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Abstract 

Deep mutational scanning is now used in directed evolution experiments to quantify the 

change in frequency of a cellular variant in a mixed population. A key concern is the 

extent to which the enrichment of a variant in a population corresponds to a fitness metric 

like relative growth rate or survival percentage. We present here analytical equations 

converting the enrichment of a variant to fitness metrics for plate-based selections. Using 

isogenic and mixed cultures we show that growth rates and survival percentages correlate 

for antibiotic plate-based selections. These results are important for proper interpretation 

of data resulting from deep sequencing. 
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Introduction  

Deep sequencing has emerged as a powerful, enabling tool for protein engineering 

(Jardine et al., 2016, Klesmith et al., 2015, Koenig et al., 2015, Whitehead et al., 2012). 

Deep sequencing-based measurements allow one to estimate the frequency of each 

mutational variant in a population to be screened or selected (Fowler et al., 2014, Hietpas 

et al., 2012). The end-point measurement is an enrichment ratio (εi), defined as the base 2 

logarithm of the frequency change of the variant i in the selected population compared to 

a reference population. A key question in such deep mutational scanning experiments is 

the extent to which this enrichment ratio corresponds to a fitness value or phenotype 

(Boucher et al., 2016, Kowalsky et al., 2015). 

 

Many directed evolution experiments involve selections on solid media. Typically, a 

population of cells expressing the mutated protein of interest is plated on a solid support 

containing selective media, and the selected hits are colonies that survive or are larger 

than other colonies after a set amount of time. A major problem with plate-based 

selections is that the output is binary – a hit or not a hit. To remedy this, several groups 

have used deep sequencing to determine an analog fitness for each variant (Elazar et al., 

2016, Firnberg et al., 2014, Hsiau et al., 2015, Kim et al., 2013) where the resulting 

fitness metric is usually normalized to the enrichment ratio of the starting sequence. 

However, the fitness metric calculated from enrichment ratios should depend strongly on 

whether the relative growth rates between variants differ, whether a variant survives the 

initial plating condition differentially, and the initial and final biomass concentrations. To 

that end, our objective in this work is to present analytical equations converting 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2016. ; https://doi.org/10.1101/087072doi: bioRxiv preprint 

https://doi.org/10.1101/087072
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

enrichment ratios to unambiguous fitness metrics for plate-based selections, and to supply 

experimental validation using an existing genetic selection for an antibiotic-based 

selection.   

 

Theory 

On solid media, growth of bacterial biomass follows exponential behavior during the 

growth phase (Fujikawa and Morozumi, 2005). Importantly, the specific growth rate 

during exponential phase and the final density is independent of the plating density 

(Fujikawa and Morozumi, 2005). Therefore, for our model we assume that the growth 

model for each variant i can be written as: 

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑜𝑜𝑓𝑓𝑖𝑖𝑒𝑒𝜇𝜇𝑖𝑖(𝑡𝑡−𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙)     (1)  

Where Xo is the initial biomass for variant i, Xi is the biomass of variant i evaluated at 

time t, tlag is the lag time, µi is the specific growth rate, and fi is the fraction of variant i 

that survives the initial selection at t=0. Based on work from van Heerden et al, we 

assume that the lag time is the same for all variants (van Heerden et al., 2014). Equation 

(1) does not capture the characteristic sigmoidal shape of microbial growth curves – we 

neglect this for simplicity. We note that the inflection point on microbial growth curves 

typically occur within 1 or 2 average population doublings of the maximum biomass 

concentration. Thus, the error resulting from this simplification is likely to be minimal.  

 

Using the above exponential growth model, it can be shown for conditions where t is 

greater than tlag and Xi is less than Xmax that the enrichment ratio of a given clone in the 

population can be determined by µi and fi:  
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𝜀𝜀𝑖𝑖 = 𝑔𝑔𝑝𝑝 �
𝜇𝜇𝑖𝑖
𝜇𝜇�
− 1� + 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑓𝑓𝑖𝑖

𝑓𝑓̅
)     (2) 

Here 𝜇̅𝜇 and 𝑓𝑓 ̅are the population-averaged values, and gp is the population-averaged 

number of doublings. Importantly, the above three parameters are experimentally 

measurable and, furthermore, common to all variants. Equation (2) shows that a given 

variant is enriched in the population if the specific growth rate is faster than the 

population average and/or if the fraction of surviving colonies is higher than the 

population average.  

 

There are two limiting cases. If the fraction of growing cells is the same for each variant, 

as may be the case for selections coupling growth with flux through primary metabolism 

(Klesmith, Bacik, Michalczyk and Whitehead, 2015) then the fitness equation becomes 

(Kowalsky, Klesmith, Stapleton, Kelly, Reichkitzer and Whitehead, 2015). 

𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝜇𝜇𝑖𝑖
𝜇𝜇𝑤𝑤𝑤𝑤

� = 𝑙𝑙𝑙𝑙𝑙𝑙2(
𝜀𝜀𝑖𝑖
𝑔𝑔𝑝𝑝
+1

𝜀𝜀𝑤𝑤𝑤𝑤
𝑔𝑔𝑝𝑝

+1
)     (3) 

At the other limit, if the exponential growth rates are equivalent between all variants, the 

enrichment ratios can be normalized to a fitness metric defined as: 

𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝑓𝑓𝑖𝑖
𝑓𝑓𝑤𝑤𝑤𝑤
� = ( 𝜀𝜀𝑖𝑖

𝜀𝜀𝑤𝑤𝑤𝑤
)       (4)  

Here the wt subscript refers to the values from the wild-type sequence. While it is often 

implicitly assumed that equation (4) is the appropriate fitness metric for selections 

(Elazar, Weinstein, Biran, Fridman, Bibi and Fleishman, 2016), it could be the case that 

both the fraction of surviving variants and the relative growth rates vary between variants 

in the selection. In this case, time points must be taken over a time interval in order to 

calculate the specific growth rate and the surviving fraction for each variant.  
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To evaluate the appropriate form of the normalization expressions for antibiotic-based 

selections, we evaluated a genetic selection exploiting the twin-arginine translocation 

(TAT) pathway in Gram-negative bacteria (Fisher et al., 2006). In this selection a protein 

of interest is fused between an N-terminal ssTorA Tat periplasmic export signal peptide 

and a truncated, active C-terminal TEM-1 beta-lactamase. Because the TAT pathway is 

thought to export only folded proteins, TEM-1 will be differentially exported to the 

periplasm based on the protein of interest in the fusion construct. Thus, mutations 

conferring enhanced fusion protein periplasmic localization can be selected on solid 

media containing different amounts of beta-lactam antibiotics.  

 

Results 

We first evaluated selection-specific growth parameters for a ΔS4-A25 TEM-1 bla with 

the activity abrogating mutation S70A. We modified the TAT selection plasmid 

pSALECT-EcoBam (Addgene: #59705) (Hsiau, Sukovich, Elms, Prince, Strittmatter, 

Ruan, Curry, Anderson, Sampson and Anderson, 2015) by fusing a codon-swapped 

TEM-1 bla ΔS4-A25 in-frame after the XhoI restriction site. This active codon-swapped 

TEM-1 bla is used to avoid recombination with the N-terminal TEM-1 bla S70A. E. coli 

strain MC4100 harboring this plasmid was plated on LB-agar plates containing either 50, 

100, or 200 µg/mL carbenicillin. 

 

Colonies from a fresh transformation of E. coli MC4100 with the plasmid pSALECT-

TEM-1(S70A)/csTEM-1 were used to start a culture in liquid LB media with 34 µg/mL 
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chloramphenicol. This culture was grown at 30ºC at 250 rpm for 10 hours. Fresh LB agar 

plates with either 50, 100, or 200 µg/mL carbenicillin were made the day of the 

transformation and poured at a constant volume of agar per plate. The OD600 of the 

culture was measured after the 10 hour growth period to determine the cell density. The 

cells were diluted such that between 12-21 hours the cells were in exponential growth 

phase and plated. This initial plating density is different for each antibiotic concentration 

and was determined by control experiments. 150 µL of the diluted culture was spread 

onto the desired LB agar + carbenicillin plates. Plates were then placed into a humidified 

30ºC incubator and grown for either 12, 15, 18, and 21 hours. At these time points a plate 

was taken out, and 1 mL of phosphate buffered saline was added onto the plate. All of the 

cells were scraped off of the agar plate and resuspended in this phosphate buffered saline. 

The final OD600 was then measured to determine the final cell mass. The specific growth 

rate was calculated from the natural log transformed cell densities at different time points. 

This experiment was repeated at least twice.  

 

The fraction of surviving clones was determined by making serial dilutions of a culture 

with an OD600 of 1.0 ranging from 10-3 to 10-7 onto the selective LB agar + carbenicillin 

plates and LB agar + 34 µg/mL chloramphenicol plates. Plates were incubated at 30ºC in 

a humidified incubator and the number of distinct colonies recorded at each dilution. The 

fraction of surviving clones was calculated by dividing the number of distinct colonies on 

each carbenicillin plate by the number on the chloramphenicol plate. This was done with 

at least three biological replicates per antibiotic concentration. 
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For TEM-1 (S70A) the specific growth rate decreases at higher antibiotic concentrations 

(Figure 1a). This decreased growth rate correlates with low viability, although the 

growth rate plateaus at approximately half of the specific growth rate under conditions of 

high viability (Figure 1a). We performed the same experiment on a destabilized, 

catalytically inactive variant TEM-1 bla with mutations S70A, D179G (Wang et al., 

2002). As expected, the negative change in cellular viability is much greater than TEM-

1(S70A) (Figure 1b). Similar to TEM-1(S70A), the growth rate decreases and plateaus to 

around half that of the high viability growth rate (Figure 1b).  

 

Figure 1: Specific growth rate (circles) and fraction viable (diamonds) of E. coli 
MC4100 expressing a) TEM-1(S70A), b) TEM-1(S70A,D179G), c) LGK, and d) 
LGK(D212A,I307Y). Error bars are 1 standard deviation of biological replicates (growth 
rates) or triplicates (fraction viable). 
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We performed the same set of experiments on a different enzyme system to confirm our 

initial observations. We used a codon optimized levoglucosan kinase (LGK) from L. 

starkeyi (Klesmith, Bacik, Michalczyk and Whitehead, 2015) (Figure 1c); and a 

destabilized, catalytically inactive variant LGK with mutations D212A, I307Y (Figure 

1d). Similar results were seen for both strains where the growth rate decrease is 

independent of viability, the growth rate plateaus to half maximum for the destabilized 

variant, and viability has a more substantial decrease than growth rate. Therefore, both 

the growth rate and cellular viability impact enrichment ratios for plate based selections. 

From these results we predict that within a population the enrichment ratios for beneficial 

variants should increase with population size, and this effect should be accounted for in 

the analysis of deep mutational scanning experiments.  

 

To evaluate gain of function mutations on a larger scale, we used nicking mutagenesis 

(Wrenbeck et al., 2016) to create a single-site saturation mutagenesis library for residues 

331-435 in LGK. We performed a TAT selection where we plated 100 µL of a culture of 

MC4100 E. coli at an OD600 of 1.0 with the LGK library on two 100 mm diameter petri 

plates with LB agar and 200 µg/mL carbenicillin per time point. Dilutions were also 

plated at 200 µg/mL carbenicillin and 34 µg/mL chloramphenicol to measure library 

viability. The plates were incubated in parallel at 30ºC in a humidified incubator, and the 

cellular mass was scraped and collected at time-points of 12, 14, 16, and 18 hours. The 

two replicates at each time point were pooled in equal volumes. The plasmids extracted 

from each time point were deep sequenced using an Illumina MiSeq in 300 bp paired-end 

mode using previously developed library preparation procedures (Kowalsky, Klesmith, 
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Stapleton, Kelly, Reichkitzer and Whitehead, 2015). We then used Enrich (Fowler et al., 

2011) to calculate enrichment ratios for each variant at a given time-point relative to t = 0 

hours. We observed 1,220 single point mutants with at least 15 read counts in the 

reference (unselected; t = 0 hours) population. Library statistics for the selections are 

shown in Table I. Processed deep sequencing datasets are freely available at figshare 

(www.figshare.com). 

Table I: Library statistics, cellular densities, and fraction viable of time points. 

Number of mutated codons 105 
Reference sequencing reads post quality filter 167,053 

Selected sequencing reads post quality filter   
12 hours 110,898 
14 hours 184,418 
16 hours 186,130 
18 hours 182,375 

Percent of mutant codons with:   
1-bp substitution 99.4 
2-bp substitution 84.2 
3-bp substitution 78.4 
All substitutions 83.8 

Percent of reads with:   
No nonsynonymous mutations 35.0 
One nonsynonymous mutation 52.4 

Multiple nonsynonymous mutations 12.6 

Coverage of possible single nonsynonymous mutations: 85.4 

Biomass (OD600-mL):   
0 hours 0.1 0.1 

12 hours 26.2 28.4 
14 hours 43.1 42.8 
16 hours 52.0 58.0 
18 hours 75.4 85.2 

Fraction viable:   
12 hours 0.0074 
14 hours 0.0126 
16 hours 0.0145 
18 hours 0.0153 
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For each variant we then plotted the enrichment ratio as a function of the observed 

average number of population doublings (Figure 2a). From this plot we extracted an 

enrichment ratio slope (slopeer) as well as an average enrichment ratio (averageer), 

defined here as the enrichment ratio at the midpoint of the best-fit linear regression line 

joining the four experimental data-points. The correlation coefficient between slopeer and 

averageer is only 0.38 (Figure 2b). However, there is a statistically significant 

relationship between the sign of slopeer and averageer (Fisher’s exact test binary 

classification p<0.0001). That is, if the slopeer is positive, the averageer is much more 

likely to be positive, and vice versa. 

 

Figure 2: a) Enrichment ratio versus average population doublings of example variants 
showing an increase, neutral, or decrease in their enrichment over time. b,c: relationship 
between the change in enrichment ratio (slopeer) and average enrichment ratio (averageer) 
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for b) all variants above 15 read counts; and c) all the subset of “high confidence” 
variants. Wild-type is indicated with an open square. 
 

We reasoned that intrinsic counting error resulting from counting small numbers of 

variants could impact accurate determination of slopes. To test this assumption, we reran 

the above analysis on the subset of variants with over 100 read counts in the reference 

population (t = 0 hours) and at least 50 read counts on average in the four subsequent 

timepoints. For these resulting 142 variants, a much stronger relationship emerged 

between slopeer and averageer (Figure 2c), with the correlation coefficient now 0.80. 

 

Discussion 

The above results show that enrichment ratios vary with respect to average number of 

population doublings for the plate-based TAT genetic selection in E. coli. We speculate 

enrichment ratios will vary for most coupled selections involving beta-lactam antibiotic 

resistance. For this particular antibiotic-based selection, these results are consistent with 

growth rate being a non-linear function of cell viability as shown here for isogenic 

cultures. While viability and growth rate may or may not be coupled for other types of 

plate-based selections, the above results have strong implications in the interpretation of 

deep mutational scanning data resulting from selections on solid media. In particular, 

implicit assumptions about the conversion of enrichment ratios to a fitness metric should 

be experimentally demonstrated. Furthermore, accurate determination of the slope is only 

apparent with variants well sampled in the population. As a practical matter, more depth 

of coverage for many deep mutational scanning experiments may be warranted. 
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