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Abstract 21 

Individual organisms are linked to their communities and ecosystems via metabolic activities. 22 

Metabolic exchanges and co-dependencies have long been suggested to have a pivotal role in 23 

determining community structure. Metabolic interactions with bacteria have been key drivers 24 

in the evolution of sap-feeding insects, enabling complementation of their deprived nutrition. 25 

The sap-feeding whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) harbors an obligatory 26 

symbiotic bacterium, as well as varying combinations of facultative symbionts. We took 27 

advantage of the well-defined bacterial community in B. tabaci as a case study for a 28 

comprehensive and systematic survey of metabolic interactions within the bacterial 29 

community and their associations with documented frequency of bacterial combinations. We 30 

first reconstructed the metabolic networks of  five common B. tabaci symbionts (Portiera, 31 

Rickettsia, Hamiltonella, Cardinium and Wolbachia), and then used network analysis 32 

approaches to predict: (1) species-specific metabolic capacities in a simulated bacteriocyte-33 

like  environment; (2) metabolic capacities of the corresponding species' combinations, and 34 

(3) dependencies of each species on different media components.  35 

The automatic-based predictions for metabolic capacities of the symbionts in the host 36 

environment were in general agreement with previously reported genome analyses, each 37 

focused on the single-species level. The analysis suggested several previously un-reported 38 

routes for complementary interactions. Highly abundant symbiont combinations were found 39 

to have the potential to produce a diverse set of complementary metabolites, in comparison to 40 

un-detected combinations. No clear association was detected between metabolic co-41 

dependencies and co-occurrence patterns. The findings indicate a potential key role for 42 

metabolic exchanges as key determinants shaping community structure in this system.  43 

 44 

  45 
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Importance 46 

This study harnesses the rapid advances in tools developed within the newly emerging field 47 

of eco-systems biology to study a small, closed, well-defined micro-ecosystem of a bacterial 48 

community, allowing a detailed description of its trophic networks. In addition to indicating 49 

un-reported routes for complementary interactions between co-located symbionts of Bemisia 50 

tabaci, this study provides a generic tool for creating testable predictions of metabolic 51 

interactions in complex communities. Understanding the overall metabolic interactions in a 52 

given system is of key importance in ecology and evolution and can provide a powerful tool 53 

for expanding knowledge on inter-species bacterial interactions in various ecosystems. 54 
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Introduction 55 

Metabolic interactions are one of the main factors shaping communities and ecosystems by 56 

forming complex trophic networks. In bacterial communities, metabolic exchanges are 57 

ubiquitous and play a pivotal role in determining community structure (1–8). Bacteria also 58 

exchange metabolites with multicellular organisms, and such of mutualistic interactions have 59 

been a key driver of evolution, enabling eukaryotic expansion into new ecological niches and 60 

species diversification (9, 10). Among the most studied evolutionary radiations that has 61 

depended on symbiosis are the sap-feeding insects such as whiteflies, aphids, psyllids, 62 

cicadas and spittlebugs. All have intimate associations with maternally transmitted, 63 

intracellular bacteria that provide essential nutrients (mainly essential amino acids) and 64 

thereby enable dietary specialization on phloem or xylem sap of vascular plants (11–13) - a 65 

poor environment composed mainly of simple sugars and non-essential amino acids (14). The 66 

interaction with these inherited partners is obligatory for insect survival, and the bacteria are 67 

thus located inside specialized insect cells termed bacteriocytes. In addition, insects may 68 

harbor a diverse  array of facultative, nonessential bacterial associates in the bacteriocytes or 69 

other body tissues (15). Facultative symbionts are suggested to serve as a “horizontal gene 70 

pool”, where variation in their combinations may have functional significance (16–19). 71 

Notably, since the obligatory symbionts are exposed to an irreversible process of genome 72 

reduction that can erode their metabolic potential (20), facultative symbionts can, in some 73 

cases, complement or replace parts of the lost functions (21–23).   74 

In recent years, metabolic approaches, based on genome-driven network constructions, have 75 

been applied to predict the potential metabolic dependencies and metabolic exchanges 76 

between bacterial species (4, 8, 24). Newly developed tools for genome-based metabolic 77 

reconstruction enable predicting sets of interactions formed between species combinations , 78 

and the specific exchange of fluxes within multi-species systems (25, 26). Crossing such 79 
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predictions with corresponding co-occurrence patterns allows deciphering the importance and 80 

meaning of variations in such bacterial assemblages (3, 27). To this end, multiple information 81 

layers are required, including symbiont co-occurrence patterns, environmental conditions, 82 

genetic background of both host and symbionts, and genome-driven predictions for 83 

symbionts' potential activities. Here, based on the availability of both distribution patterns 84 

and bacterial genome sequences, we focused on exploring the functional significance of 85 

combinations of facultative symbionts in the sweetpotato whitefly Bemisia tabaci 86 

(Hemiptera: Aleyrodidae) and their potential role in shaping alternative community 87 

structures.  88 

Bemisia tabaci is a major pest of several key crops worldwide (28) and is referred to as a  89 

complex of species, consisting of at least 28 morphologically indistinguishable, genetically 90 

delimited groups or species (29, 30). All whiteflies, including B. tabaci, harbor the primary 91 

symbiont “Candidatus Portiera aleyrodidarum” (hereafter Potiera) (31), which has undergone 92 

substantial genomic reduction as other obligatory symbionts (20), but is still able to produce 93 

most of the essential amino acids (32, 33). In addition, B. tabaci has been reported to harbor 94 

varying combinations of facultative symbionts, from bacterial genera Rickettsia, 95 

Hamiltonella, Wolbachia, Arsenophonus, Cardinium, Hemipteriphilus and Fritschea (34). 96 

The occurrence and frequencies of combinations of these bacterial symbionts were 97 

investigated using a dataset of over 2,000 whiteflies, representing both the largest and the 98 

most comprehensive meta-study of insects for which communities of facultative symbionts 99 

have been described (34). MEAM1 and MED-Q1, the two most widespread genetic groups of 100 

B. tabaci, were found to typically harbor the facultative symbiont “Ca. Hamiltonella defensa” 101 

(hereafter Hamiltonella) in addition to the obligatory symbiont Portiera. A combination of 102 

Hamiltonella and “Ca. Rickettsia sp.” (hereafter Rickettsia) seemed to be unique to MEAM1 103 

individuals, while combinations of Hamiltonella with either “Ca. Cardinium hertigii” or “Ca. 104 
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Wolbachia sp.” (hereafter Cardinium and Wolbachia respectively) were unique to individuals 105 

of the MED-Q1 genetic group. Because the analysis revealed no correlation between specific 106 

facultative symbiont complexes and any of the environmental factors tested (34), we 107 

hypothesized that metabolic interactions may be involved in shaping the bacterial community 108 

structure. The recent release of the genome sequences of Portiera, Rickettsia, Hamiltonella, 109 

and Cardinium  (23, 32, 35–40) has promoted analyses of interactions between the obligatory 110 

symbiont Portiera and its B. tabaci host (23, 33, 39, 41), the facultative symbionts and B. 111 

tabaci (23, 35, 36, 39), and the obligatory and facultative symbionts (23, 33). At both trophic 112 

levels, metabolic exchanges were suggested to be required for the completion of essential 113 

metabolic pathways. Branched Chain Amino Acids (BCAs), for example, are synthesized 114 

through Portiera–host complementary interaction (33, 39, 41) while lysine biosynthesis can 115 

occur via Portiera–host or Portiera-Hamiltonella complementation (23, 39). 116 

As metabolic cross talk is suggested to convey functional capacities associated with specific 117 

species combinations, we conducted comparative-interaction analysis considering 118 

interactions formed between pairwise combinations of residing symbionts. We first 119 

reconstructed the metabolic networks of five  symbionts (Portiera, Rickettsia, Hamiltonella, 120 

Cardinium and Wolbachia), and then used network analysis approaches to predict: (1) 121 

species-specific metabolic capacities in a simulated host’s bacteriocyte-like environment; (2) 122 

metabolic capacities of species' combinations, and (3) the dependencies of each species on 123 

the different media components.  124 

Results  125 

Metabolic capacities of individual symbionts in the simulated bacteriocyte environment 126 

The complete genomes of Portiera, Cardinium, Hamiltonella, and Rickettsia from B. tabaci 127 

MEAM1 and MED species were retrieved from public resources (Table 1) and the genome of 128 

Wolbachia was assembled de novo (Supplemental material, Table S1). All genomes were 129 
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analyzed using a standard automated procedure followed by manual revision. For each 130 

bacterium, a metabolic-network was reconstructed based on the identification of its genome-131 

derived enzyme content.  132 

Beyond the static representation of data as a network, computational simulations allow 133 

addressing the influence of environmental inputs (nutritional resources) on the network 134 

structure and composition, i.e., the metabolic capacities of a species in a given environment, 135 

for example, in terms of its ability to produce essential metabolites. More specifically, 136 

expansion algorithms generate the set of all possible metabolites that can be produced given a 137 

set of starting compounds (source-metabolites) and a set of feasible reactions (42). We 138 

defined the starting compounds as a compilation of nutrients provided by the host whitefly in 139 

the bacteriocyte environment based on previous studies (33, 39, 41, 43). Our predicted 140 

bacteriocyte environment was composed of 50 compounds including ATP, co-factors and 141 

vitamins such as NAD+, heme and thiamine, six non-essential amino acids, and sugars (Table 142 

S2).  143 

For each of the symbionts we simulated metabolic activity in the bacteriocyte environment 144 

and listed a sub-set of essential metabolites predicted to be produced (Table S3). It was found 145 

that most of the secondary symbionts are capable of producing nucleic acids (Fig. S1), 146 

whereas their ability to produce amino acids and co-factors varied (Fig. 1). Portiera, being an 147 

obligatory symbiont that has undergone substantial genomic reduction, was the most limited 148 

in its metabolic capacities. It was capable of synthesizing alanine and the essential amino 149 

acids threonine, methionine, tryptophan and phenylalanine (Fig. 1), in accordance with 150 

previous reports regarding its metabolic capacity and interaction with the whitefly host (32, 151 

40). All of the facultative symbionts were capable of synthesizing the non-essential amino 152 

acid glycine, which was not produced by Portiera. As previously reported alanine is only 153 

produced by Hamiltonella and Cardinium (23, 35, 39). In addition, and in accordance with 154 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2016. ; https://doi.org/10.1101/086165doi: bioRxiv preprint 

https://doi.org/10.1101/086165
http://creativecommons.org/licenses/by/4.0/


8 

 

previous results, asparagine could be produced by  the facultative symbionts  Hamiltonella, 155 

Wolbachia and Cardinium (23, 39). Overall, the automatic-based predictions for metabolic 156 

capacities of the symbionts in the host environment generated by the model were in general 157 

agreement with previously reported genome analyses.  158 

Complementary production of amino acids  159 

The genome-specific differences in the production of amino acids (Fig. 1) suggested that 160 

complementary metabolic interactions can potentially take place in the bacteriocyte eco-161 

system, increasing the total number of amino acids that can be synthesized by the residing 162 

bacteria. This is supported by a some established examples that demonstrate the co-163 

production of amino acids by bacterial combinations through complementation of metabolic 164 

pathways in various ecological systems, including insect-symbiont interactions (3, 44–46). To 165 

predict complementation patterns, we repeated co-growth simulations for pairwise 166 

combinations in the exact same environment as for single-species simulations. A metabolite 167 

was defined as "complementary'" if its synthesis requires a combination of bacterial species 168 

(i.e., individual members of the combination cannot produce it). Overall, complementary 169 

interactions for the co-synthesis of four essential amino acids were detected (Fig. 1): lysine 170 

production by Hamiltonella-Wolbachia and Portiera-Hamiltonella combinations and 171 

production of the three BCAs (leucine, valine and isoleucine) by the Portiera-Rickettsia 172 

combination. While the complementation of  Hamiltonella-Wolbachia for lysine production 173 

has not been previously reported, our results are in agreement with the possible cooperation 174 

of Portiera and Hamiltonella for its production (23, 39). The production of BCAs in the 175 

bacteriocyte environment has been suggested to take place through a complementary 176 

interaction between Portiera and B. tabaci. Our analysis suggested an alternative route for 177 

the production of BCAs through an interaction between the obligatory symbiont Portiera and 178 

the facultative symbiont Rickettsia. This previously unreported complementation is in 179 
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agreement with identification of the ilvE gene in Rickettsia from B. tabaci, carrying the final 180 

reaction in the BCA-synthesis pathway (47). 181 

Profiles of complementary metabolites 182 

Beyond the complementary production of amino acids, we recorded, for each pairwise 183 

bacterial combination, a vector describing the set of potential complementary metabolites 184 

(Table S4). The interactions formed between the most frequent symbionts - the obligatory 185 

symbiont Portiera and the partially fixated symbiont Hamiltonella - and the other symbionts, 186 

produced a high number of complementary metabolites per interaction (average of ~12; Table 187 

2). In comparison, the lowest number of complementary metabolites was predicted for 188 

Cardinium (average of ~4, Table 2), the symbiont with the lowest number of appearances in 189 

the surveyed populations (34). Overall, the interaction matrix included seven occurring 190 

combinations (blue, Table 2) versus three non-occurring combinations (red), with an average 191 

number of ~12 versus ~3 complementary metabolites.  192 

Principle Component Analysis (PCA) of the complementary-metabolite vectors suggested 193 

four key types of interaction-groups (Fig. 2): Portiera associated interactions (with 194 

Hamiltonella, Rickettsia and Wolbachia), the two divergent Hamiltonella-associated 195 

interactions (with Wolbachia and Rickettsia), and the non-occurring combinations Cardinium-196 

Wolbachia, and Rickettsia-Wolbachia and Rickettsia-Cardinium (red combinations in Table 2 197 

and Fig. 2). Cardinium-Portiera combination is classified together with Hamiltonella-198 

Wolbachia and not with the other Portiera associated combinations. Metabolites common to 199 

the Portiera-associated combinations included amino-acyl transferases and many primary 200 

metabolites such as amino acids and co-factors. Complementary metabolites common to the 201 

co-clustered Portiera-Hamiltonella and Portiera-Wolbachia combinations included potential 202 

precursors of methionine and purine/thiamine (Table S4); all potential interactions have been 203 

previously suggested for Hamiltonella (39), but not for Wolbachia. 204 
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The relatively divergent clustering pattern recorded for the combinations of facultative 205 

symbionts Hamiltonella-Wolbachia and Hamiltonella-Rickettsia (Fig. 2) might be attributed 206 

to the fact that most of these metabolites are not common but rather interaction-specific: 207 

interactions between Hamiltonella and Wolbachia were mostly involved in the synthesis of 208 

secondary metabolites, mainly terpenoids; interactions between Hamiltonella and Rickettsia 209 

were mostly involved in butanoate and amino sugar metabolism (Table S4). Finally, non-210 

occurring combinations typically led to a low number of potential complementary 211 

metabolites and were clustered.  212 

Co-dependencies of symbionts on specific media components 213 

Under the assumption that highly similar metabolic demands may hint at resource 214 

competition and potentially lead to exclusion of the less fit competitor, the extent to which 215 

symbiont combinations rely on common resources was assessed. Scores were evaluated using 216 

NetCmpt, which provides predictions for the degree of effective metabolic overlap between 217 

pairs of bacterial species, ranging between 0 (no overlap) and 1 (complete overlap) (26). 218 

Scores are a-symmetrical whereas the effect of interactions on pair members is likely to differ 219 

(i.e., one of the species is likely to be more affected than its potential competitor). The score 220 

is indicative of the effect of the column species over the row species. For example, 221 

Hamiltonella was almost unaffected by Portiera and Cardinum and was more sensitive to the 222 

presence of Wolbachia and Rickettsia (Table 2). Overall, pairwise scores were relatively low, 223 

ranging between 0.03 (the effect of Portiera on Hamiltonella) and ~0.35 (the effect of 224 

Hamiltonella on Wolbachia and Rickettsia). The observed average competition score, 0.18 225 

(Table 2), was relatively low compared to an average of 0.36 calculated for other modeled 226 

bacterial communities (4). Notably, no significant difference was obsereved in the level of 227 

metabolic overlap between occurring versus non-occurring combinations (Table 2).  228 
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Since resource overlap is thought to determine community structure only under limited 229 

carrying capacity of the habitat (48), we further simulated species-specific growth in the 230 

bacteriocyte-like environment, rather than considering the generic optimal environment 231 

assumed by the NetCmpt tool. We estimated the specific qualitative effect of each metabolite 232 

on growth capacity following iterative removal of one component at a time. As expected, 233 

Portiera exhibited the most differentiated dependency profile of all symbionts (Fig. 3). In the 234 

specific bacteriocyte simulated environment, Portiera relied uniquely on D-ribose 5-235 

phosphate, D-erythrose 4-phosphate and phosphoenolpyruvate for tryptophan production, as 236 

well as on L-homocysteine for methionine production. Metabolite dependencies that were 237 

common to more than a single symbiont included dependencies on the amino acids L-238 

cysteine (Wolbachia and Rickettsia) and L-serine (Cardinium, Hamiltonella and Wolbachia). 239 

Hence, co-dependency might lead to a mutually exclusive distribution pattern, as suggested 240 

for Wolbachia and Rickettsia (34). 241 

In addition, common dependencies on NAD+ (Hamiltonella, Wolbachia and Rickettsia) and 242 

ATP (Cardinium and Rickettsia) reflected the energy production pathways of the 243 

corresponding symbionts. NAD+ dependent bacteria all have a citrate cycle requiring NAD+ 244 

as a reducing force. Rickettsia and Cardinum, both missing glycolytic pathways, rely on the 245 

host for ATP production. Though Rickettsia possesses a citrate-cycle, capable of producing 246 

ATP, its activation requires thiamine diphosphate, which was not present in our bacteriocyte 247 

environment. In our simulations, Wolbachia was the only symbiont that could produce 248 

thiamine diphosphate from the thiamine provided through the activity of thiamine 249 

diphosphokinase. Like Cardinum, Portiera does not possess either a citrate-cycle or 250 

glycolysis pathway. However, at least to a minimal amount, ATP production can potentially 251 

occur through the activity of ATP phosphoribosyltransferase in the histidine-metabolism 252 
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pathway requiring D-ribose 5-phosphate as input. In addition, Portiera can also obtain ATP 253 

through carotenoid biosynthesis (49). 254 

Discussion  255 

We harnessed the rapidly advancing tools developed within the newly emerging field of eco-256 

system biology to study a small, closed, well-defined micro ecosystem of a bacterial 257 

community. The focus on this unique community allowed exploring metabolic interactions 258 

between all relevant pairwise combinations, providing a detailed description of the trophic 259 

networks. Using simulation models to predict metabolic exchanges and co-dependencies we 260 

aimed to shed light on the role played by symbiotic interactions in shaping host ecology and 261 

how the ecology within the host can constrain community structure. The analysis was based 262 

on several assumptions and limitations that should be acknowledged: (1) we assumed a free 263 

flux of metabolites between the host and the symbionts and among the symbionts themselves. 264 

Several descriptions of the frequent exchanges in microbial communities support this 265 

assumptions (3, 50, 51). (2) The model is qualitative, only providing binary predictions for 266 

the production or absence of a metabolite rather than quantitative estimates for metabolite 267 

consumption/production as produced for stoichiometric networks using constraint based 268 

modeling. Hence, metabolites that are common resources for several symbionts might not 269 

induce competition, as they are not necessarily limiting. Similarly, the coproduction of 270 

nutrients might take place in negligible amounts, (3) the model is limited to the identification 271 

of metabolic interactions which are not likely to be the only factor affecting community 272 

structure. However, despite the inherent limitations of the approach, the analysis successfully 273 

captured previous genome-based predictions of  metabolic complementations at host-274 

symbiont and  symbiont-symbiont levels in the bacteriocyte (23, 32, 39). Such evidence 275 

supports the relevance of our tool for the formulation of new, testable predictions of 276 

metabolic exchanges in an automated manner. Moreover, our simulations take into account a 277 
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specific environment, hence reflecting the common notion that interactions are dynamic and 278 

can vary with the addition or depletion of nutrients (4, 6, 44). 279 

This study focused on diet-limited insects that rely on obligatory associations with bacteria 280 

for complementation of their nutritional needs. The role of cooperative coevolution in 281 

selecting for traits that enable and stabilize such symbioses has been thoroughly discussed in 282 

the literature (10, 11, 13, 15, 16, 19, 52, 53). One of the most important negative 283 

ramifications of symbiotic alliances is the genome-reduction process in the obligatory 284 

symbionts that limits beneficial contributions (54). Consequently, a new symbiont may 285 

replace or supplement the capabilities of a previous one. The dynamic acquisition and loss of 286 

horizontally transmitted facultative symbionts enable the continuous persistence of many 287 

species. Although the facultative symbiont's ability to colonize a new host is strongly 288 

influenced by metabolic similarities between the new and old host (35, 55), it also relies, at 289 

least to some extent, on the metabolic interactions that it forms with its new environment 290 

(56). Accordingly, transient bacterial species are expected to co-occur less frequently than 291 

expected by random chance if they are competing for limiting metabolic resources. Similarly, 292 

if their metabolic pathways are complementary with respect to the production of a mutually 293 

required resource, they are expected to co-occur more frequently than expected by random 294 

chance. Such interactions can also suggest a possible gain that compensates for the fitness 295 

cost of co-infections (56, 57).  296 

Here, using automated tool rather than relying on genome-specific metabolic mappings (23, 297 

33, 35, 39), we predicted four previously un-reported routes for transient complementary 298 

interactions. These interactions can potentially increase the amount of the resulting amino 299 

acids in the bacteriocyte by providing alternative synthesis routes. Examples include 300 

complementation of the synthesis of BCAs is possible through the insect host (B. tabaci) 301 

obligatory symbiont (Portiera) interaction but also, by a previously un-reported interaction 302 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2016. ; https://doi.org/10.1101/086165doi: bioRxiv preprint 

https://doi.org/10.1101/086165
http://creativecommons.org/licenses/by/4.0/


14 

 

between Portiera and the facultative symbiont Rickettsia. Similarly, production of lysine as 303 

well as of the co-factor 5-methyl- tetrahydrofolate, the predominant form of dietary folate 304 

(58), occurs through the complementary Portiera-Hamiltonella interaction. The reported 305 

Portiera-Hamiltonella complementation of lysine could indicate a more intimate relationship 306 

between these symbionts, compromising the evolution of Hamiltonella toward a co-307 

obligatory symbiont  in some B. tabaci species (23, 36, 39). Though some of the 308 

complementary metabolites are redundant between co-existing interactions, they might 309 

suggest alternative production routes, possibly compensating for the limited transcriptional 310 

regulation of symbionts (59). Such complementation can be mutualistic, increasing the total 311 

amount of essential nutritional sources for all community members. Alternatively, it might 312 

only be beneficial for specific species and reflect a parasitic life style. For example, 313 

complementary production of BCAs is possible through Portiera-Rickettsia interactions. The 314 

Rickettsia from B. tabaci is part of the  R. bellii group that includes many pathogenic 315 

members (60, 61). The complementation might reflect the dependency of Rickettsia on the 316 

BCA intermediates that it scavenges from the host-environment, bypassing the host’s control 317 

of BCA biosynthesis (47).  318 

The model suggests several complementary pathways for metabolic co-production of 319 

additional metabolites, typical of Portiera interactions with the facultative symbionts. All of 320 

these interactions are involved in the production of metabolites compensating for the loss of 321 

aminoacyl-tRNAs in the Portiera lineage (L-tryptophanyl, N-formylmethionyl, L-methionyl 322 

and L-alanyl-tRNAs, Table S4) (33). Although these losses are assumed to reflect the 323 

dependency of Portiera on its host (30,31,58), the analysis suggests alternative routes for 324 

such complementation.  325 

Complementary interactions also lead to the potential synthesis of secondary metabolites 326 

regulating host-parasitoid interactions(62, 63). For example, dimethylallyl diphosphate, a 327 
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terpenoid, is involved in the metabolism of aphid's alarm pheromones(64); sialic acids have 328 

diverse functions in host-bacteria interactions, including as signaling molecules and 329 

nutritional sources (65) (Table S4).    330 

Specific combinations of co-occurring symbionts have been shown to correlate with 331 

delimited genetic groups of B. tabaci (34). Combinations of Hamiltonella with Rickettsia are 332 

unique to individuals from MEAM1, whereas combinations of Hamiltonella with Wolbachia 333 

are commonly found in individuals from MED-Q1. Notably, both combinations, which are 334 

highly dominant in their corresponding genetic group (34), have the potential to co-produce a 335 

diverse set of primary and secondary metabolites (14 and 18, respectively), which can 336 

increase host fitness, favoring their maintenance on this species. Unlike the relatively 337 

conserved profile of complementary metabolites produced through interactions between the 338 

obligatory and facultative symbionts, the complementary profiles formed by Hamiltonella-339 

Rickettsia and Hamiltonella-Wolbachia are relatively diverse (Fig. 2), suggesting a biotype-340 

specific functional adaptation. Hamiltonella-Cardinum combination is mainly found in the 341 

MED-Q1 group. This combination is less frequent (34), which could possibly be explained 342 

by their low complementation potential (zero metabolites). Consistent with these specific 343 

examples, we observed an overall trend of low complementary potential in non-occurring 344 

combinations in comparison to occurring ones. However, the limited sample size precludes 345 

significance of these observations. 346 

While the analysis suggested an association between high-complementation and frequent co-347 

occurrence no such indication was detected for competitive interactions (Table 2). One 348 

possible interpretation is that metabolic exchanges are more dominant in shaping bacterial 349 

communities (66). Indeed, whereas according to classical ecology theory, inter-species 350 

competition over common resources should lead to mutual-exclusion distribution patterns 351 

(48), relevant examples are rarely identified based on potential metabolic screens (3, 4, 67). A 352 
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possibly explanation can be that only a narrow set of factors are quantitatively limited and 353 

therefore relevant for competition and determining community structure. To identify such 354 

potential limiting factors, we characterized metabolic co-dependencies between bacterial 355 

pairs. Predicted co-shared metabolites included the amino-acids L-cysteine (Wolbachia and 356 

Rickettsia) and L-serine (Cardinium, Hamiltonella and Wolbachia). Whereas Hamiltonella-357 

Cardinium and Hamiltonella-Wolbachia combinations are frequent, Wolbachia-Rickettsia 358 

combinations are rare (34), indicating at cysteine as a potential limiting factor. Although 359 

cysteine is a non-essential amino acid that can be supplied by the host and is found in the 360 

phloem, it is the main sulfur source required for Fe-S protein biogenesis (68). In addition, 361 

common dependencies in NAD+ and ATP which reflect the energy-production pathways of 362 

the corresponding symbionts can have a strong influence on symbiont co-occurrences. For 363 

example, Rickettsia and Cardinium, both missing the glycolytic pathways and relying on their 364 

host for ATP production,  are not found together in the host (34). In the Rickettsia genus, and 365 

other intracellular parasites, ADP/ATP translocases are known to play a crucial role in the 366 

exploitation of host ATP (60, 69). Interestingly, in Cardinium and related bacteria, ADP/ATP 367 

translocases are also present, indicating to a parasitic past (33, 70, 71). In contrast, it seems 368 

that Wolbachia, independent of its parasitic status, does not present (or has not acquired) the 369 

ADP/ATP translocases, relying on its own machinery to produce ATP (72).  370 

Despite its obvious limitations, this model provides a tool for generating predictions for 371 

testable hypotheses of metabolic interactions in bacterial communities. Understanding the 372 

overall metabolic interactions in a given system is of key importance in ecology and 373 

evolution and can provide a powerful tool for expanding knowledge on inter-specific 374 

bacterial interactions in various ecosystems. With respect to applied aspects, symbiotic 375 

microorganisms have been shown to influence the success rates of various biological control 376 

programs of agricultural pests (73, 74). Attempts to establish more efficient pest-management 377 
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strategies involve the removal of specific symbionts or the introduction of others, and our 378 

proposed model is expected to contribute to the efficiency and productivity of such efforts. 379 

The presented simple model system offers a level of tractability that is crucial for paving the 380 

way to the simulation, prediction and management of microbial communities that can 381 

expanded to more complex ecosystems, such as the guts of humans and livestock, water 382 

resources and soils.   383 

Materials and Methods 384 

Genome assembly and annotation  385 

Relevant genomes were collected from multiple public sources (Table 1), with the exception 386 

of the Wolbachia genome which was assembled de novo using sequence data produced by a 387 

Genoscope-funded project (http://www.genoscope.cns.fr). The sequence was deposited in the 388 

European Nuclear Archive (http://www.ebi.ac.uk/ena/data/view/) under project number 389 

PRJEB15492. The procedure is fully described in the supplemental data.  390 

A standard protocol for annotation retrieval was applied for all genomes. Annotations were 391 

carried out using several genome-annotation pipelines: IMG/M (75), Kbase (http://kbase.us/), 392 

Rast (76), MG-rast (76). To estimate the accuracy and comprehensiveness of the predictions, 393 

we benchmarked the EC (enzyme commission) predictions for the Cardinium genome, 394 

retrieved from the four pipelines, with annotations derived from a detailed manual curation. 395 

The IMG/G predictions were the most comprehensive and in highest agreement with the 396 

manual curation (Fig. S2). Hence, for consistency, annotations for all genomes were retrieved 397 

using the JGI platform. For Portiera, out of four published genomes (Table 1), annotations 398 

for CP003835.1 were considered in the analysis, based on cross-genome comparative 399 

analysis of the enzymatic sets and the annotation status (manually curated, Fig. S2). 400 

Following annotation retrieval from JGI, reciprocal BLAST searches were carried out to 401 
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eliminate contaminated sequences between co-occurring symbionts. The phylogenetic origin 402 

of highly similar sequences was determined according to BLAST best hits.  403 

Putative pseudogenes for all re-annotated genomes were predicted using GenePrimp (77). 404 

Manual inspection was performed for all candidate pseudogenes that had an assigned 405 

metabolic function (EC number). In addition, previous annotations of Cardinium and 406 

Portiera (32, 35) were used as supportive information for pseudogene cleaning in these 407 

species. Finally, predicted pseudogenes with valid EC accessions were removed from the 408 

predicted EC list before conducting follow-up analyses. The number of ECs annotated for 409 

each genome is indicated in Table 1. The final EC lists are provided in Table S5.  410 

Metabolic activity simulations 411 

Metabolic activity simulations were carried using the Expansion algorithm (42) which allows 412 

predicting the active metabolic network (expanded) given a pre-defined set of substrates and 413 

reactions. The full expansion of the network reflects both the reaction repertoire of each 414 

species/species-combination and the primary set of compounds, termed here "source-415 

metabolites". Briefly, the algorithm starts with a set of one or more biochemical compounds 416 

acting as source metabolites for a feasible reaction, i.e., a reaction for which all required 417 

substrates are available. This reaction is selected out of the reaction pool and added to the 418 

network. In an iterative process, the products of the chosen reaction are turned into the new 419 

substrates, and so on. Processing of the starting-point compounds by relevant reactions 420 

increases the number of available compounds that can act as substrates for other, previously 421 

in-activated reactions. The network stops expanding when there are no more feasible 422 

reactions. Although, the closest organisms with a well-known and defined bacterciocyte 423 

environment are aphids, we decided not to use the information generated for this organisms, 424 

based on the long divergence time between aphids and whiteflies (more than 250 Mya) and 425 

differences in their symbiotic communities and their mode of transmission (53, 78–80). Here, 426 
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we described the resources available in the whitefly bacteriocyte by compiling several such 427 

pre-published lists that are based on genomic-driven analyses of the whitefly genome (23, 32, 428 

39, 41). The list is composed of metabolites produced by the host only, though each symbiont 429 

changes the environment by consuming/secreting unique set of metabolites. The limitation of 430 

the environment to host secreted metabolites allows predicting potential pairwise interactions 431 

that would otherwise be masked by alternative host-symbiont routes. These compounds were 432 

termed "source metabolites" (detailed in Table S2) and were used as starting points for 433 

unfolding a meta-network formed when considering all enzymes detected across all bacterial 434 

genomes, leading to the construction of niche-specific networks. 435 

Prediction of complementary interactions  436 

Complementation was predicted through a three-stage model (1) constructing a combined set 437 

of metabolic reactions (EC accessions) for each pairwise combination; (2) simulating co-438 

growth of both individual and combined bacterial genera in the predicted environment; (3) 439 

comparing the set of metabolites produced by the combined genomes to those formed by the 440 

individual genomes. Complementary/Synergistic metabolites were those formed by species 441 

combinations but not by the individual species. A list of the complementary metabolites 442 

produced in each interaction and their mapping to KEGG pathways is provided in Table S4. 443 

PCA for the vectors of synergistic metabolites was carried out using R software (81). 444 

Prediction of co-dependencies in source metabolites  445 

The competition scores for each pair of symbionts were calculated by the network-based tool 446 

NetCmpt (26).  Beyond the quantitative estimates, NetCmpt was further extended to identify 447 

dependencies on specific source metabolites. To this end, growth simulations were carried in 448 

the bacteriocyte-like environment used throughout the analysis, rather than in the optimal 449 

environment used for the generic NetCmpt calculations. Within each simulation, the number 450 
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of essential metabolites was determined (e.g., amino acids, nucleic acid and co-factors, Table 451 

S3) (26). Iterative simulations were carried out while  removing one source metabolite at a time. For 452 

each iteration, the number of essential metabolites that could not be produced following the 453 

removal of a source metabolite was recorded. The procedure is illustrated in Fig. S3.  454 

 455 
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Tables 463 

Table 1: Genomes list of obligatory and facultative symbionts of Bemisia tabaci.  464 

Symbiont  Host  Resource {GeneBank ID} (publication) Number of ECsa  

Portiera  MEAM1 NCBI {CP003708.1} (40) 103 

Portiera  MEAM1 NCBI {CP003868.1}  101 

Portiera  MED-Q1 NCBI {CP003835.1} 101 

Portiera  MED-Q2 NCBI {CP003867.1}  104 

Cardinium  MED-Q1 NCBI {GCA_000689375.1}  112 

Hamiltonella  MED-Q1 NCBI {GCA_000258345.1}  398 

Rickettsia sp. MEAM1 NCBI {GCA_000429565.1} 247 

Wolbachia sp. MED-Q2  ENA {PRJEB15492} 253 

a Following annotation, filtering and manual curation. EC = enzyme commission. 465 

 466 
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Table 2: Predictions of pairwise interactions in the bacteriocyte system between occurring 467 

(blue) and non-occurring (red) pairwise combinations of symbionts. Occurrence versus non-468 

occurrence was determined according to a detailed survey of symbiont occurrence from 2030 469 

whitefly individuals (34). The first value in each cell represents the number of 470 

complementary metabolites produced in each combination; the second value (in parentheses) 471 

represents the predictions of the competition values (Effective Metabolic Overlap); the third 472 

value (in square brackets) represents the number of source metabolites that induce co-473 

dependency of both pair members. The primary endosymbiont is denoted in bold face. 474 

 Hamiltonella Rickettsia Cardinium Wolbachia Portiera 

Hamiltonella 
 14 (0.2) [2] 0 (0.05) [0] 18 (0.2) [3] 15 (0.03) [0] 

Rickettsia 
14 (0.21) [2]  1 (0.12) [1] 8 (0.14) [3] 13 (0.07) [0] 

Cardinium 
0 (0.14) [0] 1 (0.12) [1]  1 (0.12) [0] 14 (0.14) [0] 

Wolbachia 
18 (0.36) [3] 8 (0.34) [3] 1 (0.14) [0]  8 (0.12) [0] 

Portiera 
15 (0.25) [0] 13 (0.25) [0] 14 (0.25) [0] 8 (0.25) [0]  

 475 
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Figures 476 

Figure 1: Predicted ability of single and pairwise species combinations to synthesize amino 477 

acids in the predicted bacteriocyte environment. Amino acids available in the bacteriocyte 478 

environment are not shown. Black/white/gray coloring of the cells – synthesis/no 479 

synthesis/production of complementary metabolites, respectively. P, C, H, R, W represent 480 

Portiera, Cardinium, Hamiltonella, Rickettsia and Wolbachia, respectively. 481 

 482 

  483 

 484 
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Figure 2: Principal Component Analysis (PCA) diagram of the synergistic metabolite profiles 485 

produced through pairwise interactions (Table S4). Synergistic metabolites are those whose 486 

synthesis requires the coexistence of both pair members and cannot be produced by either 487 

member alone in the predefined environment in which the simulations were carried out. Blue, 488 

co-occurring combinations; red, non-occurring combinations. P, C, H, R and W 489 

represent Portiera, Cardinium, Hamiltonella, Rickettsia and Wolbachia, respectively. HC 490 

combination has no synergistic metabolites and consequently is not represented. 491 

Vectors names represent the metabolic pathway of each synergistic metabolite in Table S4. 492 

For plotting reasons, only names of the most important vectors are displayed.  493 

 494 
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Figure 3: Reduction in symbiont's ability to produce essential metabolites following removal 495 

of specific source metabolites (metabolites predicted to be available to the endosymbionts in 496 

the bacteriocyte). Only source metabolites whose removal affected at least one species are 497 

shown. P, C, H, R and W represent Portiera, Cardinium, Hamiltonella, Rickettsia and 498 

Wolbachia, respectively.499 

 500 

 501 
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