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Nonlinear fitting algorithms have illuminated the role of weather in
human diseases, by allowing for robust tests of mechanistic trans-
mission models, but a lack of data has prevented applications to
animal diseases. This is important because classical models that
neglect weather predict that there will be a host density threshold,
below which epidemic intensity will be slight, but models that in-
clude weather predict that this threshold will often be obliterated
by weather variability. To test the applicability of thresholds to an-
imal diseases, we estimated infection rates of the fungal pathogen
Entomophaga maimaiga in the gypsy moth, by collecting larvae dur-
ing epidemics at a range of host densities and weather conditions,
and we estimated the pathogen’s force of infection, by exposing ex-
perimental larvae to the pathogen for 24 h periods in the field. By
fitting a range of models to our data, we show that epidemics of
this pathogen are best explained by a model that allows for positive
effects of both host density and cool, moist weather on transmis-
sion, such that weather-only and density-dependence-only models
provide vastly poorer explanations for the data. Despite the effects
of weather, the combined model shows that the effects of density in
E. maimaiga are strong enough to ensure that the density thresh-
old will have important effects on the probability of epidemics. Our
work shows that weather and density-dependent transmission can
interact in non-intuitive ways, and provides an illustration of the use-
fulness of nonlinear fitting for understanding animal diseases.
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fforts to understand the effects of weather on human infec-
tious diseases have seen significant advances through the
application of nonlinear model fitting and high-performance
computing [1]. Nonlinear fitting, however, has seen few appli-
cations to animal diseases, even though statistical associations
between weather and the spread of animal diseases have been
widely documented [2]. Our understanding of the effects of
weather on animal diseases is therefore very limited. Part
of the problem is that most data sets on animal diseases are
insufficient to allow estimation of the parameters of mecha-
nistic models, especially for the vertebrate diseases that are
the focus of most research [3]. In the few cases for which the
requisite data are available, the models fit to the data have
typically allowed for demographic stochasticity, the randomiz-
ing effects of small population sizes, but not the environmental
stochasticity that arises from variable weather conditions [4].
Previous work on weather and animal diseases has therefore
relied on correlational approaches based on linear or general-
ized linear statistical models [2]. Linear models are computa-
tionally convenient, but do not allow for explicit mechanisms.
In particular, linear models inherently assume that transmis-
sion is density-independent, an assumption that eliminates
the disease-density thresholds that are a basic prediction of
mechanistic models [5]. Because animal densities in nature
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are often highly variable [6], disease-density thresholds could
play a key role in determining whether epizootics (i.e., epi-
demics in animals) occur, but only if the effects of density
are not overwhelmed by the effects of weather. Efforts to de-
tect disease-density thresholds in nature, however, have again
considered only the effects of demographic stochasticity [7].
Our understanding of the importance of thresholds in animal
host-pathogen systems is therefore very limited.

Models that include the combined effects of weather and
density-dependence show a wider range of behaviors than
either weather-only or density-dependence only models [§],
but have not been subject to robust tests with data for animal
pathogens. For combined models, the problem of a lack of data
is particularly acute, because robust model tests require data
over a range of both host densities and weather conditions [9].
Moreover, most data sets include only observational data, but
inferring mechanisms from observational data alone can be
very difficult, even for diseases for which extensive data sets
are available [1]. For insect pathogens in contrast, epizootics
often occur at easily observable scales [10], while the small
size of the host makes experimentation straightforward [11].
For fungal insect pathogens in particular, variability in host
density is often paired with strong effects of weather [12].
Insect-fungus interactions are thus useful for studying how
weather variability modulates the effect of host density on
disease dynamics.

We therefore collected data on epizootics of the fungal
pathogen Entomophaga maimaiga, which infects the gypsy
moth, Lymantria dispar. The gypsy moth is an important
introduced pest of hardwood forests in North America [13],
but the introduction of E. maimaiga [14], in combination with
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Fig. 1. Single realizations of the density-dependence-only model (A, B) and the
weather-only model (C and D). In panel A, the initial host density is 75 larvae per
square meter, while in panel B the initial host density is 500 larvae per square meter.
Panels C and D have the same temporal distribution of rainfall events, but in panel D
the volume of rain is twice as high as in panel C.

the earlier introduction of a baculovirus pathogen [15], has
reduced defoliation. The costs of defoliation are nevertheless
sufficiently high that control efforts are often intensive, with
costs ranging into the millions of US dollars each year [13] A
mechanistic understanding of the effects of weather and density
may therefore be useful for gypsy moth pest management, by
providing the ability to predict when outbreak populations
will collapse without intervention, and by determining the
extent to which collapses are weather-dependent.

As is often the case with fungal pathogens [12], there is
good evidence that cool, moist weather enhances the infectivity
and survival E. maimaiga spores [14, 16]. Evidence for effects
of host density, however, is conflicting, probably because the
pathogen’s high dispersal rate weakens local density effects
[17]. Possibly for that reason, two previous studies showed
opposite effects, such that density effects were detected across
populations separated by hundreds of kilometers [18], but were
not detected in populations separated by less than 50km [19].
In testing for combined effects of weather and density, we
therefore used populations in the state of Michigan, USA that
were separated by 85-350 km along a transect that spanned
more than three degrees of latitude (Supplementary Informa-
tion), and we collected data for three consecutive years. In
each population, we quantified host densities at the beginning
of each larval season, and we recorded temperature, rainfall,
humidity, and E. maimaiga infection rates throughout the
season.

In previous studies, samples sizes were small enough that
it was only possible to analyze cumulative infection rates,
preventing analyses of variation in infection rates during epi-
zootics [18, 19]. This is important because in models that
include density-dependent transmission, infection rates first
rise and then fall as the epizootic proceeds [6], a pattern that
by definition cannot be detected in cumulative infection rate
data. To detect variation in infection rates during epizootics,
we therefore collected 100 larvae in each population in each
week of the larval season, rearing the larvae in the lab to
determine their infection status.

We also carried out an experiment in which we exposed
uninfected, lab-reared larvae to the environment for a 24 hour
period each week, thereby producing a weekly estimate of
the pathogen’s force of infection [6], the rate at which larvae
become infected. Because the experiments were short enough
that none of the larvae died during the exposure period, the
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experimental data include only the effects of transmission,
whereas the epizootic data as well include the effects of other
processes. Collecting both experimental and observational
data therefore improved our ability to distinguish between
different mechanisms affecting the dynamics of the pathogen.

We then used our data to choose between alternative mod-
els of E. maimaiga dynamics, such that (1) the first model
assumed that transmission depends only on density, (2) the
second assumed that transmission depends only on weather,
and (3) the third assumed that transmission depends on both
density and weather. This approach allowed us to test for
effects of density and weather, but it also produced parameter
estimates for each model. We then used the parameter esti-
mates in the models to predict epizootic intensities across a
range of densities, in order to understand the extent to which
weather affects disease-density thresholds in this disease.

Like many outbreaking insects [20], the gypsy moth has
only one generation per year, and the disease only infects lar-
vae, which in turn are present in our study area from approxi-
mately 1 May to 15 July. We can therefore model E. maimaiga
epizootics using a standard, single-epizootic SEIR model, mod-
ified to include the two infectious stages of E. maimaiga. The
first of these stages consists of an over-wintering form known as
a “resting spore” [21]. Resting spore germination in the spring
introduces the disease into the larval population, through
the ejection of short-lived infectious spores that lead to new
infections [14]. Transmission from resting spores ends in ap-
proximately mid-May, but larvae infected by resting spores go
on to release conidia into the air column until near the end of
the larval period, causing additional infections.
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Fig. 2. Single realizations of the combined weather and density-dependence model.
The four panels demonstrate how the model responds to different combinations of low
(A and C) and high (B and D) amounts of rainfall and low (A and B) and high (C and
D) initial host densities. Panels A and B have an initial host density of 75 larvae per
square meter. Panels C and D have an initial host density of 500 larvae per square
meter. In panels B and D, the total amount of rain is twice that in Panels A and C.

Our SEIR model therefore includes separate transmission
terms for conidia and resting spores:

% = 7I/R7tSR(0) — VC,tscy [1}
% = vrtSR(0) +vc,SC — mAE:, [2]
% = m)\Ej—l *m)\Ej,j :2,...,7’)7,, [3}

dC
e = mAE, — puc,:C. (4]
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Here S is the density of uninfected or “susceptible” larvae
per square meter, for which we calculated initial values S(0)
using standard methods of surveying for gypsy moth densities
(Supplementary Information). An epizootic in the model is
then initiated by resting spores, with density R(0); in popula-
tion 4, which for simplicity we assume is constant for the few
weeks during which resting spores bloom [18]. Larvae infected
by resting spores produce conidia C', which lead to multiple
rounds of transmission. Infected larvae transition through
m exposed classes F; at rate A, so that the distribution of
times between infection and death is gamma distributed with
mean 1/) and variance 1/mA? [6]. In practice, variation in
the speed of kill is low enough that we set m = 100 to simplify
our model-fitting procedures.

In equations 1-4, the resting spore transmission rate vg ¢,
the conidial transmission rate vc ¢, and the decay rate p: are
shown as functions of time, to emphasize that each may depend
on variation in the weather, and on a time varying stochastic-
ity term (in practice we considered multiple weather drivers,
see Methods for the specific dependence of each parameter
on the weather variables). To produce a model with density-
dependent transmission but no weather effects, we assumed
that each parameter varies only due to stochasticity. To pro-
duce a model with weather effects but no density-dependent
transmission, we eliminated conidia, and instead assumed that
resting spores survive for the entire season. Fig. 1 A and B
show the predictions of the model with density-dependence
only, to show that increases in host density in the density-
dependence-only model can strongly increase epizootic inten-
sity. Fig. 1 C, D show the predictions of the model with only
weather effects, to show how cool temperatures, high rainfall,
and high relative humidity in the weather-only model can
similarly increase epizootic intensity (fig. 1 C, D are based on
simulated data, but for model-fitting we used observed weather
data). Finally, fig. 2 shows the predictions of a model that
includes the effects of both density dependence and weather,
showing that either increased host density or favorable weather
can increase epizootic intensity.
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Fig. 3. Observational and experimental data on E. maimaiga infection rates. Error
bars represent one standard error of the mean. Each column shows the estimated
initial host density (S(0);) for each site in the top row in terms of larvae/m?. “Covered”
refers to an experimental treatment in which plastic buckets were placed over cages
to limit exposure to condia, while “Uncovered” cages had no buckets [16]. Bucket
effects were modest (see Supplementary Information).
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Direct inspection of the data confirms that infection rates
varied strongly across host densities and weather conditions
(fig. 3), which is necessary for our fitting routines to be success-
ful. Also, changes in the force of infection in our experimental
data were very close to changes in infection rates in the ob-
servational data, suggesting that our experiments provided
a reliable estimate of the force of infection. Positive effects
of cool, moist weather on transmission are then apparent in
comparisons of the rainfall, temperature, and relative humidity
data to the infection-rate data (fig. 3), with the proviso that
the strong correlations between the three weather variables
makes it hard to determine which is the most important.

Effects of density, however, are also clearly apparent. First,
in the South 2011 and North 2012 sites, larval densities were
undetectably low, and apparently as a result the infection rate
among experimental larvae was only slightly above zero. This
was true even though in both South 2011 and North 2012, the
amount of rainfall, the relative humidity and the temperature
were similar to what they were in Central 2010, where host
densities were high and an intense E. maimaiga epizootic
occurred. Moreover, in both South 2011 and North 2012, at
least a few infections occurred among experimental larvae early
in the season, confirming that germinating resting spores were
present. The lack of infections among experimental larvae later
in the season in both populations emphasizes the importance
of host density and conidial transmission in driving epizootics.
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Fig. 4. Comparison of multiple realizations of the models to the data. “D-D Only”
refers to the density-dependence-only model, “W Only” refers to the best weather-only
model, and “W and D-D" refers to the best combined weather and density-dependence
model. Black dotted lines are the data (+/- 1 SE) and the grey transparent lines are
multiple realizations of the models using the best-fit parameter sets.

Using our data to choose between competing models of
E. maimaiga transmission first required that we fit the mod-
els to the data, which we accomplished using a variant of
Metropolis-Hastings Markov-chain Monte Carlo (MCMC)
known as “line search-MCMC?” [22]. Line search-MCMC uses
a large number of line searches to generate automated pro-
posal distributions for MCMC, thereby taking advantage of
the highly parallel nature of modern computing environments
in a way that is not possible with standard MCMC. To allow
for stochasticity, we included daily, stochastic variation in
conidial and resting-spore transmission. We then calculated
integrated likelihood scores [23] by averaging over realizations,
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using a stochastic integration routine known as MISER [24]
in the gsl scientific computing package [25].

Table 1. AIC analysis. The best model is shown in bold-face, while
the best weather-only model is shown in italics. The sample size
was large enough that the small-sample AIC. criterion gave virtually
identical values to standard AIC.

Model # Parameters AIC AAIC
Density-dep. only 23 699.8 40.6
Weather only

Rain 12 737.9 78.8
RH 11 706.8 47.6
Temp 11 689.4 30.3
Rain + RH 13 688.9 29.7
Rain + Temp 13 678.7 19.5
RH + Temp 13 705.4 46.2
Rain + RH + Temp 14 682.8 23.6
Dens. dep. + Weather

Rain 25 701.2 42.0
RH 24 662.9 3.75
Temp 24 700.5 41.3
Rain + RH 26 671.2 12.0
Rain + Temp 26 705.7 46.5
RH + Temp 25 669.6 10.5
Rain + RH + Temp 27 659.2 0.0

Choosing between models using the AIC model-selection
criterion [26] then confirmed that the data are best explained
by a model that includes both weather and density-dependent
transmission (Table 1). The density-dependence-only model
can qualitatively reproduce the data, especially the rise and
fall in infection rates over the course of epizootics (fig. 4 “D-D
Only”), but it misses the sharp increases in infection rates
that result from rainstorms, with their attendant increases
in humidity and reductions in temperature. These prediction
errors are consistent with the hypothesis that weather affects
transmission.

The best weather-only model in contrast easily reproduces
weather-driven increases in infection rates, but it often predicts
that infection rates will be high when infection rates in nature
were low or zero (fig. 4 “W Only”). Moreover, this over-
prediction occurs early in the season in study plots with high
densities (all plots 2010), over the entire season in plots with
low densities (South 2011, North 2012), or late in the season
in plots in which densities were apparently not high enough
to maintain conidial transmission after the first few weeks
(Central 2012). These prediction errors are consistent with
the hypothesis that density-dependent transmission and the
accumulation of conidia play important roles in transmission.

Although the best combined model is vastly better than
either the density-dependence-only model or the best weather-
only model, the second-best combined model includes only
relative humidity, and it has AAIC = 3.75, which indicates
that the evidence in favor of the best model, which includes
all 3 weather variables, is strong but not overwhelming [26].
Comparisons within the weather-only models are similar, in
that the best weather-only model includes rainfall and tem-
perature but not relative humidity, while the weather-only
model that also includes humidity has AAIC = 4.1 relative
to the best weather-only model, showing that the evidence
for the best weather-only model is likewise strong but not
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Fig. 5. Comparison of the predictions of the density-dependence only model and the
best combined model, across a range of densities. Points depict the upper 95% and
lower 5% of 1000 realizations at each density. For each simulation of the combined
model, we randomly generated daily weather using a Richardson weather generator
[27] tuned to the average climate of Michigan. Here we use initial resting spore
densities for Central 2010, for which our best estimate for the density-dependence-
only model was somewhat lower than for the best combined model (Supplementary
Information), emphasizing the importance of resting spore transmission in driving
infection at low density in that model.

overwhelming [26]. Notably, however, any model that does
not include relative humidity provides a vastly worse explana-
tion for the data than any model that does include relative
humidity. Our models thus provide conclusive evidence for
an effect of relative humidity, and strong but not conclusive
evidence for effects of temperature and rainfall.

An important reason why we were able to detect effects
of density on transmission is that density-dependent trans-
mission is required to reproduce the pattern of rising and
falling infection rates apparent in the data, emphasizing the
usefulness of fitting dynamic, nonlinear models to temporally
resolved epizootic data. The inclusion of both resting spores
and conidia in our density-dependent models is also important
because resting spore transmission rates are almost completely
unaffected by the density [14] or even the presence of the insect
[28], whereas in previous work density-dependence has only
had clear effects during conidia-driven transmission [17, 29].

The effect of the disease-density threshold on the probability
of an epizootic, however, is not obvious from the fit of the
models to the data, and so we instead plotted model predictions
against host density, focusing on cumulative infection rates
for consistency with classical theory. As fig. 5 shows, for
the best combined density-dependence plus weather model,
the qualitative shape of the infection curve is similar to that
produced by classical models [6], with the proviso that there
is stochastic variation across model realizations that does not
occur in classical, deterministic models. As a result, instead
of a single threshold value, there is a range of values, below
which the probability of a severe epidemic is very low because
resting spore transmission is the main source of infection, and
above which the probability of a severe epidemic is very high
because of repeated rounds of conidial transmission. For this
pathogen, weather thus drives variability in the disease-density
threshold, but in a more general sense it does not eliminate

Kyle etal.
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the threshold effect.

Lloyd-Smith et al. [7] in contrast argued that demographic
stochasticity is likely to eliminate the threshold effect, because
demographic stochasticity can lead to bimodal distributions of
epidemic severity, with a substantial probability of no epidemic
even when the host density is well above the threshold. For
realistic parameters, however, this bimodality disappears if
the initial number infected is more than about 10 individuals,
whereas the effects of weather-driven stochasticity are inde-
pendent of the host population size. It therefore seems likely
that weather-driven stochasticity plays at least as important
a role in epizootics in nature as demographic stochasticity.

Because our results provide a clear example of how weather
stochasticity does not necessarily eliminate threshold effects,
we argue that thresholds are of practical use in disease man-
agement. For E. maimaiga in particular, the existence of
a threshold means that it is unlikely that the disease will
cause the collapse of rising gypsy moth populations before
defoliation occurs. Our best model could nevertheless be used
to predict when populations will collapse naturally, reducing
control costs, with the proviso that there will be at least mod-
est uncertainty in the extent of the collapse unless accurate
weather forecasts are available.

Fig. 5 further shows that, because the density-dependence-
only model does not allow for stochastic variation in weather, it
produces predictions that are less variable than the predictions
of the combined model. The more notable difference between
the two models, however, is that, in the density-dependence-
only model, infection rates are often high even if host density is
low, so that the effect of the disease-density threshold is much
weaker than in the combined model. This counter-intuitive
effect occurs because the only way that the density-dependence-
only model can explain weather-driven variation in infection
rates is by allowing for a higher resting-spore transmission
rate than in the combined model (Supplementary Information).
Fitting density-dependence-only models to data on pathogens
that are strongly influenced by weather could thus lead to
incorrect inferences about the effects of density.

Before E. maimaiga first occurred at high levels in North
America in 1989 [30], gypsy moth outbreaks were driven by
a combination of a species-specific baculovirus and generalist
predators [31]. The high mortality that E. maimaiga often
causes suggests that it may alter the period or amplitude of
outbreaks, but it has only had widespread effects for a few
outbreaks, and so the extent to which outbreak dynamics will
change is therefore not yet obvious from the data. Theory
nevertheless predicts that if £. maimaiga transmission were
entirely driven by weather, it would serve only as an additional
form of stochasticity, leading to greater uncertainty in the
timing of outbreaks, but with no consistent change in the
mean period or mean amplitude of the population cycle [31].
Our demonstration that E. maimaiga transmission is density-
dependent in contrast suggests that F. maimaiga will likely
drive a consistent change in the period and amplitude of
gypsy moth outbreaks. Nevertheless, in contrast to previous
work [18], our data show that the baculovirus still plays an
important role in gypsy moth population dynamics, in that a
study population that we had hoped to include in our data
set was decimated by the virus, precluding a fungal epizootic.
The extent to which E. maimaiga will change gypsy moth
outbreak cycles is therefore unclear, and so an important next
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step is to combine our E. maimaiga model with models of the
gypsy moth baculovirus [31].

Methods

Model Structure. Our initial efforts to fit mechanistic models
to our data made clear that the sharp increase in infection
rate over time in most plots and years could not be easily
captured unless we followed Weseloh [32] in assuming that the
conidial transmission rate v¢ increased with time, reflecting
increases in larval size that make it easier for conidia to contact
later instars. We therefore assumed that v¢ increases with
dd10, the number of accumulated degree days over 10° C, the
lowest temperature at which infections occur, scaled by the
size of the fourth instar (i.e., stage) larvae that we used in our
experiments.

We then added stochasticity to our models by multiplying
the resting spore and conidial transmission rates vr + and vo ¢
by a stochasticity term, e“*. Here €; is a normally distributed
random variate with mean zero and standard deviation o, so
that et varies between 0 and oo, and o is fit to the data.
By drawing new values of er: and ec+ every day, the model
generates a new, random value for each daily transmission
rate.

The simplest version of our transmission-rate functions
occurs in the density-dependence only model:

t
delO

Vrt = ————tprexp(en,), (5]
S1ZE€ fourth
¢
>~ dd10

vey = ——————hseap(ecyt), (6]
Slzefou'rth

The coefficients ¥1 and 12 describe the rate at which transmis-
sion rates increase with increases in larval size, while size fourth
is the average weight of a fourth instar larva.

In the weather-only models, we eliminated density-
dependence in transmission by assuming that the force of
infection does not depend on the density of infectious spores,
whether resting spores or conidia. Because in this model we
have effectively eliminated the distinction between conidia
and resting spores, we instead symbolize transmission as vg+,
where F' stands for “fungus”:

ds

E = _VFytS7 [7]
dE
ditl = I/F,tS — m)\Eh [8]
dﬁ" = mAEi_1 —mAE;,i=2,..,m, [9]

To make transmission vr,¢ a function of weather, we defined
the following functions, which translate our three weather vari-
ables, precipitation, relative humidity (RH), and temperature,
into transmission rates:

_ V3 Y3
P® = 1+ duexp(—psp(t)) a+1° [10]
M(t) exp(sm(t)). [11]
H(t) = exp(—sh(t)). [12]

Here m(t) and h(t) represent daily values of minimum RH
and maximum temperature, respectively, while p(t) represents
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cumulative rainfall over the preceding 10 days, based on work
of Reilly et al. [16], and the coefficients 3 -1bs are fit parame-
ters. Using the minimum RH and the maximum temperature
ensured high variability in weather effects between our sites,
thereby increasing our chances of accurately quantifying the
effects of weather on transmission. Following previous work,
we assumed that transmission increases logistically with in-
creases in accumulated daily rainfall over the preceding 10
days [16, 28], with the proviso that P(t) is 0 when no rain
has fallen (p(¢) = 0). Also, because Hajek et al. [33] found
that conidia production is positively correlated with humidity,
we assumed that conidial transmission increases exponentially
with increasing RH. Finally, high temperatures have been
found to inhibit conidia production [33], and so we made
conidial decay an exponentially declining function of daily
maximum temperature.

We then included enough models so that vr; was a product
of all possible combinations of the weather-variable functions.
For example, in the model containing all weather variables,
we have:

3" dd10
T UrP()M)H (Dexp(ers).  [13]

vpt = "
S1ZE€ fourth

Here we again allowed for stochasticity, such that ep¢ is a
normally distributed random variate with mean 0 and standard
deviation oF.

To allow weather to affect transmission in our density-
dependence plus weather models, we used similar functions to
those in the weather-only models, except that in the density-
dependence plus weather models we again distinguished be-
tween resting spores and conidia. We therefore have different
transmission functions for resting spores and conidia, such
that resting spore germination is an increasing function of
rainfall, while conidial infection rates depend on humidity, and
conidial survival rates depend on temperature:

_ Ps _ s
Pa(t) = (1 + Yoexp(—v1op(t)) o + 1) 4]
Mc(t) Yuiexp(Pram(t)), [15]
He(t) = iisexp(Prah(t)). [16]

Here Pr(t) is the dependence of resting spore transmission on
rainfall, M¢c(t) is the dependence of conidial transmission on
humidity, and H¢(t) is the dependence of conidial survival on
temperature. The coefficients 1s-1)14 are then fit parameters.

Because we again include the effects of increasing larval
size on larval susceptibility, for this model the transmission
and survival parameters become:

1
S dd10
=1

VRt = Pr(t)exp(er,t)- [17]

Sizefourth
t
S dd10
i=1

=L Mot ) 18
pr— c(t)exp(ec,t) (18]

He(t). [19]

voitr =
MHcit =

We calculated starting densities of resting spores R(0) by
treating the initial density as a site-specific fit parameter.
Resting spores in nature are only active for a few weeks each
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spring, and so for simplicity we assumed that the resting
spores were germinating in each plot only over a fixed period,
defined by the parameters T, 5444 and TR7 end (Supplementary
Information).

Data Collection. Larvae collected in naturally occurring popu-
lations were reared individually on artificial diet in cups with
tightly fitting lids at 21°C in the laboratory. Larvae that
die and produce conidia are visually distinct, but to ensure
accurate identification of cause of death, we examined smears
from dead larvae at 400x under a light microscope to look
for conidia or resting spores. In the experimental part of our
study, we standardized infection risk across weeks by using only
fourth instars, and by using larvae from egg masses collected
each season from the same field population of gypsy moths
in Roscommon County, Michigan. Because larvae in natural
populations spanned a range of instars over time, we allowed
for differences in infection risk between feral and experimen-
tal larvae in our models by including additional parameters
that described the transmission rate in each experimental
treatment.

Model-Fitting Algorithm. To fit our models to data, we used
maximum likelihood, such that each likelihood was based on
both experimental and observational data. In calculating
likelihoods, our goal was to integrate over the stochasticity,
thereby calculating an integrated likelihood [23], according to:

E:/// €1€2...€pL(€1,€2...€p) [20]
€1 Jeo €p

X f(€1,€2...€p)deoder . .. dep.

Here the average likelihood L is calculated from the likelihood
in each realization L(e1, €2 ... €p), which in turn depends on e;,
the value of the stochasticity in day ¢ of each realized epizootic,
so that f(ei,e2...€ep) is the (Gaussian) frequency distribu-
tion of the €;’s. Evaluation of the integral in equation (21)
using numerical integration methods, however, is impractical
[24], because of the complexity of our models. We therefore
instead used the Monte Carlo MISER integration algorithm
[25], which is based on recursive, stratified sampling [24]. To
find the maximum likelihood of each model, we then used line-
search MCMC, as described in the main text [22]. Inspection
of trace plots and calculation of Gelman-Rubin statistics (all
< 1.04) confirmed that our routines converged.

Simulating Weather. To use our models to understand the
effects of variability in weather conditions on model predictions,
we generated artificial weather using a Richardson weather
generator. To tune this weather generator so that it produced
realistic weather data for our study areas [27], we set the
daily probability of rainfall during the larval period to be
40%, the frequency of rainfall that we observed in our weather
stations. If a rainfall event occurred, we drew the amount
of rain that fell (p(t)) from a log-normal distribution with a
mean and variance that we varied to understand the effects
of rainfall intensity. We then estimated daily temperature
(have(t), hmaz(t)) and RH (m(t)) values from the generated
rain data using correlations between rain and the other weather
variables estimated by fitting linear models to our observed
weather data (Supplementary Information).
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Supplementary Information

Model Parameter Values. Tables 2-4 show the best-fit pa-
rameter values for the density-dependence only model, the
weather-only model, and the combined density-dependence
plus weather model.

Table 2. Parameter Values for Density-Dependence Only Model

Parameter Median 95% HPD
VR,t
Y1 12.9 [11.7,14.2]
€R,t 0.494 [0.489, 0.499]
vegt
o 1.96 x10~3 [1.76 x10—3,2.17 x10~3
ect 0.205 [0.162, 0.259]
PEr 0.404 [0.314,0.510]
A 0.109 [0.0974, 0.140]
SIZ€fourth 301.3 [292.1, 311.1]

TR, start 120.4 [118.8, 122.1]
TR,end 472.9 [470.3, 475.7]
Tc,end 336.2 [333.4, 338.9]

T 1.29 [1.17,1.40]

Y2 0.706 [0.657, 0.764]

01 2.12 [1.59, 2.87]

02 7.65 [6.55, 8.89]

03 3.71 [3.19, 4.29]

04 6.10 [5.46, 6.88]

R(0)

2010 South  4.26 x10~3 [3.70 X103, 4.92 x10~3]
2010 Central 1.52 x10—3 [1.44 x10—3,1.61 x10~3]
2010 North 3.75 x10~3 [3.52 X103, 4.00 x10~3]
2011 South  1.08 x10~'2  [1.05 x10~12,1.12 x10~12]
2011 Central ~ 5.54 x10—4 [5.01 x10~%,6.07 x10~4]
2012 Central 6.33 x10—4 [5.97 x10—4,6.70 x10~%]
2012 North 1.15 x10~% [9.18 X105, 1.43 x10~4]

Table 3. Parameter values for the best weather-only model (Rain +
Temp)

Parameter Median 95% HPD
VFE,t
s 1.60 [1.36, 1.88]
o 2161.4  [535.5, 8481.6]
Ve 0.138 [0.111,0.171]
(e 0.247 [0.233, 0.263]
EF, ¢t 0.543 [0.532, 0.556]
A 0.102 [0.0896, 0.116]
Sizefourth 280.2 [270.9, 289.3]
TR, start 107.2 [104.1, 110.3]
TR, end 463.5 [456.9, 472.7]
Y1 1.14 [0.775, 1.67]
Y2 0.854 [0.796, 0.917]
01 10.2 [8.67, 12.0]
(2] 8.48 [7.62,9.48]
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Table 4. Parameter values for combined weather plus density-
dependence model (Rain + RH + Temp)

SEUm S1e. Mmarne™

ICHIGAN

Central

2010, 2011,

I

| Poit Huron,

Parameter Median 95% HPD
VR,t
g 3.71 [2.64, 5.00]
o 3.44 [1.46, 7.87]
Y10 0.176 [0.132, 0.223]
€R,t 0.372 [0.260, 0.519]
Vet
P11 2.40 x10—4 [1.76 x10—4,3.25 x10~%]
P12 7.01 x10~2 [6.50 x10~2,7.57 x10~2]
€C,t 0.192 [0.177, 0.208]
MOt
P13 9.47 x10—3 [5.60 x10~3, 1.57 x10~2]
P14 0.235 [0.216, 0.256]
A 0.122 [0.110, 0.135]
S12€ fourth 291.1 [281.942, 301.2]

TR, start 100.1 [94.5, 105.8]
TR,end 267.3 [261.2, 273.8]
Tc,end 524.5 [514.7, 535.5]

T 2.23 [2.01, 2.46]

Y2 0.943 [0.896, 0.995]

01 8.33 [7.53, 9.20]

02 7.97 [6.95, 9.01]

03 7.01 [6.39, 7.82]

04 6.48 [5.59, 7.58]

R(0)

2010 South 1.91 x10~2 [1.52 x10—2,2.36 x10~2]
2010 Central ~ 5.69 x10—3 [4.43 x10—3,7.36 x10~3]
2010 North 1.87 x10~3 [1.58 x1073,2.29 x10~3]
2011 South  1.09 x10~12  [9.83 x10~13,1.20 x10~12]
2011 Central 226 x10~3 [1.90 x10—3,2.70 x10~3]
2012 Central ~ 4.41 x10—3 [3.81 x1073,5.14 x10~3]
2012 North 7.00 x10~4 [4.62 x10—4,1.09 x10~3]

Fig. 6. Plot locations.

Plot Locations. In each year, we attempted to find a southern
population, a central population, and a northern population,
across what was effectively a 200km transect. Because some
populations collapsed each year, in practice, this meant that
we searched within the southern, central and northern parts
of the lower peninsula of the state of Michigan, USA to find a
population in each general area, a search that was unsuccessful
in the southern part of the peninsula in 2012. Plot locations
are shown in fig. 6, and the latitudes, longitudes and distances
between plots are given in Table 5

Data Collection. To ensure that we were able to collect 100
larvae each week at each site, we first carried out qualitative
surveys in the winter before each larval season, to roughly
assess local densities. At each site, we then selected a square
plot 500m x 500m in area within which all larvae would be
collected during the larval period. To quantify initial larval
densities within this area, we carried out egg mass counts on
five 1/40th hectare circles within each square, locating one
circle in each corner and one near the center of the square.
Previous work has shown that egg mass counts within 1/40th
hectare plots provide reliable predictors of larval densities [13].
The average of these counts served as our estimates of the
initial density S(0), in terms of egg masses per square meter,
at each each site. To convert to units of larvae per square
meter, we assumed that 400 larvae hatch from each egg mass
[13], but this assumption affects only our parameter values
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and not our conclusions [6]. To monitor weather variables, we
placed a weather station at the center of the square at each site,
and we recorded rainfall, temperature and relative humidity.
The station consisted of a RainWise tipping-bucket rain gauge
connected to a RainWise RainLog data logger and a HOBO
U23 Pro v2 External Temperature/Relative Humidity Data
Logger - U23-002 which logged conditions every 5 minutes.

To quantify natural E. maimaiga infection rates, we sam-
pled 100 larvae from the population at each site in each week.
We found larvae by searching the ground, foliage and tree
trunks and we captured them in individual 2 oz plastic cups
containing artificial agar-based gypsy moth diet [34]. Larvae
were then reared in the laboratory in these cups until death or
pupation at 21° C, a temperature that maximizes the chance
that an infection will successfully produce conidia [14]. Larvae
were checked for death and signs of conidia twice a week for
three weeks. Conidia are often visually apparent, but even
when they are not, they can be easily seen at 400x under a
light microscope, as can resting spores [14].

Preliminary work showed that estimating the conidial trans-
mission rate v and decay rate uc from observational data
alone leads to high uncertainty in each parameter, suggesting
that, when it comes to observational data, the two param-
eters are close to being nonidentifiable. This is important,
because transmission and decay may have very different de-
pendence on climate variables, and so nonidentifiability could
lead to misidentification of the effects of weather. We there-
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Table 5. Latitudes (“Lat.”) and longitudes (“Long.”) between our
study plots, together with distances from the nearest plot to the
south (“Dist from S/C”) and the total south to north distance (“To-
tal S/N Dist.”)

Year  Location Lat. Long. Dist. from S/C  Total S/N Dist.
2010 South 4236 -85.35

Central 4446  -84.60 240.96

North 45.48 -84.68 113.57 354.53
2011 South 42.61 -85.45
2011 Central 4447  -84.60 217.04
2011 North 4519  -84.23 85.44 302.48
2012 Central 44.47  -84.60
2012 North 45.48 -84.68 85.44 85.44

fore collected experimental data from each plot, by exposing
lab-reared larvae to the environment for 24 hours. This period
is short enough relative to the speed of kill of the disease that
the resulting data provide a close approximation of the force
of infection of the disease.

Larvae for experiments were hatched from eggs collected
from a population in Roscommon County, Michigan, 10 kilome-
ters from our study site there. To remove any baculovirus from
the eggs, we disinfected them in a 4% by volume formaldehyde
solution [35]. Hatching larvae were then reared on artificial
diet in the laboratory at 25° C in a different room from field-
exposed insects, which ensured that the lab-reared insects did
not contact either the fungal or viral pathogens until they
were deployed.

Cages were made of aluminum screen, 20 x 20 x 5 cm,
containing approximately 20 unexposed lab-reared larvae, and
were placed on the soil at the base of a tree each week. To
control for differences in the susceptibility of different-aged
larvae, we used only recently molted fourth instars. Because
red oak (Quercus rubra) is a most preferred gypsy moth host
tree species [36], trees were chosen to be the overstory red oak
within each of the five egg-mass-count circles at each site.

We placed two cages under each tree each week. Following
Reilly et al. [16], one cage per tree was covered with a clear
plastic box to reduce exposure of larvae to air-borne conidia
while the other was uncovered so that larvae were exposed to
both conidia and resting spores. After 24 hours, larvae were
removed to the laboratory, where they were reared separately
on artificial diet at 21° C until pupation or death, in the same
manner as larvae collected from feral populations at each site.
To ensure that we were able to separately estimate conidial
transmission and conidial decay, we deployed experimental
larvae from the time of larval hatch until two weeks after
naturally occurring larvae had pupated at each site.

Model Details. As we described in the main text, resting spores
are only active for a few weeks during the larval period, but the
mechanisms determining the beginning and end of this period
are unknown [14]. In our field collections, however, we observed
that the time of initiation (T'r,start) and cessation (Tr,end) of
resting spore infection was positively correlated with latitude.
Accordingly, because gypsy moth hatch time and development
depend on the number of accumulated growing degree days
above 10° C (dd10) [13], which is in turn a function of latitude,
we set the resting spore activity in our models to begin and
end after an estimated value of dd10 had been reached.
Again as we described in the main text, infections in fifth
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and sixth instar larvae do not produce infectious conidia,
instead producing resting spores for the next season [21]. To
incorporate this behavior, we fit a parameter to estimate
the dd10 required for our host populations to reach the fifth
instar (T¢,end), after which cadavers cease producing new
infectious conidia, although existing conidia may continue to
cause infections.

Likelihood Function. In theory, a binomial distribution should
be an appropriate likelihood function, because the pathogen
must kill its host to be transmitted. The binomial distribution,
however, assumes individual hosts are independent, which may
be untrue if, for example, individuals that have either higher
or lower infection risk than average cluster together within a
population [37]. This lack of independence can cause the true
variance in infection risk to be substantially higher than the
variance assumed under the binomial, a phenomenon kinown
as over-dispersion [38]. In the absence of direct information
on over-dispersion, a useful approach is to use a beta-binomial
distribution, which is derived from the binomial by assuming
that p, the probability of an infection in the binomial, follows
a beta distribution in which the quantity in question varies be-
tween 0 and 1. The resulting distribution has two parameters,
as opposed to the single parameter of the binomial.

The additional parameter allows us to increase the variance
as needed to explain the measurement error in the data, which
would be reflected in a lack of fit of a model to the data.
To explain this approach, we define the parameters of the
beta-binomail as a and b. We then re-parameterized according
to:

a = pe, [21]
= (1-p)e". [22]

Here p is again the probability of infection in the binomial,
while 7 is a parameter that affects the variance of p. Under
this re-parameterization, if the sample size is n, then under
both the binomial and the beta-binomial, the expected number
responding is np. The variance of the binomial, however is
np(1 —p), whereas the variance of the beta binomial is instead:

n+ e’
14ev’

Var = np(l—p) [23]
This expression makes clear that, as v — 400, the variance
of the beta binomial approaches the variance of the binomial,
but as v — —oo, the variance instead approaches nzp(l —p).
By adjusting v, we can thus adjust the variance of the beta-
binomial as needed to explain the lack of fit between the
model and the data in any realization. Because the models
attempt to predict the value of p, v is thus an inverse measure
of the variance of the measurement process, and therefore
quantifies the the measurement error. Because we do not have
independent information about the value of «, we fit v to the
data, along with the other parameters.

Including Observational and Experimental Data. Because we
have both observational and experimental data, we calculated
two likelihood scores for each parameter set, one for the obser-
vational data and one for the experimental data. Given the
model, the two data sets are independent and could therefore
be summed on a log scale. In practice, however, we expected
that conditions in our experiments would be at least slightly
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different from conditions in nature, and so we constructed
separate models for the experimental insects.

Because the experimental insects were only deployed in the
field for 24 hours, none of them died of the disease, and so they
did not contribute to the conidia population. Meanwhile, our
data consist only of the fraction infected, and so the length
of time that the experimental insects spend in the exposed
categories is of no interest. We nevertheless expected that
the infection rates would be at least moderately lower in the
covered cages, and so we included an equation for both covered
and uncovered cages:

dic = —bivc,tS.C — ngR,tSCR(O)i [24]
dS.
dt —93VC,tSuC — 04nuR,tSuR(0)i [25]

Here S, is the density of insects in the covered cages, and S,
is the density of the insects in the uncovered cages. As in the
main text, R(0); is the density of resting spores in plot 4, and
C is the density of conidia, where changes in C' are calculated
using equations (1)-(4) in the main text. The parameters
01 and 62 describe the change in the conidial transmission
rate vc+ and the resting spore transmission rate vg ¢+ in the
covered cages relative to the corresponding transmission rates
in nature, while the parameters 03 and 64 describe the changes
in the uncovered cages.

10 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

Linear models for weather variables. To account for autocor-
relation and covariate-correlation among weather variables
when building our weather generator, we compared the ability
of different time-series models of varying complexity to explain
the data logged by our weather stations at each field site [26].
This approach showed that relative humidity and temperature
are best predicted from rainfall. In our simulations, we there-
fore used a log-normal to describe rain R(t) on day ¢, with a
mean of 25.87 mm per day, and with variance 1189.2. We then
generated values of maximum relative humidity RHmax (%),
average temperature Tavg(t) and maximum temperature T'(t)
on day t from the following regressions based on our data:

Tave(t) = 7.75—0.015 x R(t) — 0.85 x R(t — 1)
—0.18 x R(t—2) —0.02 x R(t—4),  [26]
RHmax(t) = 17.040.210 x R(t) + 0.064 x R(t — 1)
40.052 x R(t — 4) + 0.54 x RHmax(t — 1)
—0.73 x Tavg(t) — 1.41 x Tayg(t — 1)
—0.43 x Tavg(t — 2), 27]
Tmax(t) = 11.340.654 x Tayg(t) — 0.011 x R(t — 4)

40.25 X Tmax(t — 1) — 0.054 x Tmax(t — 2)
—0.094 x RHmax(t)
40.023 x RHmax(t — 1). [28]
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