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The variable spiking discharge of sensory neurons in response to a fixed stimulus tends to be 24 

weakly correlated (spike-count correlation, rsc), an observation with profound implications for 25 

neural coding of sensory information. However, the source of rsc is unclear. It is widely thought to 26 

reflect “bottom up” stochastic noise in shared sensory afferents. However, it may also be generated 27 

by changes over time in feedback from higher-order brain regions. Here we test this alternative 28 

directly by measuring spiking activity in populations of primary visual cortical (V1) neurons in 29 

rhesus monkeys while the animals performed different visual discrimination tasks on the same set 30 

of visual inputs. We found that the structure of rsc (the way rsc varied with neuronal stimulus 31 

preference) changed dramatically with task instruction despite identical retinal input, directly 32 

implying that rsc structure primarily reflects feedback dynamics engaged by the task, not noise in 33 

sensory afferents. These results fundamentally alter our view of the origin and function of rsc in 34 

sensory neurons, suggesting that correlated variability may be best described as a signature of 35 

neural computation rather than stochastic sensory encoding. 36 

Neurons in sensory cortices fire at a rate that is highly dependent on sensory input. However, they 37 

also display pronounced response variability that tends to be weakly correlated between pairs of sensory 38 

neurons1. Because perceptual states are thought to be generated by pooling responses of many sensory 39 

neurons, correlated variability can have a profound effect on the reliability of sensory processing: while 40 

independent variability can be averaged away by pooling enough neurons, correlated variability cannot 41 

necessarily. As a result, correlated variability is thought to profoundly influence the fidelity of sensory 42 

information in the brain2–6 and, relatedly, to generate trial-to-trial correlations between single-neuron 43 

variability and perceptual reports in psychophysical tasks (choice-related activity)7–9. 44 

Unfortunately, little is currently known about the origin of rsc. Presumably rsc is derived from 45 

variability in common inputs. The predominant view is that stochastic noise in the afferent pathway is the 46 

primary source of this common variable input10–12. Consistent with this, rsc correlates with physical 47 

proximity and similarity in stimulus preference, both of which are predictive of greater shared afferent 48 
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input2,10,11,13–15. However, sensory cortical areas receive only a minority of their inputs from the upstream 49 

brain regions conveying sensory information from the periphery16,17. Consequently, variation over time in 50 

shared inputs from downstream areas (i.e. “top-down”; “feedback”), for instance in signals related to 51 

attention, reward, arousal, or decision-making, may make a significant contribution to rsc. It would not 52 

necessarily follow that this source of correlated variability impacts downstream sensory decoding, since 53 

downstream areas may have access to the state of these other inputs. Rather, correlated variability in a 54 

sensory area may best be seen as an effect of downstream computation rather than noise in the brain’s 55 

sensory representations.  56 

Here, we directly investigate the relative contribution of feedforward and feedback sources of 57 

correlated variability in sensory neurons. We recorded spiking activity in populations of primary visual 58 

cortical (V1) neurons in macaque monkeys performing different orientation discrimination tasks using 59 

the same set of stimuli. The only difference between the tasks was the pair of orientations being 60 

discriminated. If rsc primarily reflects noise in sensory afferents, it should be invariant to changes in the 61 

task given fixed retinal input. Instead, we hypothesized a task-dependent pattern of correlated variability 62 

across the V1 population generated by feedback specifically targeting neurons tuned to the orientations 63 

being discriminated. To test this, we measured the rsc structure (how rsc varies as a function of pairwise 64 

orientation preference) of V1 under the different task contexts. We found that this structure was highly 65 

task-dependent, in precisely the manner predicted by our hypothesis. Strikingly, we were unable to 66 

identify any rsc structure that did not change with the task, entirely inconsistent with noise in sensory 67 

afferents as a major source.  68 

We go on to show how these results fundamentally change our view of the role of rsc in decision 69 

making and information coding. First, we show that the feedback dynamics introduce a pattern of 70 

correlated variability that degrades the accuracy of pooled sensory signals that can be extracted from V1 71 

by a traditional linear decoder. However, our discovery of its feedback origin points to the possibility that 72 

the brain can, in principle, outperform such a decoder by exploiting knowledge of the changing state of 73 
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downstream brain areas when decoding V1 activity. Next, we show quantitatively that these feedback 74 

dynamics are the primary source of the choice-related activity we observe in V1, clarifying an ongoing 75 

debate about the origin of choice-related signals in sensory neurons.  76 

 77 

Results 78 

We trained two rhesus monkeys (Macaca mulatta) to perform different versions of a two-79 

alternative forced choice (2AFC) coarse orientation discrimination task (Fig. 1), used previously18. On a 80 

given trial, the subject was shown a dynamic, 2D filtered noise stimulus for a fixed duration of 2 seconds, 81 

after which it had to make a saccade to one of two choice targets to report the stimulus orientation. The 82 

discriminanda were always an orthogonal pair of orientations (for instance, horizontal and vertical). This 83 

pair defined the “task context” and was explicitly cued using two oriented Gabor patches as the choice 84 

targets. The stimuli were bandpass filtered in the Fourier domain to include only orientations within a 85 

predetermined range. On a given trial, the stimulus filter was centered on one of the two discriminandum 86 

orientations and its orientation bandwidth was varied to modulate task difficulty. The stimulus was 87 

placed over the joint receptive field of the population of V1 neurons being recorded. We included 0%-88 

signal trials for which the stimuli were unfiltered for orientation. These were statistically identical across 89 

task contexts, allowing us to examine the effect of task context on rsc in the presence of a fixed retinal 90 

input. 91 

Our approach relied on being able to detect changes in rsc structure that depended on the task 92 

context. Thus it was critical that the subjects in fact based their choices on the presence of the cued set of 93 

orientations. To ensure this, we used psychophysical reverse correlation18–20 (PRC; see Methods) to 94 

directly measure the influence of different stimulus orientations on the subject’s choices (the 95 

“psychophysical kernel”). We found that subjects required multiple days of retraining after a change in 96 

the task context to fully update their psychophysical kernel. For this reason, we kept the task context 97 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2016. ; https://doi.org/10.1101/086256doi: bioRxiv preprint 

https://doi.org/10.1101/086256


5 

 

fixed for the duration of each recording session, and excluded sessions from the analysis if subjects failed 98 

to demonstrate an appropriate kernel (Supplementary Fig. 1). 99 

We hypothesized that the pattern of correlated variability in V1 is generated by task-related 100 

feedback dynamics. We specifically considered the possibility that a feedback signal is alternatingly 101 

targeted towards neurons that represent the two orientations the animal must choose between, introducing 102 

a particular pattern of correlated fluctuations in V1 that depends on orientation preference. A key 103 

motivation for this hypothesis is the observation of correlations between neuronal variability and choice 104 

in V1 neurons during performance of this task. While the initial interpretation of choice-related activity 105 

was that it reflects the feedforward influence of neuronal variability on choice21–26, several recent studies 106 

suggest choice-related activity may be an effect of choice on sensory neurons via feedback27,28. A 107 

feedback origin of choice-related activity necessarily implies the presence of task-related feedback 108 

signals, such that on trials when the subject reports orientation 1, feedback excites V1 neurons preferring 109 

orientation 1, and so forth. However, similar predictions also arise from considering the effect of 110 

fluctuations across trials in the allocation of feature-based attention27 or Bayesian priors29 during a 2AFC 111 

task. Therefore the presence of task-dependent rsc structure would, on its own, be consistent with a range 112 

of feedback mechanisms with potentially diverse functional roles, as we discuss later. 113 

To make quantitative predictions for the effect of task-related feedback on correlated fluctuations 114 

in V1, we parameterize the hypothesized feedback in V1 as a sinusoidal function of preferred orientation 115 

with a peak and trough at the discriminandum orientations, such that the effect on V1 firing rates at a 116 

given instant is simply a scalar multiple of this function30. Examples for two task contexts (cardinal and 117 

oblique discrimination) are shown in Fig. 2d,e. This parameterization makes a specific, testable 118 

prediction for the way rsc will vary as a function of pairwise preferred orientation (i.e. the “rsc matrix”). In 119 

particular it defines a mode of covariability in V1 which is equivalent to an eigenvector of the rsc matrix. 120 

Assuming it is the only eigenvector, the predicted rsc matrix exhibits a lattice-like pattern (Fig. 2b,c) 121 

characterized by high rsc values for pairs preferring the same discriminandum orientation (within-pool 122 
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pairs), low values for pairs preferring opposite discriminandum orientations (between-pool pairs), and 123 

average values for pairs that are not task-relevant. Because any additional source of global V1 124 

fluctuations (such as arousal) would introduce positive correlations amongst all neurons, the average 125 

magnitude of rsc is unconstrained. Crucially, the predicted pattern changes systematically with the task, 126 

such that the peaks and troughs in correlation are always aligned to the discriminandum orientations. This 127 

amounts to a shift in the rsc structure between the two matrices along the diagonal by an amount matching 128 

the change in the task context. 129 

The predominant view that the structure of rsc in a sensory area is primarily determined by noise 130 

in common afferent inputs yields a different prediction for the rsc matrix: a diagonal banded structure (X), 131 

in which rsc depends only on the similarity in orientation preference between a given pair. This pattern 132 

(known as a “limited-range” correlation structure) is thought to be due to the anatomical convergence of 133 

afferent inputs to neurons with similar stimulus preferences10–12 and has been postulated as the critical 134 

organizational logic of rsc in sensory neurons3–5,31. Crucially, limited-range correlations should be 135 

invariant to the changes in task context since they depend only on noise in the afferent pathway. A main 136 

motivation for belief in limited-range correlations is the positive correlation between rsc and similarity in 137 

stimulus tuning of neuronal pairs, including in V12,10,11,13–15.  However, this observation is also consistent 138 

with the pattern predicted by task-dependent feedback—on average, neurons with more similar 139 

orientation preference produce higher rsc values under that prediction, as well (Fig. 2f). Therefore, only 140 

by measuring the full rsc matrix across multiple task contexts, as the present study is the first to do, can 141 

these two hypotheses be distinguished.  142 

We recorded extracellular spiking activity from populations of single V1 neurons using multi-143 

electrode arrays. Neurons were excluded from analysis if they were not well orientation tuned, as 144 

determined in separate blocks of trials (see Methods). Yields varied across sessions, with a mean of 20 145 

simultaneously recorded pairs (from 5 cells) per session. The final dataset includes 811 simultaneously 146 

recorded pairs from 200 cells. For each pair, we calculated its rsc value as the Pearson correlation 147 
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between trial-length spike counts in response to identical stimuli. Measuring rsc using 0%-signal trials 148 

isolates any changes due to the task context. In practice, we found that measuring rsc across all trials 149 

(after normalizing spike counts to remove rate changes due to the stimulus) did not qualitatively alter our 150 

main results (Supplementary Fig. 2) and increased statistical power, so this is what we report.  151 

 152 

Rsc Structure Changes Systematically with the Task Context 153 

The results were striking: rsc structure changed dramatically with task context, closely matching 154 

the prediction based on task-related feedback and inconsistent with rsc structure primarily driven by 155 

afferent noise. To show this, we first divided the recording sessions into two groups based on the task 156 

context used (Fig. 3a). To estimate the rsc matrix for a given subset of sessions, we combined data from 157 

pairs recorded across sessions. The location of a given rsc value in the matrix was determined by the 158 

preferred orientations of the pair. We then applied a von Mises smoothing kernel to obtain a continuous, 159 

smooth measure of the rsc matrix. 160 

We predicted that both matrices would contain a similar lattice-like pattern with peaks and 161 

troughs in rsc that matched the within- and between-pool regions of the matrix. However, because the 162 

task context was different, this predicts patterns of rsc shifted along the diagonal by an offset matching 163 

the change in the discriminandum orientations (Fig. 3b,c). Furthermore, the largest eigenvector of the two 164 

predicted matrices should resemble sinusoids with a peak and trough matching the two discriminandum 165 

orientations (Fig. 3d,e). The observed data matched both of these predictions. Peaks and troughs in rsc 166 

were markedly different among the two subsets of data, with both patterns resembling the prediction 167 

based on task-dependent feedback (Fig. 3f,g). Furthermore, the largest eigenvector of the two matrices 168 

resembled a sinusoid with a circular mean orientation that was not significantly deviated from the 169 

discriminanda (Fig. 3h,i). 170 
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The task-dependent rsc structure in the data is most clearly evident by combining rsc values from 171 

all 811 simultaneously recorded pairs. To illustrate this, we generated a task-aligned average rsc matric by 172 

expressing each neuron’s preferred orientation relative to the two discriminandum orientations on its 173 

respective recording session. In this task-aligned coordinate frame, 0º and 90º always index the 174 

discriminandum orientations. We found that this task-aligned matrix contained a lattice pattern that 175 

almost precisely replicated the prediction based on the task-related feedback hypothesis (Fig. 4a,b). 176 

Furthermore, the first eigenvector (Fig. 4d) resembled a sinusoid with a peak not significantly different 177 

from 0º, demonstrating a striking degree of alignment across sessions between the structure of correlated 178 

variability in V1 and the subject’s task. These features were also present in the task-aligned rsc matrix 179 

when computed separately for each subject (Supplementary Fig. 3), so we performed further analyses on 180 

the combined dataset. We found that the first eigenvalue of the task-aligned matrix was much greater 181 

than chance, suggesting the rsc matrix is largely explained by its first eigenvector, again consistent with a 182 

single source of covariability that depended on the task (Fig. 4e). The chance distribution was obtained 183 

by randomly translating each individual rsc measurement along the diagonal, ruling out the possibility 184 

that we observed a lattice pattern simply due to a diagonal ridge and sampling error (p<0.005, 185 

permutation test). Taken together, these results show that the V1 rsc matrix closely matched the prediction 186 

based on task-related feedback and does not primarily reflect limited-range correlations introduced by a 187 

fixed source of noise in shared sensory afferents. 188 

We observed a different result during separate blocks of trials interleaved in the same recording 189 

sessions, during which the subject fixated passively for reward but the same set of stimuli was shown. 190 

During these blocks, the rsc matrix could not be distinguished from a diagonal ridge (Fig. 5). This 191 

demonstrates that the dynamic changes observed during task performance depended on active task 192 

engagement, and could not be explained, for instance, simply as an effect of recent task experience. This 193 

is further evidence that trial-by-trial variation in feedback is responsible for the rsc structure, rather than, 194 

for instance, slow time scale changes in local V1 circuitry. We also ruled out a number of potential 195 
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confounds related to the retinal input that could in principle have produced a task-dependent rsc matrix, 196 

such as fixational eye movements and the effect of trial history, strengthening our interpretation that 197 

centrally-generated signals reflecting task engagement are responsible (see Supplementary Discussion §1 198 

and Supplementary Figs. 4-7). 199 

Segregating Fixed and Task-Aligned Components of Rsc Structure 200 

The preceding analysis established that a substantial component of rsc structure changes with task 201 

context. To better quantify this, and to determine if there is also a component that remains fixed, we 202 

turned to a statistical model. The model contained two components: a fixed component (an rsc matrix for 203 

orientation that did not change with the task), and a task-aligned component (an rsc matrix that did 204 

change). Each rsc measurement was described as the sum of values at the appropriate points in the two 205 

matrices. For the fixed component, this location was determined by the raw orientation preferences of 206 

each pair. For the task-aligned component, it was determined using the preferences expressed relative to 207 

the discriminandum orientations. By construction, if rsc depends only on the raw orientation preferences 208 

of neuronal pairs, with no effect of task context, then the model assigns large coefficients to the fixed 209 

component and coefficients of zero to the task-aligned component. If rsc is entirely task-dependent, the 210 

reverse is true.  211 

When fitted to the observed rsc measurements, the task-aligned component of the model explained 212 

most of the explainable variance in the data (79%. Fig. 6a). Not surprisingly, its shape recapitulated the 213 

task-dependent lattice pattern in the observed data. The fixed component had a markedly smaller 214 

amplitude, with a less organized structure that did not clearly resemble a diagonal ridge (Fig. 6b). 215 

Removing the fixed component from the model altogether had little effect, while removing the task-216 

aligned component dramatically impaired model performance (Fig. 6c). (We were able to reproduce these 217 

model results individually for data from one subject). This demonstrates that the majority of rsc structure 218 
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in V1 changes dynamically with task instruction. We failed to reliably identify a fixed source of rsc 219 

structure, such as the limited-range correlations postulated in prior studies, during task performance. 220 

 221 

Effect of Task-Dependent Rsc Structure on Neural Coding 222 

 Spike-count correlations in sensory neurons are typically studied with the view that they are a 223 

source of noise that impacts the ability of a downstream brain area to decode a sensory input. Our results 224 

show that the predominant source of rsc structure in V1 is top-down in origin V1, at least during 225 

performance of a discrimination task. Therefore, the impact on decoding depends crucially on whether 226 

the spikes in V1 generated by feedback act as an additional source of sensory noise or can in some way 227 

be taken into account by the decoder. To clarify this distinction, consider two decoding schemes. The 228 

first (“purely sensory decoder”) is applied to the activity of V1 neurons only, and so cannot differentiate 229 

different sources of correlation.  The second (“extended decoder”) is applied to the activity of V1 neurons 230 

and the activity of the feedback connections arriving in V1. If there are variations in the activity of 231 

feedback connections, the extended decoder can perform much better than a purely sensory decoder by 232 

effectively discounting the spikes in V1 that are generated by feedback. Since our results imply that that 233 

there is variation in the activity of feedback connections during psychophysical tasks, it follows that 234 

current analyses, almost exclusively based on the assumption of purely sensory decoders, may be 235 

misleading.  236 

Since we do not know whether the brain has access to extended decoders, we investigated the 237 

impact of the observed rsc structure under the assumption that extended decoding is not used. Assuming 238 

the brain uses “purely sensory” decoders and optimal linear readout weights, it is known32 that a 239 

particular rsc structure places a strict upper bound on decoding accuracy. These so-called “differential” 240 

correlations are those that resemble the correlations produced by changes in the stimulus along the axis 241 

defining the task. When stimulus-independent correlations share this structure, they are indistinguishable 242 
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from task-relevant stimulus changes and hence confound subjects’ judgments. We examined the structure 243 

of differential correlations in our data set by comparing the mean responses of each neuronal pair to the 244 

various stimuli used in the task. Specifically the differential correlation for a pair is given by the product 245 

of the slopes of the mean responses as a function of signal strength (Fig. 7a)32. We then plotted these 246 

values as a matrix indexed by task-aligned preferred orientation (Fig. 7b). This showed a lattice-like 247 

pattern strikingly similar to the observed rsc matrix (Fig. 4b). Confirming this similarity, the task-aligned 248 

component of rsc structure identified by the regression model was highly correlated on a pair-by-pair 249 

basis with the differential correlations (r=0.62, Fig. 7c). In other words, the structure of stimulus-250 

independent covariability in the V1 population was closely similar to the structure of covariability 251 

introduced by stimulus variation. In a sense this is not suprising since the rsc structure reflects feedback 252 

that is matched to the task. However, this implies that task-related feedback may have the consequence of 253 

contaminating the sensory representation in V1. Critically, this implication depends on the assumption 254 

that the decoder knows nothing about the feedback (a “purely sensory” decoder). While this assumption 255 

is currently widespread, out results suggest it may be highly misleading.  256 

 257 

Relationship between Rsc Structure and Perceptual Choice 258 

We found significant choice-related activity in the V1 population during performance of the task, 259 

similar to a recent study. For each neuron, we calculated its Choice Probability (CP), a metric which 260 

quantifies the probability with which an ideal observer could correctly predict the subject’s choice from 261 

that neuron’s trial-by-trial variability33,34. Across the population, we found an average CP of 0.54 for 262 

task-relevant neurons, significantly above chance level (Fig. 8a), and similar in magnitude to reports from 263 

another study using the same task18.  264 

Currently, the source of CP in sensory neurons is not well understood, despite its ubiquity. The 265 

traditional view is that it reflects the influence of neuronal variability on choice21–26. However, recent 266 
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studies suggest that at least some of CP is due to a feedback effect of choice on sensory neurons27,28. 267 

Theoretical studies have emphasized that CP in a population of sensory neurons is closely related to the 268 

structure of spike-count correlation8,9,34,35. Simply put, if many sensory neurons have variability that is 269 

correlated with choice, then this implies the variability of individual neurons is also correlated. It follows 270 

that there exist correlated fluctuations in the V1 population that relate to the subject’s choices in our task. 271 

However, the relationship to choice could reflect one or both of two directions of causality: 1) correlated 272 

fluctuations directly affect the choices a subject makes trial to trial (a feedforward source of CP); or 2) 273 

the correlated fluctuations reflect variation across trials in a feedback signal related to the upcoming 274 

choice (a feedback source).  275 

Our detailed measures of rsc structure during performance of a discrimination task allow us to 276 

make significant progress in addressing the origin of choice-related activity. We reasoned that a feedback 277 

effect of CP would predict an attenuated rsc structure across trial in which the subject made the same 278 

choice. We found a significant, but very modest, attenuation (about 3%). Similarly, the rsc structure was 279 

also attenuated on high-signal trials relative to 0% signal trials, in a manner which depended weakly, but 280 

systematically, with the strength of the signal (Supplementary Fig. 2). This is also consistent with a 281 

feedback source of CP, since there is naturally less variability in choice on trials with high signal. These 282 

data suggest an involvement of feedback related to choice in generating the rsc structure in V1, but also 283 

rule out a simple post-decisional mechanism in which the state of feedback is perfectly correlated with 284 

the final report. Consistent with this interpretation, we found that the rsc structure, when calculated using 285 

spikes from 200-ms bins during the trial, showed a relatively stable timecourse that did not grow in 286 

amplitude with decision formation (Supplementary Fig. 8). We conclude that the task-related feedback 287 

relays information related to but not determined by the final report, such as biases, the decision variable, 288 

or attention to orientation.  289 

Next, we considered the possibility that CP partially reflects the feedforward influence of 290 

correlated fluctuations on choice. We made use of the known, but untested, relationship between the 291 
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spike-count correlations for a pool of sensory neurons, their (linear) readout weights, and their CPs that 292 

follows from assuming a feedforward “purely sensory” decoder8. Our novel approach of measuring the 293 

entire rsc matrix during task performance allows us to test these predictions for the first time. 294 

Furthermore, our separation of the rsc structure into putatively feedforward and feedback components 295 

allows us to distinguish components of CP due to the influence on choice of each of these potential 296 

sources of correlated variability. If the fixed component alone could explain CP, this would be 297 

compatible with the standard view that CP arises via the influence of sensory afferent noise on choice. If 298 

a task-aligned component is necessary, it indicates that CP requires the presence of task-related feedback. 299 

To perform this analysis, we made the assumption that choices are based on a V1 population of 300 

infinite size and that neurons are defined only by their preferred orientation. We can then define neuronal 301 

CP as a continuous function of task-aligned preferred orientation (Fig. 8b), similar to how we define the 302 

rsc matrix in Fig. 4e. To obtain this full CP profile for the V1 population, we again combine measures 303 

across sessions. We found that the relationship between CP and preferred orientation followed a 304 

predictable pattern: CPs were highest for task-relevant neurons (those with preferred orientation close to 305 

one of the discriminandum orientations) and were at chance level for neurons that were not task-relevant.  306 

We then made a quantitative prediction for the CP profile that would be observed given a linear 307 

readount of the V1 population characterized by the rsc matrix observed during task performance (Fig. 8b). 308 

We found that the predicted profile closely matched what we observed empirically, the first quantitative 309 

demonstration that feedforward pooling is consistent with experimentally observed measurements of rsc 310 

structure and CP. There were two sets of free parameters: the readout weights applied to neurons at each 311 

preferred orientation and a uniform scaling factor reflecting the possibility of decision noise after the 312 

pooling stage. The readout weights were unobserved, but all results we report were insensitive to the 313 

readout weights. The pooling noise term was fit to the data. (see Method, Supplementary Discussion and 314 

Supplementary Fig. 10). 315 
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Next, we repeated these predictions using each component of the rsc structure (“fixed” and “task-316 

aligned”) independently, keeping the pooling noise term fixed. We found that we could predict most of 317 

the observed CP (82% of its overall magnitude) using only the task-aligned component, while the fixed 318 

component alone could explain only a small fraction (Fig. 8c,d). (This does not follow necessarily from 319 

the larger amplitude of the task-aligned component, but depends crucially on the pattern of correlation.) 320 

This finding rules out the possibility that CP is primarily generated by the feedforward effect of noise in 321 

sensory afferents on perceptual decisions. Instead, CP is primarily generated by the task-related feedback 322 

signals that generate the dynamic pattern of rsc in the population. The success of the feedforward 323 

predictions for explaining the observed CP shows that we cannot exclude the possibility that CP arises 324 

partially through the feedforward effect on choice of the correlated fluctuations introduced by feedback, 325 

although the dependence of the rsc structure on variability in choice suggests that feedback already 326 

contains information about the upcoming report. Thus our results shed new light on the origin of choice-327 

related activity while also, in a sense, muddying the distinction between feedforward and feedback 328 

pathways that are causally responsible. One possibile interpretation of the data, consistent with other 329 

reports29,36, is that CP reflects a self-reinforcing loop in which decision-related feedback generates 330 

correlated fluctuations in V1 that in turn influence the decision. Assessing this possibility will require 331 

future experiments to better understand the information conveyed by task-related feedback signals and 332 

may require knowing whether the brain in fact has access to “extended” decoders. 333 

 334 

Discussion 335 

 Correlations in the variability of sensory neurons may have profound implications for the way 336 

sensory information is encoded in the brain. However, attempts to study this typically take the view that 337 

correlated variability reflects stochastic noise accumulating in afferent pathways. In the present study, we 338 

show that the pattern of correlated variability in V1 is almost entirely dependent on the task context, 339 
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independent of any changes in retinal input. This demonstrates that rsc structure reflects an important 340 

source of feedback that is not well characterized as “noise”. This finding has profound implications for 341 

the way we think about sensory processing in the brain. First, it points to the importance of considering 342 

the interconnectedness of cortical areas as a crucial aspect of the way sensory information is encoded and 343 

decoded by the brain. As a result, strict hierarchical notions of “feedforward” and “feedback” do not 344 

adequately capture how sensory input is processed. Strikingly, this appears to be the case even at the 345 

earliest stage of cortical processing for vision in the primate. 346 

Furthermore, studies examining the impact of correlated variability on the fidelity of the brain’s 347 

sensory representations have typically assumed that the brain applies decoders in a purely feedforward 348 

fashion: sensory input is encoded in the activity of a given population of neurons and subsequently read 349 

out downstream. However, this approach is ill-posed if rsc is generated by variation in feedback signals, 350 

as the decoder may take into account the activity of neurons carrying the feedback signals (an “extended” 351 

decoder) to improve its performance. Our results demonstrate that such feedback modulation is a primary 352 

source of rsc structure in V1, and therefore that the brain may benefit from “extended” decoding. In 353 

principle, this could be straightforward to implement: since we observed that the effect of feedback 354 

variability on V1 resembled the effect of changing the stimulus along the task axis (“differential 355 

correlations”), the subject could simply adjust its criterion trial-by-trial to remove the impact of the 356 

correlated variability on performance.  357 

Our results may at first appear to contrast with reports about the influence of spatial attention on 358 

rsc
37–39. In those studies, context-dependent changes in rsc appeared to improve the accuracy with which a 359 

model (“purely sensory”) decoder could reconstruct the stimulus, suggesting that top-down input can act 360 

as a control signal that modulates rsc in a sensory brain area specifically to improve the signal-to-noise 361 

ratio of relevant sensory signals. By contrast, the data presented here suggest that rsc can be, in the first 362 

place, a consequence of variation in feedback inputs that change with a subject’s task. Bridging this 363 

apparent gap, a recent reanalysis40 of neuronal data from one of those studies38 suggests this may also be 364 
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the mechanism by which spatial attention operates. The new study revealed that the reduction in rsc under 365 

spatial attention could be explained by an attenuation of the ongoing variability of a small number of 366 

common gain-modulating inputs, presumably feedback in origin. This is consistent with the view that 367 

spatial attention defines a condition under which downstream computation changes, and therefore may 368 

not be aimed at improving the sensory representation in sensory cortex. 369 

Finally, we ask: what function do the task-dependent changes in rsc reported here serve, 370 

particularly as they appear not to provide any improvement in the sensory representation contained in 371 

V1? While the form of these modulations is consistent with known feedback mechanisms—e.g. 372 

fluctuations in the allocation of feature-based attention and/or choice-related feedback—the potentially 373 

problematic effect of the correlated fluctuations they introduce speaks to the need for a principled, 374 

normative explanation, beyond reference simply to “downstream computation”. We argue that taking the 375 

view of perception as probabilistic inference may provide such an explanation. A companion paper in 376 

this issue41 lays out the proposal that this computation is implemented in sensory neurons themselves, 377 

such that activation of a sensory neuron reflects both sensory input and prior beliefs about the presence of 378 

its preferred feature in the scene. In the context of our 2AFC task, a subject’s prior belief of a particular 379 

orientation being presented is concentrated bimodally around the two discriminandum orientations. It 380 

follows that trial-to-trial fluctuations in the prior will introduce task-dependent patterns of correlated 381 

variability in V1 similar to what we have reported. Impressively, this framework succeeds both in 382 

generating quantitative predictions that match many of the results reported here with few free parameters, 383 

and in providing a normative account for these data. Thus, we conclude that an intriguing interpretation 384 

of our findings deserving further study is that the structure of correlated variability in sensory cortex 385 

reflects an adaptive integration of incoming sensory input with prior knowledge about the structure of the 386 

world. 387 
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 388 

Figure 1. Orthogonal orientation discrimination task.  a. Schematic illustration of the task. After the 389 

subject acquired fixation, a dynamic, filtered noise stimulus appeared for a fixed duration of 2 s. Then the 390 

subject had to saccade to the one of two orthogonal choice targets (Gabor patches) whose orientation 391 

matched the stimulus. Two example task contexts shown (cardinal and oblique discriminations). The task 392 

context was fixed in a given recording session, but varied across sessions. b. Psychometric function for 393 

monkey ‘lem’, example session. Black curve is a probit fit, and error bars are 95% confidence intervals. c. 394 

Histograms showing the distribution of psychometric thresholds across sessions for the two subjects. 395 

Thresholds were defined as the signal level eliciting 75% correct performance. Black triangle indicates the 396 

threshold corresponding to the example session in (b). d. Example single stimulus frames corresponding 397 

to the two example task contexts in (a). The stimuli consisted of dynamic, white noise filtered in the Fourier 398 

domain for orientation (see Methods). The filter was centered on one of the two discriminandum 399 

orientations and its bandwidth determined signal strength. A given trial consisted of many frames of 400 
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independent noise with a fixed filter. 0% signal stimuli were unfiltered for orientation and were statistically 401 

identical across task contexts.  402 

  403 
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Figure 2. Predictions for Task-404 

Dependent and Fixed Sources of rsc 405 

structure. a-b. We hypothesize the 406 

presence of task-related feedback that 407 

selectively targets the two 408 

subpopulations of neurons tuned for the 409 

discriminandum orientations, alternating 410 

in its allocation across trials. These 411 

feedback dynamics are parameterized 412 

using a sinusoidal function of preferred 413 

orientation, with a peak and trough at the 414 

discriminanda. The effect on V1 firing 415 

rates on a given trial is a scalar multiple 416 

of this function. Examples for cardinal 417 

and oblique discrimination shown. 418 

Dashed lines indicate the discriminanda. c-d. Task-related feedback, as illustrated in (a) and (b), introduces 419 

correlated fluctuations amongst pairs of V1 neurons that depend on pairwise orientation preference, and 420 

which change systematically with the task context. We illustrate these dependencies using rsc matrices 421 

indexed by neuronal prefered orientation. The structure in the matrices is given simply as the outer product 422 

of the sinusoidal functions in (a) and (b). In both cases, the result is a lattice-like pattern in the rsc matrix, 423 

offset along the diagonal such that peaks and troughs in rsc are aligned to the regions of the matrix indicating 424 

pairs preferring the same and opposite discriminandum orientations. These regions are marked by the black 425 

and white circles, respectively. Colored lines indicate a constant difference in neuronal preferred 426 

orientation (Δ preferred orientation: 0 (red), 45 (orange), and 90 (yellow)). e. The traditional view is that 427 

rsc structure reflects a fixed source of stochastic afferent noise. Given the known anatomy of afferent input, 428 
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this is thought to generate “limited-range” correlations that decrease as a function of difference in stimulus 429 

preference (in this case for orientation), as illustrated here. Colored lines are as in (c-d). f. All predicted rsc 430 

matrices (c-e) contain an identical downward-sloping relationship between rsc and Δ preferred orientation. 431 

Thus, they cannot be distinguished using existing experimental observations relating rsc and similarity in 432 

stimulus preference. 433 

 434 

 435 

 436 
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 Figure 3. Rsc structure in V1 437 

depends systematically on task 438 

context. a. To test for task-439 

dependent changes in rsc structure, 440 

we divided the set of recording 441 

sessions into two groups based on 442 

the set of discriminanda (task 443 

context) used. Polar histogram 444 

shows the distribution of task 445 

contexts used across sessions, with 446 

color indicating the division into two 447 

subsets. Note that the period of these 448 

angular variables is 90º because of 449 

the inherent orthogonality of the 450 

task. Colored arrows indicate the 451 

mean task context associated with 452 

each subset. b-c. The hypothesis that 453 

task-related feedback introduces 454 

task-dependent rsc structure predicts 455 

a distinct rsc matrix associated with 456 

the two subsets of sessions. The locations in the matrix where peaks and troughs in rsc are predicted are 457 

highlighted with colored circles. These correspond to the mean discriminandum orientations indicated with 458 

arrows in (a). d-e. The sole eigenvectors of the matrices in (b) and (c) have peaks and troughs aligned to 459 

the mean set of discriminandum orientations associated with each subset (vertical lines). f-g. Observed rsc 460 

matrices for the two subsets of sessions. These are obtained by combining rsc measurements made across 461 
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the set of sessions in each subset and applying smoothing. The observed structure is distinct across the two 462 

matrices, corresponding to the predictions in (b-c). Peaks and troughs in rsc closely match the predicted 463 

locations highlighted by the colored dots. h-i. The rank-1 eigenvector for the two matrices in (f) and (g) in 464 

each case closely resembled a sinusoid whose phase matches the task context. Light gray shaded region 465 

indicates +/- 1 boostrap s.e. Dark gray vertical bar indicates the peak in the eigenvector (the angle of its 466 

mean resultant vector) +/- 1 bootstrap s.e. In neither case was the peak significantly different from one of 467 

the discriminandum orientations. 468 

  469 
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  470 

Figure 4. Task-Aligned Summary Rsc Matrix. a. To illustrate the task-dependent pattern of rsc 471 

structure, we combined data from all recorded sessions and generated an rsc matrix in which each pair’s 472 

preferred orientations were expressed relative to the discriminandum orientations on the session they 473 

were recorded. In this task-aligned coordinate frame, 0º and 90º always index the discriminandum 474 

orientations. (a) shows the prediction for the form of this task-aligned rsc matrix based on the hypothesis 475 

of task-related feedback (data identical to Fig. 2c). (b) shows the observed task-aligned rsc matrix, which 476 

included all recorded pairs, and was smoothed identically to the data in Fig. 3. (c) and (d). The rank-1 477 

eigenvectors of the predicted and observed rsc matrices in (a) and (b) are closely similar. Shaded regions 478 

in (d) indicate +/- 1 bootstrap s.e. as in Fig. 3. The peak in the eigenvector in (d) was not significantly 479 

different from 0, indicating good alignment between the dynamic pattern of rsc in V1 and the subject’s 480 

task. (e) Eigenspectrum for the observed matrix in (b). Most of the variance in the matrix was explained 481 

by its rank-1 eigenvector (shown in d), significantly more than would be predicted by chance (p<0.001, 482 
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resampling test). Chance level was determined by randomly permuting the preferred orientations of the 483 

neurons. This demonstrates that the rsc structure in V1 can be largely explained by a single mode of 484 

covariability that is determined by the task context, confirming the prediction based on task-related 485 

feedback. 486 

  487 
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 488 

Figure 5. Task-dependent rsc structure absent during passive fixation. a. Lattice pattern was absent in 489 

the task-aligned rsc matrix during separate blocks of trials used to measure neuronal orientation tuning, 490 

during which the animal fixated passively for reward (matrix obtained as in Fig. 4b). Instead, the pattern 491 

in the matrix more closely resembled a fixed diagonal ridge, demonstrating that the task-dependent changes 492 

in rsc structure observed during task performance depend on active task engagement. Rsc values were 493 

calculated only using interleaved presentations of the 0%-signal orientation-filtered noise stimulus, to 494 

facilitate comparison with the rsc matrix observed during task performance. Data from only 556 pairs are 495 

shown, as not all recording sessions included fixation blocks with the 0%-signal filtered noise stimuli 496 

interleaved. b. The first eigenvalue of the rsc matrix in (a) was not significantly above chance, unlike during 497 

task performance (Fig. 4) and inconsistent with the prediction based on task-dependent feedback. (Note 498 

that the eigenvalues are smaller than in Fig. 4e because the variance within the matrix in (a) is smaller.) 499 

  500 
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 501 

Figure 6. Segregating “fixed” and “task-aligned” 502 

components of rsc structure. a-b. The two components of 503 

observed rsc structure, jointly estimated using multilinear 504 

regression. The amplitude of the “task-aligned” component 505 

is larger than the “fixed” component, showing the majority 506 

of rsc structure changes with the subject’s task. Note that 507 

preferences for the task-aligned component, but not the fixed 508 

component, are expressed relative to the discriminandum 509 

orientations. Mean values are close to 0 due to the inclusion 510 

of a model constant. c. Goodness-of-fit for the joint model 511 

and two reduced models that included only one of the two 512 

components. Values are expressed relative to an estimate of 513 

the explainable variance in the data (see Methods). 514 

Removing the “task-aligned” component (but not the “fixed” 515 

component) dramatically reduced goodness-of-fit. 516 

517 
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 518 

Figure 7. Task-Related Feedback Introduces Differential Correlations.  a. Responses (mean +/- 1 519 

s.e.) to the stimuli used in the task at various signal strengths for two example neurons. Calling these 520 

response functions f1 and f2, the differential correlation for this pair is proportional to the product of the 521 

derivatives (f1ʹf2ʹ)
32. This product can be viewed as a metric of similarity in tuning for the task. Therefore, 522 

differential correlations are those that resemble the effect of changes in the stimulus along the axis 523 

defining the task. b. The matrix of fʹfʹ values, as a function of task-aligned pairwise orientation 524 

preference, obtained using kernel smoothing as in Fig. 4b. The lattice pattern is extremely similar to the 525 

structure of task-dependent rsc we observed during task performance (Fig. 4b), suggesting task-related 526 

feedback introduces a source of differential correlation to the V1 population. c. Scatter plot of the task-527 

aligned (putatively top-down) component of rsc (Fig. 6a) against fʹfʹ values (normalized; see Methods) for 528 

each recorded neuronal pair. The two were highly correlated across the population (r=0.62, p<10-5). 529 
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530 

Figure 8. The task-dependent component of rsc structure accounts for choice-related activity. a. 531 

Histogram of observed CPs, from neurons significantly preferring one of the two discriminandum 532 

orientations (dʹ>0.9 at highest signal level). The mean of 0.54 was significantly above chance (bootstrap 533 

test, cell resampling, p<0.01). CPs that were individually significant (p<0.05; bootstrap test, trial 534 

resampling) are shown in black. b. Observed (dashed) and predicted (solid) CP profiles, signed arbitrarily 535 

with respect to the 0° choice. (CP>0.5 indicates greater firing on 0°-choice trials, and CP<0.5 indicates 536 

greater firing on 90°-choice trials). The observed profile was obtained using data from all recorded neurons 537 

and smoothed with a von Mises kernel that approximated a wrapped Gaussian with 10° s.d. The predicted 538 

profiles were generated by applying a linear readout to V1 assuming different rsc structures, as labeled (see 539 

Methods). The profiles shown are averages of a large set generated from different assumed readout weight 540 

profiles (see Supplementary Fig. 10), which introduced relatively little variability. The prediction using the 541 

observed rsc matrix (Fig. 4b) closely match the observed CP profile. This could be replicated with 542 

predictions using only the task-aligned component (Fig. 6a), but not the fixed component (Fig. 6b), 543 

demonstrating that the feedforward effect of fixed sources of rsc structure was insufficient to explain the 544 

observed magnitude of CP. c. Mean (rectified) CPs associated with the profiles in (b), +/- 1 bootstrap s.e. 545 

obtained by resampling from the data (gray bars). Note that the mean observed CP is lower here than in (a) 546 

because all neurons are included, regardless of their orientation preference.  547 

548 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2016. ; https://doi.org/10.1101/086256doi: bioRxiv preprint 

https://doi.org/10.1101/086256


29 

 

Methods 549 

Electrophysiology 550 

We recorded extracellular spiking activity from populations of V1 neurons in two awake, head-551 

fixed rhesus monkeys (Macaca mulatta).  Both monkeys were implanted with a head post and scleral 552 

search coils under general anaesthesia42.  In monkey ‘lem’, a recording chamber was implanted over a 553 

craniotomy above the right occipital operculum, as described previously43, by which we introduced linear 554 

microelectrode arrays (U- and V-probes, Plexon; 24-contacts, 50 or 60 µm spacing) at an angle 555 

approximately perpendicular to the cortical surface with a custom micro-drive. We positioned the linear 556 

arrays so that we roughly spanned the cortical sheet, as confirmed with current-source density analysis, 557 

and removed them after each recording session. In monkey ‘jbe’, a planar “Utah” array (Blackrock 558 

Microsystems; 96 electrodes 1mm in length inserted to target supragranular layers, 400 um spacing) was 559 

chronically implanted, also over the right occipital operculum.  All procedures were performed in 560 

accordance with the U.S. Public Health Service Policy on the humane care and use of laboratory animals 561 

and all protocols were approved by the National Eye Institute Animal Care and Use Committee. 562 

Broadband signals were digitized at 30 or 40 kHz and stored to disk. Spike sorting was performed 563 

offline using custom software in MATLAB®. First, spikes were detected using a voltage threshold 564 

applied to high-pass filtered signals. Next, triggered waveforms were projected into spaces defined either 565 

by principal components or similarity to a template.  Clusters boundaries were finally estimated with a 566 

Gaussian mixture model, and then rigorously verified and adjusted by hand when needed.  In the linear 567 

array recordings, spike sorting yield and quality was substantially improved by treating sets of three or 568 

four neighboring contacts as “n-trodes”.  As this was not possible with the Utah array due to the greater 569 

interelectrode spacing, we excluded pairs of neurons recorded on the same electrode to avoid 570 

contamination by misclassification. Neurons from separate recording sessions were treated as 571 

independent. To reduce the possibility that a single neuron from the Utah array contributed to two 572 

datasets, we included only sessions that were separated by at least 48 hours (with a median separation of 573 
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5 days). We excluded from analysis those neurons whose mean evoked firing rate did not exceed 7 574 

spikes/second.   575 

Visual Stimuli 576 

 All stimuli were presented binocularly on two gamma-corrected cathode ray tube (CRT) monitors 577 

viewed through a mirror haploscope, at 85 or 100Hz.  The monitors subtended 24.1° x 19.3° of visual 578 

angle (1280 x 1024 pixels).  The stimuli presented during performance of the discrimination task 579 

consisted of bandpass filtered dynamic white noise, as described previously18.  Briefly, stimuli were 580 

filtered in the Fourier domain with a polar-separable Gaussian.  The peak spatial frequency was 581 

optimized for the recorded neuronal population (1 and 4 cpd medians for ‘lem’ and ‘jbe’, respectively) 582 

while the peak orientation could take one of two orthogonal values the animal had to discriminate in a 583 

given session. The angular s.d. of the filter modulated the orientation bandwidth and was varied trial to 584 

trial. A 2D Gaussian contrast envelope was applied to the stimulus so that its spatial extent was as small 585 

as possible while still covering the minimum response fields of the neuronal populations being recorded. 586 

The median envelope s.d. was 0.6 degrees for both animals.  The median stimulus eccentricity was 5.4 587 

degrees for ‘lem’ and 0.5 degrees for ‘jbe’. In Fig. 1, we quantify orientation bandwidth as % signal 588 

strength.  This was calculated as 100 ∗ 𝑅, where 𝑅 is the length of the resultant vector associated with the 589 

angular component of the stimulus filter.   590 

We estimated neuronal orientation preferences in separate blocks of trials, using 420-ms 591 

presentations of the following types of stimuli, presented at a range of orientations: 1) an orientation 592 

narrowband version of the stimulus described above (10° angular s.d.); 2) sinusoidal gratings; and 3) 593 

circular patches of dynamic 1D noise patterns (random lines). The preferred orientation of a neuron was 594 

calculated as the circular mean of its orientation tuning curve.  For each neuron, from among the set of 595 

tuning curves elicited by the different stimulus types described above, we chose as the final estimate of 596 

preferred orientation the one with the smallest standard error, obtained by resampling trials. We excluded 597 
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from further analysis all neurons where this exceeded 5°. On a subset of sessions, we also used these 598 

orientation-tuning blocks to present examples of the 0%-signal orientation-filtered noise stimuli. These 599 

were presented at the same location and size as during task performance, allowing us to calculate rsc 600 

structure in the absence of task engagement but with identical retinal input. 601 

Orientation Discrimination Task 602 

The animals performed a coarse orientation discrimination task using the orientation-filtered noise 603 

stimuli, as described previously18.  To initiate a trial, the subject had to acquire a central fixation square.  604 

After a delay of 50 ms, the stimulus appeared for a fixed duration of 2 seconds.  The trial was aborted if 605 

the subject broke fixation at any point during the stimulus presentation, defined as either 1) making a 606 

microsaccade covering a distance greater than a predefined threshold (typically 0.5°) or 2) a deviation in 607 

mean eye position from the center of the fixation point of more than a predefined threshold, typically 608 

0.7°.  At the end of the stimulus presentation, two choice targets appeared.  These were Gabor patches of 609 

2-3° in spatial extent, oriented at each of the two discriminandum orientations.  The locations of the 610 

choice targets depended on the task.  For discriminandum pairs near horizontal and vertical (-22.5° – 611 

+22.5° and 67.5° – 112.5°), the choice targets were positioned along the vertical meridian, at an 612 

eccentricity of about 3°, with the more vertically-oriented target appearing always in the upper hemifield.  613 

For orientation pairs near the obliques (22.5° – 67.5° and 112.5° – 157.5°), the choice targets were 614 

positioned along the horizontal meridian, at the same range of eccentricities, with the smaller of the two 615 

orientations always appearing in the left hemifield. (We use the convention that horizontal is 0° and that 616 

orientation increases with clockwise rotation.) To penalize random guessing, the volume of liquid reward 617 

delivered after correct choices was doubled with each consecutive correct choice, up to a maximum of 618 

four times the initial amount. Since we were primarily interested in the effect of task engagement on 619 

neuronal activity, we applied a behavioral criterion to our data, excluding sessions where the subject’s 620 

psychophysical threshold (defined as the signal level eliciting 75% correct performance) exceeded 14% 621 

signal. A two-pass presentation procedure was used.  Each instance of a stimulus (generated with a given 622 
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noise seed) was shown twice per experimental block. This allowed us to account for any effect of 623 

fluctuations in the stimulus on rsc (see Supplementary Discussion §1.1 and Supplementary Fig. 4). 624 

Psychophysical Reverse Correlation (PRC) 625 

 We performed PRC to objectively measure the weights subjects applied to different stimulus 626 

orientations when making their choices. To do this, we first summarized the stimulus on each trial as the 627 

radial sum of its 2D Fourier amplitude spectrum, averaged across frames. This isolates the orientation 628 

content while removing any information about spatial frequency and phase. Psychophysical kernels were 629 

calculated as the difference between the two choice-conditioned radial sums. This was performed 630 

separately for each signal level and the resulting kernels were averaged. 631 

Spike-Count Correlation Measurements 632 

Spike-count correlations were calculated as the Pearson correlation between spike counts, counted 633 

over the entire duration of the stimulus, with a 50-ms delay to account for the typical V1 response 634 

latency.  Spike counts were first z-scored separately within each experimental block (typically a set of 635 

100-200 trials lasting about 10 minutes) and each stimulus condition. This removed correlations related 636 

to long-term firing rate nonstationarities and allowed us to combine trials at different signal levels 637 

without introducing correlations related to similarity in stimulus preference. We used a balanced z-638 

scoring method proposed recently to prevent bias related to differences in choice distributions across 639 

signal levels44. We excluded pairs that were not simultaneously isolated for at least 25 trials total. The 640 

median number of trials per pair during task performance was 752. For the analysis of rsc during passive 641 

fixation blocks (Fig. 5), the median was 120. 642 

A main goal of the study was to measure how spike-count correlation varies with pairwise 643 

orientation.  We describe this relationship as a smoothed function estimated from measures of rsc 644 

combined across multiple recording sessions, which we then sampled discretely with 1° resolution. The 645 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2016. ; https://doi.org/10.1101/086256doi: bioRxiv preprint 

https://doi.org/10.1101/086256


33 

 

smoothed estimates were obtained using a bivariate von Mises smoothing kernel.  A point in the 646 

correlation matrix C was given as: 647 

𝐂(𝑥, 𝑦) = tanh
∑ 𝑧𝑖𝐾𝑛

𝑖=1 (𝑥,𝑦,𝜃𝑖,𝜙𝑖)

∑ 𝐾𝑛
𝑖=1 (𝑥,𝑦,𝜃𝑖,𝜙𝑖)

 , where  𝐾(𝑥, 𝑦, 𝜃𝑖 , 𝜙𝑖) = 𝑒𝜅 (cos(𝜃𝑖−𝑥)+cos(𝜙𝑖−𝑦)),                 (1) 648 

𝑧𝑖 is the ith (Fisher z-transformed) rsc measurement, 𝜃𝑖 and 𝜙𝑖 are the preferred orientations of the ith pair, 649 

and 𝜅 is the von Mises dispersion parameter. We set 𝜅 = 1.3π, yielding a smoothing kernel closely 650 

approximating a bivariate wrapped Gaussian with 15° s.d. In some cases, we expressed the rsc matrix in a 651 

task-aligned coordinate frame (e.g. Fig. 4e), for which the preferred orientations of the ith pair relative to 652 

the task orientation were used for 𝜃𝑖 and 𝜙𝑖.  Since there were always two orthogonal task orientations, 653 

we averaged across both possible alignments, such that 𝐂(𝑥, 𝑦) = 𝐂(𝑥 + 90°, 𝑦 + 90°). All angular 654 

quantities were doubled for the calculations, as orientation has a period of 180°. To generate the kernel-655 

smoothed profile of CP (Fig. X), we used a one-dimensional equivalent of the procedure above, in which 656 

preferred orientations were parameterized only by a single parameter. 657 

Regression Model 658 

We used a multilinear regression model to identify “fixed” and “task-aligned” components of the 659 

structured correlations we observed. Our approach was to describe the set of observations (811 individual 660 

pairwise rsc measurements, Fisher z-transformed to produce normal error) in terms of a set of two 661 

underlying correlation structures: one defining rsc as a function of pairwise preferred orientation alone 662 

(“fixed”) and the other defining rsc as a function of pairwise preferred orientation relative to the task 663 

(“task-aligned”). In order to provide a continuous and smooth description of the data, each component 664 

was parameterized as the sum of an array of 𝑛 𝑥 𝑛 evenly spaced basis functions. Each observation, 𝑦𝑖, 665 

was expressed as: 666 

𝑦𝑖 = 𝑥𝑖
𝑓𝑖𝑥𝑒𝑑

∙ 𝛽𝑓𝑖𝑥𝑒𝑑 + 𝑥𝑖
𝑡𝑎𝑠𝑘 ∙ 𝛽𝑡𝑎𝑠𝑘 + 𝛽0 + 𝜀𝑖                                            (2) 667 
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𝑥𝑖
𝑓𝑖𝑥𝑒𝑑

 and 𝑥𝑖
𝑡𝑎𝑠𝑘  are length-n2 vectors of loadings onto the basis functions, which were given by 668 

evaluating the basis functions at the location corresponding to the pairwise orientation preference of the 669 

ith pair. 𝛽𝑓𝑖𝑥𝑒𝑑 and 𝛽𝑡𝑎𝑠𝑘 are the length-n2 vectors of amplitudes of the basis functions (coefficients to be 670 

fit), 𝛽0 is a model constant, and  ∙  is the element-wise product. For the basis functions, we used bivariate 671 

von Mises functions, with no correlation and equal dispersion in both dimensions. Thus the kth loading 672 

( 𝑥𝑖
𝑓𝑖𝑥𝑒𝑑

(𝑘) or 𝑥𝑖
𝑡𝑎𝑠𝑘(𝑘)) was given by: 673 

𝑥𝑖(𝑘) =
𝑒

𝜅 (cos(𝜃𝑖−𝜇𝑘
1)+cos(𝜙𝑖−𝜇𝑘

2))

𝑍
                                                        (3) 674 

where 𝜃𝑖 and 𝜙𝑖 are the preferred orientations of the ith pair (relative to the task orientation in the case of 675 

the task-aligned loadings), 𝜇𝑘 is a pair of orientations defining the location of the kth basis function, Z is a 676 

normalization constant such that the sum of all loadings for observation i (𝑥𝑖
𝑓𝑖𝑥𝑒𝑑

+ 𝑥𝑖
𝑡𝑎𝑠𝑘  ) is 1, and 𝜅 is 677 

the von Mises dispersion parameter. Again, angular quantities were doubled and 𝜅 was set to 1.3π.  We 678 

found that arrays of 8x8 were sufficient to describe the structure of the two components.  Because the 679 

observations were pairwise correlations, it was sufficient only to fit the upper triangular portion of the 680 

array of basis functions.  Thus, the two-component model contained 73 parameters (36 for each 681 

component, plus the model constant).   682 

We fit the model by finding the parameters (𝛽𝑓𝑖𝑥𝑒𝑑, 𝛽𝑡𝑎𝑠𝑘 &  𝛽0) that minimized the L1 error (to 683 

encourage sparseness) plus two additional terms that encouraged smoothness and symmetric positive 684 

semi-definiteness, as the two components were meant to represent correlation matrices.  The solution was 685 

obtained as: 686 

�̂�𝑓𝑖𝑥𝑒𝑑, �̂�𝑡𝑎𝑠𝑘 , �̂�0 = argmin
𝛽𝑓𝑖𝑥𝑒𝑑, 𝛽𝑡𝑎𝑠𝑘 , 𝛽0

  ∑ |𝜀𝑖|𝑖 + 𝛼1𝛤(𝛽𝑓𝑖𝑥𝑒𝑑 + 𝛽𝑡𝑎𝑠𝑘 ) + 𝛼2𝐷𝑆𝑃𝐷(𝛽𝑓𝑖𝑥𝑒𝑑 + 𝛽𝑡𝑎𝑠𝑘)      (4) 687 

where 𝛤 is the discrete 2D Laplace operator, corresponding to circular convolution with the kernel: 688 
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[
0 1 0
1 −4 1
0 1 0

] and 𝐷𝑆𝑃𝐷(𝑋) is the 2-norm between X and the nearest symmetric positive semidefinite 689 

matrix �̂�, which is given by (𝐵 + 𝐻)/2 where H is the symmetric polar factor of 𝐵 =
(𝐴+𝐴′)

2
 45. The 𝛼’s 690 

controlled the strength of regularization and were chosen to produce the best fit (as measured with R2 691 

under 50-fold cross-validation). The solution was obtained by gradient descent using the MATLAB 692 

function fminunc. 693 

 While this model did not explain more than a small percentage (3.2%) of the variance of the raw 694 

observed rsc values, this is not surprising as the raw correlation data do not vary smoothly with preferred 695 

orientation (reflecting both noise, and the fact that rsc is known to depend on parameters other than 696 

orientation.1,14,15). For this reason, we measured goodness-of-fit relative to the variance explained simply 697 

by a smoothed version of the raw data (sum of values in fixed and task-aligned matrices was 3.6%). 698 

Choice Probability Predictions 699 

 Choice Probability was calculated in the standard way33. We only used 0%-signal trials, as the 700 

uneven choice distributions elicited by signal trials yield noisier CP measurements. Assuming 701 

feedforward pooling with linear pooling weights, the relationship between the covariance matrix for a 702 

population of neurons, the pooling weight of each neuron, and the Choice Probability (CP) of each 703 

neuron is: 704 

𝐶𝑃𝑘 =
1

2
+

2

𝜋
sgn(𝜉𝑘) arctan √2𝜉𝑘

−2 − 1

−1

   with   𝜉𝑘 =
(𝐂𝛽)𝑘

√𝐶𝑘𝑘𝛽T𝐂𝛽
                                 (5) 705 

where CPk is the CP of neuron k with respect to choice 1, β is the vector of pooling weights and C is the 706 

covariance matrix8.  We used this equation to quantify the CPs that would be associated with the 707 

correlation structure we observed and the fixed and task-aligned components we identified.  CPs, 708 

correlations, and pooling weights were described as functions of preferred orientation, relative to the task. 709 

(For the fixed component of rsc, which was indexed relative to raw orientation preferences, we generated 710 
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a task-aligned version by substituting the observed rsc values with model fits, using only the fixed 711 

component of the model, and then generating a smoothed task-aligned matrix as in Fig. 4e). We assumed 712 

a population of infinite size spanning this space, that was homogeneous at a given orientation, and that 713 

we sampled discretely with 1° resolution. Since the pooling weights were unknown, we generated a 714 

random distribution of plausible pooling weights that could support task performance. To do this, we 715 

started with a vector of randomly assigned weights (drawn from a normal distribution) and applied the 716 

90° symmetry inherent in the task, such that 𝛽𝜃 =  −𝛽𝜃+90, where 𝛽𝜃 is the weight assigned to neurons 717 

with task-relative preferred orientation 𝜃.  Then, we smoothed the pooling weight profiles with a 718 

wrapped Gaussian kernel with 15° s.d. and excluded profiles which did not have a circular mean within 719 

22.5° of choice 1 (0°). To guarantee real-valued CPs on [0,1], we performed the calculations using a 720 

symmetric positive definite approximation45 of the correlation matrices, which introduced negligible 721 

error.   722 

Estimating mean covariance for a population of neurons is necessarily more error-prone than 723 

estimating mean correlation, as the former is sensitive to sampling error in measurements of average 724 

spike-count variance (and therefore firing rate), so for this reason we preferred to perform the 725 

calculations using correlations (see Supplemental Discussion §3). We can use correlations 726 

interchangeably with covariances in equation 1, under the simplifying assumption that the variance is 727 

uniform as a function of preferred orientation. If 𝚺 is the correlation matrix for a population with uniform 728 

variance 𝛼, then it follows that: 729 

𝜉𝑘 =
𝑎(𝚺𝛽)𝑘

√𝑎𝛴𝑘𝑘𝛽T(𝑎𝚺)𝛽
=

(𝚺𝛽)𝑘

√𝛴𝑘𝑘𝛽T𝚺𝛽
                                                           (6) 730 

where  𝛴𝑘𝑘 ≡ 1 for all k. We felt that spike-count variance that depended systematically on preferred 731 

orientation was unlikely to be a feature of the V1 representation, and thus that the advantages of using 732 

correlations outweighed the cost. 733 
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Noise in the decision process after pooling (pooling noise) has the effect of uniformly scaling 734 

down CPs, such that 𝜉𝑘 in Eq. 5 is substituted with: 
(𝐂𝛽)𝑘

√𝐶𝑘𝑘(𝛽T𝐂𝛽+𝜎𝑝𝑜𝑜𝑙
2 )

 , where 𝜎𝑝𝑜𝑜𝑙
2  is the variance of the 735 

pooling noise6. We found that non-zero pooling noise was needed to avoid overestimating the magnitude 736 

of CP from the observed correlation structure.  We used a fixed value of pooling noise in our predictions 737 

such that the average squared difference between the CP profile predicted from the observed correlation 738 

matrix and the observed CP profile was minimized. Empirically, we found that pooling noise variance of 739 

0.6 was optimal. Since our spike counts were normalized to have unit variance, this implies pooling noise 740 

whose variance is 60% of the average spike-count variance of single neurons. This should be interpreted 741 

with care, as overestimation of CPs may also be an artefact related to the assumption of a homogeneous 742 

population8. Alternatively, the need to invoke pooling noise may be due to nonuniform sensory 743 

integration across the trial, which is distinct but which would also have an attenuating effect on CP when 744 

measured over the entire trial. 745 

Calculating Differential Correlations 746 

 The information capacity of a sensory population, assuming a linear read out, is bounded when 747 

the spike-count covariances sufficiently match the differential correlations32. Since we made use of spike-748 

count correlations, rather than covariances, in the present study, we normalized the measurements of 749 

differential correlations by the product of the standard deviations of the stimulus-independent variability 750 

of each pair. 751 

  752 
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