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The quantification of tropical tree biodiversity worldwide remains an open and challenging prob-

lem. In fact, more than two-fifths of the global tree population can be found either in tropical or

sub-tropical forests1, but species identities are known only for ≈ 0.000067% of the individuals in all

tropical forests2. For practical reasons, biodiversity is typically measured or monitored at fine spa-

tial scales. However, important drivers of ecological change tend to act at large scales. Conservation

issues, for example, apply to diversity at global, national or regional scales. Extrapolating species

richness from the local to the global scale is not straightforward. Indeed, a vast number of different

biodiversity estimators have been developed under different statistical sampling frameworks3–7, but

most of them have been designed for local/regional-scale extrapolations, and they tend to be sensitive

to the spatial distribution of trees8, sample coverage and sampling methods9. Here, we introduce an

analytical framework that provides robust and accurate estimates of species richness and abundances

in biodiversity-rich ecosystems, as confirmed by tests performed on various in silico-generated forests.

The new framework quantifies the minimum percentage cover that should be sampled to achieve a
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given average confidence in the upscaled estimate of biodiversity. Our analysis of 15 empirical forest

plots shows that previous methods10, 11 have systematically overestimated the total number of species

and leads to new estimates of hyper-rarity10 at the global scale11, known as Fisher’s paradox2. We

show that hyper-rarity is a signature of critical-like behavior12 in tropical forests13–15, and it provides

a buffer against mass extinctions16. When biotic factors or environmental conditions change, some of

these rare species are more able than others to maintain the ecosystem’s functions, thus underscoring

the importance of rare species.

Tropical forests have long been recognized as one of the largest pools of biodiversity1. Global patterns

of empirical abundance distributions show that tropical forests vary in their absolute number of species but

display surprising similarities in the distribution of populations across species8, 17, 18. A common statistical

tool used to describe the commonness and rarity of species in an ecological community is the relative species

abundance (RSA), which is a list of species present within a region along with the number of individuals

per species19. Typically, the RSA is measured at local scales (e.g., in quadrats or transects, see Figure

1), in which the identities of the majority of the individuals living in the area are known. Of course, the

sampled RSA can be fit to any desired functional form at that scale. However, to obtain an up-scaled RSA,

as would be measured if it were possible to survey an entire forest, it is necessary to incorporate sampling

effects, which strongly bias the actual form of the RSA. Generally, an RSA at a given scale leads to an

RSA of a different functional form at a smaller scale, thus hindering analytical treatment20. Here, we

present a theoretical analytical framework to extrapolate species richness from local to global scales. This

framework is based on scaling theory and Nachbin’s theorem21, 22, thus guaranteeing that a given RSA can be

approximated to any degree of precision, at least for populations less than some fixed but otherwise arbitrary

value, with a linear combination of negative binomial (NB) distributions (see Supplementary Information,
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sections 1 and 2). A single NB distribution is given by

P(n|r, ξ) = 1

1− (1− ξ)r

(
n+ r − 1

n

)
ξn(1− ξ)r. (1)

which is normalized so that
∑∞

n=1 P(n|r, ξ) = 1, where r > 0 and 0 ≤ ξ < 1 are adjustable parameters that

control the shape of the RSA. Fisher’s log-series (LS) is obtained as the r → 0 limit of equation (1). Owing

to sampling effects, a small sample of a forest will have several singleton species with just one individual.

In contrast, a larger sample may exhibit an internal mode, and this attribute is well captured by the NB

distribution with effective parameters. The NB distribution can be derived from first principles on the basis

of biological processes (see Methods). When there are no correlations in the placement of the individuals,

the functional form of the NB remains the same after upscaling but with effective parameters, and this

remains an accurate approximation even when there are correlations, as validated by in silico experiments.

This two-parameter functional form is versatile (see Figure 2 and Supplementary Information, section 1)

and is able to adequately fit the RSAs of diverse ecosystems such as tropical forests and coral reefs23 and

accounts for the effects of density dependence17, 24, 25 on birth rates. The continuum version of the NB, i.e.,

the gamma distribution, is also the stationary state of a model that captures the temporal turnover of species,

an important aspect of tropical tree dynamics26. The great advantage of the NB distribution is that it is

form-invariant under up-scaling (see Methods). Under up-scaling, a single NB distribution (equation (1))

retains the same value of the parameter r, which is scale invariant, and a new effective value of the other

parameter, ξ. The same holds true for a linear combination of NB distributions with different values of r

and the same ξ. Here again, after up-scaling, the original r values are retained, and an effective ξ parameter

is obtained.

We now formulate our analytical framework on the basis of the following two steps. 1) Begin with

data on the abundances of S∗ species within a given region covering a fraction p∗ of the whole forest, i.e.,
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np∗ = {n1, n2, ..., nS∗} describes the abundances of the sampled species. 2) Use a linear combination

of a suitable number of NBs with the same ξ̂p∗ and different values of r to fit the empirical RSA at the

desired degree of accuracy. This method is guaranteed to be effective according to Nachbin’s theorem21, 22.

The RSA distributions at different scales have the same functional form as the RSA at the scale p∗, and

only the value of the parameter ξ change as a function of the scale (see Methods). Thus, we obtain an

analytical solution of the upscaled RSA at scale p from the data at scale p∗ in terms of the equation ξ̂p =

U(p, p∗|ξ̂p∗), defining ξ̂p in terms of p, p∗ and ξ̂p∗ . Therefore, using the RSA at scale p∗, a maximum

likelihood method is used to estimate the parameters of the RSA distribution, and the upscaling equations

(see Methods) are used to predict the species richness of the entire forest, p = 1. The framework resembles

the renormalization group technique in critical phenomena in which the behavior of a system at different

scales is described in terms of equations for the model parameters, similarly to the proposal here12. By

using our framework (the NB framework in the following), we were able to generate accurate and robust

predictions for computer-generated forests (see Table 1) and for 15 empirical tropical forests (Supplementary

Information, section 3)(Figure 1 and Table 2). We also found that the previous method10, 11 based on the LS

distribution (LS method in the following) has several drawbacks (discussed in Supplementary Information,

section 4) and leads to a significant overestimation of rare species and consequently of the total forest

biodiversity (Tables 1 and 2). We first compared the results of our method applied to a computer-generated

forest with species abundances extracted from a log-normal distribution and spatial correlations according

to a modified Thomas process (see Supplementary Information, section 5) when fitting the RSA with an LS

and with a single or a linear combination of two NBs. In this in silico experiment, we fixed the number

of species (in this case S = 5000) and their abundance distribution a priori and then generated the forest

accordingly. We then randomly sampled only a small fraction, p∗, of individuals and attempted to predict

S by using only this partial information. The predicted biodiversity is shown in Table 1 within the NB
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framework for different spatial correlations of forest trees. We found that even though the original forest

had a log-normal RSA entangled with spatial correlations, a single NB or a linear combination of two

NBs led to surprisingly good predictions and systematically outperformed the LS method; this result was

also true for computer-generated forests with different RSAs (see Supplementary Information, section 5).

Using more than one NB introduced extra parameters in the fitting and thus made it possible to increase the

accuracy of the prediction of the number of species at the global scale. However, even with a single NB, the

predictions were quite good, as shown in Table 1. For the forest data, we chose to work with just a single NB

that can be derived from basic ecological processes, such as birth, death and migration8, 23 (see Methods).

This simplification was also validated by the results of our in silico experiments. This approach permits an

exact analytical treatment with just two parameters for the fitting of the sampled RSA and the prediction of

the corresponding RSA and of the total number of species at the global scale.

Our results for tropical forests around the globe are presented in Table 2 (and also Supplementary

Information, section 6). We found that the LS method10, 11 systematically overestimated the number of

species at the largest scale. Only for the Yanachaga Chimillen National Park were the two estimates with

NB and LS essentially the same. The discrepancies in the estimate increased to approximately 10% for

Amazonia and Barro Colorado (BCI), reach 30 − 40% for Pasoh and Bukit Barisan and ranged between

72% and 152% for the remaining 10 forests. The errors in our estimates are also given in Table 2. A

further prediction of our framework is shown in Table 3 Methods and Supplementary Information, section

7), which indicates, for each forest, the amount of sampling (ppred% - second column) necessary to achieve

biodiversity predictions with errors below approximately 5% within a 95% confidence interval and its ratio

with respect to the actual sampling (third column). Apart from BCI, Caxiuana, Korup, Manaus, Pasoh,

Volcan and Yasuni, for which our estimates of the total number of species already had an error below
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approximately 5%, we predict that all the other forests would require further sampling. Amazonia, for

example, would need approximately double the current sampling, Cocha and Nouable approximately ten-

fold, and Bwindi, Udzungwa and Yanachaga several hundred-fold their current sampling.

We estimated the number of hyper-rare species, defined as species with fewer than 1000 individuals,

and hyper-dominant species, defined as the most abundant species contributing approximately 50% of the

total population10. The numbers of hyper-rare and of hyper-dominant species (see Table 4) have also been

previously10, 11 overestimated and underestimated, respectively. In fact, the asymptotic value of Fisher’s α

is strongly biased when a very small fraction of the forest is sampled (typically < 1%) (see Supplementary

Information, section 4). Moreover, we found that the hyper-rarity phenomenon is an emergent pattern in

tropical forests, which may characterize biodiversity hotspots27. Our framework provides a possible expla-

nation for this phenomenon, considering the observed hyper-rarity as a manifestation of criticality in tropical

forests12, 13. Indeed, the parameters of the NB distributions that provided the best predictions of the up-scaled

biodiversity in tropical forests all clustered around 0 < r < 0.7 and ξ ≈ 1. This result was somewhat sur-

prising, because there are neither theoretical nor biological reasons that might explain why tropical forests

in different geographical locations and with differing species richness should have abundances distributed

across species in a very similar manner. However, closer examination of the form of the NB distribution

revealed that the relative fluctuation of abundances, i.e.,
√
〈(n− 〈n〉)2〉/〈n〉, diverged as ξ → 1 and r → 0

(see Figure 3 and Supplementary Information, section 8). Thus, parameter values close to this region allow

an ecosystem to have the highest heterogeneity in its abundance distribution. The points shown in Figure 3

correspond to the parameter values obtained for the 15 forests. A physical system such as water and vapor, in

the vicinity of its critical point, is characterized by density fluctuations that become very large, with droplets

of water and bubbles of gas of all sizes thoroughly interspersed, and the system appears the same at different
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scales, i.e., it is self-similar12. This scale invariance confers on the system an exquisite sensitivity to certain

types of external perturbations or disturbances whose effects are realized at long distances. The observed

abundance fluctuations suggest that tropical forests may be critical systems and may be relatively reactive

to disturbances14, 15 and able to adapt optimally to new external conditions/constraints. Under a given set

of environmental conditions, only a few species are best at exploiting the limited resources28. Because of

environmental fluctuations, these conditions may not continue to be advantageous for the existing very few

abundant species. However, a large pool of species serves as a reservoir of new opportunities and responses

and as a buffer against newly changed conditions28. According to this view, hyper-rarity is essential for

an ecosystem to maintain its functions and react promptly to changes: rare species provide the key to an

ecosystem’s future16.

Methods

1 Upscaling negative binomials

Here, we chose the negative binomial (NB) distribution in equation (1) as the RSA. Apart from its simplicity

and versatility, we chose this form for our analysis for four reasons:

1. Any discrete probability distribution such as the RSA can be approximated to any degree of accuracy

by a suitable linear combination of NBs (see section 2 of the Supplementary Information for a proof

and discussion). We made the parsimonious choice of a single NB function because it suffices to

approximately describe the available tropical forest data, as discussed in the main text.

2. The NB distribution arises naturally as the steady-state RSA of an ecosystem with sufficiently weak

inter-species interactions and undergoing generalized dynamics of birth, death, speciation, and immi-
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gration to and emigration from the surrounding metacommunity (see next section).

3. In the limit of r → 0, the NB becomes the well-known Fisher log-series (LS), which has been widely

used to describe the patterns of abundance in ecological communities. Of course, because of the

flexibility of choosing r to be non-zero, the NB distribution is always more versatile than the LS.

The RSA distribution, especially at large scales or with increasing sampling effort29, often displays

an interior mode that cannot be captured by an LS distribution. Indeed, the Fisher log-series is not

sufficiently flexible20 to capture different patterns of RSAs 8, 23, 30–34, especially a count of the rare

species in tropical forests (see Supplementary Information, section 4). To assess whether the increased

reliability of the NB method with respect to the LS method is due only to the introduction of the

additional parameter r, we used the Akaike information criterion, which shows that the NB is the

preferred model for all tropical forests of our dataset except one for which r is very close to zero.

4. Finally, if one chooses two contiguous patches with NB as RSA distributions characterized by the

same parameters r and ξ ≡ ξ1/2 and combines the two, remarkably, the resulting larger patch is

also characterized by an NB distribution with the same scale-invariant value of r and a new scale-

dependent parameter, ξ, given by the analytical expression in equation (3) below with p = 1/2. This

special form-invariant property of the NB distribution, albeit with a scale-dependent parameter, makes

it particularly well suited for our extrapolation studies.

Denoting the fraction of the sampled area of a forest by p, one finds (see Supplementary information,

section 1) that the total number of species at the largest scale (p = 1) is related to the number of species at

scale p, Sp, by

S = Sp
1− (1− ξ)r

1− (1− ξp)r
, (2)

where ξp and r are the fitted parameters of the NB of the RSA distribution at scale p. As noted above, r is
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scale invariant and hence independent of p, whereas the parameter ξ at the largest scale, p = 1, is given by

ξ =
ξp

p+ (1− p)ξp
. (3)

We demonstrate that the framework holds exactly when species are spatially uncorrelated (see Supple-

mentary Information, section 9). However, our in silico experiments indicated that the framework is robust

even in the presence of spatial correlations and for different sampling methods (Supplementary Information,

section 5). Finally, we tested the lack of importance of spatial correlations in predicting singletons in trop-

ical forest data by generating null models in which the species labels of trees are shuffled (Supplementary

Information, section 9).

2 Stochastic model leading to negative binomial RSA

As previously stated, the NB distribution arises naturally as the steady-state RSA of an ecosystem that under-

goes simple birth and death dynamics under the neutral hypothesis, wherein species are not distinguishable,

and all inter-specific interactions are neglected23.

Indeed, let Pn,s(t) be the probability that, at time t, species s have exactly n individuals, where s ∈

{1, . . . , S}. We assume that the population dynamics of each species is governed by two terms, bn,s and

dn,s, which are the birth and death rates for species s with n individuals. The master equation regulating the

evolution of Pn,s(t) for n ≥ 0 is then

∂

∂t
Pn,s(t) = Pn−1,s(t)bn−1,s + Pn+1,s(t)dn+1,s − Pn,s(t)bn,s − Pn,s(t)dn,s.

The above equation is also valid for n = 0 and n = 1 if we set b−1,s = d0,s = 0. The steady-state solution

is

Pn,s = cs

n−1∏
i=0

bi,s
di+1,s

. (4)
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The term cs is a normalization factor found by imposing
∑∞

n=0 Pn,s = 1.

Let us assume that the birth term in the above equation depends on a density-independent term bs, which is

the per-capita birth rate, and on the term Ys, which may take into account immigration events or intra-specific

interactions:

bn,s = bs(n+ Ys).

Analogously, let us suppose that the death term depends on a density-independent term ds, which is the

per-capita death rate:

dn,s = dsn.

These suppositions are reasonable in ecology. By substituting in eq. (4), we obtain

Pn,s = cs

(
n+ Ys − 1

n

)(
bs
ds

)n

. (5)

The normalization constant can be easily found by imposing

1 =

∞∑
n=0

Pn,s = cs

∞∑
n=0

(
n+ Ys − 1

n

)(
bs
ds

)n

= cs

(
1− bs

ds

)−Ys

.

Therefore, the probability that the sth species has n individuals at equilibrium is given by a negative binomial

of parameters
(
Ys,

bs
ds

)
:

Pn,s =
(
n+ Ys − 1

n

)(
bs
ds

)n(
1− bs

ds

)Ys

. (6)

Under the neutral hypothesis, in which all species are considered to be equivalent, we can remove the species

index s from the above equation, thus obtaining a negative binomially distributed RSA for the ecosystem

under study.

3 Data availability

We use a global-scale compilation of 1248 local sites collected over 15 forests around the planet on different

tropical field stations of the equatorial zone. All data are publicly available. See Supplementary Information
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for web links and a more detailed description of the dataset.

4 Code availability

For numerical simulations performed in this study we used standard commands and programming tools in

R/Mathematica. All codes are available upon request.

Figure 1: The challenge of estimating global tropical biodiversity. A map depicting the 15 forests of

our dataset for which the coordinates of each subplot (squares) are known. Our goal was to deduce the

biodiversity of each entire forest on the basis of the very limited knowledge in the marked dots (see Table 2

and Supplementary Information, section 3, for a more detailed description of the dataset).
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Figure 2: Versatility of the NB distribution. The NB distribution is a two-parameter distribution that

shows self-similarity and can display both monotonic log series-like behavior (in the limit r → 0 the NB

tends to the LS distribution) and a unimodal shape, as a function of the scaling parameter ξ. The red line

represents the analytical threshold separating these two cases. The RSA distribution, especially at large

scales or with increasing sampling effort29, often displays an interior mode that cannot be captured by the

LS distribution but can be described by the NB. The NB distribution naturally arises as the steady-state RSA

of an ecosystem undergoing generalized dynamics of birth, death, speciation, and migration processes (see

Methods). Finally, any discrete probability distribution such as the RSA can be approximated to any degree

of accuracy by a suitable linear combination of NBs that retains the self-similarity feature (see Methods).

An example is shown of how the parameter ξ of the NB increases as the area of the forest doubles. Starting

from ξ=0.36, as the area doubles, the ξ value moves to the value corresponding to the successive (dashed)

horizontal line in the upward direction.
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Figure 3: Tropical forests are poised in the vicinity of criticality. A) Plot of the relative fluctuations of

species abundances,
√
< (n− < n >)2 >/ < n >, in linear scale versus abundances< n > at the logarith-

mic scale. The black points denote the predicted values for each of the 15 tropical forests listed in Table 2 at

the global scale, and the red curve is the line of equation y = 1. All values are located above this line, thus in-

dicating that the relative fluctuations in abundance are considerable for all the forests. B) Contour plot of the

relative fluctuation of abundances for a negative binomial RSA F (ξ, r) =
√
< (n− < n >)2 >/ < n >.

The black points represent the pair (r, log[1− ξ]), where r and ξ are the predicted parameters for each forest

of our dataset after up-scaling at the global scale. These points are all located in the region of the parameter

space around which the function F (ξ, r) diverges, i.e., ξ ≈ 1 and 0 < r < 0.7.
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Table 1: Estimation of the total biodiversity of a computer-generated forest by using a single negative

binomial distribution or a linear combination of two negative binomial distributions. The results of the

LS method are also shown for comparison. We generated a forest composed of 5000 different species

with a log-normal RSA distribution of mean µ = 5 and standard deviation σ = 1. The individual trees

were located according to a modified Thomas process (see Supplementary Information, section 5) with

two distinct clustering coefficients. We then sampled 5% of the global area and applied our method. The

prediction of the number of species using the NB framework with just one negative binomial was already

quite good (error < 2%). The introduction of two additional fitting parameters, which are necessary when

using a linear combination of two negative binomials, improved the estimates (error < 0.2%). In contrast,

the LS method overestimated the number of species (error > 56%).

LS one NB two NB

High-clustered Low-clustered High-clustered Low-clustered High-clustered Low-clustered

Spred 7838 9036 5095 5067 4995 5011
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Table 2: Predicting Biodiversity in Tropical Forests. Predicted total number of species, Spred, in each of

the 15 tropical forests, determined by using the NB framework with a single negative binomial for fitting

the sampled RSA, corresponding to a fraction p∗ of the entire forest with N∗ trees, in which only S∗ species

are seen. Standard errors were computed by propagating the errors in the fitting parameters of the RSA,

obtained by the bootstrapping method, and of S∗, determined as follows: for each dataset, we created the

corresponding predicted forest at the global scale by generating Spred numbers distributed according to a

negative binomial of parameters (r, ξ), and we sampled the p∗% of the list of individuals, as in the original

data.

Forest S∗ N∗ p∗% Spred (NB) Spred (LS)

AMAZONIA 4962 553949 0.00016 13602± 711 14984

BARRO COLORADO 301 222602 3.20513 366± 15 419

BUKIT BARISAN 340 14974 0.00169 471± 40 1020

BWINDI 128 18490 0.01813 163± 15 288

CAXIUANA 386 32701 0.01818 437± 14 915

COCHA CASHU 489 16640 0.00035 731± 63 1674

KORUP 226 17427 0.00473 282± 23 591

MANAUS 946 38933 0.06000 1016± 14 2242

NOUABALE NDOKI 110 7196 0.00143 125± 8 316

PASOH FOREST RESERVE 927 310520 0.35714 1193± 36 1590

RANOMAFANA 269 34580 0.01463 336± 22 620

UDZUNGWA 109 18447 0.00302 146± 20 269

VOLCAN BARVA 392 44439 0.02025 448± 16 895

YANACHAGA 209 2041 0.00372 802± 211 802

YASUNI 481 13817 0.61100 565± 20 974
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Table 3: Sampling targets for forest percentage cover. Using our results on up-scaled forest biodiversity,

it was possible to estimate the percentage ppred% of the forest that must be sampled to achieve an estimation

error of approximately 5%. We derived these values by creating the predicted forest at the global scale

(we generated Spred numbers according to a negative binomial of parameters r and ξ) and sampled it at

increasingly larger scales until the desired accuracy in the estimation of the global biodiversity was reached

(see Supplementary Information, section 7 for more details). The last column indicates how much extra

sampling is needed (if the number is greater than 1) to reach 5% precision.

Forest ppred% ppred/p∗

AMAZONIA 0.0003 1.875

BARRO COLORADO 3 1

BUKIT BARISAN 0.05 18

BWINDI 5 386

CAXIUANA 0.01 0.55

COCHA CASHU 0.003 8.57

KORUP 0.02 1.06

MANAUS 0.02 0.17

NOUABALE NDOKI 0.015 10.5

PASOH FOREST RESERVE 0.5 1.4

RANOMAFANA 0.1 6.84

UDZUNGWA 1.5 497

VOLCAN BARVA 0.02 0.25

YANACHAGA 1 269

YASUNI 0.3 0.49
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Table 4: Fisher’s paradox2. Hyper-rare species (defined as species with fewer than 1000 individuals10, 11)

and hyper-dominant species (the most abundant species, accounting for ≈ 50% of the total number of

individuals) percentages were predicted in the whole area of each tropical forest obtained by applying both

the NB and LS methods. Interestingly, we found that by using our NB method, the number of hyper-rare

species in most of the forests was drastically reduced with respect to the LS method, thus suggesting that the

extremely high value of hyper-rare species predicted in previous studies10, 11 is an artifact of the LS method.

Nevertheless, we found that the hyper-rarity phenomenon is a genuine emergent pattern in tropical forests.

Forest
Hyper Rare Hyper Dominant

NB Method LS Method NB Method LS Method

AMAZONIA 33% 37% 2.2% 2.0%

BARRO COLORADO NATURE MONUMENT 47% 60% 5.5% 4.8%

BUKIT BARISAN 22% 46% 7.9% 1.9%

BWINDI IMPENETRABLE FOREST 15% 48% 7.4% 3.5%

CAXIUANA 6% 49% 10.3% 3.2%

COCHA CASHU MANU NATIONAL PARK 7% 41 % 8.4% 2.5%

KORUP NATIONAL PARK 9% 51% 9.3% 3.1%

MANAUS 6% 59% 14.5% 2.8%

NOUABALE NDOKI 4% 43% 11.2% 2.4%

PASOH FOREST RESERVE 34% 55% 6.5% 3.1%

RANOMAFANA 12% 49% 7.5% 2.7%

UDZUNGWA MOUNTAIN NATIONAL PARK 12% 48% 6.3% 3.0%

VOLCAN BARVA 8% 52% 10.5% 2.5%

YANACHAGA CHIMILLEN NATIONAL PARK 54% 56% 3.0% 2.7%

YASUNI NATIONAL PARK 39% 74% 11.6% 4.4%
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