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The variable responses of sensory neurons tend to be weakly correlated (spike-count 25 

correlation, rsc). This is widely thought to reflect noise in shared afferents, in which case rsc can limit 26 

the reliability of sensory coding. However, it could also be due to feedback from higher-order brain 27 

regions. Currently, the relative contribution of these sources is unknown. We addressed this by 28 

recording from populations of V1 neurons in macaques performing different discrimination tasks 29 

involving the same visual input. We found that the structure of rsc (the way rsc varied with neuronal 30 

stimulus preference) changed systematically with task instruction. Therefore, even at the earliest 31 

stage in the cortical visual hierarchy, rsc structure during task performance primarily reflects 32 

feedback dynamics. Consequently, previous proposals for how rsc constrains sensory processing 33 

need not apply. Furthermore, we show that correlations between the activity of single neurons and 34 

choice depend on feedback engaged by the task. 35 

Judgments made about sensory events (i.e. perceptual decisions) rely on the spiking discharge of 36 

sensory neurons. For this reason, there has been longstanding interest in the observation that this discharge 37 

tends to be variable given a fixed stimulus1,2. In principle, this variability could confound perceptual 38 

judgments, impairing the fidelity of sensory information in the brain. Even worse, this variability tends to 39 

be weakly correlated amonst sensory neurons (spike-count correlation; rsc)
3, meaning it cannot trivially be 40 

averaged away4. For this reason, rsc is widely referred to as “correlated noise”5–8.  41 

This way of thinking has underlied several influential lines of research in systems neuroscience. One 42 

has sought to understand the magnitude of the perceptual impairment introduced by rsc in different 43 

behavioral contexts5,8–15. When rsc is distributed in such a way that correlated fluctuations mimic the 44 

sensory events being detected or discriminated, it could severely impair perceptual accuracy11,15,16. A 45 

related line of research has sought to understand how correlated variability affects the choices subjects 46 

make in perceptual discrimination tasks from trial to trial17–19. These studies have shown that rsc structure 47 

can give rise to a weak correlation between variability in single neurons and perceptual reports (Choice 48 
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Probability; CP), consistent with the notion that CP observed in real neurons reflects the causal influence 49 

of correlated sensory neuronal variability on perception. 50 

However, we currently know very little about the origin of rsc, making it unclear to what degree 51 

these conclusions are correct. A frequent (although typically unstated) assumption is that rsc in sensory 52 

neurons is generated by shared variability in common afferent inputs. Consistent with this idea, rsc 53 

correlates with the physical proximity and similarity in stimulus preference of neuronal pairs8,20–23, which 54 

are also predictive of the degree of feedforward input convergence. If this explanation is correct, it 55 

supports the traditional view of rsc as “confounding noise” since it arises from stochastic processes in the 56 

sensory encoding pathway. However, the bulk of synaptic inputs to sensory cortical neurons are not 57 

strictly “feedforward” in nature24,25. Consequently, variation over time in shared inputs from downstream 58 

areas (i.e. “top-down”; “feedback”), may make a significant contribution to rsc. These signals may reflect 59 

endogenous processes like attention, arousal, or perceptual state, and could be under voluntary control. In 60 

principle, this source of correlated variability need not confound perceptual judgments, but instead reflect 61 

ongoing neuronal computations. 62 

Several recent studies have shown that rsc does change to some degree with task context12,14,26,27, 63 

suggesting a top-down component. These studies have shown that rsc in populations of sensory neurons 64 

can either increase or decrease depending on attentional state or other task demands. However, prior 65 

studies have made only limited measures of rsc structure and how this changes with task, yet these are 66 

critical for understanding how rsc arises and how it relates to task performance. Furthermore, the relative 67 

magnitude of feedforward versus top-down contributions to rsc has not been determined. It also unknown 68 

whether task-dependent changes in rsc reflect an adaptive reduction of sensory noise or whether rsc is, in 69 

the first instance, generated by variability over time in top-down inputs reflecting downstream 70 

computations. 71 
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In the present study, we used large-scale neuronal population recordings in behaving macaques, 72 

along with careful behavioral control and a novel analytical approach, to significantly advance our 73 

understanding of these fundamental questions. Subjects performed different orientation discrimination 74 

tasks using the same set of stimuli. The only difference between tasks was the set of orientations being 75 

discriminated. If rsc primarily reflects noisy sensory encoding, it should be invariant to changes in the task 76 

given fixed retinal input. Alternatively, if it changes dynamically with the task, this would indicate that it 77 

reflects top-down signals. This experimental approach, inspired by a previous study27, was combined with 78 

large-scale population recordings, allowing us to estimate the full rsc matrix – that is, how rsc varies as a 79 

function of all possible combinations of pairwise orientation preference. This made it possible to directly 80 

infer which components were fixed and which changed with the task. Strikingly, we could not identify a 81 

component that remained fixed. Instead we observed a pattern of task-dependent changes that was highly 82 

systematic, and could be modeled as the effect of a single modulatory input that targets the two task-83 

relevant subpopulations of V1 neurons in an alternating fashion across trials. 84 

These data give unprecedented insight into the functional role of rsc structure in task performance. 85 

First, they show that the task-dependent changes in rsc structure appear to degrade the task performance of 86 

an ideal observer of V1 activity alone, because they mimic task-relevant stimulus changes. However, our 87 

discovery of the feedback origin of these correlations means that they need not degrade performance, and 88 

points to the possibility that they may instead be a signature of ongoing neuronal computations. Indeed, 89 

recent circuit models of perceptual inference predict feedback signals whose statistics reflect the subject’s 90 

prior beliefs about the task, yielding predictions which closely match our obervations28,29. Second, we 91 

show quantitatively that these feedback dynamics are the primary source of the choice-related activity we 92 

observed in V1, clarifying an ongoing debate30 about the interpretation of choice-related signals in sensory 93 

neurons. We conclude that rsc in sensory neurons reveals less than previously thought about the encoding 94 

of sensory information in the brain, but potentially much more about the interareal computations 95 

underlying sensory processing. 96 
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 97 

Results 98 

We trained two rhesus monkeys (Macaca mulatta) to perform a two-alternative forced choice 99 

(2AFC) coarse orientation discrimination task (Fig. 1), used previously31. On a given trial, the subject was 100 

shown a dynamic, 2D filtered noise stimulus for 2 seconds, after which it reported the stimulus orientation 101 

by making a saccade to one of two choice targets (oriented Gabor patches). Different task contexts were 102 

defined by the pair of discriminandum orientations. The stimuli were bandpass filtered in the Fourier 103 

domain to include only orientations within a predetermined range. The stimulus filter was centered on one 104 

of the two task orientations and its orientation bandwidth was used to control task difficulty. We included 105 

0%-signal trials, for which the stimuli were unfiltered for orientation (and thus the same regardless of 106 

context), to examine the effect of task context on rsc in the presence of a fixed retinal input. 107 

In order to detect any effect of task context on rsc structure, it is critical that subjects based their 108 

choices on the presence of the correct orientation signals. To ensure this, we used psychophysical reverse 109 

correlation31–33 to directly measure the influence of different stimulus orientations on the subject’s choices 110 

(the “psychophysical kernel”). We found that subjects required multiple days of retraining after a change 111 

in the task context to fully update their psychophysical kernel. For this reason, we kept the task context 112 

fixed for the duration of each recording session, and only undertook recordings in a new task context after 113 

subjects had updated their kernel (Supplementary Fig. 1). This is a significant advance over past studies of 114 

the effect of task context on neuronal responses, which typically have not quantified the extent to which 115 

behavioral strategy truly matches task instruction. 116 

We recorded spiking activity in populations of single V1 neurons using multi-electrode arrays 117 

while the subjects performed the task. We determined the preferred orientation of each neuron by 118 

measuring its response to oriented stimuli (see Methods) in separate blocks of trials during which subjects 119 

passively fixated. Neurons were excluded from analysis if they were not well orientation tuned. The final 120 
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dataset includes 811 simultaneously recorded pairs from 200 unique cells across 41 recording sessions. 121 

For each pair, we calculated its rsc value as the Pearson correlation between the set of trial-duration spike-122 

counts across trials of the same stimulus condition. While measuring rsc only across 0%-signal trials 123 

isolated any changes due to the task context, we found similar results within each signal level (Fig. 6). 124 

Therefore, to increase statistical power, we report rsc values measured across all trials, after normalizing 125 

spike counts to remove the effect of stimulus drive on firing rates. 126 

 127 

Rsc structure changes systematically with task context 128 

Recording large populations gave us the power to measure the full “rsc matrix”: that is, how rsc 129 

varied as a function of all possible combinations of orientation preference. This is the first time that such 130 

detailed measures of rsc structure have been made while animals perform a discrimination task.  To assess 131 

the presence of task-dependent rsc structure in the data, we we first divided the recording sessions into two 132 

groups based on the task context used (Fig. 2b). We estimated the smoothed, average rsc matrix associated 133 

with each subset (Fig. 2a,c) by pooling rsc values measured across the subset of sessions along with 134 

measures of the neuronal preferred orientation. Across both subsets of sessions, we observed a tendency 135 

towards higher values of rsc for pairs of neurons with more similar orientation preferences (i.e. higher 136 

values closer to the diagonal of the matrix), consistent with numerous prior observations3 (Fig. 2d). 137 

Traditionally, such observations were presumed to reflect “limited-range correlations” that depend only on 138 

similarity in stimulus preference5,9,10, equivalent to a rotationally-symmetric (Toeplitz) correlation matrix. 139 

In contrast, in our data this was due to distinct patterns in the two matrices: we observed the highest values 140 

of rsc amongst pairs that shared a preferred orientation close to a discriminandum, and the lowest values of 141 

rsc tended to occur amongst pairs preferring opposite task orientations. Because the task context differed 142 

between the two subsets, this yielded matrices with a lattice-like pattern offset along the diagonal by an 143 

amount reflecting the task context. In other words, rsc structure changed dramatically with task context, 144 
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consistent with the presence of task-dependent feedback and inconsistent with a fixed rsc structure 145 

primarily driven by sensory afferent noise.  146 

To summarize this task-dependent structure across the entire dataset (Fig. 2e) we expressed each 147 

neuron’s preferred orientation relative to the task orientations on its respective recording session, such that 148 

0º and 90º always indexed the task orientations. This combined matrix clearly illustrates the task-149 

dependent pattern of rsc structure in the V1 population, a pattern that was consistent across both subjects 150 

(Supplementary Fig. 2). As in previous studies, there was a great deal of variability between individual rsc 151 

values, even amongst pairs with similar orientation preferences and task (Fig. 2d,f) demonstrating that 152 

factors not considered here also contribute to rsc. 153 

Importantly, we observed a different result during separate blocks of trials in the same recording 154 

sessions, during which the subject fixated passively for reward but the same set of stimuli was shown. 155 

During these blocks, the highest values of rsc tended to occur along the diagonal, independent of 156 

orientation preference or task (Supplementary Fig. 3). This demonstrates that the task-dependent pattern 157 

observed during task performance depends on active task engagement, and cannot be explained, for 158 

instance, simply as an effect of adaptation to task experience. We performed a number of additional 159 

analyses to rule out any possibility that our findings could be explained merely as an effect of changing 160 

retinal input across task contexts, such as effects related to stimulus history or eye movements (see 161 

Supplementary Figs. 4-7). Taken together, these controls strengthen our interpretation that centrally-162 

generated signals reflecting task engagement underlie the task-dependent rsc structure we observed. 163 

 164 

Segregating fixed and task-dependent components of rsc structure 165 

Our dataset of rsc measurements made in large, heterogeneous populations across diverse task 166 

contexts allowed us to directly estimate the rsc structure that was fixed versus dynamically changing with 167 

task. To do this, we modeled the raw rsc values using two structured components: 1) a fixed rsc matrix 168 
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describing the dependence of rsc on pairwise orientation preference regardless of task, and 2) a task-169 

dependent rsc matrix capturing the dependence of rsc on pairwise orientation preference relative to the task 170 

orientations. We used ridge regression to find the form of these two component matrices that best 171 

predicted the raw rsc measurements. To reduce the number of regressors without constraining the form 172 

these two components could take, we parametrized the matrices as 8x8 grids of basis functions (see 173 

schematic in Fig. 3a and Methods). 174 

This modeling approach allowed us to address two related questions. First, the form of the fitted 175 

components serves to identify the nature of the dynamic and fixed rsc structure in the V1 population.  176 

Second, comparing models that included either or both components provides a quantitative test for the 177 

origin of the rsc structure we observed. When we jointly fit both components to the data, the inferred task-178 

dependent component (Fig. 3c) recapitulated the lattice-like structure we observed in the average data 179 

(Fig. 2e). The fixed component (Fig. 3d) was smaller in amplitude and, interestingly, appeared also to 180 

contain a weak lattice-like structure, offset by approximately 30º. This is likely due to the fact that we did 181 

not uniformly sample across all possible task contexts, with tasks discriminating orientations near 30º/120º 182 

being overrepresented (see Fig. 2b). Next, we compared reduced models in which only one of the two 183 

components was used. Strikingly, cross-validated model accuracy was increased when we removed the 184 

fixed component entirely, but reduced by about half when we removed the task-dependent component 185 

(Fig. 3b). This suggests that the dependence of rsc on orientation preference in our data can be explained 186 

as a completely dynamic phenomenon, with no additional dependence that is invariant to the task. We 187 

found that that all of these modeling results could be replicated when the fixed and task-dependent 188 

components were parametrized in a different way (using a variable number of basis functions with 189 

locations fit to the data, instead of a fixed grid of basis functions; see Methods and Supplementary Fig. 8), 190 

suggesting the conclusions do not depend on the particular parametric assumptions that were made.  191 

We were interested in the effect of task context on rsc structure, so it made sense to focus on the 192 

dependence of rsc on orientation preference. However, rsc depends on a large number of factors irrelevant 193 
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to the present study, such as physical proximity between pairs and similarity in tuning along many 194 

stimulus dimensions apart from orientation3,22. This implies that a model that describes the dependency on 195 

orientation preference correctly will only explain a small fraction of the variance in rsc. (This can be 196 

appreciated in Fig. 2d and f, where pairs with similar locations on the abscicca have substantial variation 197 

in rsc.) To estimate this fraction, we assessed the accuracy with which we could predict individual rsc 198 

values from a smoothed matrix built with other pairs. This showed that, in principle, 3.6% of the variance 199 

is explainable, of which the majority was explained by the regression model above. We also found that, 200 

across cross-validation folds, the fitted model components were highly consistent (mean correlation of 201 

0.99), suggesting the inferred structure is robust to noise in the data despite the low absolute value of 202 

variance explained. Additionally, as we will discuss, the task-dependent pattern of rsc we identify is likely 203 

to be critically important during performance of the task despite the low fraction of total variance in rsc it 204 

explains. However, it is important to point out that our data cannot directly speak to the origin of rsc 205 

structure in V1 except as it varies as a function of preferred orientation. 206 

 207 

Rsc structure during task performance reflects a single mode of variability 208 

In the modeling discussed so far, we aimed to describe a fixed and task-dependent component of 209 

rsc structure with as few assumptions as possible. Having established that the observed rsc structure can be 210 

best described assuming it is entirely task-dependent, we next sought to identify a more parsimonious and 211 

intuitive description of this task-dependency. We started with the observation that the pattern we observed 212 

– increased correlation between pairs preferring the same task orientation and decreased correlation for 213 

pairs preferring opposing task orientations – would be consistent with feature-selective feedback which 214 

varied in its allocation from trial to trial between the two task-relevant orientations, as has been shown in 215 

recent theoretical studies29,34. To quantify this observation, we performed an eigendecomposition of the 216 

smoothed, average rsc matrix (Fig. 4a). We found that it had a single eigenvalue significantly larger than 217 
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would be predicted by chance, consistent with the correlation structure being determined largely by a 218 

single mode. Moreover, the first eigenvector contained a peak and trough at the two discriminandum 219 

orientations, respectively, suggesting a mode of variability which increases the firing rate of neurons 220 

supporting one choice and decreases the firing rate of neurons supporting the other choice (Fig. 4b). To 221 

model this, we assumed all observed rsc values could be predicted by a single eigenvector which we 222 

constrained to be the difference of two von Mises functions centered 90° apart with variable amplitude 223 

and width (see Fig. 4c). We found that this simpler model in fact performed better than the more complex 224 

regression model in predicting individual rsc values, capturing about 80% of the explainable variance in rsc 225 

(see Fig. 4e). This suggests that the rsc structure we observed in V1 could indeed be well described as the 226 

result of a single source of covariability that changed dynamically with the task.  227 
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We compared the “single eigenvector” model with another simple model that more closely 228 

reflected standard assumptions about rsc structure in sensory brain areas. This model predicted that rsc 229 

depends only on the difference in preferred orientation between pairs of neurons regardless of task5,9,10 230 

(“limited-range correlations” yielding an rsc matrix with a diagonal ridge) and would be consistent with rsc 231 

structure due to common afferent inputs. We modeled this dependence as a von Mises function of 232 

preferred orientation difference (Fig. 4d). This model performed much worse in predicting the observed 233 

set of rsc values, in fact not exceeding chance performance (Fig. 4e). (This qualitative difference in model 234 

performance was replicated in both subjects individually; see Supplementary Fig. 2). Importantly, both of 235 

these simple models predict a dependence of rsc on preferred orientation difference similar to what we 236 

found in the data (Fig. 2d) and has been observed previously8,20–23 – however, in the case of the “single 237 

eigenvector” model, this is due to task-dependent changes in rsc while for the “diagonal ridge” model, 238 

there is no effect of task context. Notably, we found that during the passive fixation blocks, the “diagonal 239 

ridge” model performed better (Supplementary Fig. 3c), quantitively supporting the observation that the 240 

task-dependent correlations we observed require active task engagement. 241 

 242 

Effect of task-dependent rsc structure on neural coding 243 

We next sought to address the functional importance of the rsc we observed on sensory coding. 244 

Many studies have shown that rsc in sensory neurons can decrease the sensory information that can be 245 

decoded, particularly when rsc resembles correlations due to task-related stimulus changes5,8–15. We 246 

estimated this task-related stimulus correlation as the product of the slopes of a pair’s mean response 247 

functions along the task axis (i.e. as a function of orientation signal strength; Fig. 5a)16, normalized by the 248 

product of the neuronal variances. When we plotted these values as a smooth, task-aligned matrix (Fig. 249 

5b), we observed a lattice-like pattern strikingly similar to the observed rsc matrix (Fig. 2e). Confirming 250 

this similarity, the task-dependent component of rsc structure identified by the regression model was 251 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/086256doi: bioRxiv preprint 

https://doi.org/10.1101/086256


12 
 

highly correlated on a pair-by-pair basis with the stimulus-induced correlations (r=0.61, Fig. 5c). This 252 

matches our earlier observation that rsc structure was consistent with feedback that alternatingly targeted 253 

the task-relevant neuronal pools, which is similar to the effect of varying the stimulus along the axis 254 

defining the task.  255 

Thus, the observed rsc structure appears not to improve, but rather to degrade, the sensory 256 

representation. However, our results highlight a problem with this interpretation and any purely 257 

feedforward account of the functional role of rsc. Namely, rsc that is generated endogenously need not be 258 

problematic at all (e.g. if the decoder had access to those endogenous signals). Indeed, the propagation of 259 

feedback signals that are matched to the statistics of the relevant sensory stimuli may be an adaptive 260 

strategy for bringing prior knowledge to bear, as predicted by recent models of probabilistic perceptual 261 

inference28,29.  Rsc resembling stimulus-induced correlations emerge in such models28 as a consequence of 262 

the subject developing the appropriate priors about the task, yielding predictions that both match our 263 

empirical findings and offer a normative explanation. 264 

 265 

Relationship between rsc structure and perceptual choice 266 

Correlations between trial-to-trial variability of single neurons and choice35,36 have been frequently 267 

observed throughout sensory cortex. Theoretical studies have emphasized that this suggests the presence 268 

of spike-count correlation with a particular structure17–19,36,37. After all, if many sensory neurons have 269 

variability that is correlated with choice, this implies that neurons supporting the same choice are 270 

themselves correlated. However, this could be compatible with either or both of two causal mechanisms: 271 

1) correlated fluctuations directly affect the choices a subject makes trial to trial (a feedforward source of 272 

choice-related activity); or 2) the correlated fluctuations reflect variation across trials in a feedback signal 273 

related to the upcoming choice (a feedback source). As we show, our detailed measures of rsc structure 274 

during task performance can address this ongoing debate.  275 
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First, we reasoned that a signature of feedback related to the upcoming choice would be rsc 276 

structure in V1 whose magnitude depends systematically on variability in choice. Consistent with this 277 

prediction, we found that the amplitude of the rsc structure was attenuated on high-signal trials relative to 278 

0% signal trials, in a manner which depended systematically on signal strength (Fig. 6a,b). However, this 279 

attenuation was modest, even at the highest signal level we analyzed (11% reduction), despite the highly 280 

uneven distribution of choices. This rules out the extreme scenario in which feedback perfectly reflects 281 

choice. Supporting this conclusion, we found that the rsc structure, when calculated using only spikes from 282 

different 200-ms windows during the trial, showed a stable timecourse (after a precipitous drop at the first 283 

time point) and did not grow in amplitude with decision formation (Fig. 7). Taken together, these 284 

observations support the conclusion that the rsc structure reflects variation in feedback signals only 285 

partially correlated with the subject’s final choices. These could include a combination of bias, attention to 286 

orientation, prior beliefs, and/or a decision variable.  287 

Next, we assumed standard feedforward pooling (i.e. linear readout weights applied to the sensory 288 

pool) to determine if the observed rsc structure would be quantitatively consistent with the observed 289 

choice-related activity. To do this, we made use of recent theoretical work which analytically relates rsc 290 

structure, readout weights, and choice-related activity17. We calculated Choice Probability (CP), which 291 

quantifies the probability with which an ideal observer could correctly predict the subject’s choices using 292 

just that neuron’s responses35,36, for each recorded neuron. We found an average CP of 0.54 for task-293 

relevant neurons, significantly above chance level (Fig. 8a) and similar in magnitude to another study 294 

using the same task31. We found that the rsc structure we observed would be sufficient to produce a pattern 295 

of CP across the population consistent with the data (Fig. 8b,c), across a wide range of possible readout 296 

schemes (Supplementary Fig. 9). Next, we considered the contribution of the different inferred sources of 297 

rsc to CP. (For top-down sources of correlation this is equivalent to assuming that the sensory population is 298 

read out without taking into account the top-down signal.) This allows us to treat all sources of rsc 299 

equivalently, and compare them quantitatively. When we considered a population containing only the 300 
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“task-dependent” component of rsc structure identified in the regression model (Fig. 3c), predicted CP was 301 

only slightly reduced. Assuming only the “fixed” component (Fig. 3d), however, drastically reduced 302 

predicted CP below what we observed (Fig. 8b,c). Thus, our data rule out the view that a significant 303 

component of CP merely reflects the feedforward effect of stochastic noise in the afferent sensory 304 

pathway. Instead, the main feedforward source of CP appears to depend on task-dependent changes in  rsc 305 

structure that subsequently influence perceptual judgments. 306 

 307 

Discussion 308 

Spike-count correlations between sensory neurons have typically been described as reflecting noise 309 

that corrupts sensory encoding5,8–15. However, little is known about the origin of rsc, and it may instead be 310 

due to changes over time in feedback signals. We addressed this by recording from populations of V1 311 

neurons using multi-electrode arrays while macaque subjects performed a set of orientation discrimination 312 

tasks. This approach allowed us to estimate the entire matrix describing the dependence of rsc on pairwise 313 

orientation preference (Fig. 2), providing an unprecedently clear picture of rsc structure in a behaving 314 

animal. By determining to what extent the rsc matrix was fixed, and what extent it changed with task, we 315 

could infer the relative importance of feedforward and feedback pathways in generating it (Fig. 3). We 316 

found systematic and novel structure in the rsc matrix that changed in a predictable manner with the task. 317 

Using multiple modeling approaches, we found that the fixed rsc structure was much smaller than the task-318 

dependent structure, so much so that we could not estimate a fixed component reliably. Remarkably, a 319 

single source of task-dependent feedback captured the pattern we observed (Fig. 4). This feedback input 320 

increased and decreased the firing rate of neurons tuned for the two task-relevant orientations in a push-321 

pull manner. 322 

Our results suggest the possibility that variability in feedback is a major source of rsc structure in 323 

sensory cortex. The role of feedback may be even more pronounced in areas downstream of V1 which 324 
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typically show a greater degree of extra-sensory modulation31,38–40. At the same time, we cannot rule out a 325 

larger role of feedforward inputs in generating patterns of rsc defined in different ways than those 326 

uncovered here. For example, because our measures of rsc structure involved smoothing, we cannot rule 327 

out the possibility that the fine-grained structure of rsc behaves in ways not captured by our analysis. 328 

Our results are consistent with, and expand upon, a prior study that also measured task-dependent 329 

changes in rsc
27. In that study, single pairs of direction-selective MT neurons were recorded while subjects 330 

performed two direction discrimination tasks chosen by the experiments to probe the effect of task 331 

context: one in which the neurons contributed to the same choice (“same-pool condition”) and one in 332 

which they contributed to opposite choices (“opposite-pool condition). This amounts to a selective sub-333 

sampling of the rsc structure. While this identified some degree of task-dependence, the implications 334 

remained unclear. By contrast, the present study involved recordings from large simultaneously recorded 335 

populations, which achieved much better coverage of the full rsc structure. This revealed the detailed 336 

structure of the task-dependence and provided the basis for quantitative modeling and novel conclusions. 337 

For the purposes of comparison, we plotted our data in an analogous way to the prior study and found 338 

qualitatively similar results (Supplementary Fig. 10).  339 

Consistent with several past studies30,41,42, we found evidence for choice-related feedback, as 340 

shown by the finding that correlated fluctuations in V1 are more pronounced on trials where the subject’s 341 

choices were more variable (Fig. 6). However, this effect was relatively weak, and we observed that task-342 

dependent rsc structure did not grow in amplitude with decision formation (Fig. 7), suggesting processes 343 

indirectly related to choice may be responsible for the feedback generating the correlations. More 344 

importantly, we found that the standard assumption that correlated fluctuations influence choice through 345 

feedforward pathways17–19,36,37 predicted CP in the V1 population that matched the data (Fig. 8), the first 346 

empirical test of the theoretical relationship between rsc in sensory neurons, CP, and readout17. However, 347 

the rsc structure responsible changed with the task, demonstrating that it does not simply reflect afferent 348 

noise. Taken together, our results instead favor the notion that choice-related activity comes about through 349 
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self-reinforcing loops of reciprocal connectivity between cortical areas, as has also been suggested by 350 

other studies29,42,43.   351 

The task-dependent modulation of rsc we observed did not appear to be beneficial to task 352 

performance (Fig. 5), at least not in the manner this has typically been examined (i.e. feedforward 353 

decoding of the sensory population alone). Instead, the inferred feedback signals appeared to mimic task-354 

relevant stimulus changes, confounding the choices of an observer using only the sensory population. 355 

However, because the correlations reflect downstream computations, they need to not be limiting in this 356 

way to the subject. Thus our results highlight the fundamental insufficiency of considering the theoretical 357 

implications of rsc in terms of purely feedforward frameworks, as almost all such studies have done to 358 

date. 359 

The inferred source of task-dependent feedback resembles previous reports about the effects of 360 

feature-based attention on visual cortical neurons34,44. Feature-based attention enhances the firing rate of 361 

neurons tuned for the attended stimulus feature, and decreases the firing rate of neurons tuned for 362 

unattended stimulus features. One possibility is that our task engages feature-based attention which varies 363 

over time in its allocation between the two task-relevant orientations. This does not appear to provide an 364 

adaptive increase in the amount of relevant stimulus information encoded, contrary to traditional 365 

descriptions of attention45,46. However, as discussed above, once a top-down contribution to correlations is 366 

recognized, it is not possible to infer the amount of sensory information available to a decoder from the 367 

activity of a population of sensory neurons alone.   368 

Our findings thus emphasize the need for new normative models that predict context-dependent 369 

feedback during perceptual processing. Currently, models based on hierarchical probabilistic 370 

inference28,29,47 do predict such feedback signals, and account for many of our experimental findings. This 371 

work builds on the longstanding idea that the goal of a perceptual system is to generate valid inferences 372 

about the structure of the outside world, rather than to faithfully represent sensory input48,49. This requires 373 
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combining sensory input with prior beliefs, both of which can introduce correlated variability. During 374 

perceptual decision making, correlations resembling those induced by the stimulus naturally emerge as a 375 

consequence of the subject acquiring the appropriate prior beliefs about the structure of the sensory 376 

environment28. Clearly, further development of this and other models of perceptual processing are needed 377 

to generate quantitative predictions which can be further tested empirically. 378 

  379 
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 380 

Figure 1. Orthogonal orientation discrimination task.  a. Schematic illustration of the task. Two 381 

example task contexts shown (cardinal and oblique discriminations). The task context was fixed in a given 382 

recording session, but varied across sessions. b. Psychometric function for monkey ‘lem’, example 383 

session, n=1,354 trials. Black curve is a probit fit, and error bars are 95% confidence intervals around the 384 

mean (black points). c. Histograms showing the distribution of psychometric thresholds across sessions 385 

for the two subjects. Threshold is defined as the signal level eliciting 75% correct performance. Black 386 

triangle indicates the threshold corresponding to the example session in (b). d. Example single stimulus 387 

frames corresponding to the two example task contexts in (a). The stimuli consisted of dynamic, white 388 

noise filtered in the Fourier domain for orientation (see Methods). The filter was centered on one of the 389 

two task orientations and its bandwidth determined signal strength.   390 
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Figure 2. Rsc structure in V1 depends 391 

systematically on task context. a,c. Observed rsc 392 

matrices for the two subsets of sessions grouped by 393 

task context, as indicated in (b). The matrices were 394 

obtained by pooling the set of rsc measurements 395 

made within each subset and applying a von Mises 396 

smoothing kernel (approximating a 2D wrapped 397 

Gaussian with 15º s.d.). Colored dots correspond to 398 

pairs preferring the same or opposing task 399 

orientations. b. Polar histogram shows the 400 

distribution of task contexts used across sessions, 401 

with color indicating the division into two subsets.  402 

Note that the period is 90º because of the orthogonality of the discriminanda. Colored arrows indicate the 403 

mean task context associated with each subset. d. Scatter plot showing a weak, but significant, 404 

dependence of rsc on the difference in preferred orientation of neuronal pairs (p=9*10-4, bootstrap test, 405 

one-sided). Black line is (type II) regression line and grey line corresponds to rsc=0. e.  Average rsc matrix 406 

observed across all session, shown in a task-aligned coordinate frame. Each pair’s preferred orientations 407 

are expressed relative to the task orientations (defined as 0º and 90º). Color scale as in (a). f. Scatter plot 408 

showing a significant dependence of rsc on distance from the peak (0º/0º or 90º/90º) in the matrix in (e). 409 

This dependence was stronger than the dependence on difference in preferred orientation (r=-0.17, 410 

p=1.63*10-6, bootstrap test, one-sided), suggesting the task-aligned pattern we observed captures a more 411 

important feature of rsc structure. Black and grey lines as in (d).  412 
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Figure 3. Segregating fixed and task-dependent 413 

components of rsc structure. a. Schematic of the 414 

regression model used to estimate fixed and task-415 

dependent components of rsc structure. Each 416 

component was a matrix composed of a grid of 8x8 417 

von Mises basis functions, with amplitudes fit to 418 

the observed rsc measurements. b. Goodness-of-fit 419 

for the model that included both components and 420 

for two reduced models that included only one of the two components. Values are expressed relative to an 421 

estimate of the explainable variance in the data (see Methods). Error bars are +/- 1 SEM obtained from 422 

repeated 50-fold cross-validation. Statistical differences in goodness-of-fit (p<0.001 in all cases) were 423 

based on a one-sided test obtained in the same way. c,d. Estimated components from the combined model. 424 

The amplitude of the task-dependent component (c) was considerably larger than the fixed component (d) 425 

by a factor of 2.1 (computed using the varance across the fitted basis function amplitudes), and closely 426 

resembled the lattice-like shape of the task-aligned, average rsc matrix (Fig. 2e). Note that orientation 427 

preferences for the task-dependent component are expressed relative to the task orientations. Mean rsc 428 

values are close to 0 due to the inclusion of a model constant.  429 

430 
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   431 

Figure 4. Rsc structure during task performance reflects a single mode of variability. a. 432 

Eigenspectrum for the average, task-aligned rsc matrix in Fig. 2e. The largest eigenvalue exceeded chance 433 

(p<0.001, permutation test, one-sided). The chance distribution (mean +/- 1 SEM in blue) was determined 434 

by adding a random offset to the preferred orientations of each of the 811 pairs (i.e. permuting each rsc 435 

value along the diagonal). b. The eigenvector corresponding to the largest eigenvalue in (a). We first 436 

removed the mean rsc value from the matrices to ignore any flat eigenvectors. Error bar is +/- bootstrap 437 

SEM. The dark gray vertical bar indicates the peak in the eigenvector +/- 1 bootstrap SEM. This was not 438 

significantly different from 0º (p=0.078, bootstrap test, one-sided), indicating close alignment with the 439 

task. c. Schematic of “single eigenvector” model, in which rsc structure is described as the outer product of 440 

a vector parameterized as the difference between two von Mises functions 90° apart. d. Schematic of the 441 

“diagonal ridge” model in which rsc structure depended only on the difference in preferred orientations, 442 

independent of task. This dependence was modeled as a von Mises function centered on zero. e. 443 

Goodness-of-fit for the models in (c) and (d), calculated as normalized % variance explained, as in Fig. 3. 444 

Error bars around the mean and statistical comparison between models obtained through repeated 50-fold 445 

cross-validation of the set of 811 pairs.  446 
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 Figure 5.  Rsc structure matches effect of task-447 

related stimulus variability.  a. Responses (mean 448 

+/- 1 SEM, n=1,049 trials) to the stimuli used in the 449 

task at various signal strengths for two example 450 

neurons. For the purposes of illustration, the two 451 

task orientations are simply labeled positive and 452 

negative. This pair was typical in that the response 453 

functions (f1 and f2) are approximately linear over 454 

the range of signal strengths used. For this reason, we calculated the response correlation introduced by 455 

tuning similarity as the normalized product of the derivatives f1�f2� 16. b. The matrix of f�f� values, as a 456 

function of task-aligned pairwise orientation preference, obtained using kernel smoothing as in Fig. 2. We 457 

observed a pattern that was very similar to the structure of rsc we observed during task performance (Fig. 458 

2e). c. Scatter plot of the task-dependent (putatively top-down) component of rsc (Fig. 3c) against 459 

normalized f�f� values for each recorded neuronal pair. The two were highly correlated across the 460 

population (Pearson’s r=0.62, p<0.001, bootstrap test, one-sided).  461 
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 462 

Figure 6. Rsc structure depends on variability in 463 

choice. a. The average, task-aligned rsc matrix (as in 464 

Fig. 2e), shown separately for each stimulus strength. 465 

Note that 0% signal trials involved statistically 466 

identical stimuli across all task contexts. A 467 

qualitatively similar structure was apparent at non-468 

zero signal levels. (Spike counts were z-scored to 469 

eliminate the effect of stimulus drive; see Methods). 470 

b. Scatter plot showing the slope of a regression line 471 

comparing the rsc values measured at each signal level 472 

against the rsc values measured at the 0% signal level. 473 

This quantity indicates the degree of attenuation of the 474 

rsc structure at a given signal level. We observed a weak but significant negative correlation (Pearsons’s r, 475 

p=0.038, bootstrap test, one-sided) with signal strength (error bars are +/- 1 bootstrap SEM around the 476 

mean of the 811 pairs), implying the rsc structure is attenuated on high-signal trials, when there was also 477 

less variability in choice. Dotted line is fitted regression line. 478 

  479 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/086256doi: bioRxiv preprint 

https://doi.org/10.1101/086256


24 
 

 Figure 7. Temporal dynamics of rsc structure. a. The 480 

average, task-aligned rsc matrix (as in Fig. 2e) obtained 481 

using spike counts from 200-ms windows during the 482 

stimulus presentation. A similar structure was present at 483 

all time points (4 examples shown). b-c. Plots showing 484 

the temporal dynamics of two statistical measures of the 485 

observed rsc structure (mean +/- 1 bootstrap SEM). The 486 

colored lines indicate the example time points shown in 487 

(a). The population mean rsc value (b) showed a sharp 488 

drop shortly after stimulus onset, as seen in other 489 

studies50, and then a gradual recovery over the course of 490 

the trial. The amplitude of the rsc structure, quantified 491 

using the slope of the regression line of rsc obtained in 492 

each 200-ms window against rsc obtained from trial-493 

length spike counts, is in (c). Apart from an increase at 494 

the first time point, likely due to the onset of the visual stimulus, this showed no significant modulation 495 

over the course of the trial. Note that values are all significantly less than 1 because smaller counting 496 

windows introduced a source of uncorrelated noise across trials. 497 

  498 
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Figure 8. The task-dependent component of 499 

rsc structure accounts for choice-related 500 

activity. a. Histogram of observed CPs, from the 501 

subset of neurons (n=144) significantly 502 

preferring one of the two task orientations 503 

(d�>0.9 at highest signal level). Mean CP of 504 

0.54 exceeded chance (p<0.001, bootstrap test 505 

using cell resampling, one-sided). CPs that were 506 

individually significant (p<0.05, bootstrap test 507 

using trial resampling, one-sided) are shown in 508 

black. b. We tested the known analytical relationship between spike-count correlations, readout weights, 509 

and CPs, under the assumption of a linear decoder applied to a population of sensory neurons17 (see 510 

Methods). Here CP is defined as a continuous function of task-aligned preferred orientation, analogous to 511 

our description of the rsc matrix in Fig. 2e. The dashed black line shows the profile of CP observed across 512 

preferred orientations, after smoothing with a von Mises kernel approximating a wrapped Gaussian with 513 

10° s.d. We applied a fixed sign convention to the CP values across all neurons, equivalent to arbitrarily 514 

calling the 0°-choice the preferred one. The predicted CP profiles (solid lines) show the CP elicited by 515 

reading out a sensory population with different rsc structures. Readout weights across orientations were 516 

unobserved and the profiles shown are averages of a large set generated from different assumed readout 517 

weight profiles (see Methods). c. Mean CP (using the traditional sign convention) associated with the 518 

profiles in (b), +/- 1 bootstrap SEM obtained by cell resampling (n=811 neurons). Note that the mean CP 519 

shown here is different to the one shown in (a) because all neurons are included, regardless of their 520 

orientation preference.  521 
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Methods 638 

Electrophysiology 639 

We recorded extracellular spiking activity from populations of V1 neurons in two male, awake, 640 

head-fixed rhesus monkeys (Macaca mulatta). For the majority of the recordings, monkey ‘lem’ was 14 641 

while monkey ‘jbe’ was 16 years old, before which time they had each experienced extensive behavioral 642 

training, including on other behavioral paradigms for monkey ‘lem’. Monkey ‘lem’ could not be pair 643 

housed due to antisocial behavior. Both monkeys were implanted with a head post and scleral search coils 644 

under general anaesthesia51. In monkey ‘lem’, a recording chamber was implanted over a craniotomy 645 

above the right occipital operculum, as described previously52, by which we introduced linear 646 

microelectrode arrays (U- and V-probes, Plexon; 24-contacts, 50 or 60 µm spacing) at an angle 647 

approximately perpendicular to the cortical surface with a custom micro-drive. We positioned the linear 648 

arrays so that we roughly spanned the cortical sheet, as confirmed with current-source density analysis, 649 

and removed them after each recording session. In monkey ‘jbe’, a planar “Utah” array (Blackrock 650 

Microsystems; 96 electrodes 1mm in length inserted to target supragranular layers, 400 um spacing) was 651 

chronically implanted, also over the right occipital operculum.  All procedures were performed in 652 

accordance with the U.S. Public Health Service Policy on the humane care and use of laboratory animals 653 

and all protocols were approved by the National Eye Institute Animal Care and Use Committee. 654 

Broadband signals were digitized at 30 or 40 kHz and stored to disk. Spike sorting was performed 655 

offline using custom software in MATLAB®. First, spikes were detected using a voltage threshold applied 656 

to high-pass filtered signals. Next, triggered waveforms were projected into spaces defined either by 657 

principal components or similarity to a template.  Clusters boundaries were finally estimated with a 658 

Gaussian mixture model, and then rigorously verified and adjusted by hand when needed.  In the linear 659 

array recordings, spike sorting yield and quality was substantially improved by treating sets of three or 660 

four neighboring contacts as “n-trodes”.  As this was not possible with the Utah array due to the greater 661 

interelectrode spacing, we excluded pairs of neurons recorded on the same electrode to avoid 662 
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contamination by misclassification. Neurons from separate recording sessions were treated as 663 

independent. To reduce the possibility that a single neuron from the Utah array contributed to two 664 

datasets, we included only sessions that were separated by at least 48 hours (with a median separation of 5 665 

days). We excluded from analysis those neurons whose mean evoked firing rate did not exceed 7 666 

spikes/second.   667 

Visual stimuli 668 

 All stimuli were presented binocularly on two gamma-corrected cathode ray tube (CRT) 669 

monitors viewed through a mirror haploscope, at 85 or 100Hz.  The monitors subtended 24.1° x 19.3° of 670 

visual angle (1280 x 1024 pixels).  The stimuli presented during performance of the discrimination task 671 

consisted of bandpass filtered dynamic white noise, as described previously31.  Briefly, stimuli were 672 

filtered in the Fourier domain with a polar-separable Gaussian.  The peak spatial frequency was optimized 673 

for the recorded neuronal population (1 and 4 cpd medians for ‘lem’ and ‘jbe’, respectively) while the 674 

peak orientation could take one of two orthogonal values the animal had to discriminate in a given session. 675 

The angular s.d. of the filter modulated the orientation bandwidth and was varied trial to trial. A 2D 676 

Gaussian contrast envelope was applied to the stimulus so that its spatial extent was as small as possible 677 

while still covering the minimum response fields of the neuronal populations being recorded. The median 678 

envelope s.d. was 0.6 degrees for both animals.  The median stimulus eccentricity was 5.4 degrees for 679 

‘lem’ and 0.5 degrees for ‘jbe’. In Fig. 1, we quantify orientation bandwidth as % signal strength.  This 680 

was calculated as 100 � �, where � is the length of the resultant vector associated with the angular 681 

component of the stimulus filter.  To perform psychophysical reverse correlation (PRC) for orientation 682 

(Supplementary Fig. 1), we summarized the orientation energy of the stimulus on each trial as the radial 683 

sum of its 2D amplitude spectrum (averaged across frames) to remove information about spatial frequency 684 

and phase.  685 
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We estimated neuronal orientation preferences in separate blocks of trials, using 420-ms 686 

presentations of the following types of stimuli, presented at a range of orientations: 1) an orientation 687 

narrowband version of the stimulus described above (10° angular s.d.); 2) sinusoidal gratings; and 3) 688 

circular patches of dynamic 1D noise patterns (random lines). The preferred orientation of a neuron was 689 

calculated as the circular mean of its orientation tuning curve.  For each neuron, from among the set of 690 

tuning curves elicited by the different stimulus types described above, we chose as the final estimate of 691 

preferred orientation the one with the smallest standard error, obtained by resampling trials. We excluded 692 

from further analysis all neurons where this exceeded 5°. On a subset of sessions, we also used these 693 

orientation-tuning blocks to present examples of the 0%-signal orientation-filtered noise stimuli. These 694 

were presented at the same location and size as during task performance, allowing us to calculate rsc 695 

structure in the absence of task engagement but with identical retinal input. 696 

Orthogonal orientation discrimination task 697 

The animals performed a coarse orientation discrimination task using the orientation-filtered noise 698 

stimuli, as described previously31.  To initiate a trial, the subject had to acquire a central fixation square.  699 

After a delay of 50 ms, the stimulus appeared for a fixed duration of 2 seconds.  The trial was aborted if 700 

the subject broke fixation at any point during the stimulus presentation, defined as either 1) making a 701 

microsaccade covering a distance greater than a predefined threshold (typically 0.5°) or 2) a deviation in 702 

mean eye position from the center of the fixation point of more than a predefined threshold, typically 0.7°.  703 

At the end of the stimulus presentation, two choice targets appeared.  These were Gabor patches of 2-3° in 704 

spatial extent, oriented at each of the two discriminandum orientations.  The locations of the choice targets 705 

depended on the task.  For orientation pairs near horizontal and vertical (-22.5° – +22.5° and 67.5° – 706 

112.5°), the choice targets were positioned along the vertical meridian, at an eccentricity of about 3°, with 707 

the more vertically-oriented target appearing always in the upper hemifield.  For orientation pairs near the 708 

obliques (22.5° – 67.5° and 112.5° – 157.5°), the choice targets were positioned along the horizontal 709 

meridian, at the same range of eccentricities, with the smaller of the two orientations always appearing in 710 
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the left hemifield. (We use the convention that horizontal is 0° and that orientation increases with 711 

clockwise rotation.) To penalize random guessing, the volume of liquid reward delivered after correct 712 

choices was doubled with each consecutive correct choice, up to a maximum of four times the initial 713 

amount. Since we were primarily interested in the effect of task engagement on neuronal activity, we 714 

applied a behavioral criterion to our data, excluding sessions where the subject’s psychophysical threshold 715 

(defined as the signal level eliciting 75% correct performance) exceeded 14% signal.  716 

To determine the influence on rsc of random fluctuations in the stimulus introduced by the use of 717 

white noise, we used a double-pass experimental design53 in which each exact stimulus sequence was 718 

presented on two separate trials. We calculated the stimulus-induced rsc for each pair, as described below, 719 

after permuting the indices of the paired repeat trials for one neuron’s trial sequence. This eliminated the 720 

temporal alignment of the two trial sequences, abolishing stimulus-independent covariability, while 721 

preserving the identity between the stimuli associated with the two trial sequences.  722 

We attempted to use as wide a range of task contexts as possible over the course of data collection 723 

from both animals, but task contexts were not presented in a randomized way to the subjects, since 724 

performing a new task context required several days of retraining. Additionally, data collection and 725 

analysis was not performed blind to the experimental conditions – in particular, experimenters were aware 726 

what the instructed task context was. For further detailed information on experimental design and 727 

reagents, see the Life Sciences Reporting Summary included online. 728 

Spike-count correlation measurements 729 

Spike-count correlations were calculated as the Pearson correlation between spike counts, counted 730 

over the entire duration of the stimulus, with a 50-ms delay to account for the typical V1 response latency.  731 

Spike counts were first z-scored separately within each experimental block (typically a set of 100-200 732 

trials lasting about 10 minutes) and each stimulus condition. This removed correlations related to long-733 

term firing rate nonstationarities and allowed us to combine trials at different signal levels without 734 
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introducing correlations related to similarity in stimulus preference. We used a balanced z-scoring method 735 

proposed recently to prevent bias related to differences in choice distributions across signal levels54. We 736 

excluded pairs that were not simultaneously isolated for at least 25 trials total. The median number of 737 

trials per pair during task performance was 752.  738 

Despite the use of z-scoring, any influence of stimulus history on firing rates could in principle 739 

introduce a source of covariability that depended on the task context, since the set of stimuli used was not 740 

identical across task contexts (only the 0%-signal condition was identical). We ruled out this confound by 741 

adapting the z-scoring procedure described above to further remove any information about the preceding 742 

stimulus contained in the spike rate on the current trial. To do this, we z-scored spike counts separately 743 

within groups of trials for which the current stimulus and the stimulus on the preceding trial were the 744 

same. This produced identical results to those shown in the main analysis (Supplementary Fig. 5). 745 

A main goal of the study was to measure how spike-count correlation varies with pairwise 746 

orientation.  We illustrate this dependence in several figures as a smoothed function estimated from 747 

measures of rsc combined across multiple recording sessions, which we then sampled discretely with 1° 748 

resolution. The smoothed estimates were obtained using a bivariate von Mises smoothing kernel.  A point 749 

in the correlation matrix C was given as: 750 

���, 	
 � ∑ ����
��� ��,�,��,	�


∑ ��
��� ��,�,��,	�
  , where  ���, 	, 
� , ��
 � �� ���������
�����	���

,                    (1) 751 

��  is the ith rsc measurement, 
� and �� are the preferred orientations of the ith pair, and � is the von Mises 752 

width parameter. We set � � 1.3π, yielding a smoothing kernel closely approximating a bivariate 753 

wrapped Gaussian with 15° s.d. (Note that this smoothing procedure was only performed to generate 754 

figures in the manuscript, and was not applied as a pre-processing step in any of the quantitative analyses.) 755 

In some cases, we expressed the rsc matrix in a task-aligned coordinate frame (e.g. Fig. 2e), for which the 756 

preferred orientations of the ith pair relative to the task orientations were used for 
� and ��.  Since there 757 

were always two orthogonal task orientations, we averaged across both possible alignments, such that 758 
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���, 	
 � ��� � 90°, 	 � 90°
. All angular quantities were doubled for the calculations, as orientation 759 

has a period of 180°. To generate the kernel-smoothed profile of CP (Fig. 8), we used a one-dimensional 760 

equivalent of the procedure above, in which preferred orientations were parameterized only by a single 761 

parameter. 762 

We considered using covariance instead of correlation to measure the covariability of neuronal 763 

pairs. However, a key advantage of correlation is that it is insensitive to the variance of the spike counts. 764 

By contrast, measures that do not normalize for spike-count variance will effectively overweight more 765 

variable pairs in any population analysis. In addition, using spike-count correlation allowed us to combine 766 

z-scored counts across stimulus conditions. This substantially increased the signal-to-noise ratio of our 767 

measurements. As a confirmation that this approach yielded results that generalize, we measured the 768 

average, task-aligned spike-count covariance matrix, using the same approach as we used to generate the 769 

rsc matrix in Fig. 2e. To estimate the spike-count covariance between a given pair of neurons without 770 

including an effect of common stimulus drive, we used an average of the covariance values measured 771 

separately for each stimulus condition, weighted by number of trials. We found that the pattern in the 772 

spike-count covariance matrix was closely similar to the rsc matrix (Supplementary Fig. 11). This 773 

confirms that our main results are not dependent on the use of rsc measured with normalized spike counts. 774 

Regression model 775 

We used a multilinear regression model to identify fixed and task-dependent components of the 776 

structured correlations we observed. We describe the set of observations (811 individual pairwise rsc 777 

measurements) in terms of a set of two underlying correlation structures: one defining rsc as a function of 778 

pairwise preferred orientation alone (“fixed”) and the other defining rsc as a function of pairwise preferred 779 

orientation relative to the task orientations (“task-dependent”). In order to provide a continuous and 780 

smooth description of the data, each component was parameterized as the sum of an array of � � � evenly 781 

spaced basis functions. Each observation, 	� , was expressed as: 782 
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	� � ��
����� · ������ � ������ · ����� � � � ��                                               (2) 783 

��
����� and ������  are length-n2 vectors of loadings onto the basis functions, which were given by 784 

evaluating the basis functions at the location corresponding to the pairwise orientation preference of the ith 785 

pair. ������ and ����� are the length-n2 vectors of amplitudes of the basis functions (coefficients to be fit), 786 

� is a model constant, and  ·  is the element-wise product. For the basis functions, we used bivariate von 787 

Mises functions, with no correlation and equal width in both dimensions. Thus the kth loading ( ��
�������
 788 

or ��������
) was given by: 789 

����
 � �� ��	
����
�
����	
����
�

��� �  �� ��	
����
�
����	
����
�

���

�                                               (3) 790 

where 
� and �� are the preferred orientations of the ith pair (relative to the task orientations in the case of 791 

the task-dependent loadings), �� is a pair of orientations defining the location of the kth basis function, Z is 792 

a normalization constant such that the sum of all loadings for observation i (��
����� � ������ ) is 1, and � is 793 

the basis function width. Two terms are needed to express the loadings because the data are correlations: 794 

the first term describes the upper triangular portion and the second describes the lower triangular portion. 795 

Again, angular quantities were doubled. � acts as a smoothing hyperparameter.  We found that arrays of 796 

8x8 were sufficient to describe the structure of the two components. It was sufficient only to fit the upper 797 

triangular portion of the array of basis functions. Thus, each component was described by 36 parameters 798 

(although the effective number of parameters is significantly less because of the basis function smoothness 799 

and the ridge penalty). We fit the model using ridge regression. The unique optimal solution could 800 

therefore be derived analytically as  ! � �"�" � #$
��"�%, where X is the concatenated design matrix 801 

combining ������ and ����� and # is the ridge parameter, which penalized the squared amplitude of the 802 

basis functions. The optimal values of the hyperparameters # and � were chosen under 50-fold cross-803 

validation. 804 
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To ensure our results were not due to the particular way the above model was constructed, we 805 

compared them to those obtained using a conceptually similar regression model. In this alternative model, 806 

instead of a grid of basis functions with fixed locations, we allowed each component to be described as the 807 

sum of a variable number of von Mises basis functions with locations (as well as width and amplitude) fit 808 

to the data, again using least squares. This alternative model allowed, in principle, for fewer parameters 809 

and for fine details in the rsc structure to be captured by allowing some basis functions to have small 810 

width. The relative contribution of the fixed and task-dependent components of rsc structure could be 811 

tested in terms of the number of basis functions needed to best explain the data. In this case, the kth loading 812 

( ��
�������
 or ��������
) was given by: 813 

����
 � ���  ����������
�������	����

��� � ���  �����	����
������������

���                             (4) 814 

where 
� and �� are the preferred orientations of the ith pair (relative to the task orientations in the case of 815 

the task-dependent loadings), �� is a pair of orientations defining the location of the kth basis function (fit 816 

to the data), and ��  is the width of the kth basis function (fit to the data). Because each basis function has 817 

an independent width and location fit to the data, the model predictions are non-linear functions of the 818 

parameters, unlike in the previously described regression model. Furthermore, the fitting surface has many 819 

local minima because the basis functions can simply be permuted to produce an identical model. 820 

Therefore, the optimal parameters were identified using numerical optimization with an array of starting 821 

points to identify a globally optimal solution. Since each basis function required four parameters 822 

(amplitude, width, and location in two dimensions), the total number of parameters was 4*m+1, where m 823 

is the sum of the number of allowed fixed and task-dependent basis functions and we add an additional 824 

parameter for the model constant. 825 

Simple parametric models 826 

We modeled the observed set of rsc values using two simple parametric models: a “single 827 

eigenvector” model and a “diagonal ridge” model. In the “single eigenvector” model, each observation 	�  828 
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was modeled as the outer product of an eigenvector ", evaluated at the relevant pair of orientations. The 829 

eigenvector was parametrized as the difference of two von Mises functions separated by 90°: 830 

"�μ
 � '����  ���� �!
 (  '"���  ���� �!�#
                                                 (5) 831 

where μ is the difference in preferred orientation and the task orientation (in angle-doubled radians), the 832 

')* are the amplitudes to be fit, the �$* are the widths to be fit, and + is the offset of the eigenvector peak 833 

and trough from the task orientations (allowing a mismatch between the model eigenvector and the task, 834 

and also fit to the data). An observed rsc value 	�  was described as: 835 

	� � "�
�
"���
 � � � ��                                                               (6) 836 

where 
� and �� are the task-aligned preferred orientation of the pair and � is a model constant. The model 837 

contained six total free parameters which were fit using gradient descent to minimize the squared error in 838 

the rsc predictions. 839 

 In the “diagonal ridge” model, rsc values were modeled as a decaying function of the difference in 840 

preferred orientation, independent of task. The dependence was modeled as a von Mises function. A given 841 

rsc value 	�  was modeled as: 842 

	� � ' · �� �������	�
 � � � ��                                                            (7) 843 

where 
� and �� are the preferred orientation of the pair, � is a model constant, and ' and � parameterize 844 

the von Mises function. The model contained three total free parameters which were fit using gradient 845 

descent to minimize the squared error in the rsc predictions. 846 

Estimating explainable variance 847 

 While the above models did not explain more than a small percentage of the variance of the raw 848 

observed rsc values, this is not surprising as the raw correlation data do not vary smoothly with preferred 849 

orientation (reflecting both noise, and the fact that rsc is known to depend on parameters other than 850 
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orientation.3,22,23). For this reason, we measured goodness-of-fit relative to an estimate of the explainable 851 

variance, which we took as the variance explained simply by a smoothed version of the raw data (sum of 852 

values in fixed and task-aligned matrices was 3.6%). Smoothing was performed with a von Mises kernel, 853 

with width chosen to maximize variance explained. 854 

Eye movements 855 

Both animals tended to make anticipatory microsaccades near the end of the trial that predict their 856 

upcoming choice, consistent with a prior study31. This raised the possibility that choice-related eye 857 

movements gave rise to task-dependent changes in retinal input that explained the correlated fluctuations 858 

we observed. To rule this out, we measured the task-aligned rsc matrix using a subset of trials on each 859 

session for which fixational eye position was not predictive of choice. To identify these trials, we used 860 

linear discriminant analysis (LDA) to predict the subject’s choices using the time series of mean binocular 861 

eye-position recorded on each trial. Then, we iteratively removed trials, starting with those furthest from 862 

the classification boundary, until classification performance no longer exceeded chance. This analysis 863 

(Supplementary Fig. 7) was restricted to the first 1.5 seconds of the trial, because we found that 864 

considering later time points (where most anticipatory microsaccades occurred) required discarding too 865 

many trials.  866 

Choice probability predictions 867 

 Choice Probability was calculated in the standard way35. We only used 0%-signal trials, as the 868 

uneven choice distributions elicited by signal trials yield noisier CP measurements. Assuming feedforward 869 

pooling with linear readout weights, the relationship between the covariance matrix for a population of 870 

neurons, the readout weight of each neuron, and the Choice Probability (CP) of each neuron is: 871 

,-� � �
" � "

# sgn�1�
 arctan 621� �" ( 1
��

   with   1� � �%&
�
'(��&�%&                                  (8) 872 
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where CPk is the CP of neuron k with respect to choice 1, β is the vector of readout weights and C is the 873 

covariance matrix17.  We used this known relationship to quantify the CPs that would be associated with 874 

the rsc structure we observed and the fixed and task-dependent components we identified, assuming only a 875 

feedforward source of CP (Fig. 8).  CPs, rsc structure, and readout weights were described as task-aligned 876 

functions of preferred orientation. This is equivalent to assuming a population of infinite size that is 877 

homogeneous at a given orientation. For the fixed component of rsc, which was indexed relative to raw 878 

orientation preferences, we generated a task-aligned version by substituting the observed rsc values with 879 

model fits (using only a fixed component of the model) and then generating a smoothed task-aligned 880 

matrix as in Fig. 2e, using these substituted values. To guarantee real-valued CPs on [0,1], we performed 881 

the calculations using a symmetric positive definite approximation55 of the rsc matrices, which introduced 882 

negligible error.   883 

Since the readout weights were unknown, we generated a random distribution of 1000 plausible 884 

readout weight profiles that could support task performance. To generate a sample from this distribution, 885 

we started with a vector of random weights (drawn from a normal distribution) and applied the 90° 886 

symmetry inherent in the task, such that �� �  (���)*, where �� is the weight assigned to neurons with 887 

task-aligned preferred orientation 
. Then, we smoothed with a wrapped Gaussian kernel with 15° s.d. and 888 

excluded profiles which did not have a circular mean within 22.5° of choice 1 (0°).  In practice, we found 889 

the CP predictions to be insensitive to the readout weights (Supplementary Fig. 9), which is not surprising 890 

for a nearly rank-1 matrix (since for exactly rank-1 matrices, the CPs are independent of the weights)17. 891 

We can use correlations interchangeably with covariances in Eq. 8, under the simplifying 892 

assumption that the variance is uniform as a function of preferred orientation. If 8 is the correlation matrix 893 

for a population with uniform variance #, then it follows that: 894 

1� � ��+&
�
'�,��&���+
& � �+&
�

',��&�+&                                                             (9) 895 
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where  9�� : 1 for all k. We felt that spike-count variance that depended systematically on preferred 896 

orientation was unlikely to be a feature of the V1 representation, and thus that the advantages of using 897 

correlations outweighed the cost. 898 

Noise in the decision process after pooling (pooling noise) has the effect of uniformly scaling 899 

down CPs, such that 1�  in Eq. 8 is substituted with: 
�%&
�

-(���&�%&�.����
� 


 , where ;/001"  is the variance of the 900 

pooling noise6. We found that non-zero pooling noise was needed to avoid overestimating the magnitude 901 

of CP from the observed correlation structure.  We used a fixed value of pooling noise in our predictions 902 

such that the average squared difference between the CP profile predicted from the observed correlation 903 

matrix and the observed CP profile was minimized. Empirically, we found that pooling noise variance of 904 

0.6 was optimal. Since our spike counts were normalized to have unit variance, this implies pooling noise 905 

whose variance is 60% of the average spike-count variance of single neurons. This should be interpreted 906 

with care, as overestimation of CPs may also be an artefact related to the assumption of a homogeneous 907 

population17. Alternatively, the need to invoke pooling noise may be due to nonuniform sensory 908 

integration across the trial, which is distinct but which would also have an attenuating effect on CP when 909 

measured over the entire trial.  910 

Statistics 911 

 Statistical tests were performed non-parametrically using bootstrapping or other resampling 912 

methods, as described, with 1,000 resamples. Nonparametric statistical testing is superior when the 913 

underlying distribution of the data cannot be assumed. When p-values of p<0.001 are reported, this 914 

indicates the null hypothesis can be ruled out with the most confidence possible given the number of 915 

resamples performed. In most cases, resampling was performed from the set of recorded neuronal pairs 916 

(n=811), and always with replacement. In all figures, one asterisk indicates significant at the p<0.05 level, 917 

two indicates p<0.01, and three indicates p<0.001. When standard error bars are shown, this makes the 918 

assumption of normality in the bootstrap distribution of the test statistic. However, this assumption was 919 
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not formally tested. No statistical methods were used to predetermine sample sizes but our sample sizes 920 

are similar to those of previous publications22,23,27.  921 

Data availability 922 

 All relevant data are available upon reasonable request from the authors. 923 

Code availability 924 

All computer code used to generate the results are available upon request from the authors. 925 

  926 
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