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1 Abstract

The success of targeted cancer therapy is limited by drug resistance that can result from tumor genetic1

heterogeneity. The current approach to address resistance typically involves initiating a new treatment after2

clinical/radiographic disease progression, ultimately resulting in futility in most patients. Towards a poten-3

tial alternative solution, we developed a novel computational framework that uses human cancer profiling4

data to systematically identify dynamic, pre-emptive, and sometimes non-intuitive treatment strategies that5

can better control tumors in real-time. By studying lung adenocarcinoma clinical specimens and preclinical6

models, our computational analyses revealed that the best anti-cancer strategies addressed existing resistant7

subpopulations as they emerged dynamically during treatment. In some cases, the best computed treatment8

strategy used unconventional therapy switching while the bulk tumor was responding, a prediction we con-9

firmed in vitro. The new framework presented here could guide the principled implementation of dynamic10

molecular monitoring and treatment strategies to improve cancer control.11

2 Introduction12

Targeted cancer therapies are effective for the treatment of certain oncogene-driven solid tumors, including13

non-small cell lung cancers (NSCLCs) with activating genetic alterations in EGFR (epidermal growth factor14

receptor), ALK (anaplastic lymphoma kinase), BRAF, and ROS1 kinases [1, 2, 3]. However, inevitably resis-15

tance to current targeted therapies emerges, typically within months of initiating treatment and remains an16

obstacle to long-term patient survival [1, 2, 3, 4]. The presence and evolution of tumor genetic heterogeneity17

potentially underlies resistance and also limits the response to successive therapeutic regimens that are used18

clinically in an attempt to overcome resistance in the tumor after it has emerged [4, 5, 6, 7]. Indeed, while19

a targeted therapy may be effective in suppressing one genomic subclone within the tumor, other clones20

may be less sensitive to the effects of the drug. Thus, through selective pressures, resistant populations can21

emerge and promote tumor progression. Moreover, the current paradigm of solid tumor treatment is largely22

based on designing fixed (static) treatment regimens that are deployed sequentially as either initial therapy23

or after the clear emergence of drug-resistant disease, detected by clinical and radiographic measures of24

tumor progression. In contrast, designing dynamic treatment strategies that switch between targeted agents25
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(or combinations thereof) in real time in order to suppress the outgrowth of rare or emergent drug-resistant26

subclones may be a more effective strategy to continually suppress tumor growth and extend the duration of27

clinical response. Thus, there is a need to identify principled approaches for the predictive design of effective28

combination (poly)therapy strategies to pre-empt the growth of multiple tumor subclones actively during29

treatment.30

Mathematical modeling, analysis and computational simulations of tumor growth, heterogeneity and31

inhibition by various therapeutic modalities has long been employed as a method to provide insight into32

evolutionary outcomes and effective treatment strategies. Such modeling may include the use of stochastic33

[8, 9, 10] or deterministic differential equation implementations [11, 12] to propose static or sequential34

treatment strategies that delay resistance in various cancer models. Recent studies by Zhao et al. [13, 14]35

incorporate the use of mathematical optimization, a fundamental subject in engineering design to predict36

static combination therapies that effectively address heterogeneity in a lymphoma model. Complementary37

engineering techniques from optimal control theory provide an additional theoretical framework to design38

dynamic drug scheduling regimens in the context of dynamical systems models of cancer heterogeneity and39

evolution. The application of optimal control theory to treatment design has a history dating back to the40

1970s [15, 16] with more recent examples including that of scheduling angiogenic and chemotherapeutic41

agents [17] or immuno- and chemotherapy combinations [18]. While mathematical modeling and engineering42

methods have been used extensively to inform treatment strategy design, a significant drawback to prior work43

in the field is that the underlying computational framework(s) have not conjointly accomplished the following44

important aims: (1) allowing for the systematic principled design of dynamic treatment strategies using45

experimentally identified models of tumor dynamic behaviors; and (2) developing quantitative methods that46

allow for the exploration of the robustness of predicted treatment strategies with respect to multiple common47

challenges in real-world patients, such as tumor heterogeneity and fluctuations in drug concentrations.48

Here, we present a novel approach that combines a mathematical model of the evolution of tumor cell49

populations with parameters identified from our experimental data and an engineering framework for the50

systematic design of polytherapy scheduling directed at the following unresolved issues in the field: (1) how51

tumor genetic composition and drug dose constraints affect the long term efficacy of combination strategies,52

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2016. ; https://doi.org/10.1101/086553doi: bioRxiv preprint 

https://doi.org/10.1101/086553
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2) how optimal scheduling of combination small molecule inhibitors can help to overcome heterogeneity, ge-53

nomic evolution and drug dose fluctuations, and (3) how serial tumor biopsy or blood-based tumor profiling54

scheduling in patients can be timed appropriately. To tackle these questions, we developed an integrated55

experimental and computational framework that solves for candidate combination treatment strategies and56

their scheduling given an initial polyclonal tumor and allows the exploration of treatment design trade offs57

such as dosage constraints and robustness to small fluctuations in drug concentrations. This methodology58

is rooted in optimal control theory and incorporates an experimentally derived mathematical model of evo-59

lutionary dynamics of cancer growth, mutation and small molecule inhibitor pharmacodynamics to solve60

for optimal drug scheduling strategies that address tumor heterogeneity and constrain drug-resistant tumor61

evolution. Our key new insights include (1) heterogeneous tumor cell populations are better controlled with62

switching strategies; indeed, static two-drug strategies are unable to effectively control all tumor subpop-63

ulations in our study; (2) constant combination drug strategies are less robust to perturbations in drug64

concentrations for heterogeneous tumor cell populations, and hence more likely to lead to tumor progression;65

(3) countering the outgrowth of subclonal tumor populations by switching polytherapies even during a bulk66

tumor response can offer better tumor cell population control, offering a non-intuitive clinical strategy that67

pro-actively addresses molecular progression before evidence of clinical or radiographic progression appears.68

3 Results69

3.1 The presence and evolution of intratumoral genetic heterogeneity in a pa-70

tient with EGFR-mutant lung adenocarcinoma71

To explore the utility of our approach, we focused on EGFR-mutant lung adenocarcinoma. Many mechanisms72

of resistance to EGFR-targeted therapies in lung adenocarcinoma are well characterized [19]. Furthermore,73

tumor heterogeneity and multiple resistance mechanisms arising in a single patient can occur [2, 19]. Thus,74

overcoming polygenic resistance is of paramount importance in this disease and will likely require a non-75

standard approach. To illustrate this point, we investigated the molecular basis of targeted therapy resistance76

in a 41-year old male never-smoker with advanced EGFR-mutant (L858R) lung adenocarcinoma. This pa-77

tient responded to first-line treatment with erlotinib but progressed on this therapy within only four months78

after initial treatment, instead of the typical 9-12 month progression free survival observed in EGFR-mutant79
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lung adenocarcinoma patients. We reasoned that genomic analysis of this patient’s outlier clinical pheno-80

type could reveal the molecular pathogenesis of suboptimal erlotinib response. Using a custom-capture assay81

[20, 21], we deeply sequenced the coding exons and selected introns of 389 cancer-relevant genes in both the82

pre-treatment and the erlotinib-resistant tumor specimen and matched normal blood to identify somatic83

alterations that could mediate resistance (Materials and Methods). Exome sequencing of the pre-treatment84

specimen confirmed the presence of the EGFRL858R mutant allele that was identified through prior clinical85

PCR-based sequencing of this EGFRL858R specimen (data not shown), and additionally revealed mutant86

allele-specific focal amplification of the EGFR coding locus that resulted in a high allelic frequency (95%87

variant frequency) (Fig. 1B-C). We discovered a rare concurrent subclone in the treatment-naïve tumor88

with a BRAFV600E mutation (6% variant frequency; Fig. 1B). This observation is consistent with a recent89

report of a BRAFV600E mutation in an erlotinib-resistant lung adenocarcinoma specimen [22] and recent data90

indicating that EGFR-mutant lung adenocarcinoma cells can often develop EGFR TKI resistance through91

RAF-MEK-ERK pathway activation [23]. The frequency of the subclonal BRAFV600E mutation increased92

approximately 10-fold upon acquired erlotinib resistance, from 6% to 60% in the primary and recurrent93

tumor, respectively (Figure 1C). This increase in the BRAFV600E allelic fraction was likely due to the ex-94

pansion of the BRAFV600E subclone, given that we found no evidence that this increased frequency occurred95

as a result of focal BRAF amplification in the resistant tumor (Figure 1C). Beyond the outgrowth of mutant96

BRAF, we identified two additional genetic alterations in the resistant tumor that could contribute to EGFR97

TKI resistance: focal amplification of 7q31.2 encoding MET in the resistant tumor cells, a low frequency98

EGFRT790M mutation (14% variant frequency) (Fig. 1B-C). All candidate somatic mutations and focal99

copy number amplifications conferring resistance to erlotinib therapy (in EGFR, BRAF, and MET) were100

confirmed by independent, validated DNA sequencing and FISH assays (data not shown). Thus, erlotinib101

therapy acted as a selective pressure for the evolution of multiple concurrent clonal and subclonal genetic102

alterations that could cooperate to drive rapid drug-resistant disease progression in EGFR-mutant lung ade-103

nocarcinoma.104

105
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3.2 Analysis of clonal concurrence and resistance106

While BRAFV600E, MET activation, and EGFRT790M can individually promote EGFR TKI resistance [22, 24,107

25], the therapeutic impact of the concurrence of these alterations we uncovered has not been characterized.108

Therefore, we studied the effects of BRAFV600E, MET activation, and EGFRT790M, alone or in combination,109

on growth and therapeutic response in human EGFR-mutant lung adenocarcinoma cellular models. First,110

we found that expression of V600E but not wild-type (WT) BRAF promoted resistance to erlotinib in 11-18111

cells that endogenously express EGFRL858R (Fig. S1). This erlotinib resistance in BRAFV600E-expressing112

EGFR-mutant 11-18 cells was overcome by concurrent treatment with erlotinib and selective inhibitors of113

either BRAF or MEK (vemurafenib [26] and trametinib [27] respectively (Fig. S2, S3). We next used the114

11-18 system to test the effects of MET activation by hepatocyte growth factor (HGF), which phenocopies115

the effects of MET amplification in EGFR TKI resistance[25, 28] on therapeutic sensitivity. We found that116

MET activation not only promoted erlotinib resistance in parental 11-18 cells but also enhanced the effects117

of BRAFV600E expression on erlotinib resistance in these cells (Fig. S1). This resistance induced by MET118

activation in 11-18 parental and BRAFV600E-expressing cells was accompanied by increased phosphorylation119

of MEK, ERK, and AKT (Fig. S3). Treatment with the MEK inhibitor trametinib, but not the BRAF120

inhibitor vemurafenib or the MET inhibitor crizotinib, overcame erlotinib resistance and inhibited phospho-121

ERK in MET-activated BRAFV600E-expressing 11-18 cells (Fig. S3), providing a rationale for polytherapy122

against EGFR and MEK in EGFR-mutant tumors with activating co-alterations in MET and BRAF.123

Given that we found a rare EGFRT790M subclone in the polyclonal resistant tumor, we next explored124

whether BRAFV600E expression could promote resistance to EGFR TKI treatment in H1975 human lung125

adenocarcinoma cells that endogenously express EGFRT790M and EGFRL858R. We observed that BRAFV600E
126

modestly decreased sensitivity to afatinib, an approved irreversible EGFR kinase inhibitor effective against127

EGFRT790M [29], and that this effect of BRAFV600E on afatinib sensitivity was blunted by vemurafenib (Fig.128

S4). Together, our data indicate that erlotinib therapy induced the evolution of multiple concurrent events129

that re-shaped the polyclonal tumor genetic landscape during the onset of resistance; resistance could be130

overcome by polytherapy against both EGFR and MAPK signaling in preclinical models.131
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3.3 Polytherapy Provides Temporary Response in Heterogeneous or MET Ac-132

tivated Tumors133

While we conducted a finite set of experiments to test various rational drug combinations that could address134

the heterogeneous basis of resistance in this patient’s disease, this approach is not easily scaled; further, it135

is not readily feasible to explore all possible drug combinations and drug doses over a continuous range or136

anticipate the effects of the myriad of possible tumor subcompositions on tumor control under treatment137

using cell-based assays alone. Therefore, we sought to provide a more general and scalable framework for138

understanding the impact of each genetically-informed targeted therapy strategy on the temporal evolution139

of the multiple concurrent EGFR-mutant tumor cell subclones present in this patient, as a potentially more140

generalizable platform. We developed an ordinary differential equation (ODE) model of tumor growth,141

mutation and selection by small molecule inhibitors with parameters identified from experimental data (Fig.142

2A-B and Equation S1) and interrogated it to uncover the limitations of the targeted treatments in the context143

of tumor heterogeneity and evolution. We first confirmed that our model was able to capture the essential144

tumor population dynamics by showing a qualitative equivalence between the patient’s clinical course and145

our model simulation of similar tumor subpopulations consisting of 94 % EGFRL858R, 6% BRAFV600E and146

assuming the existence of a very low initial frequency of 0.01% MET amplification of EGFRL858R, BRAFV600E
147

and EGFRT790M in the presence of 1 µM erlotinib (Fig. 3A-B).148

To systematically explore the utility of many different drug combination regimens to overcome polygenic149

resistance, we used our computational model to calculate the efficacy of clinically relevant doses of erlotinib150

and afatinib in combination with either crizotinib, trametinib or vemurafenib on the growth of parental151

11-18 and H1975 cells EGFR mutant cell lines. We found that most polytherapies could address only certain152

subpopulations (Fig. 4A). For example, the afatnib/trametinib combination elicited a complete response for153

a representative heterogeneous MET- tumor cell population comprised of (89% EGFRL858R, 10% EGFRL858R
154

BRAFV600E, 1% EGFRL858R, T790M) compared to rapid progression for its MET activated analog (Fig. 4C).155

Moreover, we computed the concentrations of erlotinib or afatinib in combination that could guarantee a156

progression-free response for both MET activated or MET neutral tumor cell populations (SI, Mathematical157

Methods) and found that in many cases, the concentrations were considerably higher than clinically feasible158
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(due to either known pharmacokinetic limitations or dose limiting toxicities) (Fig. 4B).159

To better understand the efficacy of the combination therapy over time, we sought to classify which160

initial tumor cell subpopulations could eventually lead to therapeutic failure when treated with different161

concentrations of EGFR TKIs in combination with crizotinib, trametinib or vemurafenib. We defined the162

evolutionary stability of a subpopulation as the worst-case evolutionary outcome, in each case where the163

particular subpopulation is present upon treatment initiation. More precisely, the evolutionary stability is164

the maximum eigenvalue of each evolutionary branch downstream of the subclone (SI, Section 3.2). This165

approach provides an assessment of which subclones present in the initial tumor cell population are likely166

to lead to overall progression (a positive evolutionary stability) versus those that lead to response (a neg-167

ative evolutionary stability) when treated with a particular combination therapy. Our analysis confirms168

that progression-free response on combination therapies is sensitive to both EGFR TKI concentration and169

dependent on whether pre-existent subpopulations are effectively targeted at these concentrations (Fig. 4D170

and Fig. S5-S7). Overall, this analysis revealed that combinations of two signal transduction inhibitors had171

limited effectiveness in durably controlling resistance over a longer time horizon.172

3.4 Engineering Drug Scheduling to Control Tumor Evolution173

We next explored how the rational design of combination drug scheduling strategies could address this issue.174

Experimental studies have recently proposed drug pulsing [30] or drug switching [10] as a strategy to delay175

the growth of certain cancers. To this end, we proposed a novel methodology rooted in engineering principles176

to design drug scheduling strategies that best control the growth and evolution of tumor cell populations.177

In particular, we apply concepts from optimal and receding horizon control theory to our experimentally178

integrated model of lung adenocarcinoma evolution to compute treatment strategies that minimize tumor179

cell populations over time. Our algorithm allows for the specification of treatment design constraints such as180

maximum dose, the time horizon over which the treatment strategy is applied and the switching horizon, that181

is the minimum time over which one particular treatment can be applied. This algorithm can be extended182

to include other drug related characteristics and treatment design constraints. In addition, the framework183

allows for the analysis of tradeoffs between these aspects of the design space as well as others, such as how184

robust the predicted treatment strategies are with respect to uncertainties in the model or perturbations in185
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drug dosages.186

For a predetermined time and minimum switching horizon, we define an optimal control problem (SI,187

Algorithm 1) and solve for the drug combination that best minimizes the existing tumor cell subpopulations188

for every receding switching horizon. Given that any one polytherapy is unlikely to be simultaneously effective189

against all subpopulations, the resulting optimal strategy, which maximizes the response of the tumor cells190

present at every time horizon (SI, Mathematical Methods), is potentially one that switches between drug191

combinations, at defined time points during the treatment course.192

As proof-of-principle, we determined which drug scheduling regimens could maximally reduce different193

initial tumor cell populations by solving our control problem for different allowable switching horizons over a194

thirty day period (Fig. 5). The afatinib/trametinib combination was the optimal constant strategy for tumor195

cell populations harboring the EGFRL858R,T790M mutation, and although this strategy invoked progression196

free response in HGF- tumor cell populations, most L858R HGF+ tumor cell populations progressed on197

the therapy over thirty days (Fig. 5A vs 5C and Fig. S6AB). For the HGF- tumor population comprised198

of 89% EGFRL858R, 10% EGFRL858RBRAFV600E and 1% EGFRL858R,T790M, the optimal constant strategy199

provided overall response leaving a dominant EGFRL858RBRAFV600E tumor subpopulation present whereas200

the optimal ten day switching strategy provided an enhanced response over the constant strategy by alter-201

nately targeting EGFRL858R and EGFRL858R, T790M tumor cell subpopulations (Fig. 5B). In the case of the202

HGF treated tumor cell distribution consisting of 90% EGFRL858R and 10% EGFRL858R,T790M, a constant203

combination of afatinib/trametinib was effective against the EGFRL858R,T790M, HGF+ subpopulation de-204

spite overall progression due to the outgrowth of the EGFRL858R, HGF+ tumor cell population, whereas205

a five day switching regimen between afatinib/trametinib and erlotinib/crizotinib combinations alternately206

targeted the HGF+ EGFRL858R,T790M and the EGFRL858R subpopulations (Fig. 5B and Fig. 3A) leading207

to overall response.208

More generally, the optimal constant strategies determined by our algorithm are combinations that best209

minimize existing tumor cell subpopulations at every switching horizon. In particular, a greater reduction in210

tumor cells can be achieved by switching between therapies that alternately target different subpopulations,211

even while there is overall response in the tumor (Fig. 5A). This finding suggests a non-intuitive approach to212
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the clinical management of solid tumors that would represent a departure from the current standard clinical213

practice. Our model suggests an advantage to switching treatments pro-actively even during a bulk tumor214

response, while the current paradigm in the field is to switch from the initial treatment to a new drug(s)215

only after there is clear evidence of radiographic or clinical progression on the initial treatment.216

To understand the potential benefits of switching strategies in tumors with different initial genetic hetero-217

geneity, we computed the optimal switching strategies for a subset of tumor cell distributions and compared218

them to their corresponding computed optimal constant strategies. We found that the larger the number219

of subclones present in the initial tumor, the more beneficial even a small number of switches could be220

for overall tumor cell population control (Fig. 6A and Fig. S8A). For a highly heterogeneous tumor cell221

population comprised of HGF treated 89% EGFRL858R, 10% EGFRL858RBRAFV600E, 1% EGFRL858R,T790M
222

mutations, the predicted fifteen day switching therapy (afatinib/trametib followed by erlotinib/crizotinib)223

provides an immediate benefit versus the predicted constant treatment strategy (afatinib/trametinib), yield-224

ing a 10-fold decrease in final tumor population. By contrast, for a more homogeneous tumor consisting225

of 90% EGFRL858R, 10% EGFRL858R,T790M, the optimal predicted 30, 15 and 10 day switching strategies226

are indistinguishable from the constant therapy strategy for population control. Our predictions indicate227

that a similar 10-fold reduction in final population (similar to that achieved in the heterogeneous tumor228

instance analyzed above) is achieved only with a more rapid, five day switching strategy for this more ho-229

mogeneous tumor population (afatinib/trametinib, then alternating between erlotinib/trametinib and afa-230

tinib/vemurafenib). These findings emphasize our results that while polytherapy may a provide response231

in some subsets of tumor cell populations, it provides only a temporary or no response in heterogeneous or232

MET activated tumors; in these cases, even minimal therapy switching can provide an immediate and more233

substantial benefit for overall tumor population control.234

3.5 Robustness Analysis of Switching Strategies235

Motivated by studies indicating that tissue to plasma ratios for certain drugs such as erlotinib can be low [31],236

we sought to computationally explore how dose reductions of TKI combinations could affect the evolution of237

tumor cell populations. This is a particularly relevant clinical issue, as many drugs when used in combination238

often require a reduction in the recommended monotherapy dose due to toxicity of the dual drug therapy239
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in patients. To examine this question, we simulated the optimal switching strategies corresponding to 30,240

15, 10, 5 and 1 day switching horizons subject to EGFR TKI dose reductions for a set of initial tumor241

cell populations and studied the effects on the final and average tumor populations over the course of the242

treatment (SI, Mathematical Methods).243

For a tumor with a smaller number of initial subclones, such as one comprised of 90% EGFRL858R
244

and 10% EGFRL858R,T790M, all switching strategies induced a response for EGFR TKI dose reductions of245

up to 50% (Fig. 6A). In contrast, with the more complex HGF treated tumor cell population comprised246

of 89% EGFRL858R, 10% EGFRL858RBRAFV600E, 1% EGFRL858R,T790M, only combination strategies with247

switching horizons of 10 day or shorter induced a response (Fig. 6B). Notably, we observed that the shorter248

the switching horizon, the higher dose reduction that could be supported while still maintaining a progression249

free response (Fig. 6B and Fig. S8B). We observed this phenomenon more generally when we simulated250

different tumor cell initial distributions (Fig. 6C). Thus, we find that the greater number of subclones251

present in the initial tumor, the greater the benefit there is in increasing switching frequency in terms of the252

achieving robustness to perturbations in EGFR TKI drug concentration.253

3.6 Switching Strategies Control or Delay Progression in Vitro254

Motivated by the results of our treatment strategy algorithm, we tested drug scheduling strategies on select255

tumor subpopulations in an in vitro model of EGFR mutant lung adenocarcinoma. Specifically, we syn-256

thesized the optimal treatment strategy for a heterogeneous HGF treated tumor cell population consisting257

of 89% EGFRL858R, 10% EGFRL858RBRAFV600E, 1% EGFRL858R,T790M, and imposed a constraint that at258

most one switch could occur, as a starting point to simulate what might be most clinically feasible. The259

resulting optimal treatment strategy predicted by our modeling, consisting of the erlotinib/crizotinib (days260

0-5) followed by the afatinib/trametinib (days 5-30) combination, was shown to elicit the best response in261

vitro, validating our predictive model (Fig. 7B).262

To show how a delay in the switching time might affect response to therapy, we tested equivalent initial263

tumor cell populations but changed the treatment strategy to start the afatinib/trametinib combination at264

day 10 instead of at day 5. This resulted in worse overall response than the 5 day switching regimen (Fig.265

7B). The corresponding model simulation highlights that although the erlotinib/crizotinib combination effec-266
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tively targeted the HGF treated EGFRL858R mutation during the first 10 days, it allowed the HGF treated267

EGFRL858R, T790M subclone to dominate for a longer period of time, thereby impeding overall response.268

4 Discussion269

One of the fundamental challenges in the principled design of combination therapies is the pre-existence270

and temporal expansion of intratumor genetic heterogeneity that can often lead to rapid resistance with271

first-line targeted therapies. To address this problem, we sought to develop a new modeling framework to272

systematically design principled tumor monitoring and therapeutic strategies. We applied a receding horizon273

optimal control approach to an evolutionary dynamics and drug response model of lung adenocarcinoma274

that was identified from experimental and clinical data. Based on the clinical and experimental data, our275

computational method generated optimal drug scheduling strategies for a comprehensive set of initial tumor276

cell subpopulation distributions.277

Our initial insight was that constant drug combination strategies that guarantee progression free response278

for tumor cell populations with considerable heterogeneity and/or MET activation, required EGFR TKI279

concentrations that were considerably higher than are typically clinically feasible. At clinically relevant doses,280

these constant combination strategies were not effective against all tumor cell subpopulations and inevitably,281

those subpopulations with even slight evolutionary advantages could undergo clonal expansion and cause282

resistance. To overcome this issue, we used our algorithm to generate optimal drug scheduling strategies that283

could preempt the outgrowth of these subpopulations over fixed switching periods, and showed that these284

strategies outperformed constant combination strategies for most tumor cell subpopulation distributions.285

Notably, our computational analysis showed there was more benefit in applying switching strategies in286

the context of increasing pre-existing genetic heterogeneity and these switching strategies provided more287

robustness guarantees in the presence of perturbations in drug concentrations that can occur in patients. We288

demonstrated successful in vitro validation of our optimal control approach for selected tumor subpopulation289

distributions. In particular, for an in vitro analog of our clinical case, a non-intuitive combination therapy290

switching strategy offered better tumor control than constant treatment strategies.291

We found that the most effective drug scheduling strategies were ones that addressed existing subpopu-292
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lations as they emerged during the course of the treatment, even during a bulk tumor response. In contrast,293

current standard of care clinical practice is generally to delay switching to second-line therapy until after294

there is clear evidence of radiographic or clinical progression. Our approach suggests a paradigm shift that295

would require regular monitoring of an individual patient’s tumor mutational status, for instance by muta-296

tional analysis of plasma cell-free circulating tumor DNA, so-called “liquid biopsies” [32, 33, 34, 35, 36]. Our297

modeling strategy could potentially synthesize this genetic information to yield both the design and priori-298

tization of specific drug regimens and the optimal time for clinical deployment, informed by the molecular299

findings in a particular patient. Such treatments may need to be applied (non-intuitively) during the initial300

tumor response, instead of later during therapy or after drug resistance is readily apparent by standard clini-301

cal measures in some cases. We envision that our approach could help contribute to the shift from a reactive302

to pro-active, dynamic management paradigm in solid tumor patients in the molecular era. Drug scheduling303

strategies synthesized by the algorithm for the initial tumor cell population could be adapted to account for304

genetic alterations that are detected by the analysis of serial liquid (or tumor) biopsies, leading to a dynamic305

learning model through iterative refinements; as such, the model could suggest more effective strategies with306

time. Additional considerations such as pharmacokinetics, the tumor microenvironment and metastatic pro-307

cesses [37, 38] could extend this model to add more clinical relevance. Finally, our approach could guide the308

optimal timing of serial clinical specimen sampling (plasma, tumor) and radiographic analysis to streamline309

clinical management. Overall, the combination of techniques stemming from mathematical optimization and310

control theory combined with more clinically applicable tumor dynamics models is a promising approach311

to aid the rational design, clinical testing, and clinical adoption of dynamic molecular monitoring and drug312

scheduling strategies to better control complex solid cancers such as lung cancer in real-time and improve313

clinical outcomes.314

4.1 Materials and Methods315

4.1.1 Computational Methods316

The details of mathematical models and experimental methods may be found in SI Mathematical Meth-317

ods. The mathematical model of lung adenocarcinoma growth mutation and selection by small molecule318

inhibitors was formulated as system of ordinary differential equations (ODEs). The treatment strategy algo-319
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rithm was formulated as a receding horizon optimal control problem with the objective of minimizing lung320

adenocarcinoma populations at every horizon and implemented using python version 3.4.3, scipy version321

1.11.0.322

4.1.2 Experimental Methods323

Patient sample preparation and sequence capture. Formalin fixed paraffin embedded (FFPE) NSCLC324

fine needle aspirate biopsy specimens and a normal blood sample were obtained from the patient under in-325

stitutional informed consent both prior to erlotinib treatment and upon erlotinib resistance. Lung tumor326

biopsy specimens contained > 75% tumor cells upon histopathological analysis by a board-certified pathol-327

ogist. Barcoded sequence libraries were generated using genomic DNA from FFPE tumor material and328

matched normal blood using the NuGEN Ovation ultralow library systems and according to manufacturer’s329

instructions (NuGEN, San Carlos, CA). These libraries were among an equimolar pool of 16 barcoded li-330

braries generated and subjected to solution-phase hybrid capture with biotinylated oligonucleotides targeting331

the coding exons of 389 cancer-associated genes using Nimblegen SeqV.D.J.Cap EZ (Roche NimbleGen, Inc332

, Madison, WI). Each hybrid capture pool was sequenced in a single lane of Illumina HiSeq2000 instrumen-333

tation producing 100bp paired-end reads (UCSF Next Generation Sequencing Service). Sequencing data was334

demultiplexed to match all high-quality barcoded reads with the corresponding samples.335

336

Sequencing Analysis. Paired-end sequence reads from normal blood, pre-treatment tumor, and erlotinib-337

resistant tumor samples were aligned against build hg19 of the reference genome with BWA [39]. Duplicate338

reads were marked, alignment and hybridization metrics calculated, multiple sequence realignment around339

candidate indels performed, and base quality scores recalibrated across all samples with the Picard suite340

(http://picard.sourceforge.net/) and the Genome Analysis Toolkit (GATK) [40]. Somatic point mutations341

were detected in the treatment-naïve and resistant tumors using MuTect [41], while small insertions and342

deletions (indels) were identified with GATK. Given the depth of sequencing achieved and the presence of343

low-frequency oncogenic mutations in the normal sample likely due to circulating tumor DNA, mutations344

were excluded as germline if they exceeded a frequency of 10% in the normal sample. Non-synonymous muta-345

tions were annotated for their sequence context, effect, and frequency in lung adenocarcinoma and squamous346
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cell tumors from The Cancer Genome Atlas (TCGA) project and Imielinski et al. [42]. All previously347

characterized oncogenic alleles in NSCLC or mutations previously linked to erlotinib resistance were also348

manual inspected in both treatment-naïve and resistant tumors. This analysis revealed a single sequencing349

read bearing the T790M mutation in the primary tumor (total coverage at this locus: 1300x). This was in-350

sufficient evidence from sequencing data to formally call the mutation, but we cannot exclude the possibility351

that EGFRT790M exists pre-treatment in a very rare clone (<0.08%) for which our target depth of coverage352

limited our sensitivity. DNA copy number alterations where inferred from the mean sequence coverage for353

each target region in each sample corrected for overall library size. Amplifications and deletions were deter-354

mined from ratios of coverage levels between the pre- and post-treatment tumors and the matched normal355

blood sample. Due to the elevated signal to noise from targeted capture and sequencing of FFPE material356

from lower input amounts, overt genomic amplifications and deletions were required to affect multiple target357

regions (exons) of a given gene before being called as detected. The EGFRT790M and BRAFV600E variants358

were confirmed by a standard Clinical Laboratory Improvement Amendments (CLIA)-approved PCR-based359

shifted termination assay (data not shown). The changes in EGFR and MET copy number were validated360

using established fluorescence in situ hybridization clinical assays.361

362

Cell Lines and Reagents. Human lung cancer cell lines were acquired as previously described [43, 44].363

Cells were grown in RPMI 1640 supplemented with 10% (high serum) or 0.5% (low serum) fetal bovine364

serum (FBS), penicillin G (100U/ml) and streptomycin SO4 (100U/ml). Erlotinib, afatinib, vemurafenib,365

crizotinib, and trametinib were purchased from Selleck Chemicals (Houston, TX). Drugs were resuspended366

in DMSO at a concentration of 10mM and stored at -20 �C. Erlotinib and afatinib were used at working367

concentrations ranging from 0.010-1.5 µM. Vemurafenib was used at a working concentration of 5.0 µM, and368

trametinib and crizotinib were used at a 0.5 µM. HGF was purchased from Peprotech (Rocky Hill, NJ) and369

resuspended at 50 g/ml in sterile PBS + 0.1% BSA. Cells were treated with HGF at 50 ng/ml.370

371

Generation of stable cell lines. 293-GPG viral packaging cells were transfected with pBABE (empty372

vector), pBABE-mCherry-BRAF-WT and pBABE-mCherry-BRAFV600E constructs (kindly provided by373
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Dr. Eric Collision, UCSF, San Francisco, CA) using Lipofectamine-2000 (Life Technologies, Pleasanton,374

CA) per manufacturer’s instructions. Virus containing media was harvested three days post transfection375

and used to infect 11-18 and H1975 lung cancer cell lines. Cells were incubated with virus containing media376

supplemented with 6 µg/ml of polybrene for 24 hours. Media was changed to standard cell growth media377

(RPMI-1640 + 10% fetal bovine serum and 100 U/ml penicillin G and 100 U/ml streptomycin SO4) and378

cells were expanded for 48 hours, at which point puromycin (2 µg/ml) was added to the media and cells379

were allowed to grow for an additional 4 days. Cells that survived puromycin selection (stable cell lines)380

were used in all subsequent experiments.381

382

Cell Viability and Growth Assays. Assays were performed as previously described [43, 44]. Briefly, cells383

were seeded overnight at a density of 5,000 cells per well in 96-well plates in RPMI containing 10% FBS and384

treated with indicated reagents for 72 hours. Viable cell numbers were determined using the CellTiterGLO385

assay according to manufacturer’s instructions (Promega). Each assay consisted of six replicate wells and386

was repeated at least twice in independent experiments. Cell viability is presented as the mean (± s.e.m.)387

erlotinib or afatinib inhibitory concentration 50 (IC50). Statistical significance between treatment groups388

was determined by the Bonferroni’s multiple comparisons ANOVA statistical test.389

390

Immunoblot analysis. Cells were harvested 24h after initiation of treatment with reagents. Cells were391

scraped and lysed in lysis buffer (50 mM Tris·HCl pH 8.0, 150 mM sodium chloride, 0.1% SDS, 0.5% sodium392

deoxycholate, 1% Triton X 100, 5 mM EDTA containing protease and phosphatase inhibitors (Roche Di-393

agnostics. Indianapolis, IN). After quantitation by Pierce BCA assays (Thermo Scientific, Rockford, IL),394

25 µg of each sample was separated by gel electrophoresis on 4-15% Criterion TGX precast gels (BioRad,395

Hercules, CA) and transferred to nitrocellulose membrane. For immunoblots, the following antibodies were396

used: anti-total EGFR (1:1000 dilution, Bethyl Laboratories, Inc., Montgomery TX), anti-pEGFR, anti-total397

Met, anti-pMet, anti-total Mek, anti-pMek, anti-total Akt, anti-pAkt, anti-total Erk, anti-pErk (1:1000, Cell398

Signaling Technology Inc., Danvers, MA), BRAFV600E Monoclonal Antibody (Clone VE1, 1:1000, Spring Bio-399

science, Pleasonton, CA), BRAF WT (1:1000, Santa Cruz Biotech, Santa Cruz, CA) and anti-actin (1:5000400
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dilution, Sigma-Aldrich, Saint Loius, MO), HRP-conjugated anti-rabbit Ig (used at a 1:3000 dilution, Cell401

Signaling), and HRP-conjugated anti-mouse IgG (used at a 1:3000 dilution, Cell Signaling). Specific proteins402

were detected by using either ECL Prime (Amersham Biosciences, Sunnyvale, CA) or the Odyssey Li-Cor403

(Lincoln, NE) with the infrared dye (IR Dye 800, IR Dye 680)-conjugated secondary antibodies (1:20,000,404

Li-Cor).405

406
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A Pre-treatment + Erlotinib 6 weeks + Erlotinib 4 months
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Figure 1: Concurrent genetic alterations drive rapid resistance to EGFR TKI treatment in EGFR-mutant lung
adenocarcinoma. (A) Computed tomography indicates the clinical course and timeline of disease in the patient with
rapid progression on EGFR TKI therapy and shows the EGFR-mutant lung adenocarcinoma (red arrows) analyzed
both prior to erlotinib treatment and upon resistance at 4 months. (B) Key somatic mutations identified by exon-
capture and deep sequencing of the pre- and post-treatment tumor in (A) demonstrating concurrent alterations in
EGFR and BRAF and the frequency of each mutation in pre- and post- treatment tumor samples. P-values indicated
as determined by a two-tailed Fischer’s exact test. (C) DNA copy number alterations inferred from exon-capture and
sequencing data indicate the focal amplification of the EGFRL858R-mutant allele was lost upon acquired resistance
while the patient’s resistant tumor gained a focal amplification of MET, with no change in BRAF (relative positions
indicated, chromosome 7).
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Figure 2: Designing treatment strategies to control tumor cell dynamics. (A) A depiction of the growth, muta-
tion and drug effect model representing the evolutionary dynamics of lung adenocarcinoma in the presence of small
molecule inhibitors, erlotinib (ERL), afatinib (AFA), crizotinib (CRI), trametinib (TRA) and vemurafenib (VEM).
The corresponding ordinary differential equation model (ODE) is specified in mathematical detail in the Supplemen-
tary Information, Equation (S1). Drug effect curves were determined for 11-18 and H1975 cell lines specified for
both single drugs and combinations of varying concentrations of one EGFR TKI (erlotinib or afatinib), with fixed
concentrations of either 5 µM vemurafenib, 0.5 µM trametinib or 0.5 µM crizotinib (SI, Fig. S1-S4). (B) The design
of constant or switching feedback strategies to control the dynamics of lung adenocarcinoma is approached as an
optimal control problem. The treatment strategy design algorithm (SI, Section 2) solves for feedback strategies that
minimize tumor cell growth over the course of the treatment.
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Figure 3: Mathematical simulation qualitatively captures the patient’s evolution on erlotinib. (A) A simulation of
the mathematical model of lung adenocarcinoma evolution (SI, Equation (S1)) in the presence of 1 µM erlotinib,
given the patient-derived pretreatment initial tumor cell subpopulations (94 % EGFRL858R, 6% BRAFV600E, 0.01%
MET amplification of EGFRL858R, BRAFV600E and EGFRT790M). (B) Tumor cell populations present at day 0, 6
and 17 of the simulation in (A), including the total HGF+ cell population at day 17 (gray). The model qualitatively
captures a possible evolutionary trajectory and results in a similar final tumor cell composition as that of the patient,
(B) day 17 vs. Figure 1, (B) and (C).
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Figure 4: Modeling pharmacodyamic effects of concurrent BRAFV600E expression and MET activation in EGFR-
mutant lung adenocarcinoma cells and their implication on progression. (A) Drug efficacy as measured by the
effect of 1.5 µM erlotinib or 0.5 µM afatinib in combination with either 0.5 µM MET inhibitor crizotinib, 0.5 µM
MEK inhibitor trametinib or 5 µM BRAF inhibitor vemurafenib on cell growth (SI, Equation S1) of parental 11-18
EGFRL858R-positive lung adenocarcinoma cells or those cells engineered to express mutations listed above and treated
with 0 or 50 ng/ml HGF. (B) Concentrations of EGFR TKIs afatinib and erlotinib in combination with either 0.5 µM
crizotinib, 0.5 µM trametinib or 5 µM vemurafenib that guarantee progression free tumor reduction for any HGF- or
HGF+ initial tumor subpopulations according to the model, measured by the minimum concentration of erlotinib or
afatinib that results in exponential stability of the evolutionary dyanmics model (SI, Section 3.2). (C) Simulations of
the lung adenocarcinoma model for combinations of 0.5 µM afatinib+0.5 µM trametinib and 1.5 µM erlotinib+0.5 µM
crizotinib for the HGF- and HGF+ tumors specified. (D) (Left) Simulations of the evolutionary dynamics of different
HGF- lung adenocarcinoma initial tumor subpopulations with a constant treatment of 0.7 µM, 0.5, 0.3 or 0.1 µM
afatinib in combination with 0.5 µM of trametinib (red) and of different HGF+ lung adenocarcinoma initial tumor
subpopulations with a constant treatment of 8.32 µM, 3.2 µM, 1.5 µM or 0.75 µM erlotinib in combination with 0.5
µM crizotinib (blue). (Right) Maximum eigenvalue decompositions (SI, Section 3.2) classify which subpopulationss
can lead to progression at different concentrations of EGFR TKI for the afatinib+trametinib combination and the
erlotinib+crizotinib combination.
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Figure 5: Optimal drug scheduling strategies solved by Algorithm 1 (SI, Section 2.2) for representative initial tumor
cell distributions (A),(C), for a 30 day timeframe and 30, 15, 10, 5, 3 and 1 day minimum switching horizons, give one
EGFR TKI, either 1.5 µM erlotinib (ERL) or 0.5 µM afatinib (AFA) in combination with either 5 µM vemurafenib
(VEM), 0.5 µM trametinib (TRA) or 0.5 µM crizotinib (CRI) and corresponding simulations (B),(D) of the lung
adenocarcinoma evolutionary dynamics for a subset of optimal drug scheduling strategies.
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Figure 6: Exploring the robustness of treatment strategies through model simulation. (A) Switching strategies are
more beneficial to tumor cell populations with more initial heterogeneity. (Left) Fold change in final lung adeno-
carcinoma tumor cell populations at day 30 versus day 0 over the course of the optimal 30, 15, 10, 5, 3, and 1 day
treatment strategies solved by algorithm 1 (SI, Section 2.2) and normalized by fold change in final tumor cell popu-
lation for the constant 30 day treatment strategy for an initial tumor cell population comprised of (90% EGFRL858R,
10% H1975 EGFRL858R,T790M) and another comprised of (89% EGFRL858R, 10% BRAFV600E,1% EGFRL858R,T790M)
subclones. (Right) Sum of fold change for the final lung adenocarcinoma populations (SI, Equation S5) for select
initial tumor cell distributions (SI, Table 1) and their corresponding optimal 30, 15, 10, 5, 3, and 1 day treatment
strategies, categorized by the number of subclones in the initial tumor cell population. Smaller fold change sums
indicate that more switching is beneficial to reduce final populations, whereas larger fold changes indicate that more
switching does not necessarily help in reducing the final tumor populations. (B) EGFR TKI dose perturbations.
(Left) Fold change in number of lung adenocarcinoma cells between day 30 and day 0, as a function of percent
EGFR TKI dose reduction for the optimal 30, 15, 10, 5 and 1 day strategies solved by algorithm 1 (SI, Section 2.2)
for tumor cell populations indicated above. The shaded areas indicate the regions of the perturbation space where
the treatment strategy reduces the initial tumor cell population by more than 30% (response, light blue), increases
the size of the original tumor population size by more than 20% (progression, red), or maintains the original tumor
population size between the two (stability, white). (Right) Bar graphs indicate the maximum reduction in EGFR
TKI dose supported by the optimal strategy such that there is still reduction in tumor size at day 30 with respect
to day 0 for the V600E and the pretreatment MET tumor. (C) The average maximum percent EGFR TKI dose
reduction supported before progression for lung adenocarcinoma tumors with different number of initial tumor cell
subpopulations and for predicted optimal 30, 15, 10, 5, and 1 day switching strategies.
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Figure 7: Engineering optimal treatment strategies for concurrent, clonal genetic alterations in EGFR-mutant lung
adenocarcinoma and predicting their therapeutic impact. (A) Simulations of the optimal treatment strategy predicted
by algorithm 1 (SI, Section 2.2) consisting of 1.5 µM erlotinib+0.5 µM crizotinib for days (0-5) followed by 0.5 µM
afatinib+0.5 µM trametinib for days (5-30); the same strategy but with the switch occurring at day 10 and, constant
strategies of 0.5 µM afatinib+0.5 µM trametinib or 1.5 µM erlotinib+0.5 µM crizotinib for 30 days, for an initial
tumor cell population of 89% EGFRL858R, 10% EGFRL858RBRAFV600E, 1% EGFRL858R,T790M, HGF treated. (B)
Evolution experiment shows that the predicted strategy for an initial tumor cell population of 89% EGFRL858R, 10%
EGFRL858RBRAFV600E, 1% EGFRL858R,T790M, treated with 50 ng/ml HGF, is optimal. Overlaid numbers indicate
the relative cell density of each well at day 30 compared to the erlotinib+crizotinib well (magenta). Computational
simulations in (A) show that the predicted optimal strategy has the greatest reduction in tumor cells in vitro (B, red)
compared to the same strategy with a 10 day switch (yellow). A simulation of the model predicts that a constant
treatment of afatinib+trametinib produces little change in number of tumor cells (B, blue) and that a constant
treatment of erlotinib+crizotinib predicts the exponential outgrowth of the initial EGFRL858R,T790M MET amplified
subpopulation, experimentally validated in (B, magenta).
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Supplementary Information

Vanessa D. Jonsson, Collin M. Blakely, et. al.

1 Mathematical Methods

1.1 Evolutionary Dynamics Model of NSCLC

The quasispecies model [1] was originally developed to describe the dynamics of populations of self replicating
macromolecules undergoing mutation and selection. We choose this model for its relative simplicity and its
ability to capture the salient features of the evolutionary dynamics of a simplified generic disease model. The
following adaptation incorporates the effects of small molecule inhibitors and describes the growth, mutation
and evolution of non small cell lung adenocarcinoma populations:

ẋi = riqiixi +

nX

k 6=i

riqikxk � i(`k)xi (S1)

where xi 2 R+ is the concentration of a NSCLC subpopulation i, `k 2 R+ is a small molecule inhibitor
concentration (assumed to remain at constant concentrations throughout), ri is the growth rate for each cell
xi, and qik is the probability that cell k mutates to cell i (note that qii is the probability of no mutation
occurring). Finally, the function  i(`k) represents the pharmacodynamics of individual drugs `k or of
individual EGFR TKIs (erlotinib or afatinib) in combination with fixed concentrations other small molecule
inhibitors used in this study (0.5 µM crizotinib, 0.5 µM trametinib or 5 µM vemurafenib) with respect to
the i-th NSCLC cell type, namely:

 i(`k) = �ik
[`k]

nik

[`k]nik+K
nik
ik (S2)

where `k 2 R+ is the drug concentration, �ik 2 R+ is the saturation coefficient, Kik 2 R+ is the dissociation
constant, nk 2 R+ is the Hill coefficient. When `k = 0, 8k 2 {1, ...,m}, the dynamics are unstable.

2 A control theoretic algorithm for designing treatment strategies

To design treatment strategies that best minimize tumor size and control its evolution over time, we combine
both a greedy algorithm and receding horizon control approach. We introduce some notation, cost function
definitions and specify our algorithm.

2.1 Cost functions

To measure the effectiveness of a given treatment strategy over time, we define the average cost function.
For a given treatment strategy `k applied to Equation (S1), we rewrite the dynamics of the entire system
(i.e., for all cells) as

ẋ = A(`k)x, (S3)

where A 2 Rn⇥n is a matrix that represents the growth, mutation and drug dynamics for treatment
strategy `k, for n cell subpopulations.
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The average cost Cr for a time horizon N , allowable switching period ⌧ and time intervals of the form
[k⌧, (k + 1)⌧ ] for k = {0, .., N/⌧ � 1} is given by

Cr =

N/⌧�1X

k=0

Z (k+1)⌧

k⌧
1T

x(t)dt (S4)

where 1T is the n⇥ 1-dimensional vector of ones and x(t) is the solution to Equation (S3).
Equation (S4) simplifies to

Cr =

N/⌧�1X

k=0

1T
A

�1
(e

A`k
((k+1)⌧�k⌧) � I)x(k⌧). (S5)

The final cost Cf for an inital tumor population x(0) and a sequence of drugs {`(k)}N/⌧�1
k=1 that define a

switching therapy over a time horizon N is defined as

Cf = e

A({`(k)}N/⌧�1
k=1 )

x(0). (S6)

2.2 Algorithm

Our algorithm is defined as follows. Given an initial tumor population, denoted by x0, a time horizon N and
an allowable switching period ⌧ , we perform the following computations to determine a candidate treatment
strategy:

Algorithm 1 Treatment strategy synthesis

1. Initialization: Set k = 0 and x(0) = x0.

2. Greedy approach: For time interval [k⌧, (k + 1)⌧ ], compute y((k + 1)⌧) = e

A(`k)⌧
y(k⌧) for each

possible treatment strategy `k.

3. Update: Set `(k) = argmin`k sum(y(k+1)⌧), and set x((k+1)⌧) = min`k sum(y(k+1)⌧). Increment
k: if k = N , proceed to step 4, otherwise return to step 2.

4. Output: A sequence of drugs {`(k)}N/⌧�1
k=1 that define a switching therapy.

The resulting switching therapy {`(k)} is then applied until the next biopsy can be taken, giving a new
tumor cell population measurement, at which point the algorithm is repeated. In particular, it is important
that the horizon N be chosen to be longer than expected periods between biopsies.

3 Model Implementation and Simulations

3.1 Derivation of dynamical system parameters

Growth and Mutation Rates. We model the growth of NSCLC cell population xi by the following
ordinary differential equation (ODE):

ẋi = rixi, (S7)

where ri is the growth rate per day, and ẋi denotes the derivative with respect to time of the tumor cell
population xi. Note that we assume that no mutations occur over the time-frame considered, allowing us to
set qii = 1 and qij = 0 in the dynamic model (S1), resulting in (S7).

Given an initial population xi(0), the population xi(t) on day t can be obtained by solving ODE (S7),
and is specified by the following expression

xi(t) = xi(0)e
rit

. (S8)
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Given a set of N experimental data points ei(0), ei(t1), . . . , ei(tN ), we fit these points to an exponential
function of the form (S8), with xi(0) = ei(0) to obtain an experimentally derived value for the growth rate
ri of tumor cell population xi.

We take the DNA mutation rate to be 1e

�9 mutation/base pair/cell division []. We assume that muta-
tions occur unidirectionally from EGFRL858R parental cells to EGFRL858R,T790M, EGFRL858R, BRAFV600E

or EGFRL858R,T790M BRAFV600E, HGF-/+.

Drug Effect Rates and Hill Functions. We model the change in a tumor cell population xi under
a treatment j of concentration ` with the following ordinary differential equation (ODE):

ẋi = rixi � f

j
i (`)xi, (S9)

where ri is the growth rate per day derived in the previous section and f

j
i (`) is a function mapping the

treatment j at concentration ` to a drug effect rate per day. We again assume that no mutation occurs
over the time-frame considered, allowing us to set the mutation rates qii = 1 and qij = 0 in the model (S1),
resulting in (S9).

Similar to the previous section, given an initial population xi(0), the population xi(t) on day t can be
obtained by solving ODE (S9), and is specified by the following expression

xi(t) = xi(0)e
(ri�fj

i (`)t
. (S10)

We model the map f

j
i (`) as a modified function of the form

f

j
i (`) = �j,i

`

nj,i

`

nj,i
+K

nj,i

j,i

, (S11)

where �j,i nj,i and Kj,i are the saturation parameter, Hill function coefficient and binding reaction dissoci-
ation constant for drug j applied to cell xi.

Our goal is to obtain values for these three parameters using experimental data measuring cell viability
under varying concentrations ` of drug j. In particular, given experimentally obtained data pairs of the form
`, yi,j,`(1), where yi,j,`(1) is the ratio of the tumor cell population xi treated with concentration ` of drug j

at day 1 to the tumor cell population xi treated with no drug at day 1. Letting x

`
i denote the treated tumor

population and x

`
ctrl denote the untreated control tumor population, it follows that yi,j,` can be written as

yi,j,`(1) =
x

`
i(1)

x

ctrl
i (1)

=

xi(0)e
(ri�fj

i (`))

xi(0)e
ri

= e

�fj
i (`)

, (S12)

where the first equality follows from the definition of yi,j,`(1), the second from applying equations (S10)
and (S8) to x

`
i(1) and x

ctrl
i (1) respectively, and the third from canceling like terms. It follows that the

experimentally derived values of f j
i (`) are given by

f

j
i (`) = � ln(yi,j,`). (S13)

Solving this equation for each experimentally tested concentration `, we obtain a set of points {`, f j
i (`)}

that can be used to derive the parameters �j,i nj,i and Kj,i via curve fitting. In order to avoid overfitting,
we set �j,i = max` f

j
i (`), i.e., we force the modified Hill function to saturate at the maximal experimentally

observed rate. Although this approach can be conservative in modeling the drug effect rate of high concen-
trations of drugs, we note that the the maximal dose tested is chosen to be significantly higher than the
maximum tolerated doses, and hence we do not expect this saturation to affect the accuracy of our model
at clinically relevant doses.

3.2 Evolutionary stability measured by maximum eigenvalues

Figures (S7) and ( main text) depict maximum eigenvalue decompositions of HGF- and HGF+ tumors and
describe the set of initial NSCLC populations, if present can lead to tumor progression upon initiation of
constant (non-switching) combination treatments. For the evolutionary dynamics:
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ẋ = (A�D`)x (S14)

where x 2 Rn is a vector of concentrations of n NSCLC subpopulations, ẋ 2 Rn is their rate of change
over time, A 2 Rn⇥n is a matrix that represents the growth and mutation dynamics and D` 2 Rn⇥n is a
diagonal matrix that represents the corresponding drug effect of one constant drug treatment on the rate of
change of NSCLC cells. If all eigenvalues are negative then Equation (S14) is said to be stable. In the case
of NSCLC evolutionary dynamics corresponding to Equation (1), stability refers to tumor reduction, and
instability refers to tumor progression. In section 3.1, we made the assumption that mutation rates are one
directional, hence the A matrix in Equation (1) is lower triangular and the eigenvalues of A�D` are exactly
equal to its diagonal entries. For each NSCLC subpopulation, we take the maximum eigenvalue for each
evolutionary branch downstream of the population and define this as evolutionary stability. This maximum
eigenvalue represents the worst case stability if the particular population is present upon treatment initiation
- a positive maximum eigenvalue indicates that the presence of the cell subpopulation in the tumor upon
initiation of treatment is likely to cause therapeutic failure. A negative maximum eigenvalue indicates that
the presence of the particular subpopulation will not outgrow or evolve in the presence of therapy.

3.3 Robustness analysis

Sensitivity to drug perturbations. To analyze the effect of dose reductions on the robustness of constant
and switching treatment strategies, we perturbed the drug concentrations and calculated the ratio of final
cost and initial cost (Figures (S8)) . We rewrite Equation (S1) for one cell xi and one drug `j to illustrate
how a drug perturbation � 2 R[0,1] is modeled:

ẋi = riqiixi +

nX

k 6=i

riqikxk � �j,i
(�`)

nj,i

(�`)

nj,i
+K

nj,i

j,i

xi (S15)

The fold change FCf in total population from day 0 to day N for a sequence of drugs {`(k)}N/⌧�1
k=1

defining a switching strategy over a time horizon N , and initial tumor population x0 = x(0) is calculated by

FCf =

CfP
x0

=

e

A({`(k)}N/⌧�1
k=1 )

x0P
x0

. (S16)

If FCf < 1, the treatment strategy {`(k)}N/⌧�1
k=1 is effective for NSCLC populations for the duration of the

time horizon N , FCf > 1 indicates progression.

3.4 Implementation

The evolutionary dynamics model and simulations were implemented using python, scipy and numpy (ver-
sions 3.5.1, 0.17.0, 1.9.3) and pandas version 0.17.0 was used for data parsing. Data fitting for experimentally
derived cell growth and drug dose response data was performed with Matlab version 8.3.0.532 using the non
linear least squares method.
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Figure S1: Experimentally derived erlotinib, afatinib, vemurafenib, trametinib and crizotinib dose response curves for
11-18 EGFRL858R, 11-18 EGFRL858R BRAFV600E, H1975 EGFRL858R,T790M H1975 EGFRL858R,T790M BRAFV600E

cell lines, and either 0 or 50 ng/ml human growth factor (HGF) and fit with � [`]n

[`]n+Kn where � is the maximum inhi-
bition, [`] is the EGFR TKI concentration, n is the Hill coefficient and K is the half maximal inhibitory concentration
(IC50).
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Figure S2: Experimentally derived dose response curves for erlotinib in combination with 5 µM vemurafenib, 0.5
µM trametinib and 0.5 µM crizotinib for 11-18 EGFRL858R, 11-18 EGFRL858RBRAFV600E, H1975 EGFRL858R,T790M

H1975 EGFRL858R,T790M BRAFV600E cell lines, and either 0 or 50 ng/ml human growth factor (HGF) and fit with
� [`]n

[`]n+Kn where � is the maximum inhibition, [`] is the EGFR TKI concentration, n is the Hill coefficient and K is
the half maximal inhibitory concentration (IC50).
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Figure S3: Western blot analysis of cell lysates obtained from 11-18 cell line, treated with drugs and/or HGF as
indicated, and probed for the indicated proteins.
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Figure S4: A) Experimentally derived dose response curves for afatinib in combination with 5 µM vemurafenib, 0.5
µM trametinib and 0.5 µM crizotinib for 11-18 EGFRL858R, 11-18 EGFRL858R BRAFV600E, H1975 EGFRL858R,T790M

H1975 EGFRL858R,T790M BRAFV600E cell lines, and either 0 or 50 ng/ml human growth factor (HGF) and fit with
� [`]n

[`]n+Kn where � is the maximum inhibition, [`] is the EGFR TKI concentration, n is the Hill coefficient and K is
the half maximal inhibitory concentration (IC50). (B) Western blot analysis of cell lysates obtained from H1975 cell
lines, treated with drugs and/or HGF as indicated, and probed for the indicated proteins.
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Figure S5: Simulations of the NSCLC model for constant combinations of 0.5 µM afatinib or 1.5 µM erlotinib with
either 0.5 µM trametinib, 0.5 µM crizotinib or 5 µM vemurafenib for a tumor comprised of 89% 11-18 EGFRL858R,
10% 11-18 EGFRL858R, BRAFV600E and 1% H1975 EGFRL858R T790M, and treated with HGF (B) or without HGF
(A).
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Figure S6: Simulations of the NSCLC model for the optimal 30 day constant combinations found by Algorithm (4)
with 0.5 µM afatinib or 1.5 µM erlotinib with either 0.5 µM trametinib, 0.5 µM crizotinib or 5 µM vemurafenib for
the relatively low (A) initial tumor heterogeneity or with (B) high initial tumor heterogeneity.
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Figure S7: Classification of initial tumor compositions via eigenvalue decompositions describe the initial tumor
populations that can destabilize of the evolutionary dynamics in the presence of either erlotinib or afatinib and either
0.5 µM trametinib, 0.5 µM crizotinib or 5 µM vemurafenib.
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Figure S8: A) Fold change in NSCLC population at day 30 versus day 0, over the course of the optimal 30, 15, 10,
5, 3, and 1 day treatment strategies solved by algorithm 1 (SI), for indicated tumor compositions, normalized by
fold change in NSCLC population for the constant 30 day treatment strategy (Red). (Blue) Sum of fold change in
the average cost for indicated tumor compositions and corresponding optimal 30, 15, 10, 5, 3, and 1 day treatment
strategies. B) (Above) Fold change in number of NSCLC cells between day 0 and day 30, as a function of percent
EGFR TKI dose reduction for the optimal 30, 15, 10, 5 and 1 day strategies solved by algorithm 1 (SI) for indicated
tumor compositions. Shaded blue areas indicate the region of the perturbation space where the treatment strategy
reduces the size of the initial tumor (stable). The shaded red area indicates the region of the perturbation space
where the treatment strategy increases the size of the original tumor at day 30 (unstable). (Below) The maximum
percent EGFR TKI dose reduction sustainable before the treatment is no longer effective (the tumor progresses).
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Figure S9: The EGFR-mutant lung adenocarcinoma mutation model used in this study.
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Figure S10: Optimal drug scheduling strategies solved by Algorithm 1 (SI, Section 2.2) for representative initial
tumor cell distributions (A),(C), for a 30 day timeframe and 30, 15, 10, 5, 3 and 1 day minimum switching horizons,
give one EGFR TKI, either 1.5 µM erlotinib (ERL) or 0.5 µM afatinib (AFA) in combination with either 5 µM
vemurafenib (VEM), 0.5 µM trametinib (TRA) or 0.5 µM crizotinib (CRI) and corresponding simulations (B),(D) of
the lung adenocarcinoma evolutionary dynamics for a subset of optimal drug scheduling strategies.
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Cell name 
Growth rate, 

day-1 

11-18 EGFRL858R 0.58 

11-18 EGFRL858R HGF+ 0.67 

11-18 EGFRL858R BRAFV600E  0.60 

11-18 EGFRL858R BRAFV600E HGF+ 0.70 

H1975 EGFRL858R,T790M 0.63 

H1975 EGFRL858R,T790M BRAFV600E  0.59 

H1975 EGFRL858R,T790M HGF+ 0.77 

H1975 EGFRL858R,T790M BRAFV600E HGF+ 0.64 

Table 1: Experimentally derived growth rates in parental and engineered 11-18 EGFRL858R-positive lung adenocar-
cinoma cells and treated with or without HGF, fit with Equation (S8).

IC50 in µM 

Cellname Erlotinib Afatinib Crizotinib Trametinib Vemurafenib 

11-18 EGFRL858R 0.19 0.20 2.72 12.69 16.38 
11-18 EGFRL858R HGF+ 7.93 1.33 6.81 1.59 50.18 
11-18 EGFRL858R BRAFV600E  0.91 0.49 3.25 15.59 10.60 
11-18 EGFRL858R BRAFV600E HGF+ 8.74 1.49 10.54 1.49 12.64 
H1975 EGFRL858R,T790M 7.54 0.08 9.33 0.76 48.31 
H1975 EGFRL858R,T790M BRAFV600E  9.32 0.18 8.18 0.82 18.64 
H1975 EGFRL858R,T790M HGF+ 7.04 0.60 25.59 0.12 53.89 
H1975 EGFRL858R,T790M BRAFV600E HGF+ 7.97 0.82 31.83 0.06 54.48 

Table 2: Drug sensitivity as measured by the IC50 of erlotinib, afatinib, vemurafenib, trametinib and crizotinib in
parental and engineered 11-18 EGFRL858R-positive lung adenocarcinoma cells.

IC50 Erlotinib in µM 

Cell name  +0.5 µM Crizotinib  +0.5 µM Trametinib  +5 µM Vemurafenib 

11-18 EGFRL858R 0.30 0.19 0.30 

11-18 EGFRL858R HGF+ 0.18 0.47 1.34 

11-18 EGFRL858R BRAFV600E  1.64 0.08 0.09 

11-18 EGFRL858R BRAFV600E HGF+ 3.58 7.95 0.86 

H1975 EGFRL858R,T790M 3.51 7.83 15.39 

H1975 EGFRL858R,T790M BRAFV600E  3.71 7.68 9.86 

H1975 EGFRL858R,T790M HGF+ 7.78 8.20 31.01 

H1975 EGFRL858R,T790M BRAFV600E HGF+ 6.70 5.50 103.67 

Table 3: Drug sensitivity as measured by the IC50 of erlotinib in combination with 5 µM vemurafenib, 0.5 µM
trametinib and 0.5 µM crizotinib in parental and engineered 11-18 EGFRL858R-positive lung adenocarcinoma cells.

IC50 Afatinib in µM 

Cell name  +0.5 µM Crizotinib  +0.5 µM Trametinib  +5 µM Vemurafenib 

11-18 EGFRL858R 0.42 0.17 0.11 

11-18 EGFRL858R HGF+ 1.96 0.79 1.27 

11-18 EGFRL858R BRAFV600E  1.10 0.32 0.37 

11-18 EGFRL858R BRAFV600E HGF+ 2.60 0.48 2.54 

H1975 EGFRL858R,T790M 0.06 0.01 0.04 

H1975 EGFRL858R,T790M BRAFV600E  0.07 0.03 0.04 

H1975 EGFRL858R,T790M HGF+ 0.19 0.00 0.11 

H1975 EGFRL858R,T790M BRAFV600E HGF+ 0.41 0.00 0.61 

Table 4: Drug sensitivity as measured by the IC50 of afatinib in combination with 5 µM vemurafenib, 0.5 µM
trametinib and 0.5 µM crizotinib in parental and engineered 11-18 EGFRL858R-positive lung adenocarcinoma cells.
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Erlotinib Afatinib 

Cell name γ n K γ n K 

11-18 EGFRL858R 2.59 0.54 1.22 73.45 0.32 424540.00 

11-18 EGFRL858R HGF+ 0.61 3.81 7.93 1885.80 0.70 106610.00 

11-18 EGFRL858R BRAFV600E  1.72 0.53 1.90 297.20 0.46 269500.00 

11-18 EGFRL858R BRAFV600E HGF+ 0.39 3.48 8.74 590.76 0.72 18112.00 

H1975 EGFRL858R,T790M 1.87 2.23 9.54 3.77 1.49 0.22 

H1975 EGFRL858R,T790M BRAFV600E  1.50 3.86 9.70 5.14 0.62 3.67 

H1975 EGFRL858R,T790M HGF+ 0.52 3.67 7.04 250.96 0.56 21189.00 

H1975 EGFRL858R,T790M BRAFV600E HGF+ 0.31 3.50 7.97 5.14 1.26 3.57 

Table 5: Differential equation parameters derived using Equation (S11), corresponding to experimentally derived dose
response curves of erlotinib and afatinib for parental and engineered 11-18 EGFRL858R-positive lung adenocarcinoma
cells.

Crizotinib Trametinib Vemurafenib 

Cell name γ n K gamma n K γ n K 

11-18 EGFRL858R 8.80 1.84 10.36 207.05 0.94 5504.20 825.97 0.95 27377.00 
11-18 EGFRL858R HGF+ 6.14 3.89 11.57 3.47 1.29 4.67 9.81 4.42 89.86 
11-18 EGFRL858R BRAFV600E  74.60 1.59 61.34 1135.50 0.88 67225.00 672.41 0.69 236280.00 
11-18 EGFRL858R BRAFV600E HGF+ 235.65 0.57 270080.00 3.51 1.36 4.17 229.34 0.64 104240.00 
H1975 EGFRL858R,T790M 6.98 1.68 34.62 28.40 0.26 1064100.00 1.56 5.88 50.20 
H1975 EGFRL858R,T790M BRAFV600E  6.52 1.99 23.88 35.42 0.28 1223700.00 6.92 2.35 47.51 
H1975 EGFRL858R,T790M HGF+ 4.66 2.51 51.31 47.17 0.27 900880.00 9.35 4.95 89.74 
H1975 EGFRL858R,T790M BRAFV600E HGF+ 1.69 2.79 36.20 38.13 0.25 595280.00 8.62 4.92 89.37 

Table 6: Differential equation parameters derived using Equation (S11), corresponding to experimentally derived dose
response curves of crizotinib, trametinib and vemurafenib for parental and engineered 11-18 EGFRL858R-positive lung
adenocarcinoma cells.

Erlotinib+0.5 µM Crizotinib Erlotinib+0.5 µM Trametinib Erlotinib+5 µM Vemurafenib 

Cell name γ n K γ n K γ n K 

11-18 EGFRL858R 49.60 0.32 215970.00 23.91 0.38 2057.10 1.87 0.45 0.96 
11-18 EGFRL858R HGF+ 13.87 0.31 2167.30 197.39 0.44 180410.00 4.03 0.44 46.41 
11-18 EGFRL858R BRAFV600E  5.02 0.38 204.43 3.10 0.77 0.41 1.11 0.85 0.05 
11-18 EGFRL858R BRAFV600E HGF+ 3.79 0.75 26.45 1.28 0.95 6.69 1.97 0.95 1.63 
H1975 EGFRL858R,T790M 990.17 0.74 65062.00 6.43 0.80 110.13 3.01 0.97 53.62 
H1975 EGFRL858R,T790M BRAFV600E  3.40 1.22 11.30 2.29 4.29 9.33 2.20 1.54 16.34 
H1975 EGFRL858R,T790M HGF+ 3.37 2.08 14.90 2.34 4.05 10.15 1.07 2.12 23.25 
H1975 EGFRL858R,T790M BRAFV600E HGF+ 3.65 1.22 21.97 2.06 1.76 8.08 3.04 1.27 271.56 

Table 7: Differential equation parameters as derived using Equation (S11), corresponding to experimentally derived
dose response curves of erlotinib in combination with either 0.5 µM crizotinib, 0.5 µM trametinib or 5 µM vemurafenib
for parental and engineered 11-18 EGFRL858R-positive lung adenocarcinoma cells.
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Afatinib+0.5 µM Crizotinib Afatinib+0.5 µM Trametinib Afatinib+5 µM Vemurafenib 

Cell name γ n K γ n K γ n K 

11-18 EGFRL858R 102.02 0.36 363520.00 190.37 0.42 116910.00 41.09 0.27 314410.00 
11-18 EGFRL858R HGF+ 212.01 0.49 209360.00 42.67 0.29 977910.00 66.90 0.36 344940.00 
11-18 EGFRL858R BRAFV600E  310.67 0.52 132530.00 141.93 0.60 2315.40 101.84 0.35 673450.00 
11-18 EGFRL858R BRAFV600E HGF+ 1440.80 0.69 161180.00 54.46 0.31 621930.00 311.18 0.61 57467.00 
H1975 EGFRL858R,T790M 3.75 1.25 0.19 19.69 0.18 572790.00 3.87 0.77 0.26 
H1975 EGFRL858R,T790M BRAFV600E  3.68 1.44 0.18 26.30 0.22 451080.00 3.70 1.07 0.17 
H1975 EGFRL858R,T790M HGF+ 1549.80 0.77 4033.50 14.89 0.24 285.48 110.87 0.36 171470.00 
H1975 EGFRL858R,T790M BRAFV600E HGF+ 4.59 1.88 1.02 35.76 0.23 34108.00 411.18 0.52 140300.00 

Table 8: Differential equation parameters derived using Equation (S11), corresponding to experimentally derived dose
response curves of afatinib in combination with either 0.5 µM crizotinib, 0.5 µM trametinib or 5 µM vemurafenib for
parental and engineered 11-18 EGFRL858R-positive lung adenocarcinoma cells.
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