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Cortical sensory responses are highly variable across stimulus presentations.  

This variability can be correlated across neurons (due to some combination of 

dense intracortical connectivity, cortical activity level, and cortical state), with 

fundamental implications for population coding.  Yet the interpretation of 

correlated response variability (or “noise correlation”) has remained fraught with 

difficulty, in part because of the restriction to extracellular neuronal spike 

recordings.  Here, we measured response variability and its correlation at the 

most microscopic level of electrical neural activity, the membrane potential, by 

obtaining dual whole-cell recordings from pairs of cortical pyramidal neurons 

during visual processing.  We found that during visual stimulation, correlated 

variability adapts towards an intermediate level and that this correlation dynamic 

is mediated by intracortical mechanisms.  A model network with external inputs, 

synaptic depression, and structure reproduced the observed dynamics of 

correlated variability.  These results establish that intracortical adaptation self-

organizes cortical circuits towards a balanced regime at which network 

coordination maintains an intermediate level.  
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Sensory cortex is not simply one layer in a feedforward network (Fig. 1a); it 

receives strong inputs from thalamus, but intracortical feedback dominates cortical 

circuitry (Fig. 1b).   This tangle of cortical connections causes neural activity to be 

coordinated across multiple spatial and temporal scales1,2.  Moreover, in a given cortical 

network, the strength of this coordination can vary with activity level and network state3–

8, which is considered to have implications for cortical function9–12.  For example, weak 

coordination corresponds to a larger “library” of words available to the spatiotemporal 

code, while stronger coordination supports signal propagation (Fig. 1c). The realized 

level of coordination in active cortical circuits is expected to represent a balance 

between such competing system needs.  Two unanswered questions concerning 

coordination continue to block our path to understanding sensory processing in cerebral 

cortex.  First, what are the levels of cortical coordination during sensory processing, and 

to what extent do these levels change with varying stimulus conditions (Fig. 1c)?  

Second, what mechanisms are responsible for the realized level of cortical coordination 

and its changes?  

Recording the spike trains from pairs of neurons for repeated presentations of an 

identical stimulus and evaluating the level of correlated response variability (or “noise 

correlation”) has remained the work horse of investigating cortical coordination (see 

Cohen, Kohn 2011, and Doiron, Kumar 2016 for reviews).  This spike-based approach 

is popular in part because of the relative ease of obtaining spiking responses from pairs 

of neurons in intact brains.  Reported values of spike-based noise correlation tend to be 

significantly nonzero, but results have varied across studies4,6,13–15.  Furthermore, the 

interpretation of cortical coordination from spike data is littered with complications, 
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including a spike-rate dependence of noise correlation values15,16, the 

underrepresentation of sparse-spiking neurons, and possible biases introduced by the 

spike-sorting process15,17.  In conclusion, the important study of cortical coordination, 

including its relation to mechanisms and function, has been restricted by its focus on 

spike recordings, and continues to represent an unmet challenge in systems 

neuroscience. 

In response to this need, we investigated the dynamics of correlated response 

variability at the level of the membrane potential by obtaining dual whole-cell recordings 

from pairs of cortical pyramidal neurons during visual processing (Fig. 1d, e).  We found 

a high level of trial-to-trial membrane potential response variability. Further, correlated 

variability in the gamma band range of membrane potential fluctuations increased at 

stimulus onset, but returned to pre-stimulus values during continued visual stimulation.  

A brief visual stimulus, triggering persistent cortical activity, elicited a similar dynamic of 

correlated variability, thus implicating an intracortical mechanism.  A model network with 

small-world connectivity, external inputs, and synaptic depression reproduced the 

observed dynamics of correlated variability, and further indicated that network 

oscillations play a crucial role.  Taken together, these results establish adaptation 

towards an intermediate level of coordination as a fundamental principle of cortical 

organization during visual processing. 

 

RESULTS 

To quantify response variability and its correlation across neurons, we recorded 

the membrane potential (V) from 35 pairs of pyramidal neurons in visual cortex of the 
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turtle ex vivo eye-attached whole-brain preparation during visual stimulation of the retina 

(Fig. 1d).  Ongoing activity in turtle visual cortex was largely quiet.  In contrast, visual 

stimuli evoked barrages of postsynaptic potentials in cortical pyramidal neurons that 

were accompanied by extensive fluctuations in the nearby local field potential recording 

(Fig.1e), indicating strong concurrent network activity.   

 

Pyramidal neuron membrane potential visual responses are highly variable 

We recorded from 19 pairs of pyramidal neurons while presenting continuous 

visual stimulation, and from 16 pairs while presenting brief flashes (see Methods).  

Single-neuron membrane potential responses to repeated presentations of extended 

stimuli varied from trial to trial, with a response variability magnitude that exceeded the 

trial-averaged mean response (Fig. 2a).  Importantly, the magnitude of the response 

variability was qualitatively unchanged when the visual stimulus consisted of brief 

flashes, which evoked long-lasting responses in visual cortex (Fig. 2b).  This stimulus 

invariance of the trial-to-trial response variability indicates an intra-thalamocortical origin 

of the network activity and the resulting membrane potential fluctuations.   

For any given trial of visual stimulation, the evoked membrane potential 

fluctuations were large and consisted of high-frequency fluctuations nested within 

broader deflections (Fig. 2c).  To quantify the frequency content of the single-trial 

fluctuations from the mean response, we first calculated the membrane potential 

residual (Vr), which is the single-trial membrane potential recording from which the trial-

averaged membrane potential time series has been subtracted.  We then divided the 

evoked residuals into two analysis windows: the transient (200 to 600 ms after stimulus 
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onset) and steady-state (800 to 2800 ms after stimulus onset) windows 

(Supplementary Information 1).  Finally, we calculated the relative power spectral 

density (rP), which is the power spectral density of the membrane potential residual for 

the transient or steady-state window divided by its trial-averaged counterpart from the 

ongoing window (2 s prior to stimulus onset). 

This analysis revealed four important features concerning the spectral content of 

the residual membrane potential fluctuations and of the trial-to-trial response variability. 

First, evoked power of residual membrane potential fluctuations in the 0.1 to 100 Hz 

range typically increased by two orders of magnitude compared to ongoing activity (Fig. 

2d, Supplementary Fig. 2).  Second, the frequency content of the membrane potential 

residual varied across trials (as indicated by the broad confidence bands in Fig. 2d).  

Third, the relative power spectral density typically consisted of a prominent peak located 

approximately in the 4 to 10 Hz theta range and a broader, but distinct, distribution in 

the 20 to 100 Hz gamma range.  Fourth, for both movies and flashes, gamma power 

increased from the ongoing to the transient window, and significantly decreased from 

transient to steady-state (Fig. 2e).  Gamma power of the transient activity varied 

drastically across cells.   

Together, these data establish that cortical pyramidal neuron membrane potential 

visual responses (i) have complex temporal dynamics, (ii) are highly variable from trial 

to trial, and (iii) differ from neuron to neuron (Fig. 2). 

Correlated variability adapts during visual stimulation 

The complex and extensive variability of membrane potential visual responses 

(Fig. 2) and the interconnected nature of cortical circuits (Fig. 1b) raised the question to 
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what extent the response variability is correlated across pyramidal neurons.  To address 

this question, we calculated the Pearson correlation coefficient between residual 

membrane potential fluctuations for each trial and window of interest, i.e., the ongoing, 

transient, and steady-state windows. We focused on gamma-band (20 – 100 Hz) 

activity, which captures the fast, nested membrane potential fluctuations (Fig. 2c, inset, 

Fig. 3a, and see Supplementary Information 2).  This band of activity is thought to be 

associated with narrow “windows of opportunity” for spiking, determining the precise 

timing of spikes within a broader depolarization (see Haider, McCormick, 2009 for a 

review).  Trial-averaged correlation coefficients (CC) for ongoing activity were broadly 

distributed across pairs of pyramidal neurons (Fig. 3b), and the population average 

(<CC>) was significantly nonzero (<CC> = 0.03, P = 0.006, one-sided t-test).  In 

response to continuous visual stimulation, trial-averaged correlation coefficients 

increased significantly compared to ongoing values (Fig. 3b), to an elevated population 

average of <CC> = 0.11 (P = 2.9 x 10-4 for ongoing – transient comparison, Wilcoxon 

signed-rank test).  In the steady-state period, i.e., during continued stimulus 

presentation, trial-averaged correlation coefficients returned to near-ongoing values 

(<CC> = 0.041, P = 1.6 x 10-4 for transient – steady-state comparison, P > 0.05 for 

ongoing – steady-state comparison).   

These results were largely robust with respect to choices of window sizes and 

gaps between windows (see Supplementary Information 1 and Supplementary Fig. 

1).  These changes in correlated variability primarily reflected changes in phase 

synchrony in the gamma band residual activity of simultaneously-recorded neurons (see 

Supplementary Information 3 and Supplementary Fig. 4).  In contrast, low-frequency 
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(0.1 – 20 Hz) CC values followed a different dynamic (Supplementary Fig. 3a, b) and 

were not significantly related to gamma-band CC (see Supplementary Information 2 

and Supplementary Fig. 3c - e).   

The observed dynamics of gamma band correlated variability in response to 

continuous visual stimulation could be imposed by the spatiotemporal structure of the 

stimulus, or alternatively, could be intrinsic to the thalamocortical system.  To distinguish 

between these two hypotheses, we recorded from 16 pyramidal neuron pairs while 

presenting brief flashes (1 ms – 200 ms) of light, which evoked responses lasting 

several seconds in the visual cortex (Fig. 2b).  We found that across the population of 

all pairs, CC values for responses to brief stimuli were not significantly different from 

those for continuous stimuli (p > 0.05, Wilcoxon rank-sum test, for all epochs, see 

Supplementary Information 4, and Supplementary Fig. 5).  Importantly, the same 

dynamics of correlated variability were observed for brief stimuli (<CC> = 0.03, P = 

0.003 ongoing, <CC> = 0.11, P = 3.0 x 10-5 transient, <CC> = 0.041, P = 0.006 steady-

state, one-sided t-test; P = 6.4 x 10-4 for ongoing – transient comparison, P = 0.020 

transient – steady-state comparison, P > 0.05 ongoing – steady-state comparison, 

Wilcoxon signed-rank test, Fig. 3c).  The similarity of the dynamics of correlated 

variability for brief and continuous stimuli implicates a mechanism that is stimulus-

invariant and likely to be intracortical in origin.   

The evidence of an intracortical origin of correlated variability suggested to us 

that the correlated variability of ongoing activity for a given pair should be predictive of 

its correlated variability in response to visual stimulation.  Indeed, we found that CC 

values during the ongoing epoch were significantly related to CC values for both evoked 
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epochs (r = 0.38, P = 0.03, transient vs. ongoing, Fig. 3d; r = 0.39, P = 0.02, steady-

state vs. ongoing, Fig. 3e, Pearson correlation). This observation suggests a close link 

between the underlying mechanisms that determine ongoing and evoked correlated 

variability, with connectivity being one candidate mechanism18,19. 

 

Correlated variability is related to the network state 

Recent experimental and computational work suggests that the level of 

coordination between pairs of neurons might be shaped not only by anatomical 

connectivity, but also by network activity level and network state3–8.  We therefore asked 

how well network activity level and/or network state could explain the observed 

dynamics of correlated variability. 

As a proxy for network activity level, we inferred the level of presynaptic spiking 

activity using the average gamma power in residual membrane potentials.  As a 

population, the gamma power dynamic (Fig. 2e) was qualitatively similar to that of CC 

(Fig. 3b, c). In contrast, for a given pair of cells, the geometric mean of the absolute 

change in power (√|∆𝑃1∆𝑃2|) was not related to the magnitude of the change in CC 

amplitude for the ongoing – to – transient transition (r = 0.28, P = 0.10, Pearson 

correlation).  The two quantities were however related for the transient – to – steady-

state transition (r = 0.40, P = 0.017, Pearson correlation) (Fig. 4b).  In conclusion, 

changes in network activity levels alone did not fully explain the changes in gamma 

band correlated variability. 

Next, we sought a measure of the network state. Specifically, we focused on the 

degree of action potential synchrony as an indicator of network state. Computational 
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work has shown that synchronous network spiking can generate prominent 

subthreshold membrane potential fluctuations in a narrow frequency band 20. Here, we 

used a measure of power spectrum “peakiness” in the 20 to 100 Hz range as a proxy for 

synchronous network spiking.  The residual relative power spectra (rP) of some cells 

tended to contain peaks in the gamma band during the transient epoch, which were 

often smaller or absent in the steady-state (Fig. 2d, Supplementary Fig. 2).  To 

quantify this aspect of the power spectrum for each cell and epoch, we defined the 

quantity M as the ratio of the maximum relative power in the gamma range (rPmax) to the 

average relative gamma power (rPavg) (Fig. 4b, top).  Across the population of cells, M 

varied continuously, and the population average (<M>) decreased significantly from 

transient to steady-state (<M> = 1.65 transient, <M> = 1.54 steady-state, P = 2.2 x 10-4 

for transient – steady-state comparison) (Fig. 4b, bottom).  For the population of pairs, 

we found that the geometric mean of the absolute change in M (√|∆𝑀1∆𝑀2|) was 

significantly related to the amplitude of the change in CC (r = 0.40, P = 0.02 ongoing – 

to – transient; r = 0.41, P = 0.01 transient – to – steady-state, Pearson correlation, 

where ∆𝑀 =  𝑀𝑡𝑟𝑎𝑛𝑠 − 1 for the ongoing – transient transition) (Fig. 4c).  In conclusion, 

for a given pair of cells, the change in network state, measured as a change in gamma 

spectrum “peakiness”, was an indicator of the change in correlated variability. 

  

Synaptic time constants, synaptic depression, and synaptic clustering together 

mediate the dynamics of correlated variability 

What biophysical mechanisms could mediate the experimentally-observed 

response properties (i.e., across-trial variability (Fig. 2a, b), subthreshold gamma 
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oscillations (Fig. 2c, 3a), the dynamics of correlated variability (Fig. 3) and its network 

state dependence (Fig. 4))?  To address this question, we investigated a model network 

(Methods) of 800 excitatory and 200 inhibitory leaky integrate-and-fire neurons, with 

Poisson process external inputs to all excitatory neurons (Fig. 5a).  Excitatory-to-

excitatory and excitatory-to-inhibitory connections had small-world connectivity, with 5% 

connection probability.  Inhibitory-to-inhibitory and inhibitory-to-excitatory synapses 

were random, with 20% connection probability.  An increase in the external input rate 

mimicked the stimulus.  We selected a set of synaptic rise and decay times20,21 that 

were consistent with gamma oscillations in the instantaneous network firing rate when 

the network was subject to strong external drive.  Motivated by previous experiments22 

and models23, we implemented adaptation via short-term synaptic depression with 

recovery (Methods).  Armed with this battery of mechanisms and structural complexity, 

we simulated the network spiking in response to repeated stimulus presentations (20 

trials).  

The model network reproduced the experimentally-observed response variability 

and gamma oscillations. The simulated membrane potentials from randomly-selected 

excitatory model neurons revealed fluctuations and across-trial response variability (Fig. 

5b) that were qualitatively similar to what we observed from recorded membrane 

potentials of pyramidal neurons (Fig. 2a, b).  Furthermore, the gamma band residuals of 

simulated membrane potentials (Fig. 5c) largely resembled the experimentally-

observed residual subthreshold gamma oscillations (Fig. 3a).  Residual power spectra 

were peaked in the gamma range (Supplementary Fig. 6a, top), at frequencies that 

coincided with peaks in the spectra of the instantaneous network firing rate 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2016. ; https://doi.org/10.1101/087049doi: bioRxiv preprint 

https://doi.org/10.1101/087049


(Supplementary Fig. 6a, bottom). Due to synaptic depression with slow recovery, the 

model also reproduced the eventual decrease in the total gamma power in membrane 

potential residuals (Supplementary Fig. 6b), and in the amplitudes of gamma-band 

peaks in the residual membrane potential and population spike rate spectra 

(Supplementary Fig. 6a). 

In addition, the model network reproduced the experimentally-observed 

dynamics of correlated variability.  The simulated correlated variability increased 

significantly from ongoing to transient (<CC> = 0.003 ongoing, 0.146 transient, P = 3.6 x 

10-8 for ongoing – transient comparison) (Fig. 5d), a trend that was consistent with our 

experimental results (Fig. 3b, c).  Mediated by synaptic depression, correlated 

variability decreased significantly from transient to steady state (<CC> = 0.10 steady-

state, P = 1.49 x 10-6 for transient – steady-state comparison, P = 3.6 x 10-8 for ongoing 

– steady-state comparison) (Fig. 5d).  In contrast, when synaptic depression was 

absent, correlated variability increased from transient to steady state (Supplementary 

Fig. 7a). 

As observed in experiment, this dynamic of correlated variability depended 

crucially on network activity oscillations. When synaptic time constants for excitation 

and inhibition were chosen to be identical (see Methods and Supplementary 

Information 5), the stimulus instead pushed the network into a regime of asynchronous 

activity, as evidenced by the population spike-rate and residual membrane potential 

power spectra (Supplementary Fig. 6c).  This had little effect on the overall network 

activity level and gamma power dynamics (Supplementary Fig. 6d).  Correlated 

variability, however, was very weakly modulated by the stimulus (Supplementary Fig. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2016. ; https://doi.org/10.1101/087049doi: bioRxiv preprint 

https://doi.org/10.1101/087049


7b), in contrast with our experimental results (Fig. 3b, c).  This dependence on network 

oscillations had a synaptic basis: in the synchronous model network, not only were 

correlations between synaptic conductances stronger than those in the asynchronous 

network, the lag between excitation and inhibition was larger, allowing for a longer 

temporal window in which synaptic input correlations could be manifested in pairs of 

membrane potentials3,6 (Supplementary Fig. 8).  In conclusion, changes in network 

oscillations, rather than network activity levels alone, determine the changes in 

correlated variability.  

The network oscillation dynamic described here is not the only one capable of 

reproducing the experimentally-observed dynamic of correlated variability.  For 

example, a similar randomly-connected network generates oscillations that either 

invade the entire network or are absent, and the CC dynamic can be reproduced by 

abolishing the oscillation early in the transient window via strong synaptic depression 

(data not shown).  This oscillation dynamic is inconsistent with the experimental results, 

in which gamma oscillations were strongest during the transient epoch, but persisted in 

the steady-state (Fig. 3a, 4a, Supplementary Fig. 4a).  In contrast, the small-world 

network reproduces the correct network oscillation temporal dynamics (Fig. 5c, 

Supplementary Fig. 6a, bottom, 9a).  Furthermore, the spatial arrangement of 

connections introduced by the small-world architecture adds a spatial dimension to the 

dynamics of network activity (see Supplementary Information 5, Supplementary Fig. 

9a).  Soon after stimulus onset, when synaptic connections are near their default 

strength, oscillatory spiking is largely coherent across the network of excitatory neurons.  

However, because of synaptic depression and the distance-dependence of connections, 
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the network dynamically subdivides, and coherent oscillations proceed among spatially 

separate groups of neurons in the steady-state.  This spatiotemporal dynamic predicts a 

dependence of CC temporal dynamics on distance between neurons (Supplementary 

Fig. 9b, c).  

Taken together, these results strengthen the hypothesis that the experimentally-

observed dynamics of correlated variability are primarily driven by the dynamics of 

thalamocortical network oscillations.  As such, synaptic time constants and synaptic 

depression are two intrinsic parameters relevant to correlated variability.  Constraining 

the model to also produce a realistic network oscillation temporal dynamic reveals an 

additional role for synaptic clustering. 
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Discussion 

 To study how cortical coordination evolves during visual processing, we 

measured correlated variability between the membrane potentials of pyramidal neuron 

pairs in turtle visual cortex during ongoing and visually-evoked activity.  This approach 

provides an exceedingly rare and much-needed view into the subthreshold events 

underlying coordinated spiking activity6, and importantly, is uncorrupted by issues 

associated with spike-based investigations.  For example, the process for targeting cells 

for recording is agnostic to the cells’ spike rates, and this study thus gives voice to the 

“dark” neurons that overwhelmingly populate the cortex24, but are rarely represented in 

the vast literature on correlated variability.  By supplementing our experimental 

approach with a model network investigation, we further addressed the relative 

contribution of the thalamocortical network to the dynamics of correlated variability, and 

identified relevant network variables. 

 We found that both continuous and brief visual stimulation evoked large, low-

frequency membrane potential fluctuations (Fig. 1e), with nested gamma-band (20 – 

100 Hz) oscillations (Fig. 2c, 3a), both of which varied significantly from trial to trial (Fig. 

2a, b, 3a).  This gamma-band variability was significantly correlated across the 

population of pairs in a given window of activity (Fig. 2b, c).  It is reasonable to ask 

whether this is at all relevant to sensory processing, given that cortical neurons transmit 

spikes, and not subthreshold fluctuations.  Previous work suggests it is.  First, the 

fluctuations themselves are important for interpreting spiking activity in networks of 

sparse-spiking neurons; subthreshold gamma oscillations define narrow windows in 
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which a given neuron is most likely to fire, and thus determine precise spike timing25,26.  

Second, the across-trial variability of these fluctuations constrains that of the spiking 

activity27; spiking responses can be no more reliable than the corresponding 

subthreshold activity. Finally, if and when neurons do spike in this visually-evoked “high 

conductance” state, the spike correlations will be shaped by state-induced changes in 

response gain, distance from threshold, and subthreshold correlations6.  In fact, this last 

relationship may be supralinear28, meaning that small changes in subthreshold 

correlated variability can have major repercussions for supra-threshold coordination.  

 What determines the strength of correlations in these single-trial deviations for a 

given pair of neurons?  Anatomical connectivity is one obvious candidate, but what are 

the relative contributions from feedforward and recurrent connections (Fig. 1b)?  Recent 

work has shown that the coupling of the spiking activity of a neuron with that of the 

population is stimulus-invariant4,5, suggesting a crucial role for intracortical connectivity.  

In agreement with this, we found that gamma band correlated variability for ongoing and 

evoked activity was significantly related, for both the non-adapted (transient, Fig. 2e) 

and adapted (steady-state, Fig. 2f) conditions.  In addition, although all pairs of neurons 

were separated by less than 300 microns, and therefore likely received similar sensory 

inputs29, correlated variability was broadly-distributed across the population during a 

given window of activity (Fig. 3b, c).  This variability suggests that the sparse 

connectivity of the cortex dramatically affects the distribution of pairwise correlations3.  

Indeed, alternate network models with higher connectivity were unable to reproduce this 

variability (data not shown). 
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 Connectivity was not the only relevant parameter; for most pairs of neurons, and 

for the population as a whole, gamma band correlated variability increased with visual 

stimulation, but then relaxed to near ongoing values, despite persistent activity (Fig. 2).  

That is, for a given network (i.e., an anatomical arrangement of feedforward and 

recurrent connections), the level of coordination was not static.  This was true for 

responses to both continuous and brief stimulation (Fig. 3b, c) suggesting the dynamic 

did not simply reflect a change in the statistics of the sensory inputs.  Previous 

experimental work implicates the cortical state: coordination in spiking activity4,5, 

synaptic inputs8,30, and membrane potentials26 appear to be related to network 

synchrony.  Accordingly, we found ample experimental and computational evidence 

implicating an evolving network state.  Specifically, changes in correlated variability 

across epochs were related to changes in properties of membrane potential power 

spectra (Fig. 4b, c), and reflected a phase synchrony dynamic (Supplementary Fig. 4) 

consistent with a network adapting from a “disinhibited” to a “balanced” state31.  In 

addition, the model revealed a strong relationship between network spike-rate 

oscillations and gamma-band correlated variability (Supplementary Information 5), 

and also demonstrated the synaptic basis: synaptic current correlations and the lag 

between excitation and inhibition are larger for pairs of neurons in a synchronous 

network than for those in an asynchronous network (Supplementary Information 5, 

Supplementary Fig. 8).  As such, our experimental results relating correlated variability 

to network state are in simultaneous agreement with multiple experimental studies of 

cortical activity across a variety of preparations and spatial scales, and importantly, 

demonstrate this principle in action at the level of the membrane potential during 
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sensory processing.  Moreover, our model results confirm computational predictions 

relating synaptic current dynamics to membrane potential correlations3,6, and extend 

previous work by demonstrating the effects of synaptic clustering and adaptation. 

Gamma band correlated variability decreased from transient to steady-state, yet 

remained significantly nonzero (Fig. 2d, 3c).  While vanishingly-small values would 

theoretically support greater response fidelity9, this realized steady-state value may 

reflect the level of neuronal interaction necessary for cortical function (e.g., feature 

binding32, effective signal propagation33, and general cognitive function34).  In other 

words, cortical coordination during sensory processing is maintained at an intermediate 

level (i.e., less than that during the initial response phase, but larger than zero) that 

represents the ideal balance between competing cortical needs (Fig. 1c).  This 

balanced state can be maintained across stimulus conditions by intrinsic adaptation 

mechanisms. 

Previous studies have described a stimulus-induced abolition of low-frequency 

correlated variability in membrane potential26 and membrane potential – LFP14 pairs in 

visual cortex.  We observed no such decrease (Supplementary Fig. 3a, b).  This 

discrepancy may be partially explained by the nature of ongoing activity.  In these 

previous studies, visual stimulation interrupted large-amplitude, low-frequency events 

that were coherent across electrodes and had random phase relative to stimulus onset.  

These fluctuations largely remained in residual traces, likely influencing pre-stimulus 

correlated variability.  In contrast, these spontaneous “bursts” of activity occurred 

relatively infrequently in our experiments (Fig. 1e, 2a, b).  To reproduce this quiescent – 

to – active sensory-evoked dynamic, we limited the inputs to our model neurons to 
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those from external stimulation, and stimulus-triggered, yet internally-generated events.  

Our model could likely be modified to reproduce the results of these other works by 

adding a shared background fluctuation6.  This brute-force implementation would not be 

very illuminating, however; spontaneous events can be strikingly similar to 

evoked18,19,35, and may therefore represent activity in the same microcircuits, triggered 

by events usually hidden from the experimenter.  Reproducing spontaneous events in a 

manner that is consistent with their possible sources is beyond the scope of this study.   

Here, we have focused on fundamental properties of the cortex (anatomical and 

emergent) that are likely to strongly influence correlated variability.  Future work can 

more definitively assess the relative contributions to cortical coordination from various 

intracortical and extracortical sources not addressed here, such as strong inhibitory 

feedback36,37, thalamic adaptation38,39, unequal adaptation of excitatory and inhibitory 

cortical synapses40, and the (time-varying) statistics of neuronal activity in the early 

visual pathway (e.g., correlations across thalamic inputs41,42), to name a few.  Of 

particular interest are top-down influences (e.g., attention), which have been shown to 

impact spike-count correlations in awake, behaving preparations43,44.  Our results 

predict that such higher-order inputs may impact correlated variability by influencing the 

network state.  It will be interesting to test this hypothesis, and to determine the synaptic 

basis of the interaction if confirmed.  Further, it is crucial to test for a relationship 

between subthreshold correlated variability and psychophysical performance, which will 

require a behavioral assay.  As dual whole-cell recordings in awake, behaving 

preparations (possibly combined with other recording modalities across multiple areas) 
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become increasingly common, future experiments can be designed to address these 

exciting questions. 

Methods 

Surgery 

All procedures were approved by Washington University’s Institutional Animal 

Care and Use Committees and conform to the guidelines of the National Institutes of 

Health on the Care and Use of Laboratory Animals.  Sixteen adult red-eared sliders 

(Trachemys scripta elegans, 150-1000 g) were used for this study. Turtles were 

anesthetized with Propofol (2mg Propofol/kg), then decapitated.  Dissection proceeded 

as described before45,46. In brief, immediately after decapitation, the brain was excised 

from the skull, with right eye intact, and bathed in cold extracellular saline (in mM, 85 

NaCl, 2 KCl, 2 MgCl2*6H2O, 20 Dextrose, 3 CaCl2-2H2O, 45 NaHCO3).  The dura was 

removed from the left cortex and right optic nerve, and the right eye hemisected to 

expose the retina.  The rostral tip of the olfactory bulb was removed, exposing the 

ventricle that spans the olfactory bulb and cortex. A cut was made along the midline 

from the rostral end of the remaining olfactory bulb to the caudal end of the cortex.  The 

preparation was then transferred to a perfusing chamber (Warner RC-27LD recording 

chamber mounted to PM-7D platform), and placed directly on a glass coverslip 

surrounded by Sylgard.  A final cut was made to the cortex (orthogonal to the previous 

and stopping short of the border between medial and lateral cortex) allowing the cortex 

to be pinned flat, with ventricular surface exposed. Multiple perfusion lines delivered 

extracellular saline, adjusted to pH 7.4 at room temperature, to the brain and retina in 

the recording chamber. 
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Intracellular Recordings 

For whole-cell current clamp recordings, patch pipettes (4-8 MΩ) were pulled 

from borosilicate glass and filled with a standard electrode solution (in mM; 124 

KMeSO4, 2.3 CaCl2-2H2O, 1.2 MgCl2, 10 HEPES, 5 EGTA) adjusted to pH 7.4 at room 

temperature.  Cells were targeted for patching using a dual interference contrast 

microscope (Olympus).  Simultaneously recorded cells were located less than 300 

microns apart, and all cells were located within 300 microns of an extracellular recording 

electrode.  Intracellular activity was collected using an Axoclamp 900A amplifier, 

digitized by a data acquisition panel (National Instruments PCIe-6321), and recorded 

using a custom Labview program (National Instruments), sampling at 10 kHz.  We 

excluded cells that did not display stable resting membrane potentials.  The visual 

cortex was targeted as described below.   

Extracellular Recordings 

Extracellular recordings were achieved with tungsten microelectrodes 

(MicroProbes heat treated tapered tip), with approximately 0.5 MΩ impedance.  

Electrodes were slowly advanced through tissue under visual guidance using a 

manipulator (Narishige), while monitoring for activity using custom acquisition software 

(National Instruments).  Extracellular activity was collected using an A-M Systems 

Model 1800 amplifier, band-pass filtered between 1 Hz and 20,000 Hz, digitized (NI 

PCIe-6231), and recorded using custom software (National Instruments), sampling at 10 

kHz. 
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Identification of Visual Cortex 

We used a phenomenological approach to identify the visual cortex, described 

previously47.  In general, this region was centered on the anterior lateral cortex, in 

agreement with voltage-sensitive dye studies48,49.  Anatomical studies identify this as a 

region of cortex receiving projections from lateral geniculate nucleus29.  

Visual Stimulation 

Whole-field flashes were presented using either a red LED (Kingbright, 640nm), 

mounted to a manipulator and positioned 1 – 5 cm above the retina, or a projector-lens 

system (described below).  The mean LED light intensity (irradiance) at the retina was 

60 W/m2.  For one turtle, we used these same LEDs in conjunction with 200 micron 

optical fibers (Edmund Optics) to project sub-field flashes (1 ms – 200 ms) onto the 

visual streak.  Other stimuli were presented using a projector (Aaxa Technologies, P4X 

Pico Projector), combined with a system of lenses (Edmund Optics) to project images 

generated by a custom software package directly onto the retina.  The mean irradiance 

at the retina was 1 W/m2.  This system was used to present brief (100 ms – 250 ms) 

whole-field and sub-field flashes (red or white), sustained (10 s) gray screen, a 

naturalistic movie (“catcam”), a motion-enhanced movie (courtesy Jack Gallant), and a 

phase-shuffled version of the same movie (courtesy Jack Gallant and Woodrow Shew).   

In all cases, the stimulus was triggered using a custom Labview program (National 

Instruments).  

The preparation was in complete darkness before and after each stimulus 

presentation.  Flashes lasted between 1 ms and 150 ms, with at least 20 s between 
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flashes.  Movies lasted either 10 s or 20 s, and were shown at least 12 times, with at 

least 30 s between the end of one presentation and the beginning of the next. 

We presented continuous visual stimuli (movies) while recording from 19 pairs, 

and brief stimuli (diffuse flashes) while recording from 16 pairs.  

 

Signal Processing 

In all analyses, only cells with 12 or more visual stimulation trials were included.  

Raw data traces were down-sampled to 1000 Hz.  Because action potentials in turtle 

cortical pyramidal neurons are relatively wide, spike waveforms still contributed to the 

band-pass filtered intracellular recordings.  To remove these, an algorithm was used to 

detect spikes, and the membrane potential values in a 20 ms window centered on the 

maximum of each spike were replaced via interpolation.  Finally, the traces were filtered 

(20 Hz lowpass or 20 – 100 Hz bandpass Butterworth filter).   

Cross-correlation Analysis 

For each single-trial voltage trace, the residual (Vr or deviation from the average 

activity) was found by subtracting the across-trial average time series from the single-

trial time series: 

𝑉𝑟 = 𝑉 − 〈𝑉〉𝑡𝑟𝑖𝑎𝑙𝑠 

Residuals were then separated into three epochs: the ongoing epoch (defined to be the 

two seconds prior to the onset of visual stimulation), the transient epoch (200 to 600 ms 

after stimulus onset), and the steady-state epoch (800 to 2800 ms after stimulus onset; 
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Fig. 2a).  For each pair of simultaneously-recorded cells, the Pearson correlation 

between residual pairs was then calculated for each epoch and trial.  The results were 

averaged across all trials, resulting in the trial-averaged correlated variability (CC) for 

each pair and epoch: 

𝐶𝐶𝑒𝑝𝑜𝑐ℎ = 〈𝑐𝑜𝑣(𝑉𝑟,1
𝑒𝑝𝑜𝑐ℎ, 𝑉𝑟,2

𝑒𝑝𝑜𝑐ℎ) [𝑣𝑎𝑟(𝑉𝑟,1
𝑒𝑝𝑜𝑐ℎ)𝑣𝑎𝑟( 𝑉𝑟,2

𝑒𝑝𝑜𝑐ℎ)]1/2⁄ 〉𝑡𝑟𝑖𝑎𝑙𝑠 

Because the correlated variability of spike counts been shown to depend on the size of 

the window used for calculations17, we repeated the above process for three other sets 

of choices for epoch window sizes and gaps between epochs (see Supplementary 

Information 1).   

The significance of CC for a given pair and epoch was determined by 

bootstrapping; CC was considered to be significantly nonzero if the average value +/- 

the 95% confidence level from bootstrapping did not include zero.  Similarly, CC for two 

epochs were considered to be significantly different from one another if the 

bootstrapping intervals did not overlap. 

For the population of pairs, we determined the significance of the population-

average CC for a given epoch using the one-sample t-test (that is, by comparing to a 

zero-mean normal distribution with the same standard deviation).  We tested for a 

significant change in population CC values across two epochs by applying the Wilcoxon 

signed-rank test to the two sets of CC values. 

We also compared CC for responses to brief and continuous visual stimulation.  

First, pairs were segregated according to the stimulus presented, resulting in 16 brief 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2016. ; https://doi.org/10.1101/087049doi: bioRxiv preprint 

https://doi.org/10.1101/087049


and 19 extended-stimulus pairs.  The two resulting sets of trial-averaged CC values 

were then compared using the Wilcoxon rank-sum test.   

   

Power Analysis 

For each trial and cell, we extracted a 5.8 s window of activity (with epoch 

windows and gaps between epochs as described above, plus 500 ms windows on each 

end to avoid filtering artifacts in the ongoing and steady-state epochs), and calculated 

the residual time series as described above.  For each residual trace, we performed 

wavelet analysis in Matlab using software provided by C. Torrence and G. Compo 

(available at URL: http://paos.colorado.edu/research/wavelets/, ref).  This resulted in a 

power time series for each cell, for multiple frequencies.  For each frequency below 100 

Hz, we averaged the time series across each epoch to obtain the average power at 

each frequency for each epoch.  We then averaged across trials.  For each pair, we 

also averaged across all frequencies in the gamma range (20 – 100 Hz), and plotted the 

resulting trial-averaged gamma power (P) in each epoch to inspect for trends across the 

population (Fig. 2e).  We tested for significant changes in a given pair and across the 

population using the same methods as those described for CC values. 

We next inspected for a relationship between changes in CC and changes in 

gamma power for a given pair.  For the ongoing – to – transient and transient – to – 

steady-state transitions, we calculated the change in trial-averaged gamma power for 

each neuron  

∆𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ1→ 𝑒𝑝𝑜𝑐ℎ2 = 𝑃𝑛𝑒𝑢𝑟𝑜𝑛

𝑒𝑝𝑜𝑐ℎ2 − 𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ1

, 
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and took the geometric mean of the absolute values: 

√|∆𝑃1∆𝑃2|
𝑒𝑝𝑜𝑐ℎ1→𝑒𝑝𝑜𝑐ℎ2

= [|∆𝑃1
𝑒𝑝𝑜𝑐ℎ1→𝑒𝑝𝑜𝑐ℎ2∆𝑃2

𝑒𝑝𝑜𝑐ℎ1→𝑒𝑝𝑜𝑐ℎ2|]
1/2

 

For each pair, we plotted the absolute value of the average change in CC vs. the result, 

and performed linear regression analysis (Fig. 4a).   

 For each cell, we also obtained the relative power spectrum (rP) for the transient 

and steady-state epochs, defined to be the trial-averaged evoked spectrum divided by 

the trial-averaged ongoing spectrum (Fig. 2d, Supplementary Fig. 6a, c): 

𝑟𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ = 𝑃𝑛𝑒𝑢𝑟𝑜𝑛

𝑒𝑝𝑜𝑐ℎ /𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑜𝑛𝑔𝑜𝑖𝑛𝑔

 

Second, to obtain the “peakiness” of the relative power spectrum within the gamma 

range for each cell, we divided the maximum value of rP in the gamma range by the 

average value in the gamma range to obtain the “peak ratio” (𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ

) (Fig. 4b, similar 

to Yu, Ferster 2010): 

𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ =

[max (𝑟𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ )]

𝑔𝑎𝑚𝑚𝑎

[avg (𝑟𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ )]

𝑔𝑎𝑚𝑚𝑎

 

 (where 𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑜𝑛𝑔𝑜𝑖𝑛𝑔

= 1).  We then calculated the change in peak ratios across epochs: 

∆𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ1→𝑒𝑝𝑜𝑐ℎ2 =  𝑀𝑛𝑒𝑢𝑟𝑜𝑛

𝑒𝑝𝑜𝑐ℎ2 − 𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ1

 

and then the geometric mean of the absolute values for each simultaneously-recorded 

pair (√|∆𝑀1∆𝑀2|).  Finally, we inspected for a relationship between √|∆𝑀1∆𝑀2| and 

changes in CC for a given pair (Fig. 4c) as described above for changes in power. 
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Phase Concentration Analysis 

 For each residual trace in a given trial, we used wavelet analysis (described 

above) to calculate the phase of each signal as a function of time and frequency.  We 

then averaged over all frequencies in the gamma range (20 – 100 Hz) to obtain the 

gamma phase time series for each trace (φi(t)).  For each pair of residuals, we 

calculated the cosine of the phase difference, and averaged over each epoch to obtain 

the “phase concentration” (R) for each epoch and trial: 

𝑅𝑒𝑝𝑜𝑐ℎ
𝑡𝑟𝑖𝑎𝑙 = 〈𝑐𝑜𝑠[𝜑1(𝑡) −  𝜑2(𝑡)]〉𝑒𝑝𝑜𝑐ℎ

𝑡𝑟𝑖𝑎𝑙  

We then averaged over all trials and analyzed the results for pairwise and population 

trends using the same methods as those described for CC values (Supplementary Fig. 

4b).  We also inspected for a relationship between changes in CC and changes in R for 

a given pair (Supplementary Fig. 4c) as described above for changes in power. 

  

Network Models 

 To investigate the roles of network properties in our experimental results, we 

implemented a model network of 800 excitatory and 200 inhibitory leaky-integrate-and-

fire neurons.  Excitatory-excitatory connections had small-world connectivity41,50 (with 

5% connection probability), and all other connections were random (with 5% excitatory-

inhibitory, and 10% inhibitory-excitatory and inhibitory-inhibitory connection probability).  

Each nonzero entry in the connection weight matrix (𝑊𝑖𝑗
0) was drawn from a uniform 

distribution over the interval [0.0, 1.0). 
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The dynamics of the membrane potential (V) of each neuron evolved according 

to 

𝜏𝑚

𝑑𝑉

𝑑𝑡
= −𝑔𝐿[𝑉(𝑡) − 𝐸𝐿] + 𝐼𝑠𝑦𝑛(𝑡) 

where the membrane time constant τM = 50 ms (excitatory neurons), 25 ms (inhibitory), 

and the leak conductance gL = 10 nS (excitatory), 5 (inhibitory).  The leak reversal 

potential EL for each neuron was a random value between -70 and -60 mV, drawn from 

a Gaussian distribution (to model the variability in resting membrane potentials 

observed across neurons in the experimental data).  The reversal potentials for the 

synaptic current Isyn(t) were EGABA = -68 mV, and EAMPA = 50 mV.  

The synaptic current for each synapse type (between presynaptic neurons of 

type X and postsynaptic neurons of type Y) had three relevant time course parameters: 

delay (τLX, that is, the lag between presynaptic spike time and beginning of conductance 

waveform), rise time (τRYX), and decay time (τDYX).  Synaptic conductances were 

modeled as products of time-varying gating variables (SYX) and maximum conductances 

(gYX).  Following a presynaptic spike at time 0, the gating variable dynamics were 

described by 

𝑆𝑌𝑋(𝑡) =
𝜏𝑚

𝜏𝐷𝑌𝑋 − 𝜏𝑅𝑌𝑋
[𝑒𝑥𝑝 (−

𝑡 − 𝜏𝐿𝑋

𝜏𝐷𝑌𝑋
) − 𝑒𝑥𝑝 (−

𝑡 − 𝜏𝐿𝑋

𝜏𝑅𝑌𝑋
)] 

with time constants (in ms) τLE = 1.5, τREE = 0.2, τDEE = 1.0, τRIE = 0.2, τDIE = 1.0, τLI = 

1.5, τRII = 1.5, τDII = 6.0, τREI = 1.5, τDEI = 6.0.  Maximum conductance values (in nS) 

were gEE = 1.0, gIE = 6.0, gEI = 30, gII = 30.  In response to a presynaptic spike in neuron 
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j at time 𝑡𝑗
𝑠𝑝𝑘

, the weight (Wij) of a synapse connecting neurons j and i depressed and 

recovered according to 

𝑑𝑊𝑖𝑗

𝑑𝑡
= −

𝑊𝑖𝑗(𝑡)

𝜏𝑑𝑒𝑝𝑟𝑒𝑠𝑠
𝛿(𝑡 − 𝑡𝑗

𝑠𝑝𝑘) +
𝑊𝑖𝑗

0 − 𝑊𝑖𝑗(𝑡)

𝜏𝑟𝑒𝑐𝑜𝑣𝑒𝑟
 

 

with depression time constant τdepress = 30 ms and recovery time constant τrecover = 1500 

ms.  Depression and recovery time constants were chosen to give reasonable activity 

time courses for low-frequency (0 - 20 Hz) membrane potentials. 

 The spike threshold for each neuron was -40 mV.  A neuron reset to -59 mV after 

spiking, and was refractory for 2 ms (excitatory) and 1 ms (inhibitory). 

All excitatory neurons received Poisson external inputs.  During “ongoing” 

activity, the external input rate to each neuron was 25 Hz.  The stimulus was modeled 

as a gradual increase to 500 Hz; the input rate was increased by 95 Hz at stimulus 

onset, and by an additional 95 Hz every 50 ms for 200 ms.  This gradual increase 

provided more realistic low-frequency membrane potentials than did a single step 

function stimulus, but did not qualitatively impact the results.   The gating variables for 

external inputs had the same parameters as for excitatory-excitatory connections, and 

maximum conductances were gE  = 4 nS. 

 Each trial was 5.8 s in duration, with stimulus onset at 2.7 s, and the time step 

was 0.05 ms.  The ongoing epoch was defined to be 2200 ms to 200 ms before stimulus 

onset, the transient epoch 0 ms to 400 ms after stimulus onset, and the steady-state 

epoch 600 ms to 2600 ms after stimulus onset.  The additional 500 ms at the beginning 
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and end of each trial ensured there were no wavelet filtering artifacts in the ongoing and 

steady-state epochs. 

We then randomly selected 20 excitatory neurons from the entire population of 

800 excitatory neurons, and generated 40 V-V pairs from these twenty nodes.  Because 

action potential rates were higher in this model network than in experiment, and 

because action potentials can affect V-V correlated variability, we substituted “test” 

neurons for these network neurons before doing the calculation (see Supplementary 

Information 6).  Test neurons were identical to network neurons, but all synaptic 

conductances were multiplied by a factor of 0.5, and spike threshold was raised to -30 

mV, which was sufficient to eliminate all action potentials.  Thus, a test neuron 

membrane potential acted as a network sub-sampler, representing the response to re-

scaled versions of inputs to the corresponding network neuron.  For each pair of test 

neurons, we then calculated the same parameters as for experimental neuron pairs 

(CC, R, etc.).  We also calculated cross correlations as a function of lag for residual 

synaptic conductance traces (Supplementary Figure 8).  This process was identical to 

that described for the (zero lag) Pearson correlation coefficient described above, but 

was performed for all lags in +/- 50 ms.  

For each trial, we calculated the instantaneous spike rate of all excitatory 

neurons in the network.  We then calculated the power spectra of the transient and 

steady state spike rates using wavelet filtering, and averaged over all trials 

(Supplementary Figure 6), as described above.  

To investigate the dependence on distance between neurons, we repeated the 

above analysis for this model using two alternate sets of randomly-selected neurons.  
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First, we randomly selected 20 neurons from a group of 100 neighboring neurons.  

Second, we used a smaller group of 20 neighboring neurons (see Supplementary 

Information 5, and Supplementary Figure 9). 

In addition, we implemented two alternate model versions (see Supplementary 

Information 5, and Supplementary Figures 6, 7, 8).  In one, we eliminated synaptic 

adaptation.  In the other, we maintained synaptic adaptation, but tuned synaptic time 

courses to give an asynchronous transient epoch (τLX = 1.5 ms, τRYX = 0.2 ms, τDYX = 

1.0 ms for all X and Y).  (In the absence of adaptation, this version was also 

asynchronous in the steady-state.)  
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Figures 

 

Figure 1  Investigating the dynamics of correlated variability in recurrent circuits of visual cortex.  

(a) Feedforward thalamocortical network subject to sensory inputs (magenta).  Coordination 

between pairs of cortical neurons (black) is determined by convergence patterns in thalamic 

inputs (green).  (b) A more realistic, interaction-dominated thalamocortical network, in which the 

inputs to any one cortical neuron arise primarily from other cortical neurons.  Coordination is 

thus a function of both feedforward and recurrent inputs.  (c) The level of cortical coordination 

affects cortical function, and it is unknown if and how this changes with sensory stimulation.  (d) 

We simultaneously recorded the membrane potentials from pairs of cells, as well as the nearby 

LFP, during ongoing and visually-evoked activity in a densely-interconnected thalamocortical 

network.  (e)  Pairwise membrane potential recordings provided a measure of cortical 

coordination across stimulus conditions that avoids the pitfalls of spike data. 
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Figure 2 Dynamics and complexity of trial-to-trial response variability. (a) Single-trial responses 

(low opacity) and across-trial average responses (high opacity) for two simultaneously-recorded 

neurons.  Stimulus is naturalistic movie (see Methods).  Single trials artificially aligned for clarity.  

(b) Same as in (a), but for a different pair of cells, and stimulus is 150 ms red (640 nm) whole-

field flash, with onset at magenta arrow, (see Methods).  (c) Single-trial response from cell in 

(a).  Inset: high-frequency activity nested within the broader depolarization.  (d)  Average 

relative power spectrum (evoked power divided by ongoing) of residuals for red traces in (a) for 

the transient (blue) and steady-state (green) epochs.  Shaded regions indicate +/- 95% 

confidence intervals by bootstrapping method.  (e)  Trial-averaged gamma (20 – 100 Hz) power 

for 79 cells, for brief and extended visual stimulation.  Each dot represents the across-trial 

average gamma power for one cell for that epoch.  Dark (light) lines connecting dots represent 

(in)significant changes in gamma power for that cell across epochs.  Across-epoch significance 

for each cell determined by comparing bootstrap intervals.  Asterisks above line connecting two 

epochs indicates results of Wilcoxon signed-rank significance test for difference in populations 

of values for those epochs (**: 0.001 ≤ P < 0.01; ***: P < 0.001; no asterisk and gray line: P > 

0.05).  Two outliers truncated for clarity. 
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Figure 3  Evoked gamma 

band correlated variability 

appeared to be modulated 

by internal mechanisms.  

(a)  Examples of gamma 

band (20 – 100 Hz) 

residual membrane 

potential pairs for several 

trials (same pair as in 2a).  

(b)  Trial-averaged CC 

values for each of 19 pairs, 

20 – 100 Hz, continuous 

visual stimulation (see 

Methods).  Each dot 

represents the across-trial 

average CC value for one 

pair for that epoch.  

Colored (white) dots 

represent values (not) 

significantly different from 

zero (one-sided t-test).  

Otherwise, same as in 2e.  

(c)  Same as in (b), but for 

16 pairs, and brief visual 

stimulation (see Methods).  

(d) Across-trial average 

transient CC vs. average 

ongoing CC for each pair, 

for all stimuli.  Error bars 

indicate 95% confidence 

intervals by bootstrapping 

method.  Red line indicates 

significant linear regression 

fit (r2 = 0.14, P = 0.026).   

(e) Same as (d), but for 

steady-state epoch (r2 = 

0.15, P = 0.02). 
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Figure 4  Changes in CC are related to changes in the shape of relative power spectra.  (a) 

Absolute value of change in CC (evoked minus ongoing) vs. absolute value of geometric mean 

of change in gamma power, for each pair, for transient (top), and steady-state (bottom) epochs.  

(b) Top: same as in 2(d), but confidence bands omitted for clarity.  For each cell, the peak 

power index (M), is defined as the maximum relative power value in the gamma range (rPmax), 

divided by the average over the gamma range (rPavg).  Bottom: M for all recorded cells (brief and 

continuous stimulation), for transient (blue) and steady-state (green) epochs.  (c) Same as in 

(a), but for absolute value of geometric mean of change in M, for all cells.  If present, red lines 

indicate significant linear regression fit (P < 0.05).   
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Figure 5  A model network strengthens the “internal mechanism” hypothesis, suggesting crucial 

roles for network oscillations.  (a) The model network was composed of 800 excitatory LIF 

neurons with small-world connectivity, and 200 randomly-connected inhibitory LIF neurons (not 

depicted).  All excitatory neurons received Poisson external inputs, and the stimulus was 

modeled as a gradual increase in the external input rate (see Methods).  (b – c) Same as in Fig. 

3b, c, but two excitatory model neurons randomly-selected from the network (see Methods).  (d) 

Same as in Fig. 3d, but for forty pairs of excitatory neurons, generated from twenty neurons 

randomly-selected from the network. 
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