimation. Rather, a subset of the individuals (such as, a few thousand) 

can be used for the estimation. By doing so, even if the sample size increases dramatically, the 

running time for LD estimation remains unchanged. Another bottleneck will be building 

simplified LD structures (see Feature selection of Online Methods). Like the first bottleneck, 

given a very large sample size, this step can be conducted from a subset of samples; moreover, 

the simplified LD structures built from a cohort can be reused for similar cohorts. Our 

experiments on the 3,910 UK10K samples shows that 32.65% and 50.60% of the total running 

time was spent on LD estimation and building simplified LD structures. The rest of the 

computation consumed 16.56% of the total running time; I/O costed only 0.19%. When the 

sample size scales up from 3,910 to one million, by downsampling the dataset to 3,910 

individuals for the two bottleneck steps, the overhead of those two steps will remain the same. 
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The rest of the overhead scales linearly with the sample size. Thus, the total computation cost 

will increase by 43 times. 

Guidelines for the generation of reference panels. Using a large reference panel has the 

potential to enhance the genotyping performance. Supplementary Figure S2 shows that when 

the reference panel size was increased to 5,000, the genotyping accuracy was nearly saturated. 

With recent large-scale sequencing efforts, reference panels of comparable size are becoming 

available for a growing number of populations. 

Ideally, the reference panel is composed of samples from the same population, or 

ancestral group, as the query samples. When a single-origin panel is unavailable, a panel that 

represents a more diverse set of ancestral population can be appropriate. Supplementary Figure 

S3 shows that using the heterogeneous panel can improve the genotyping accuracy. Nevertheless, 

as expected, the effectiveness of using the heterogeneous panel was lower than when a single-

origin panel was used. 

Supplementary Table S2 shows that even though the reference panel contains the 

genotypes at common polymorphisms only, incorporating such a panel into the genotyping 

process can reduce the error rate considerably. If the reference panel contains the genotype at all 

polymorphic sites, roughly two times of errors can be corrected, compared to the reference panel 

with common variants only. 

Coverage level of future sequencing projects. Reference-based genotype calling has the 

potential to further reduce the sequencing coverage needed for achieving high-accuracy 

genotyping. Supplementary Figure S4 shows the performance of our method using a reference 

dataset. When utilizing a reference panel with a similar size to the UK10K Cohorts, and applying 

our method to a newly sequenced cohort of 2,500 individuals, a coverage level of roughly 2.5x is 
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required to achieve a genotyping accuracy of 99.5%. Thus, with a lower average-coverage 

requirement, large-scale study efforts can afford the investigation of an even more 

comprehensive cohort.  
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Online Methods 

Overview of Ref-Reveel. Ref-Reveel infers the genotypes for a cohort of ݊ sequenced query 

individuals given a background cohort of ݎ reference individuals. We assume that prior to the 

analysis, the genotypes of the reference individuals are known. Ref-Reveel discovers ݉ likely 

polymorphic sites from the query data using the SNP-discovery method outlined in our previous 

work (Huang et al. 2016) and sequentially calls the genotypes at those sites. 

 Ref-Reveel is a multi-class AdaBoost based genotype caller. A weak learner infers the 

genotypes at all the markers across query genomes simultaneously. Building weak learners for 

every marker individually is not feasible, because the evidence at a single marker is often not 

sufficient for genotype calling due to low sequencing coverage. Our method creates a set of 

candidate weak learners before perform performing boosting. Those weak learners differ at the 

simplified LD structures they incorporate. After the weak learners are created, our multi-class 

AdaBoost algorithm is applied to every marker independently, using the reference panel as 

training data. The genotypes belong to three classes: homozygous reference (݃=0), heterozygous 

(݃=1), and homozygous alternate (݃=2). The sample weight distribution is initialized as uniform 

across all the training samples. In every iteration, we pick the weak learner that minimizes the 

weighted sum of classification errors from constructed candidate weak learners, compute the 

weight of the picked weak learner, and update the sample weight distribution. We control 

overfitting by using ݇-fold cross validation (by default, ݇=10). 

 A weak learner, or a weak genotype caller, employs an iterative method (Supplementary 

Figure S5). In every iteration, our “guess” on the genotypes at all the markers are updated in a 

synchronized manner, that is, we refresh the genotypes only when the genotype inference from 

previous iteration for all the markers is ready. Ideally, we infer the genotype at a marker utilizing 
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the comprehensive LD structure and the current estimation of the genotypes at all the markers. 

This strategy, obviously, is very time consuming. Instead, we build a local, simplified LD 

structure for every marker. A structure consists of several markers that have strong LD with the 

evaluated marker. Although these markers tend to locate near the evaluated marker, our structure 

does not include all the markers in the neighborhood. Instead, Ref-Reveel picks most informative 

markers based on LD, regardless of genetic distance. The strength of LD is evaluated on the fly 

from the input sequencing data of query genomes and, if applicable, the reference panel. The 

candidate weak learners differ at the metrics that are used to estimate the strength of LD, and 

consequently, they differ at the simplified LD structures. 

 A weak learner conducts multiple rounds of the iterative method described above. Each 

round starts with (re-)estimating pairwise LD and (re-)building simplified LD structures, using 

the output genotypes of the previous round as initial genotypes. The number of rounds can be 

specified by users. In our experiments, we apply three rounds because we have found that the LD 

estimation stabilizes within three rounds. 

Input data. Ref-Reveel accepts two sets of input information, regarding query genomes and 

reference genomes. For the newly sequenced query genomes, many large-scale projects provide 

genotype likelihoods instead of the raw sequencing data or alignments to avoid intensive input 

data volume and/or intensive data transfer. Besides relatively smaller data size, genotype 

likelihoods inherently embed the mapping quality of sequencing reads. Ref-Reveel accepts the 

genotype likelihoods of query genomes as inputs, and then calculates the effective reference and 

alternate read counts for internal use. Let ܿ and ݀ be the number of reads supporting reference 

and alternate alleles at the evaluated marker. We precompute a table of Pr{ܿ, ݀|݃} for every 

possible combination of reference and alternate counts ܿ, ݀ given an estimated error rate using 
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the revised MAQ model (Li, 2010). For every target site, we find a combination of ܿ̂, ݀̂ that 

minimizes the Manhattan distance between Pr{ܿ̂, ݀̂|݃} and the input genotype likelihoods at the 

target site over all the ݃’s. When the previously inferred genotypes of reference genomes are 

available, Ref-Reveel accepts those genotypes as additional inputs. 

Metrics for LD estimation. Pairwise LD estimation needs to be computational inexpensive 

because of the quadratic computation overhead with respect to the number of markers. For this 

reason, we define a family of metrics that can easily calculated from the effective read counts ܿ̂, ݀̂ ; the conventional metrics, such as correlation coefficient, are more computationally 

expensive due to the need of preliminary genotype inference and phasing. 

 Let 𝑋௜,௦ be the event that at least one read at marker ݅ of sample ݏ supporting alternate 

allele, that is, ݀̂௜,௦ ≥ ͳ. We categorize samples using the following relation predicates: 𝑋௜,௦ ∧ 𝑋௝,௦, ¬𝑋௜,௦ ∧ 𝑋௝,௦ , 𝑋௜,௦ ∧ ¬𝑋௝,௦ , and ¬𝑋௜,௦ ∧ ¬𝑋௝,௦ . The samples with ݀̂௜,௦ ≥ ͳ  and ݀̂௝,௦ ≥ ͳ , that is 𝑋௜,௦ ∧ 𝑋௝,௦, are the evidence of LD; we therefore use the number of such samples as the numerator 

of our metric. A naïve denominator is the total number of samples. This number, however, can 

easily be dominated by the number of samples with ݀̂௜,௦ = Ͳ and ݀̂௝,௦ = Ͳ, that is ¬𝑋௜,௦ ∧ ¬𝑋௝,௦, 
especially when markers ݅ and ݆ are rare variants. We therefore subtract this dominant number 

from the denominator. The metric can be written as follows: 

,𝜑ሺ݅݉݅ݏ ݆ሻ = ∑ ୫i୬⁡{𝜑ሺ𝑑̂೔,𝑠ሻ,𝜑ሺ𝑑̂ೕ,𝑠ሻ}𝑠∑ ୫a୶⁡{𝜑ሺ𝑑̂೔,𝑠ሻ,𝜑ሺ𝑑̂ೕ,𝑠ሻ}𝑠                                              (5) 

where, 𝜑ሺݖሻ = sgnሺݖሻ. The sign function sgnሺݔሻ = Ͳ if ݔ = Ͳ, and sgnሺݔሻ = ͳ if ݔ > Ͳ.  

More broadly, this metric belongs to a family of metrics with different 𝜑’s. We can easily 

define a series of metrics by picking different 𝜑 functions. In our experiment, we set 𝜑ሺݖሻ =  𝑏ݖ
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and vary the exponent ܾ to create a set of candidate weak learners. Regardless of the choice of 𝜑 

functions, the time complexity of ݉݅ݏ𝜑 is linear to the number of samples. 

The metric ݉݅ݏ𝜑  can be calculated solely using the effective alternate read counts of 

query genomes or using the combination of query and reference data. The latter is recommended 

when the query and reference genomes follow similar LD patterns, for example, they come from 

the same population or ancestral group. The additional LD evidence provided by the reference 

genomes benefits the pairwise LD estimation especially when the number of query genomes is 

limited. 

Feature selection. To build a weak learner at an evaluated marker, we pick a collection of 

markers to form a simplified LD structure. The current estimated genotypes at those markers are 

referred to as the features of that weak learner. All the markers are candidates for feature 

selection. A naïve approach of feature selection is to pick a set of markers with highest ݉݅ݏ𝜑 

score. This filter feature selection method (Guyon and Elisseeff, 2003) is computationally 

efficient but only based on the correlation between the evaluated marker and other markers. The 

correlation between other markers is ignored. Thus, although each of these markers is one of the 

most informative features independently, the set may not be the most informative feature vector; 

when the chosen sites strongly correlate with each other, the information gained from selecting 

additional sites after the first one is limited. 

 To overcome this limit, our feature selection is a heuristic similar to Minimum 

Redundancy Maximum Relevance (Peng et al, 2005). To start with, all the markers are sorted 

based on their ݉݅ݏ𝜑 score. Then, to construct a vector with ݇ features, we conduct the following 

procedure ݇  times (by default, ݇=3-5, depending on ݊ +  every time the marker with the :(ݎ
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highest feature score is added into the feature vector. Let ݐ be the evaluated marker, and 𝑀 be the 

set of markers in the current simplified LD structure, the feature score of marker ݅ with respect to 

the evaluated marker ݐ is defined as 

௧ሺ݅ሻܬ = ,𝜑ሺ݅݉݅ݏ ሻݐ − ଵ|𝑀|∑ ,𝜑ሺ݅݉݅ݏ ݆ሻ௝∈𝑀                                                 (4) 

Different from Minimum Redundancy Maximum Relevance, which formulates ܬ௧ሺ݅ሻ  as a 

function of the information gain (Shannon, 2001), we calculate ܬ௧ሺ݅ሻ using the ݉݅ݏ𝜑  score to 

overcome the domination effect of ¬𝑋௜,௦ ∧ ¬𝑋௝,௦ cases. 

Weak learner. Our weak learners are implemented using a two-step iterative method (Huang et 

al. 2016), which is performed on all the markers across all the query genomes simultaneously. In 

the first step, given the current estimation of genotypes G, our method calculates the genotype 

probabilities P. As the samples are sequenced at a low coverage, the mapped reads have limited 

power to estimate the genotype probabilities P with high confidence. We therefore utilize the 

non-random association between alleles at different locations, that is, the linkage disequilibrium, 

to leverage evidence from additional sites in the calculation of a genotype probability. While the 

amount of evidence provided by the mapped reads for marker ݅ is limited, when allele ܣ and 

marker ݅ and allele ܤ at marker ݆ have high levels of co-occurrence, observing allele ܤ implies 

an increased chance of observing ܣ. In the second step, the method infers the genotypes G by 

maximizing the current estimation of genotype probabilities; the predicted genotypes are then 

used to refine the genotype probabilities in the following iteration. We update P and G in a 

synchronous manner, that is, we first calculate the new values for P for every marker in every 

sample, and then overwrite all the old values with the new values before updating G. The two 

steps are iterated until the genotypes call converge. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/085936doi: bioRxiv preprint 

https://doi.org/10.1101/085936


 26 

Formally, we refer to a marker that is evaluated in a query sample as a target site and 

define the estimated genotype at the target site as ݃௧,௦, where ݐ represents the evaluated marker 

and ݏ is the evaluated query sample. Let 𝑀 be the set of markers in the simplified LD structure 

of the evaluated marker. The estimated genotypes at the markers in set 𝑀 in the evaluated sample ݏ is denoted as vector 𝒈𝑀,௦. In the ℓth iteration, we estimate the genotype probability 𝑝௧,௦,ℎሺℓሻ
 by 

calculating the probability that the target site exhibits a certain genotype ℎ given 𝒈𝑀,௦  in the ሺℓ − ͳሻ th iteration and read alignments at the target site, that is Pr {݃௧,௦ሺℓ−ଵሻ = ℎ|𝒈𝑀,௦ሺℓ−ଵሻ,alignments}, where ℎ can be {Ͳ,ͳ,ʹ}, representing homozygous reference, 

heterozygous, homozygous alternate, respectively. Using the Bayes’ rule, we compute this 

conditional probability as follows, in which we do not need to calculate the denominator as it is 

identical to all the ℎ’s: 

𝑝௧,௦,ℎሺℓሻ ∝ Pr {alignments|݃௧,௦ሺℓ−ଵሻ = ℎ,𝒈𝑀,௦ሺℓ−ଵሻ} ∙ Pr {݃௧,௦ሺℓ−ଵሻ = ℎ|𝒈𝑀,௦ሺℓ−ଵሻ}              (1) 

 The first term calculates the probability of observing the alignments at the target given 

the genotypes at the target and the genotypes at the markers in set 𝑀 in the evaluated sample. 

This term can be simplified as Pr {alignments|݃௧,௦ሺℓ−ଵሻ = ℎ} because of conditional independence. 

The probability Pr{alignments|݃௧,௦ = ℎ} is essentially the genotype likelihoods at the target site, 

which is pre-calculated from sequencing read alignments of query genomes. The conditional 

probability in the second term is identical across all the samples in the cohort. This is important 

because we can divide the computation of genotype probability of all the samples at a certain 

marker into two 𝑂ሺ݊ሻ computations. First, we calculate Pr {݃௧ሺℓ−ଵሻ = ℎ|𝒈𝑀ሺℓ−ଵሻ} for ℎ = {Ͳ,ͳ,ʹ} 
by accessing every sample once, where ݏ is removed from the notation because this conditional 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/085936doi: bioRxiv preprint 

https://doi.org/10.1101/085936


 27 

probability aggregates across all the samples, including query samples and, if applicable, 

reference samples. Second, we calculate 𝑝௧,௦,ℎሺℓሻ
 by simply retrieving the Pr {݃௧ሺℓ−ଵሻ =ℎ|𝒈𝑀ሺℓ−ଵሻ = 𝒈𝑀,௦ሺℓ−ଵሻ} value and the genotype likelihood value. We simplify Equation (1) as 

𝑝௧,௦,ℎሺℓሻ ∝ Pr{alignments|݃௧,௦ = ℎ} ∙ Pr {݃௧ሺℓ−ଵሻ = ℎ|𝒈𝑀ሺℓ−ଵሻ}                     (2) 

 In the second step of our iterative method, the genotype probabilities for all the ℎ’s are 

used to update the genotype: 

݃௧,௦ሺℓሻ ← argmaxℎ 𝑝௧,௦,ℎሺℓሻ
                                 (3) 

 Our experiments on simulated data show that, the vast majority of loci converge within 

ten iterations; applying additional iterations yields little improvement in genotyping accuracy. 

Multi-class AdaBoost. Our multi-class AdaBoost-based algorithm starts with creating a set of 

candidate weak learners. A weak learner simultaneously infers the genotypes of query genomes 

at all the markers. The weak learner that is specified with LD metric function 𝜑 is referred to as ܪ𝜑. To build ܪ𝜑, we estimate pairwise LD by computing the metric ݉݅ݏ𝜑 from the genotype 

likelihoods of query genomes and the genotypes of reference genomes. The resulting LD 

estimation is then used to build simplified LD structures for all the markers, referred to as 𝑴𝜑. 

Using these simplified LD structures, applying our two-step iterative method to the genotype 

likelihoods of query genomes gives the weak learner ܪ𝜑, yielding a genotype matrix 𝐆𝜑. 

 We then calculate ܪ𝜑ሺ𝒙௜ሻ  ሺ݅ = ͳ, … , ሻݎ  for all reference genomes at all the markers 

simultaneously, where 𝒙௜  represents all the known information regarding the ݅ th reference 

genome. In this process, we intentionally omit the LD estimation and the feature selection steps, 

and reuse the simplified LD structures 𝑴𝜑 . Based on 𝑴𝜑 , our two-step iterative method is 
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applied to the reference genomes, assuming uniform genotyping likelihoods. The term Pr {݃௧ሺℓ−ଵሻ = ℎ|𝒈𝑀ሺℓ−ଵሻ}  in Equation (2) is calculated using the genotypes of the reference 

genomes. 

 The next procedure is applied to every marker ݐ separately, and formulated as follows: 

 Initialize the set of chosen weak learners Ψ ← ∅. 

 Repeat until cross validation indicates overfitting or all the candidate weak learners are 

chosen. 

o Step 1. Initialize uniform weight ݓ௜ ሺ݅ = ͳ, … , ,labelled training samples ሺ𝒙ଵ ݎ ሻ overݎ ⋯,ଵሻݕ , ሺ𝒙௥ ,  ௜ is the genotype of the ݅th referenceݕ ௥ሻ, where the class labelݕ

genome at marker ݐ. 
o Step 2. Choose the weak learner ܪ𝜑∗  that minimizes the sum of the weighted 

classification errors 𝜀𝜑∗ = ∑ ௬೔≠𝐻𝜑∗ሺ𝒙೔ሻ௥௜=ଵܫ௜ݓ , where ܫ𝐴  is an indicator function 

that equals one if ܣ is true and zero otherwise.  

o Step 3. Calculate 𝛼𝜑∗ = ଵଶ ln⁡(ଵ−𝜀𝜑∗𝜀𝜑∗ ). 

o Step 4. Update ݓ௝ ← ௪ೕ𝑍 ∙ {݁−𝛼𝜑∗ ifݕ⁡௜ = ∗𝜑∗ሺ𝒙௜ሻ݁𝛼𝜑ܪ ifݕ⁡௜ ≠ 𝜑∗ሺ𝒙௜ሻܪ , where ܼ  is a normalization 

factor. 

o Step 5. ݇-fold Cross validation, starting with randomly partitioning the ݎ training 

samples into ݇  groups. A single group is retained as validation samples and ሺ݇ − ͳሻ groups are used as training samples. Then, our method applies Step 1-4 to 

the training ሺ݇ − ͳሻ groups, and then applies the final hypothesis at current stage 
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to the validation samples. This process is repeated ݇ times, rotating the validation 

group. The total validation error is accumulated over the ݇-fold cross validation. 

o Step 6. Add 𝜑∗ into Ψ if pass the ݇-fold cross validation. 

 Apply the final hypothesis ܪfinal = argmax௬∈{଴,ଵ,ଶ}∑ 𝛼𝜑𝜑∈Ψ:𝐻𝜑ሺ𝒙ሻ=୷  to the query 

genomes, yielding final genotypes at marker ݐ. 
Different from conventional AdaBoost-based algorithms (Freund and Schapire, 1997), Ref-

Reveel builds weak learners and calculates ܪ𝜑ሺ𝒙௜ሻ across all the markers before performing 

boosting. This is because utilizing LD structure is crucial in our two-step iterative genotype 

calling method. Training weak learners for every single marker individually is significantly less 

effective. 

Recall that we vary the exponent ܾ  of 𝜑ሺݖሻ = 𝑏ݖ  in our experiment to create a set of 

candidate weak learners.  Supplementary Figure S6 shows that the weak learner with large ܾ 

value provides high genotyping accuracy at the markers with low MAF, while the weak learner 

with small ܾ value is beneficial for the markers with high MAF. The figure also shows the most 

promising range of ܾ value is between 0 and 3, except for the variants with AF < 0.1%. For those 

very rare variants, the highest genotyping accuracy is achieved at ܾ = 4.75. 

Filters for quality control. To limit the false positives (defined in Table 1) resulting from the 

genotype calling process, we measure two ratios at every marker. Let 𝜃𝑋 be the probability that 

allele 𝑋 exists at a marker in a sample. The function ݂ሺ𝜃𝑋ሻ = ܽ𝜃𝑋 ሺͳ + ܽ − 𝜃𝑋ሻ⁄  with ܽ = 5 ×ͳͲ−6 introduced in (Huang et al, 2016) is a monotonically increasing function with ݂ሺͲሻ = Ͳ 

and ݂ሺͳሻ = ͳ; its derivative is also monotonically increasing. This function has an important 

property that ݂ሺ𝜃𝑋ሻ  approaches 1 if and only if 𝜃𝑋  is very close to 1. Let score𝑋  be the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/085936doi: bioRxiv preprint 

https://doi.org/10.1101/085936


 30 

summation of ݂ሺ𝜃𝑋ሻ over all the samples at the marker. We measure the ratio of score𝑋 between 

major and minor alleles, and the ratio of allele frequencies between major and minor alleles. 

Because of the property of ݂ሺ𝜃𝑋ሻ, score𝑋 can be used to approximate the number of samples in 

which we observe strong evidence for the existence of allele 𝑋. Thus, the two ratios described 

above should not be significant different. If at a marker these two ratios are highly inconsistent, 

we are not confident regarding the genotypes at that marker. That marker is not reported as 

polymorphic in the outputs. 

 The false positive rate can be further reduced by applying several hard filters. The 

following markers are also removed from the output polymorphic sites: (1) the markers that fail 

the Hardy-Weinberg equilibrium, using Pearson’s chi-squared test; (2) the sites that are called as 

common variants by our algorithm but not reported in the integrated call set of the 1000GP Phase 

3; (3) the sites at which SAMtools calls multiple complex variants. 

Pipeline for analyzing very small datasets. To infer the genotype of a dataset with very limited 

number of individuals, we propose a Ref-Reveel pipeline as follows. We first apply Ref-Reveel 

to query samples using a reference panel. The purpose of this step was to obtain a rough estimate 

of genotypes of each query sample, which was not necessarily accurate but serves as an 

approximation to measure genetic diversity between that query sample and a cohort. Next, for 

each query sample we infer from which cohort the sample is originated. To be specific, we 

estimated the 𝐹-statistics between that sample and each possible cohort, and predict the top 

cohorts according to the 𝐹-statistics. We then generate a new VCF file by combining the query 

sample with the samples from chosen cohorts. Finally, we apply Ref-Reveel to the new VCF file 

without using any reference panels to obtain the final genotype calls for the query samples. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/085936doi: bioRxiv preprint 

https://doi.org/10.1101/085936


 31 

Implementation of Ref-Reveel. The Ref-Reveel software was implemented in C. The software 

is publicly and freely available at http://reveel.stanford.edu. The program accepts two 

compressed/uncompressed VCF/BCF files as inputs: a reference panel with genotypes (GT field) 

and a query panel with genotype likelihoods (PL or GL field). For the reference panel, genotypes 

can be phased or unphased. These two files are simultaneously parsed using HTSlib, a C library 

for high-throughput sequencing data parsing. 

To support the parallel execution of the genotype calling, the software provides a 

command that partitions the query panel into a series of consecutive non-overlapped genomic 

segments. The genotypes of each partition are inferred independently. Partitioning has little 

impact on the genotyping accuracy as long as the segment size is reasonable, as the majority of 

inter-marker LD extends to a few hundred kilobases at most (Reich et al., 2001; Schaffner et al., 

2005). Two segmentation alternatives were implemented: users can either specify a desired 

segment length of a chunk (by default, 500 kb) or specify a desired number of markers in a 

chunk (by default, 12,000). The latter option is recommended, as it avoids cases in which too few 

markers are present in an evaluated segment. Such a scenario could diminish the effectiveness of 

genotype calling. Random access to VCF files is supported to accelerate the data parsing process. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/085936doi: bioRxiv preprint 

https://doi.org/10.1101/085936


 32 

Figures 

                 

        (A)               (B) 

                  

        (C)               (D) 

Figure 1. Quality of two UK10K reference panels. We showed the aggregated (A) accuracy and 

(B) het-accuracy of 66 TwinsUK samples using boxplots, in which the central marks are the 

mean, the red lines are the median, the edges of the box are the 25th and 75th percentiles, and the 

whiskers span 9th to 91st percentiles. We also showed the sensitivity and precision using 

rangefinder boxplots (C). The dots are the performance of individuals; the inner and outer boxes 

span the 25th-75th and the 9th-91th percentiles respectively. The average accuracy across the 

whole genome as a function of minor allele frequency is shown in (D). 
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Figure 2. Genotyping performance for different methods and reference panels on chromosome 

20. We compared four settings of Ref-Reveel with different reference panels, labelled as R-

baseline, R-10K, R-R, and R-1000GP, against three state-of-the-art pipelines, labelled as S+B, 

G+B, and g+T, on 99 CEU samples from the 1000GP Phase 3. For each method or setting, the 

genotyping accuracy at heterozygous and homozygous alternate sites of 63 samples that were 

studied by both 1000GP Phase 3 and CG was represented by a boxplot. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/085936doi: bioRxiv preprint 

https://doi.org/10.1101/085936


 34 

               

        (A)               (B) 

Figure 3. Coverage level affects genotyping performance. We applied the pipeline for analyzing 

very small datasets to three datasets separately; each dataset contains ten query samples 

randomly selected from the 1000 Genomes Project Phase 3. The BAM files of these query 

samples were downsampled to 100%, 83.3%, 66.7%, 50%, and 33.3% of the original coverage 

level. We measured the genotyping accuracy and non-reference discordance of every query 

sample at these coverage levels. The grey curves show the performance of each sample as a 

function of mapped depth. The colored curves show the aggregated performance of the samples 

from the same continent. 
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Table 1. Metrics used for genotyping performance assessment. 

metric expression 

accuracy ሺ݊hom,hom + ݊het,het + ݊homnon,homnonሻ/݊●,● 

het-accuracy ሺ݊het,het + ݊homnon,homnonሻ/ሺ݊het,● + ݊homnon,●ሻ 
sensitivity (SN) TP/ሺTP + FNሻ 
precision (PR) TP/ሺTP + FPሻ 

TP ݊het,het + ʹ݊homnon,homnon + ݊homnon,het 

FP ݊hom,het + ʹ݊hom,homnon + ݊het,homnon 

FN ݊het,hom + ʹ݊homnon,hom + ݊homnon,het 

non-reference 

discordance 

(NRD) 

ሺ݊hom,het + ݊hom,homnon + ݊het,hom + ݊het,homnon + ݊homnon,hom+ ݊homnon,hetሻ/ሺ݊hom,het + ݊hom,homnon + ݊het,● + ݊homnon,●ሻ 
RR discordance ሺ݊hom,het + ݊hom,homnonሻ/݊hom,● 

RA discordance ሺ݊het,hom + ݊het,homnonሻ/݊het,● 

AA discordance ሺ݊homnon,hom + ݊homnon,hetሻ/݊homnon,● 

݊௫,௬: the number of sites where the truth genotype is ݔ and the outcome is ݕ.  

●: wildcard, representing any genotypes. 
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Table 2. Genotyping accuracy of Ref-Reveel on the whole genome. The genotyping accuracy 

was evaluated at the sites where the CG data reported heterozygous and homozygous alternate 

and Ref-Reveel discovered SNPs. 

method overall (%) 𝑆common (%) 𝑆loF  (%) 𝑆rare (%) 𝑆invariant (%) 

R-baseline 98.7267 99.1241 98.4575 97.4269 80.5800 

R-10K 98.8818 99.2576 98.8222 97.9519 79.7389 

R-R 99.0280 99.3671 99.0418 98.1839 81.4276 

R-1000GP 98.9069 99.3089 98.7196 97.7574 79.5758 
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Table 3. Running time. The running time was measured on a 2.40GHz Intel Xeon processor. 

method chromosome 20 (mins) whole genome (CPU days) 

R-baseline 134 7.36 

R-10K 323 13.02 

R-R 353 12.79 

R-1000GP 275 11.55 

S+B 407 - 

G+B 1464 - 

g+T 21924 - 
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Table 4. Performance of applying the Ref-Reveel pipeline to a very small dataset with merely 

ten samples from unknown populations.  
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