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Abstract

Many population genetic activities, ranging from evolutionary studies to association mapping

to forensic identification, rely on appropriate estimates of population structure or relatedness. All

applications require recognition that quantities with an underlying meaning of allelic identity by

descent are not defined in an absolute sense, but instead are made “relative to” some set of alleles

other than the target set. The early Weir and Cockerham FST estimate made explicit that the refer-

ence set of alleles was across independent populations. Standard kinship estimates have an implicit

assumption that pairs of individuals in a study sample, other than the target pair, are unrelated,

whereas other estimates assume alleles within individuals are not identical by descent. However,

populations lose independence when there is migration between them, and when individuals in a

study are related it is difficult to see how they can also be non-inbred. We have therefore re-cast our

treatments of population structure, relatedness and inbreeding to make explicit that the parameters

of interest involve differences of probabilities of identity by descent in the target and the reference

sets of alleles and so can be negative. We take the reference set to be for the population from which

study individuals have been sampled. We provide simple moment estimates of these parameters,

phrased in terms of allele matching within and between individuals for relatedness and inbreed-

ing, or within and between populations for population structure. A multi-level hierarchy of alleles

within individuals, alleles between individuals within populations, and alleles between populations

allows a unified treatment of relatedness and population structure. Our new estimates appear to

be sensitive to rare or private variants, to give indications of the effects of natural selection, and to

be appropriate for use in association studies.
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Introduction

We offer here a unified treatment of relatedness and population structure with an underlying frame-

work of alleles being identical by descent, ibd. We follow Thompson (2013) in regarding ibd for a

set of alleles as being relative to some other, reference, set: “There is no absolute measure of ibd:

ibd is always relative to some reference population.” In other words, ibd implies a reference point

and ibd status there is often implicitly assumed to be zero.

A function of ibd of particular interest to us is FST , which we will show below depends on ibd of

pairs of alleles within populations relative to that for pairs of alleles from different populations. The

uses of estimates of this quantity are widespread, and here we note a recent discussion by McTavish

and Hillis (2015) of the effects of SNP ascertainment, SNP array vs whole-genome sequencing, on

inferences about population history. These authors used “pairwise FST for all pairs of populations

using Weir and Cockerham’s method.” We suggest that a more informative analysis may result from

our population-specific FST estimates (Weir and Hill, 2002; Weir et al., 2005; Browning and Weir,

2010). Several authors (e.g. Balding and Nichols, 1995; Shriver et al., 2004; Beaumont and Balding,

2004; Gaggiotti and Foll, 2010) have discussed the advantages of working with population-specific

FST values instead of single values for a set of populations or of values for each pair of populations.

We show below that the usual global FST measure can be regarded as an unweighted average of

population-specific values, and because it is an average it collapses the variation detectable among

populations that can indicate the effects of past selection (Weir et al., 2005). The usual measure can

otherwise diminish signals of population history and this diminution has become more pronounced

as genetic marker data have become richer and real differences among populations have become

more evident. As Astle and Balding (2009) noted “population structure and [cryptic] relatedness

are different aspects of a single confounder: the unobserved pedigree defining the (often distant)

relationships among the study subjects.” A similar point was made by Kang et al. (2010): “The

presence of related individuals within a study sample results in sample structure, a term that

encompasses population stratification and hidden relatedness.” Our goal is to provide a unified

approach to charactering population structure and individual relatedness and inbreeding, both in

terms of the underlying parameters and of the methods of estimation.

A consideration of “genetic sampling” (Weir, 1996) makes it clear that population mean ibd
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for alleles in a single population, or ibd for alleles in a single individual, at one point in time

cannot be estimated only from data for that population or that individual as there would be no

information about variation over replications of the descent paths from past to present. We might

regard multiple loci as providing replication of the genetic sampling process or we might collect data

from multiple populations. An exception is when allele frequencies and ibd status in the reference

population are assumed known, as is implied for standard methods for estimating relatedness and

inbreeding (e.g. Ritland, 1996; Wang, 2014; Purcell et al., 2006; Yang et al., 2011). If, instead,

these methods make use of frequencies from a sample of individuals they are providing estimates of

the inbreeding or coancestry ibd measures relative to those measures for individuals in the whole

sample. This point was also made by Yu et al. (2006) who spoke of “adjusting the probability of

identity by state between two individuals with the average probability of identity by state between

random individuals” in order to address identity by descent. Other relatedness estimation methods

that do not use allele frequencies (e.g. KING-robust, Manichaikul et al., 2010) are estimating ibd

between individuals (coancestry) relative to that within individuals (inbreeding: assumed zero for

KING-robust).

For both population structure and relatedness we propose the use of allelic matching proportions

within and between individuals or populations in order to characterize ibd for an individual or a

population relative to a reference set of ibd values. We use allele matching rather than heterozygosity

(Nei, 1973) or components of variance (Weir and Cockerham, 1984: hereafter WC84) although the

distinction is more semantic than real. Our present treatment also differs from that in WC84 by

using unweighted averages of statistics over populations instead of the weighted averages that were

more appropriate for the WC84 model of independent populations.

The size of current genetic studies requires computationally feasible methods for estimating

relatedness between all pairs of individuals, potentially 5 billion pairs for the TOPMed project

(http://www.nhlbiwgs.org). The scale of the task may well rule out maximum likelihood approaches

(e.g. Thompson, 1975; Ritland, 1996; Milligan, 2003) and Bayesian methods (e.g. Gaggiotti and

Foll, 2010). Moment estimates seem still to be relevant and will be presented here.
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Materials and Methods

Parameter Values

We write the probability of a pair of alleles being ibd as θ without specifying the reference set of

alleles. Subscripts will identify the populations or individuals from which the alleles are drawn.

Subscript W will indicate an average over sets of alleles within individuals or populations, and

subscript B the average over pairs of distinct individuals or populations.

Pairs of Individuals The coancestry coefficient θXY for individuals X, Y is the probability an

allele taken randomly from X is ibd to one taken randomly from Y . If individual A is ancestral to

both X and Y , and if there are n individuals in the pedigree path joining X to Y through A, then

θXY =
∑

(0.5)n(1+FA) where FA is the inbreeding coefficient of A and the sum is over all ancestors

A and all paths joining X to Y through A. The coancestry of X with itself is θXX = (1 + FX)/2.

Pairs of Populations For populations i, i′ the quantity θii′ is the probability of ibd for an allele

from i and one from i′. The two populations may be the same, i = i′. The simplest evolutionary

scenario is for finite populations of constant size, subject only to genetic drift. For two populations

of sizes N1, N2 with a common ancestral population t discrete generations in the past, the current

within-population values θ11, θ22 and the between-population value θ12 are

θii(t) = 1 − [1 − θ12(0)]
(

1 −
1

2Ni

)t

, i = 1, 2

θ12(t) = θ12(0)

The between-population ibd probability θ12(t) at present is the same as it was, θ12(0), in the common

ancestral population. As we do throughout this discussion, we introduce quantities β that measure

ibd for a target pair of alleles relative to that in a convenient comparison set, here alleles between

the pair of current populations (also, in this case, the common ancestral population):

βii(t) =
θii(t)− θ12(t)

1 − θ12(t)
= 1 −

(

1 −
1

2Ni

)t

, i = 1, 2

By considering ibd relative to that between populations, we avoid having to know the value in

the ancestral population or even having to specify that ancestral population. The two population-

specific values βii(t) differ if the two populations have different sizes. We often wish to work with
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the averages θW (t) = [θ11(t) + θ22(t)]/2, θB(t) = θ12(t) and we write βW (t) = [β11(t) + β22(t)]/2:

βW (t) =
θW (t) − θB(t)

1 − θB(t)
≈

t

2Nh

providing N1, N2, t are all large, and Nh is the harmonic mean of the population sizes. From

now on we will regard βW as the parametric form of FST , and Reynolds et al. (1983) showed

that FST serves as a measure of population distance under the pure drift model. The formulation

FST = (θW − θB)/(1 − θB) makes explicit that FST is a measure of ibd within populations relative

to ibd between pairs of populations.

Drift, Mutation and Migration Non-trivial equilibria for two populations drifting apart are

obtained when there is mutation, and we illustrate some aspects of our population-specific approach

by considering the case of two populations exchanging alleles each generation when there is infinite-

alleles mutation. The transition equations for θ1, θ2, θ12, extending those given by Maruyama (1970),

are:

θii(t+ 1) = (1 − µ)2
[

(1 −mi)
2θ∗ii(t) + 2mi(1 −mi)θ12(t) +m2

i θ
∗
i′i′(t)

]

, i = 1, 2; i′ 6= i

θ12(t+ 1) = (1 − µ)2 [(1 −m1)m2θ
∗
11(t) + [(1 −m1)(1 −m2) +m1m2]θ12(t) +m1(1 −m2)θ

∗
22(t)]

where θ∗ii(t) = 1/(2Ni) + (2Ni − 1)θii(t)/(2Ni), the mutation rate is µ and population i : i = 1, 2

receives a fraction mi of its alleles each generation from population i′ : i′ 6= i. A consequence of

these equations is that θ11(t) + θ22(t) ≥ 2θ12(t), or that θW ≥ θB and so βW = FST is positive.

However, it is not necessary that each of θ11, θ22 exceeds θ12 and in Figure 1, second row, we show

that mutation leads to equilibrium values of θii different from 1, and in Figure 1, third row that

migration can lead to cases where θ11 > θ12 > θ22. In the absence of migration, mutation drives θ12

and β12 to zero, so that θii = βii are both positive. In Figure 2 we show the region in the space of

N1, m1 values where β11 ≤ 0 ≤ β22 for fixed N2, m2, µ. Averaging over the two βii’s to work with

FST hides this potential difference in sign of the βii’s.

[Figure 1]

[Figure 2]
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Actual vs Predicted θ The probabilities of ibd calculated from path-counting methods for

pedigrees of individuals or from transition equations for populations can be regarded as the expected

values, over evolutionary replicates, of the actual identity status of a pair of alleles. We have

previously discussed the variation of actual identity about the predicted value (Hill and Weir, 2011,

2012). The variance of the actual ibd measure θ̈ for two alleles is ∆ − θ2 (Cockerham and Weir,

1983), where ∆ is the joint probability of ibd for each of two pairs of alleles. The coefficient

of variation of the actual coancestry θ̈ for two individuals is greater than 1 for individuals with

predicted coancestry θ less than 0.125 and it increases as the degree of relationship decreases. The

implication of this is that, for a particular pair of populations or individuals, estimated values

may not match those expected from pedigrees or transition equations. Evaluation of estimation

procedures should, therefore, be performed over many replicate pairs.

Inbred Populations The discussion so far has implicitly assumed Hardy-Weinberg equilibrium

within populations and no need to differentiate pairs of alleles within individuals from those between

individuals in the same population. We can relax that assumption. Two alleles taken at random

from population i may be from the same or different individuals. If the sampling was without

replacement, the ibd probability for two alleles from one individual is the inbreeding coefficient

F for that individual, whereas sampling with replacement from one individual has ibd probability

(1 + F )/2. We defer a more extensive discussion to a subsequent publication.

Estimation

Allele Frequencies It is allelic identity in state (ibs) that can be observed, rather than identity by

descent (ibd) and we now consider how ibs data can provide ibd estimates. We start by considering

the frequencies of the various alleles at a locus.

We can distinguish three classes of allele frequency. The sample frequency p̃iu of allele u in a

sample of alleles taken from population i provides an estimate of the actual allele frequency p̈iu in

that population. These actual frequencies, in turn, vary about the population frequency pu, where

variation refers to the values of the actual frequencies p̈iu in evolutionary replicates of population i.

For ni randomly sampled alleles, where niu are of type u, niu = nip̃iu has a binomial distribution
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B(ni, p̈iu). The mean of p̃iu from this statistical sampling process is ES(p̃iu) = p̈iu and the variance

is VarS(p̃iu) = p̈iu(1− p̈iu)/ni. The distribution of the actual frequency p̈iu is not known in general,

but there is a class of evolutionary models (e.g. Balding and Nichols, 1995) that provide the Beta

distribution:

p̈iu ∼ Beta

(

(1 − θi)pu

θi

,
(1 − θi)(1 − pu)

θi

)

The mean for this genetic sampling process is EG(p̈iu) = piu and the variance is VarG(p̃iu) =

pu(1−pu)θi. We keep these first two genetic-sampling moments although we do not invoke the beta

distribution.

The total mean and variance follow from

ET (p̃iu) = EG[ES(p̃iu)]

VarT (p̃iu) = EG[VarS(p̃iu)] + VarG[ES(p̃iu)]

and the complete set of first and second moments were given by Weir and Hill (2002):

ET (p̃iu) = pu

VarT (p̃iu) = pu(1 − pu)

(

θii +
1 − θii

ni

)

CovT (p̃iu, p̃iu′) = −pupu′

(

θii +
1 − θii

ni

)

, u′ 6= u (1)

CovT (p̃iu, p̃i′u) = pu(1 − pu)θii′, i
′ 6= i

CovT (p̃iu, p̃i′u′) = −pupu′θii′, u
′ 6= u, i′ 6= i

These moments refer to expectations over both repeated samples from the same populations (statis-

tical sampling) and over replications of the populations themselves (genetic sampling). From now

on we will drop the T subscript but all expectations are total. WC84 set all within-population θii to

a common value θ, and all between-population θii′ to zero. Note the assumption that all populations

have the same expected allele frequencies pu, although they have different actual frequencies p̈iu.

Allelic Matching We find intuitive appeal in working with proportions of pairs of alleles that are

ibs. If the sample of ni alleles from population i has niu copies of allele type u, then the matching

(allele sharing) proportion for pairs of alleles drawn without replacement from population i is M̃ii
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where

M̃ii =
1

ni(ni − 1)

∑

u

niu(niu − 1) =
ni

ni − 1

∑

u

p̃2

iu −
1

ni − 1

For sampling with replacement the sample-size corrections are not necessary: M̃ii =
∑

u p̃
2

iu. The

average over samples from r populations is M̃W =
∑

i M̃ii/r. The allele-pair matching proportion

between populations i and i′ is

M̃ii′ =
1

nini′

∑

u

niuni′u =
∑

u

p̃iup̃i′u

and these have an average over pairs of samples from r populations of M̃B =
∑

i6=i′ M̃ii′/[r(r − 1)].

Population Structure Estimates From Equations 1, the matching proportions have expecta-

tions

E(M̃ii) = 1 −H(1 − θi) , E(M̃ii′) = 1 −H(1 − θii′)

where H = 1 −
∑

u p
2

u. Averaging over populations or pairs of populations:

E(M̃W ) = 1 −H(1 − θW ) , E(M̃B) = 1 −H(1 − θB)

The expectations lead immediately to simple method-of-moment estimates for any number of

sampled populations, any number of alleles sampled per population, and any numbers of alleles per

locus:

β̂ii =
M̃ii − M̃B

1 − M̃B

, β̂W =
M̃W − M̃B

1 − M̃B

, β̂ii′ =
M̃ii′ − M̃B

1 − M̃B

(2)

To the extent that the expectation of a ratio is the expectation of ratios, Equations 1,2 show that

each β̂ is unbiased for the corresponding β:

E(β̂ii) =
θii − θB

1 − θB

, E(β̂W ) =
θW − θB

1 − θB

, E(β̂ii′) =
θii′ − θB

1 − θB

Note that the pairwise estimates β̂ii′, i
′ 6= i sum to zero by construction. Although it is not

possible to find estimates for each θ when the sampled populations have correlated sample allele

frequencies, it is possible to rank the β̂’s, and these are likely to have the same ranking as the

θ’s. We now show how this approach also gives estimates of individual inbreeding coefficients and

individual-pair coancestry coefficients.
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Relatedness Estimates Suppose now we have a series of individuals i; i = 1, 2, . . . r and we

sample two alleles with replacement from an individual or one allele randomly from each of two

individuals. Each individual is regarded as a population with its own actual allele frequencies.

Setting the sample sizes to 2 in the matching proportions for one individual and to 1 each for pairs

of individuals in the previous section leads to estimates of θii = (1 + Fi)/2 or θii′ for individual i

or individuals i, i′. The expectations of these estimates are [(1 + Fi)/2 − θB]/(1 − θB) and (θii′ −

θB)/(1 − θB), respectively, where θB is the average of all θii′, i 6= i′. Inbreeding and coancestry are

estimated relative to the average coancestry of all pairs of individuals in the study. Yang at al.

(2010) also discuss estimates relative to the study population, and say “Estimates of relationships

are always relative to an arbitrary base population in which the average relationship is zero. We

use the individuals in the sample as the base so that the average relationship between all pairs of

individuals is 0 and the average relationship of an individual with him- or herself is 1.” Although our

estimates of pairwise relationship sum to zero, we retain the unknown value θB in their expectations.

We cannot estimate θB and we may prefer to report estimates relative to those for the least related

pairs as described below in Equation 6.

It is customary (e.g. Yang et al., 2011) use allelic dosage to express relatedness estimates or

other analyses (Patterson et al., 2006). Writing the number of copies of allele u carried by individual

i as xiu, the U -allele versions of these standard estimates are

θ̂ii′ =

∑U
u=1(xiu − 2pu)(xi′u − 2pu)

4
∑U

u=1
pu(1 − pu)

or θ̂ii′ =
1

U

U
∑

u=1

(xiu − 2pu)(xi′u − 2pu)

4pu(1 − pu)
(3)

where i, i′ may be the same or different. If the allele frequencies pu are known, these estimates are

unbiased for θii′. For biallelic SNPs, there is no need to sum over alleles, and the u subscripts can

be dropped.

Our coancestry estimates have the same functional form as those for population structure, but

they may best be compared to the standard estimates by expressing allelic matching proportions in

terms of allelic dosages. Noting that individual matching proportions are 1 and 0 for homozygotes

and heterozygotes, respectively, and that matching proportions for pairs of individuals are 1 when

they are the same homozygote, 0.5 when they are the same heterozygote or one is homozygous and

the other heterozygous with one allele shared with the first, and 0 when they have no shared alleles:

M̃ii =
1

2U

U
∑

u=1

[1 + (xiu − 1)2] , M̃ii′ =
1

2U

U
∑

u=1

[1 + (xiu − 1)(xi′u − 1)]
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In particular, for SNPs,

M̃ii =
1

2
[1 + (xi − 1)2] , M̃ii′ =

1

2
[1 + (xi − 1)(xi′ − 1)]

where xi are the dosages for, say, the reference allele. Our relatedness and inbreeding estimates are

β̂ii =
M̃ii − M̃B

1 − M̃B

, β̂ii′ =
M̃ii′ − M̃B

1 − M̃B

(4)

where M̃B =
∑r

i=1

∑r
i′=1,i′ 6=i M̃ii′/r(r − 1).

Storey and Ochoa (accompanying papers) have equivalent estimates. Their expressions are a

little different because their reference is for all pairs of alleles in a sample, including those within

individuals, whereas ours is for pairs of alleles in different individuals. Astle and Balding (2009,

equation 2.3) gave similar estimates although, in effect, they set θB, the average coancestry of all

pairs of individuals in a sample, to zero.

Combining Over Loci Single-locus analyses do not provide meaningful results, and combining

estimates over loci l has often been considered in the literature. In a parallel discussion of weighting

over alleles u at a single locus, Ritland (1996) considered weights wu chosen to minimize variance.

Two extreme weights are wl = 1 and wl = (1− M̃Bl
). The first may be called “unweighted” and

the second “weighted”. In an obvious notation

β̂i

u
=

1

L

L
∑

l=1

M̃il − M̃Bl

1 − M̃Bl

, β̂i

w
=

∑L
l=1(M̃ii′

l
− M̃Bl

)
∑L

l=1(1 − M̃Bl
)

(5)

Note the parallel to averaging over alleles in Equations 3. Bhatia et al. (2013) refer to the first

estimate as the “average of ratios” and the second as the “ratio of averages.” WC84 advocated the

second, with justification given in the Appendix to that paper, as did Bhatia et al.

The unweighted estimate β̂i

u
is unbiased for all allele frequencies but is susceptible to the effects

of rare variants, when (1 − M̃Bl
) can be very small. Rare variants may have little effect on the

weighted average β̂i

w
, and the variance of the estimate is seen in simulations to be less than for the

unweighted average, but it is unbiased only if every locus has the same value of the ibd probabilities.

A more extensive discussion was given in the Appendix of WC84 for population structure, and by

Ritland (1996) for inbreeding and relatedness.
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Private Alleles Current sequence-based studies are revealing large numbers of low-frequency

variants, including those found in only one population. These private alleles were identified by

Slatkin (1985) and Mathieson and McVean (2012) as being of particular interest. They are very

frequent in the 1000 genomes project data (The 1000 Genomes Project Consortium, 2010). If x1

is the sample count of an allele observed only in population 1 of r populations (p̃1 = x1/n1; p̃i =

0, i 6= 1) the sample matching proportions are

M̃ii =











1 − 2p̃1(1 − p̃1)
n1

n1−1
i = 1

1 i 6= 1

M̃ii′ =











1 − p̃1 i = 1, i′ 6= 1

1 i, i′ 6= 1, i 6= i′

M̃B = 1 −
2p̃1

r

so the β estimates are

β̂11 = 1 − r(1 − p̃1)
n1

n1 − 1
; β̂1i =

1

2
p̃1(r − 2), i 6= 1; β̂ii′ = 1, i, i′ 6= 1; β̂W = p̃1

The estimate of FST for a private allele is its own-population sample frequency, but the population-

specific value for its own population ranges from approximately −r + 1 when x1 = 1 to 1 when

x1 = n1. This amplifies the comment “populations can display spatial structure in rare variants,

even when Wright’s fixation index FST is low” of Mathieson and McVean (2012). A population

with many private alleles at low to intermediate frequencies will thus likely have a negative β̂, and

how negative will depend on how many populations have been sampled. Note that this implies β̂ii

must be allowed to go negative, whereas Bayesian estimators of population specific FST are forced

to belong to [0, 1], although this assumption can be relaxed (Ritland, 1996).

RESULTS

Population Structure

We have conducted a series of simulations to evaluate the performance of our FST estimates, and

we have looked at 1000 Genomes SNP data to explore the role of rare variants on the estimates.
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Some of the simulations were conducted with sim.genot.metapop.t available in the hierfstat package

(Goudet, 2005). The migration model we have used allows for a matrix of migration rates between

each pair of populations, and the mutation model allows for multiple alleles at a locus. The notation

for a two-population model was given above.

Model 1. Same Migration Rates, Different Population Sizes. We considered two popula-

tions, with sizes N1 = 100, N2 = 1, 000 and migration rates m1 = m2 = 0.01. The mutation rate

was µ = 10−6. After 400 generations, the β’s have values β1 = 0.156, β2 = −0.037 and β12 = 0.059.

We simulated 50 individuals from each population under this scenario, with 1,000 loci and up to

20 alleles per locus. From the resulting allelic data we obtained estimates, and 95% confidence

intervals by bootstrapping over loci. The results are shown in Table 1. The predicted values are

contained in the confidence intervals, and there are negative values for both the parametric and the

estimated value of β2. Note that we cannot estimate β12 with data from two populations.

[Table 1]

Model 2. Continent-Island Model. In this scenario we have an infinite continent supplying

a proportion m = 0.01 of the alleles independently to populations 1 and 2, still with sizes N1 =

100, N2 = 1, 000. There is no migration between the two populations, so θ12 = 0. The predicted

values and estimated values after 400 generations are shown in Table 1.

Model 3. Migrant-pool Island Model. In this scenario, each population contributes to a

migrant pool, from which migrant alleles are drawn. Among the migrant alleles in the case of

two populations, half of the “migrant alleles” will in fact be resident alleles if the gametic pool is

composed of the same proportion of alleles from each island, independent of its size. With otherwise

the same parameter values, the predicted values and our estimates after 400 generations are shown

in Table 1.

Model 4. Different Population Sizes, Different Migration Rates. We return to the two-

populations model described above, but now with N1 = 10, 000, N2 = 100 and different migration

rates m1 = 0.01, m2 = 0. Predicted values after 1,000 generations are shown in Figure 3, and our

estimates in Table 1.
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The results in Table 1 show generally good behavior of our β estimates. In Figure 3 we show the

estimates for 10 different time points (independent replicates) for Model 4. As time increased, the

number of polymorphic loci decreased. In generations 600, 800, 1000 the numbers of polymorphic

loci had dropped from 1,000 to 712, 349 and 151 respectively and the quality of the estimates

decreased: higher bias and higher variance.

[Figure 3]

Rare Alleles. For r populations with total sample size nT , and with x1 copies of an allele private

to population 1, the total count for this alleles is xT = x1 and p̃T = n1p̃1/nT so β̂W = nT p̃T /n1 ≈ rp̃T

assuming similar sample sizes for each sample. In Figure 4 we display β̂W as a function of allele

frequencies for SNPs located on chromosome 2 in the 1000 Genomes project. Individuals were

grouped by regions (Africa, Europe, South Asia, East Asia and the Americas). The drawn line

corresponds to βW = 5pT . The initial linear segment corresponds to alleles that are present in one

continent only. βW ’s start departing from this line for allele counts larger than 80, or equivalently,

for worldwide frequencies larger than ≈ 0.01, given the sampled chromosome number of 2, 426.

When a new allele appears, it will be present in one population only. We expect most if not all

rare alleles to be private alleles, and thus the expected values for FST (βW ) for these rare alleles are

their (sub-population) frequencies. When βW starts departing from the allele frequency, it implies

that some scattering has been happening. In species with a lot of migration, this will happen at low

frequencies, whereas the species that are more sedentary should show a one to one relation between

sub-population allele frequencies and βW for a larger range of their site frequency spectrum.

[Figure 4]

In Buckleton et al. (2016) we gave population-specific FST estimates for a set of 446 populations,

using published data for 24 microsatellite loci collected for forensic purposes. We showed in that

paper how the choice of a reference set of populations can affect results. For a set of African

populations, the average within-population matching proportion was M̃W = 0.1884 and the average

between-population-pair averages were M̃B = 0.1691 within the African region and M̃B = 0.1726

for all pairs of populations. There is a larger FST for the set of African populations (β̂W = 0.0082)

with Africa as a reference set than there is (β̂W = 0.0020) with the world as a reference set. The
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opposite was found for a collection of Inuit populations: the average within-population matching

proportion was M̃W = 0.4379 whereas the average between-population-pair matching proportions

were M̃B = 0.1726 for pairs within the Inuit group and M̃B = 0.0090 for all pairs in the study:

so FST is less with Inuit as a reference set (β̂W = 0.0205) than with the world as a reference set

(β̂W = 0.1057).

Inbreeding and Relatedness

To check on the validity of our estimators of individual inbreeding and coancestry coefficients, we

simulated data for a range of 11 coancestries: (i/32 : i = 0, 1, 2, . . . , 10). Using the ms software

(Hudson, 2002), we generated data from an island model with two populations exchanging Nm = 1

migrant per generation. We simulated 5,000 independent loci, read either as haplotypes (5,000) or

as SNPs (approximately 80,000 polymorphic sites for the founders). We then chose 20 individuals

from one of these populations and let them mate at random, without selfing. We did not assign or

consider sex for these 20 founders. The number of offspring per mating was Poisson with mean of

five. These offspring were than allowed to mate at random, without selfing, to produce families of

size Poisson with mean three. By keeping records of all matings we could generate the pedigree-based

inbreeding and coancestry values for all 135 individuals: founder, their offspring and their grand-

offspring. The pedigree-based coancestries for all 9,045 pairs of individuals are shown in Figure

5, although we note (Hill and Weir, 2011) that the actual values have variation about expected

or pedigree values. We used the same pedigree to simulate another data set, where this time 10

founders were coming from the first population and the other 10 from the second population, thus

creating admixture among the children and grand-children.

[Figure 5]

The left hand plot of Figure 6 reflects the summing to zero by construction of the β̂ii′, i 6= i′

coancestries, whereas the pedigree coancestries are necessarily non-negative. The right hand plot

shows a “correction” of the estimates: we took the set of smallest β̂ii′ values in the left hand plot to

represent the unrelated (relative to the assumed-unrelated) founders. If we write β̂0 as the average

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/088385doi: bioRxiv preprint 

https://doi.org/10.1101/088385
http://creativecommons.org/licenses/by-nc-nd/4.0/


value in this distribution then our corrected values β̂c
ii′ are

β̂c
ii′ =

β̂ii′ − β̂0

1 − β̂0
(6)

The corrected estimates are clearly close to the pedigree values. However, we are not sure if it is

necessary, in general, to undertake this correction process. Whether or not it is applied, the β̂ values

are still relative to those among all pairs of individuals in a study sample. In general, we will not

have any individuals identified for which it is justified to assume zero relatedness or zero inbreeding,

and we note the comment by Thompson (2013) “in most populations IBD within individuals is at

least as great as IBD between.”

[Figure 6]

The distributions of estimates in Figure 7 are tightly clustered around 11 values, corresponding

to the 11 distinct pedigree values i/16, i = 0, 1, 2 . . . 11. A contrasting result is shown in Figure 8,

for the CGTA estimates, calculated as weighted averages over loci (in the sense of equation 3 by

taking the ratio of two sums over loci).

[Figure 7]

[Figure 8]

There is a current tendency in genome wide association studies (GWAS) to restrict the SNPs

used in relatedness estimation to having a minor allele frequency (MAF) above some threshold. For

example, the KING manual (http://people.virginia.edu/∼wc9c/KING/manual.html) lists a param-

eter minMAF to specify the minimum minor allele frequency to select SNPs for relationship infer-

ence in homogeneous populations. The thought is that lesser frequencies give rise to biased values,

but that is not likely the case if “ratio of averages” estimates are used. To illustrate the effect of

MAF filtering, we applied four different thresholds for our simulated data and we show the means

and standard deviations for estimates for each of nine pedigree values in Table 2. The estimates

are the corrected values – i.e. relative to an assigned value of zero for the least-related class. There

is clear evidence for the merits of retaining all SNPs, both in terms of bias and variance.

[Table 2]
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We continued a comparison of β̂ values by applying the estimates described by Wang (2014) and

computed using the related R package (Pew et al., 2015), listed in Table 3. Additionally, related

offers maximum likelihood estimators, derived by Milligan (2003) and Wang and Santure (2007).

They are not computed here, because they require substantial computing time, which rules them

out for genomic data.

[Table 3]

In Figure 9 we display box plots of coancestry estimates for eight alternative estimates, displayed

according to 9 pedigree values. The β estimates are not corrected, yet have good bias and variance

properties compared to other estimates.

[Figure 9]

In Figure 10 we compare our β estimates with those from GCTA for admixed individuals with two

ancestral populations. We used the same pedigree as in the section above, but took as founders 10

individuals from each of the two populations. Coancestries were calculated for all pairs of individuals

in the pedigree. Figure 10 illustrates the accuracy of our β estimate compared with GCTA using

the coancestries among founders. The β̂’s for pairs of founders from the same population are tightly

distributed around 0.015, while β̂’s for pairs of individuals one from each population are tightly

distributed around -0.11. The distribution for the same two categories for the GCTA estimators is

wider, in particular for pairs of individuals originating from the same population.

[Figure 10]

DISCUSSION

A Unified Approach

Although there has been general recognition that family and evolutionary relatedness are just two

ends of a continuum, we are not aware of previous estimates of population structure quantities such

as FST or individual-pair coancestries that rest on this common framework. We have presented

estimates that apply equally well to populations and individuals. While their statistical properties
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remain to be fully explored, it is reassuring to see how well they performed in the few simulations

presented here.

Although individual-specific inbreeding coefficients and individual-pair-specific coancestry coeffi-

cients are used routinely in association studies, we have not seen widespread adoption of population-

specific FST values in evolutionary studies. We have shown here, theoretically and empirically, that

these values can differ substantially among populations. This may simply reflect population size

and migration rate differences, but different values may also provide signatures of natural selection.

There is also general understanding that identity by descent is a relative concept, rather than

an absolute concept. This understanding has not led to an apparent recognition that the usual

estimates of inbreeding and kinship are not unbiased for expected or pedigree values. Replacing

population allele frequencies by sample values leads to bias in the usual estimates, regardless of

sample size. As the allele frequencies enter GCTA estimates, for example, as squares the expected

values of the estimates depend on the variances these frequencies. These, in turn, depend on the

parameters being estimated.

We also stress that all allelic variants, whatever their frequencies, need to be included in the

estimation of population structure and inbreeding or relatedness. The estimates certainly depend on

the allele frequencies, and restricting the range of frequencies used may reveal features of interest,

but the underlying ibd parameters do not depend on the frequencies. Exclusion of some alleles

based on their frequencies will lead to biased estimates of the parameters.

Previous Estimates

Weir and Cockerham Estimates of FST . The FST estimate of WC84 has been widely adopted

and it performs well for the model stated in that paper: data from a series of independent popu-

lations with equivalent histories. In the present notation, WC84 assumed θii = θ, θii′ = 0 for all

populations i and all i′ 6= i. The estimate was designed to be unbiased for any number of populations,

any sample sizes and any number of alleles per locus. The analysis was a weighted one over popu-

lation: the average allele frequencies p̄u for a study had sample size weights, p̄u =
∑

i nip̃iu/
∑

i ni.

Although our β estimates do not make explicit mention of allele frequencies, there is implicit use

of sample frequencies that are unweighted averages over individuals or populations.

Weighting over populations has been discussed by Tukey (1957) and Robertson (1962). Those
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authors were concerned with bias and variance and they used the language of variance components,

within and between populations. For allele u these components were given as (1 − θ)pu(1 − pu)

and θpu(1 − pu), respectively, by WC84. Tukey said “In practice, we select two quadratic func-

tions by some scheme involving intuition, find how their average values are expressed linearly in

terms of the variance components, and then form two linear combinations of the original quadratics

whose average values are the variance components. These linear combinations are then our esti-

mates. Much flexibility is possible.” The estimates of WC84, Weir and Hill (2002) and Bhatia

et al. (2013) all have this structure although ratios of linear combinations are taken to remove

the allele frequency parameters. Tukey went on to say that the weights wi = ni (in the present

notation) “gives the customary analyses, which treat observations as important and columns [i.e.

populations] as unimportant.” Further, “the choice wi = 1 ... treat the columns as important. This

[unweighted] approach is appropriate when the column variance component is large compared with

the within variance component.” Robertson (1962) also pointed to sample-size weights for small

between-population variance components and equal weights for large values. Bhatia et al. (2013)

were concerned with unequal FST values so their use of equal weights is consistent with Turkey’s

statements. Their work provides simple averages of the different FST ’s as opposed to averages

weighted by sample sizes. For unequal FST ’s and unequal sample sizes, Weir and Hill (2002) said

“the usual moment estimate [with sample-size weights] is of a complex function [of the FST ’s].”

In our current model of unequal θi’s and non-zero θii′’s we agree that unweighted analyses (popu-

lation weights of 1) are appropriate, and that is what we have used in this paper. We note that

Tukey’s “flexibility” in the choice of moment estimators, phrased in terms of weights, does not arise

with maximum likelihood approaches. If sample allele frequencies are taken to be approximately

normally distributed then REML methods give appropriate and unique estimates.

What are the consequences of using the WC84 estimates when the current model is more ap-

propriate? We can show that the expected value of the Weir and Cockerham estimate θ̂WC is

E(θ̂WC) =
θc

W − θc
B +Q

1 − θc
B +Q

This expression uses three functions of sample sizes: n̄ =
∑r

i=1
ni/r, n

c
i = ni − n2

i /
∑

i ni and nc =
∑

i n
c
i/(r−1). The two weighted averages are θc

W =
∑

i n
c
iθii/

∑

i n
c
i and θc

B =
∑

i

∑

i′ 6=i nini′θii′/
∑

i

∑

i′ 6=i nini′.

The quantity Q is Q = [
∑

i(ni/n̄ − 1)θii]/[nc(r − 1)]. For equal sample sizes, ni = n, or for equal
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values of FST , θii = θW = θc
W = θ, Q = 0. Under these circumstances E(β̂WC) = (θW − θB)/(1− θB)

and we find the WC84 estimator performs well unless the θii’s and/or the ni’s are quite different.

We stress though that it is (θW − θB)/(1 − θB) being estimated.

Nei Estimates of FST Although we have phrased estimates in terms of matching proportions,

we note that they are the complements of “heterozygosities” M̃ = 1 − H̃ . Our approach uses M̃B,

the average population-pair allele matching, whereas most previous treatments, from Nei (1973)

onwards, use total heterozygosities H̃T = 1−
∑

u p̄
2
u where p̄u is the average sample allele frequency

over populations: p̄u =
∑r

i=1 p̃iu/r. From Equations 1, the variance of p̄u is

Var(p̄u) = pu(1 − pu)

(

θB +
θW − θB

r
+

1

r2

r
∑

i=1

1 − θi

ni

)

(7)

For large sample sizes H̃T = (r − 1)H̃B/r + H̃W /r and Nei’s GST quantity and its expectation, in

our notation, are

GST = 1 −
H̃W

H̃B − 1

r
(H̃B − H̃W )

, E(GST ) =
θW − θB

1 − θB + 1

r−1
(1 − θW )

(8)

which reduce to β̂W and E(β̂W ) as r becomes large. Otherwise, the expectation of GST depends

on the number r of populations. This expectation is bounded above by one, contrary to the claim

of Bhatia et al. (2013). Bounds on FST , when that is defined as (1 − H̃W /H̃T ), were given by

Jakobsson et al. (2013).

Nei and Chesser (1983) and Nei (1987) modified Nei’s earlier approach to remove the effects of

the number of populations. Jost (2008) pointed out that GST does not provide a good measure of

differentiation among populations, where differentiation reflects the collection of allele frequencies

p̈iu, or their sample values p̃iu. We regard θ’s as indicators of evolutionary history, rather than of

allele frequencies, and we interpret them as probabilities of pairs of alleles being identical by descent.

Jost introduced D = (HB − HW )/(1 −HW ) or D = (θW − θB)/θW as a measure of differentiation

among populations. For the two-population drift scenario without mutation D, unlike βW , does

not have a simple dependence on time and so does not serve as a measure of evolutionary distance.

CGTA Estimates of Relatedness The expressions in Equation 3 provide unbiased estimates

of θii = (1 + Fi)/2 and θii′, i 6= i′ when the allele frequencies are known. When study sample allele

18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/088385doi: bioRxiv preprint 

https://doi.org/10.1101/088385
http://creativecommons.org/licenses/by-nc-nd/4.0/


frequencies are used the expectations of these expressions, for one locus and large samples, are

E(θ̂ii) =
θii − 2ψi + θB

1 − θB

E(θ̂ii′) =
θii′ − ψi − ψi′ + θB

1 − θB

where ψi =
∑r

i′=1,i′ 6=i θii′/(r−1). The extent of bias depends on how different the average coancestry

of a target individual with all other study individuals is from the average coancestry of all pairs of

study individuals. We stress that these estimates are not unbiased for θii′.

Association Mapping

One of our motivations for seeking a unified characterization of population structure and relatedness

is that both phenomena affect samples used in association mapping. Many analyses, such as those in

GCTA, use mixed linear models with an estimated Genetic Relatedness Matrix A being used in the

formulation of the variance-covariance matrix for trait values of the study individuals. For a trait

with additive genetic variance σ2
A and no other genetic variance components, the variance matrix

for individuals includes the term A2σ2

A and A has diagonal elements (1 + Fi)/2 and off-diagonal

elements θii′. We suggest that these be estimated by β̂ii and β̂ii′ to accommodate any (hidden)

relatedness and inbreeding among study subjects. We are less sure about the common practice

of also using principal components of A as fixed effects to accommodate population structure,

especially when A uses β̂’s, and we see the need for further investigation.

Population History

We also see the need for further exploration of the role of population-specific FST estimates in

evolutionary genetic studies, given the generally unrecognized prevalence of negative expected values

for populations with correlated allele frequencies shown in Figure 1 and the relationship of estimates

with the site-frequency spectrum suggested in Figure 4.

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/088385doi: bioRxiv preprint 

https://doi.org/10.1101/088385
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion

We have presented moment estimators for the probabilities that pairs of alleles, taken from individ-

uals or from populations, are identical by descent relative to the ibd probabilities for alleles from

all pairs of individuals or populations in a study. By identifying the reference set of alleles as those

in the current study we allow for negative values for population structure or relatedness parame-

ters and their estimates. Alleles may have smaller ibd probabilities within some populations than

between all pairs of populations in a study, for example. Some pairs of individuals in a study may

be less related than the average for all pairs. Our estimates are phrased in terms of the proportions

of pairs of alleles, within and between populations or individuals, that are of the same type (ibs).

For sets of populations, we advocate the use of population-specific FST values as these more

accurately reflect population history. For sets of individuals, our estimates seem to behave at least

as well as those given previously. We note that our estimates have the same logical basis, and

algebraic expressions, for populations and for individuals. The chief novelty of our approach is in

allowing for allele frequencies to be correlated among populations when characterizing population

structure, and correlated among all individuals when characterizing individual-pair relatedness.
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Table 1. Predicted and estimated β’s for two populations.

Model N1 N2 m1 m2 β1 β̂1 β2 β̂2 β12

1 100 1,000 0.01 0.01 0.156 0.163 (0.152, 0.173) -0.037 -0.039 (-0.047,-0.032) 0.059

2 100 1,000 0.01 0.01 0.198 0.199 (0.192, 0.206) 0.024 0.026 ( 0.023, 0.029) 0

3 100 1,000 0.01 0.01 0.278 0.283 (0.268, 0.296) -0.061 -0.059 (-0.067,-0.050) 0.112

4 10,000 100 0.01 0 -0.319 -0.302 (-0.409, -0.219) 0.489 0.468 ( 0.372, 0.599) 0.085

Mutation rate µ = 10−6

95% confidence intervals from bootstrapping over loci.
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Table 2. Effects of filtering to L SNPs on coancestry estimate means (and standard deviations

×100).

L = 79, 069 L = 72, 012 L = 56, 979 L = 44, 061

Pedigree value All SNPs MAF≥ 0.01 MAF≥ 0.05 MAF≥ 0.10

0 0.000 (0.50) 0.000 (1.00) 0.000 (1.99) 0.000 (2.43)

0.03125 0.031 (0.30) 0.026 (0.30) 0.010 (0.89) 0.003 (1.45)

0.06750 0.061 (0.34) 0.056 (0.35) 0.041 (1.13) 0.036 (1.79)

0.09375 0.092 (0.27) 0.087 (0.27) 0.069 (0.72) 0.061 (1.13)

0.12500 0.124 (0.41) 0.120 (0.46) 0.112 (1.90) 0.109 (2.69)

0.15625 0.156 (0.29) 0.151 (0.29) 0.133 (0.65) 0.122 (1.15)

0.18750 0.184 (0.26) 0.179 (0.27) 0.157 (1.07) 0.144 (1.64)

0.25000 0.249 (0.42) 0.245 (0.45) 0.241 (1.87) 0.239 (2.62)

0.31250 0.311 (0.20) 0.307 (0.20) 0.285 (0.77) 0.271 (1.23)
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Table 3. Other estimates of relatedness.

Method Description

ped The pedigree based relatedness. It can be considered as the true relatedness value, although it will

depend on the depth of the pedigree.

bij βij, developed here. These values are relative to the mean of the population, and hence, the

mean of these relatedness must be 0.

wang The estimator developed by Wang (2002).

lynchli The estimator derived by Lynch (1988) and improved by Li et al. (1993), equation (7) in Wang (2014).

lynchrd The estimator derived by Lynch and Ritland (1999) [eq (5,6) in Wang, 2014].

GCTA The estimator used in GCTA (Yang et al., 2011). For multi-allelic markers, alleles are weighted

according to their variance.

ritland The estimator derived by Ritland (1996) [eq (4) in Wang (2014)]. For SNPs, it is the same as

GCTA, but for multi-allelic markers, each allele is given the same weight.

quellergt The estimator derived by Queller and Goodnight (1988) [eq (2,3) in Wang (2014)].
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Figure 1. Effects of Drift, Mutation and Migration. For all panels, N1 = 10000, N2 = 100 First

row: drift only (no mutation nor migration). θ1, θ2’s and β’s tend to 1,θ12 = 0.000. Second row: Drift

and Mutation µ = 10−3, m1 = m2 = 0. θ’s and β’s have positive limits less than 1. At equilibrium,

θ1 = 0.024, θ2 = 0.714, θ12 = 0.000, β1 = 0.024, β2 = 0.714, βw = 0.369. Third Row: Drift. Mutation and

Migration. µ = 10−3, m1 = 10−2, m2 = 0. θ’s positive and less than 1, βW is positive but βii’s may be

negative. At equilibrium, θ1 = 0.543, θ2 = 0.714, θ12 = 0.596, β1 = −0.131, β2 = 0.292, βw = 0.080.
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Figure 2. The region above and to the right of the red line has equilibrium values of θ1 ≤ θ12 ≤ θ2,

i.e. β1 ≤ 0 ≤ β2. In that region a pair of alleles within population 1 has a smaller probability of ibd than

does an allele from population 1 with an allele from population 2.
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Figure 3. Estimated β’s for independent simulations at different times, showing increase in bias and

variances as the number of polymorphic loci decreases.
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Figure 4. βW as a function of allele frequencies (nu/nT ) for SNPs located on chromosome 2.

Data from the 1000 genomes project, individuals were grouped by regions (Africa, Europe, South

Asia, East Asia and Americas). The drawn line corresponds to 5nu/nT . The initial linear segment

corresponds to alleles that are present in one continent only. βW s start departing from this line for

allele counts larger than 80, or equivalently, for worldwide frequencies larger than ≈ 0.01, given the

sampled chromosome number of 2426.
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Figure 5. Pedigree-based inbreeding and coancestry coefficients for simulated data.
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Figure 6. Comparison of estimated and pedigree coancestries. Uncorrected estimates on left,

corrected estimates on right. Correction procedure described in text.
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Figure 7. Comparison of β and CGTA coancestry estimates, when founders are drawn from a

single population.
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Figure 8. Comparison of β and CGTA coancestry estimates, when founders are drawn from

two populations.
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Figure 9. Boxplots of coancestry estimates for eight alternative estimates, displayed according

to nine pedigree values. The β estimates are not corrected, yet have good bias and variance

properties.
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Fig 10. Boxplots of coancestry estimates β and GCTA when the founders come from two

populations. Coancestries were estimated for all the individuals in the pedigree, but only those

between founders are shown. For each panel, the left boxplot is for pairs of founders from the

same population, while the right boxplot is for pairs when the two members come from different

populations.
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