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Abstract

Many multicellular systems problems can only be understood by studying how cells
move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of
many interacting cells as they respond to and influence their microenvironment. The
ideal “virtual laboratory” for such multicellular systems simulates both the biochemical
microenvironment (the “stage”) and many mechanically and biochemically interacting
cells (the “players” upon the stage).

PhysiCell—physics-based multicellular simulator—is an open source agent-based
simulator that provides both the stage and the players for studying many interacting
cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport
solver to link cell phenotype to multiple diffusing substrates and signaling factors. It
includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and
fluid volume changes, mechanics, and motility “out of the box.” The C++ code has
minimal dependencies, making it simple to maintain across platforms. PhysiCell has
been parallelized with OpenMP, and its performance scales linearly with the number
of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations;
larger simulations are attainable on single HPC compute nodes.

We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D
geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal
carcinoma in situ (DCIS) of the breast. We also demonstrate stochastic motility, chemical
and contact-based interaction of multiple cell types, and the extensibility of PhysiCell
with examples in synthetic multicellular systems (a “cellular cargo delivery” system, with
application to anti-cancer treatments), cancer heterogeneity, and cancer immunology.
PhysiCell is a powerful multicellular systems simulator that will be continually improved
with new sub-models, capabilities, and performance improvements. It also represents a
significant independent code base for replicating results from other simulation platforms.
The PhysiCell source code, examples, documentation, and support are available under the
BSD license at http://PhysiCell.MathCancer.org and http://PhysiCell.sf.net.

1/29

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2017. ; https://doi.org/10.1101/088773doi: bioRxiv preprint 

http://PhysiCell.MathCancer.org
http://PhysiCell.sf.net
https://doi.org/10.1101/088773
http://creativecommons.org/licenses/by/4.0/


Author Summary

This paper introduces PhysiCell: an open source, agent-based model for 3-D multicellular
simulations. It includes a standard library of sub-models for cell fluid and solid volume
changes, cycle progression, apoptosis, necrosis, mechanics, and motility. PhysiCell is
directly coupled to a biotransport solver to simulate many diffusing substrates and
cell-secreted signals. Each cell can dynamically update its phenotype based on its
microenvironmental conditions. Users can customize or replace the included sub-models.

PhysiCell runs on a variety of platforms (Linux, OSX, and Windows) with few
software dependencies. Its computational cost scales linearly in the number of cells. It
is feasible to simulate 500,000 cells on quad-core desktop workstations, and millions of
cells on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact
of necrotic core biomechanics, 3-D geometry, and stochasticity on hanging drop tumor
spheroids (HDS) and ductal carcinoma in situ (DCIS) of the breast. We demonstrate
contact- and chemokine-based interactions among multiple cell types with examples in
synthetic multicellular bioengineering, cancer heterogeneity, and cancer immunology.

We developed PhysiCell to help the scientific community tackle multicellular systems
biology problems involving many interacting cells in multi-substrate microenvironments.
PhysiCell is also an independent, cross-platform code base for replicating results from
other simulators.

Introduction 1

Many significant multicellular systems processes—such as tissue engineering, evolution 2

in bacterial colonies, and tumor metastasis—can only be understood by studying how 3

individual cells grow, divide, die, and interact [1–5]. Tissue-scale dynamics emerge as cells 4

are influenced by biochemical and biophysical signals in the microenvironment, even as 5

the cells continually remodel the microenvironment. Thus, the ideal “virtual laboratory” 6

for multicellular systems biology must simultaneously simulate (1) the dynamics of 7

many mechanically and biochemically interacting cells, and (2) tissue microenvironments 8

with multiple diffusing chemical signals (e.g., oxygen, drugs, and signaling factors) [5]. 9

We recently published and open sourced the first part of such a platform: BioFVM, a 10

biotransport solver that can efficiently simulate secretion, diffusion, uptake, and decay 11

of multiple substrates in large 3-D microenvironments, even on desktop workstations [6]. 12

We now introduce and release as open source PhysiCell: a mechanistic off-lattice agent- 13

based model that extends BioFVM to simulate the tissue-scale behaviors that emerge 14

from basic biological and biophysical cell processes. 15

Prior work and goals for PhysiCell 16

Several major computational frameworks are available for studying 3-D multicellular 17

systems. CompuCell3D [7] and Morpheus [8] use cellular Potts methods to simulate 18

cells and their morphologies. They are very user-friendly packages with graphical model 19

editors, integrated ODE and PDE solvers, and support for molecular-scale sub-models, 20

but they currently cannot scale to large numbers (105 or more) of cells. TiSim (part of 21

the CellSys package [9]) can simulate many more cells by using a cell-centered, off-lattice 22

approach. However, it is currently closed source, and its executables are restricted to 23

a limited set of simulation types. Chaste [10] is a powerful, well-developed framework 24

for multicellular modeling with integrated PDE and ODE solvers, and both cell- and 25

vertex-based simulations of 105 or more cells. However, its complex codebase has many 26

dependencies that can impede participation by new developers; it is only cross-platform 27

compatible by virtual machines. Biocellion [11] can simulate billions of cells on cluster 28
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computers, but it is closed source, and its restrictive user license has hindered adoption. 29

Timothy was recently developed to simulate large-scale colonies of 109 cells on high- 30

performance supercomputers. [12, 13] Most of these platforms offer a general-purpose 31

pre-compiled “client” that can load models and settings from an XML file; this helps 32

overcome difficulties stemming from complex dependencies. See the supplementary 33

materials for a detailed software comparison. 34

These platforms typically require users to write their own code for all cell activities, 35

by scripting basic built-in functions. (e.g., build a cell cycle model from API functions 36

to overwrite cell volume and duplicate agents when appropriate.) As configured “out 37

of the box,” none have built-in models for cell cycling, apoptosis, and necrosis, even 38

though these fundamental behaviors are needed in many multicellular simulations. Only 39

CompuCell3D and Morpheus have built-in volume regulation features. Most of these 40

packages include PDE solvers that can simulate 3-D biotransport of one or more diffusible 41

factors in the microenvironment, but generally they are applied sequentially to one PDE 42

at a time, meaning that solving 10 PDEs requires 10 times more computational work 43

than solving a single PDE. This approach is not expected to efficiently scale to 3-D 44

simulations with many diffusible factors–a key requirement in reconciling secretomics 45

with single-cell and multicellular systems biology, particularly as we work to understand 46

cell-cell communication involving many cell-secreted factors. 47

PhysiCell aims to balance computational speed, built-in standard functionality, 48

flexibility, and codebase simplicity. It includes a built-in library of standardized cell 49

cycle and cell death models co-developed with biologists and modelers here and in the 50

MultiCellDS standardization process [14, 15], force-based cell-cell interaction mechanics, 51

motility, and volume regulation. Users can replace any of these built-in models with 52

their own, and they can dynamically assign custom functions to any agent at any time. 53

Through BioFVM, PhysiCell can couple cell phenotype to many diffusible substrates. It 54

is the only simulation package to explicitly model the cell’s fluid content–a key aspect 55

in problems such as cryobiology [16]. It can simulate systems of 105 − 106 cells on 56

desktop workstations, and 106 or more cells on single HPC compute nodes. All this 57

functionality and performance is achieved with only two external dependencies, and a 58

fully cross-platform C++ codebase that we have compiled and tested on Linux, OSX, 59

and Windows. We also distribute PhysiCell as a virtual appliance—with a full Linux 60

desktop, 64-bit g++ compiler, and visualization tools—that can run in widespread 61

virtual machine software like VirtualBox. 62

PhysiCell will help its users to test the behaviors that emerge from basic biological 63

and physical processes, and to evaluate model predictions against multicellular data [17]. 64

It also serves as a powerful, independent codebase to cross-validate model predictions in 65

Chaste, Biocellion, TiSim, Timothy, and other platforms. 66

Design and Implementation 67

PhysiCell is designed to study the dynamics and interactions of thousands or millions 68

of cells in 3-D microenvironments, with microenvironment-dependent phenotypes. It 69

uses a lattice-free, physics-based approach to reduce grid-based artifacts. It provides 70

optimized, biologically realistic functions for key cell behaviors, including: cell cycling 71

(multiple models for in vitro and in vivo-focused simulations) cell death (apoptosis 72

and necrosis), volume regulation (fluid and solid biomass; nuclear and cytoplasmic 73

sub-volumes), motility, and cell-cell mechanical interactions. This allows users to focus 74

on modeling microenvironment-dependent triggers of standard cell processes, rather 75

than coding these basic processes. However, to maintain flexibility, PhysiCell is written 76

in a modular manner so that users can extend, rewrite, or replace its functions. Users 77

can also create custom rules, and assign them to individual agents. It is fully coupled 78
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to a fast multi-substrate diffusion code (BioFVM) that solves for vectors of diffusing 79

substrates, so that users can tie cell phenotype to many diffusing signals. 80

We note that for many problems in cancer biology and tissue engineering that drove 81

development of PhysiCell, diffusive biotransport occurs at relatively fast time scales 82

(on the order of 0.1 min or faster) compared to cell mechanics (∼ 1 min) and cell 83

processes (∼ 10 to 100 min or slower). PhysiCell takes advantage of this by using three 84

separate time step sizes (∆tdiff , ∆tmech, and ∆tcells). In particular, the cell phenotypes 85

and arrangement (operating on slow time scales) can be treated as quasi-static when 86

advancing the solution to the biotransport PDEs, so BioFVM can be called without 87

modification with the cell arrangements fixed. See Time steps: for further discussion. 88

We provide default time step sizes that should suffice for typical applications in cancer 89

biology and tissue engineering. Problems with inherently different time scales (e.g., 90

advection-dominated problems, or with fast-moving bacteria) will need to adjust the 91

time steps accordingly to avoid spurious oscillations that would be expected if cell-based 92

sources and sinks are moving relatively quickly. 93

PhysiCell was built by extending the Basic Agent class in BioFVM [6] (a static, non- 94

moving object that can secrete and uptake substrates) into a fully dynamic Cell class with 95

changing cell volume, cycle progression, death processes, motility, and mechanics. This 96

allows the cells to directly and efficiently interface with the multi-substrate microenviron- 97

ment. PhysiCell is written in cross-platform compatible C++ and is self-contained (with 98

minimal dependencies). It can be compiled in any C++11 compiler with OpenMP sup- 99

port. This simplifies installation and improves the reproducibility of the experiments. We 100

have tested PhysiCell on Windows through MinGW-w64, and on OSX and Linux via g++. 101

(OSX users should note that Xcode does not include a compliant OpenMP-compatible 102

g++; they should follow our tutorials for installing a compliant g++ via Homebrew or 103

MacPorts. See http://MathCancer.org/blog/physicell-tutorials/.) PhysiCell’s 104

only external dependencies are pugixml [18] (for XML parsing) and BioFVM [6] for 3-D 105

multi-substrate diffusion. For the user’s convencience, compatible versions of pugixml 106

and BioFVM are included in every download. 107

The code has been parallelized in OpenMP to make use of multi-core desktop work- 108

stations and single HPC compute nodes. In testing, its performance (the computational 109

time to simulate a fixed amount of time on a fixed domain) scales linearly in the number 110

of cells present in the simulation. Simulations of up to 106 cells are feasible on desktop 111

workstations, and simulations beyond 106 cells are possible on typical HPC compute 112

nodes. 113

Biochemical microenvironment 114

We use BioFVM to simulate the chemical microenvironment with a vector of reaction- 115

diffusion PDEs with both bulk source/sinks and cell-centered sources and sinks [6]. 116

To briefly summarize that prior work, we model the biochemical microenvironment 117

(with computational domain Ω and boundary ∂Ω, discretized as a Cartesian mesh for 118

computational efficiency) as a vector of reaction-diffusion PDEs for a vector of chemical 119

substrates ρ of the form 120

∂ρ

∂t
=

diffusion︷ ︸︸ ︷
D∇2ρ −

decay︷︸︸︷
λρ +

bulk source︷ ︸︸ ︷
S(ρ∗ − ρ)−

bulk uptake︷︸︸︷
Uρ

+

sources and uptake by cells︷ ︸︸ ︷∑
cells k

δ (x− xk)Wk [Sk(ρ∗k − ρ)−Ukρ] in Ω (1)

with zero flux conditions on ∂Ω. Here, δ(x) is the Dirac delta function, xk is the kth 121

cell’s position, Wk is its volume, Sk is its vector of source rates, Uk is its vector of uptake 122
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rates, and ρ∗ is the vector of saturation densities (the densities at which the cells stop 123

secreting). Likewise, D and λ are the vectors of diffusion coefficients and decay rates, S 124

is the bulk supply rate, ρ∗ is the vector of saturation densities, and U is the bulk uptake 125

function. All vector-vector products ab are element-wise (Hadamard product). 126

Numerically, we solve for the solution at time t + ∆tdiff by a first-order operator 127

splitting: we first solve the bulk source/sink terms across the domain (and overwrite 128

the stored solution), then solve the cell-centered source/sink terms (and overwrite the 129

solution), and then the reaction-diffusion terms (again, overwriting the stored solutions). 130

As we detailed and verified in [6], because we used (numerically stable) first-order 131

backward differences in all our time discretizations, the overall method is first-order 132

accurate in time and numerically stable. 133

After this operator splitting, the bulk source/sink terms are a decoupled set of 134

systems of ODEs (one vector of ODEs in each computational voxel), which we solve 135

by the backwards Euler method for first-order accuracy and numerical stability. This 136

is trivally parallelized by OpenMP by dividing the voxels across the processor cores. 137

Similarly, we solve the cell-based source/sink equations (one system of ODEs per cell) by 138

backwards-Euler, overwriting the solution in the voxel containing the cell’s center. As 139

we showed in [6], this is first-order accurate and numerically stable, and it performs best 140

when the computational voxels are comparable to the cells’ sizes or larger. In all our 141

work, we satisfy this requirement by using 20 µm voxels. As with the bulk source/sinks, 142

we trivially parallelize by dividing the cell source/sinks (one system of ODEs per cell) 143

across the processor cores with OpenMP. 144

To solve the vector of diffusion-decay PDEs, we use the locally one-dimensional 145

method: a specialized operator splitting that turns the 3-D PDEs into a sequence of 146

one-dimensional PDEs. In each x-strip, y-strip, or z-strip, we discretize the PDEs 147

with second-order centered differences (spatial derivatives) and first-order backwards 148

differences (time derivatives) to obtain a tridiagonal linear system in each strip, which 149

we solve exactly with a tailored Thomas solver. The Thomas solver itself cannot be 150

trivially parallelized, but because we have many simultaneous x-, y-, and z-strips, we 151

can distribute many instances of the Thomas solver across processor cores by OpenMP. 152

This technique, along with other optimizations (tailored overloaded vector operators, 153

a vectorized Thomas solver, pre-computing and caching the forward sweeps of the 154

Thomas solvers, and other similar optimizations) was tested to scale linearly in the 155

number of substrates (number of PDEs), the number of computational voxels, and the 156

number of discrete cell sources/sinks. The method was numerically stable even for large 157

∆t, first-order accurate in time, and second-order accurate in space. Simulating 10 158

PDEs on 1,000,000 voxels takes approximately 2.6 times more computational time than 159

simulating a single PDE. We found that for typical magnitudes of D, S, U, and λ, using 160

∆tdiff = 0.01 min and ∆x = 20 µm gave solutions with 5% relative accuracy or better. 161

For more algorithmic detail and extensive convergence testing on a variety of problems, 162

see [6] and its supplementary material. 163

Agent-based cell model 164

PhysiCell implements key cell-scale processes—cell cycling and death, volume changes, 165

mechanics, and motility—and lets users link the parameters of these processes to 166

microenvironmental conditions. PhysiCell then scales these basic cell-scale hypotheses to 167

simulate thousands or millions of cells, from which tissue-scale behavior emerges. Here, 168

we summarize the key functions. For each sub-model, see the supplementary materials 169

for the full equations, further biological motivation, and reference parameter values. 170
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Cell characteristics and state Cell agents have a variety of phenotypic proper- 171

ties, including position (xi), volume (and sub-volumes), cell cycle or death status, 172

and mechanics (adhesive, deformation, and motility) parameters. Each cell has a 173

hierarchically-structured, independent Phenotype object that organizes information on 174

cell cycling, death, volume, geometry, mechanics, motility, and secretion. Each cell also 175

has an independent Cell Functions object that collects functions to update cell volume, 176

motility, velocity (mechanics), and other properties. See the user manual (included in 177

every PhysiCell download Version 1.2.0 or later) for a list of all the cell agents’ attributes 178

and functions to access/update them. Below, we describe standardized, built-in models 179

to update these properties. The models can be replaced by user-defined functions; the 180

supplied models serve as biophysically reasonable default functions that capture the key 181

aspects of these processes. 182

Cell volume Each cell tracks V (total volume), VF (total fluid volume), VS (total 183

solid volume), VNS (nuclear solid volume), VCS (cytoplasmic solid volume), VN (total 184

nuclear volume), and VC (total cytoplasmic volume). Key parameters include nuclear 185

solid, cytoplasmic solid, and fluid rate change parameters (rN, rC, and rF), the cell’s 186

“target” fluid fraction fF, target solid volume V ∗NS, and target cytoplasmic to nuclear 187

volume ratio fCN. For each cell, these volumes are modeled with a system of ODEs: 188

dVF
dt

= rF (V ∗F (t)− VF) (2)

dVNS

dt
= rN (V ∗NS(t)− VNS) (3)

dVCS

dt
= rC (V ∗CS(t)− VCS) (4)

where we use the constitutive laws 189

V ∗CS(t) = fCNV
∗
NS(t) (5)

V ∗F (t) = fFV (t). (6)

These parameters are updated as the cell progresses through its current cycle or death 190

process. (See Cell cycling and Cell death.) For example, we halve V ∗NS after a cell 191

division and double it upon re-entry to the cell cycle. We set V ∗NS = fCN = 0 at the 192

onset of apoptosis, and we set rF, rC, and rN based on key apoptosis time scales. See the 193

supplementary materials for the full equations, sample solution plots, further biological 194

motivation, convergence testing, and reference parameter values. These ODEs are 195

numerically solved using numerically stable first-order backwards Euler discretizations. 196

Cell motility Each cell can set its on persistence time (Tper), migration speed (smot), 197

migration bias direction (dbias, a unit vector), and a migration bias b that ranges from 0 198

(Brownian motion) to 1 (deterministic motion along dbias). When updating the cell’s 199

velocity, its migration velocity vmot is added to the currently velocity (as calculated 200

by mechanics; see Cell mechanics and motion). The cell changes it migration velocity 201

stochastically between t and t+ ∆tmech with probability 202

Prob(change vmot) =
∆tmech

Tper
(7)

The user-defined function update migration bias (see the user manual and supple- 203

mentary material) sets vbias, b, and smot. The migration velocity vmot is then updated 204

according to 205

vmot = smot
(1− b)ξ + bdbias

||(1− b)ξ + bdbias||
(8)
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where ξ is a random unit vector. See the user manual and supplementary materials for 206

more details, as well as examples for biased migration along chemical gradients. 207

Cell mechanics and motion We model cell mechanics and motion as in our prior 208

work [19]: we update each cell’s position xi by calculating its current velocity vi based 209

upon the balance of forces acting upon it. The main forces include cell motility, drag- 210

like forces, and cell-cell and cell-matrix interaction forces: adhesion and “repulsion” 211

(resistance to deformation and/or volume exclusion [20]). As in prior cell-centered 212

models [19,21,22], we apply an inertialess assumption (miv̇i ≈ 0) to explicity solve for 213

each cell’s velocity. As before [19], we model adhesion and repulsion with interaction 214

potentials that depend upon each cell’s size, maximum adhesion distance, adhesion and 215

repulsion parameters, and distance to other cells. The cell’s velocity vi is given by 216

vi =
∑

j∈N (i)

−
cell-cell adhesion︷ ︸︸ ︷√

ciccac
j
cca∇φ1,Ri,A+Rj,A

(xi − xj)−

cell-cell repulsion︷ ︸︸ ︷√
ciccrc

j
ccr∇ψ1,Ri+Rj (xi − xj)

 .

−

cell-BM adhesion︷ ︸︸ ︷
cicba∇φ1,Ri,A

(−d(xi)n(xj))−

cell-BM repulsion︷ ︸︸ ︷
cicbr∇ψ1,Ri (−d(xi)n(xj)) +vi,mot (9)

where as in [19] φn,R(x) is an adhesion interaction potential function which is zero 217

for ||x|| > R, and approaches zero with smoothness given by n. Similarly, ψn,R(x) 218

is a repulsion interaction potential function that is zero for ||x|| > R. Thus, cell-cell 219

mechanical interactions occur over finite distances. Here, cicca and ciccr are the ith cell’s 220

cell-cell adhesion and repulsion parameters, Ri is its radius, and Ri,A is its maximum 221

adhesion distance (typically a fixed multiple of Ri). Note that if cell i and j have 222

identical cell-cell adhesion and repulsion parameters ccca and cccr, then the cell-cell 223

interaction coefficients simplify to the form we published in [19]; otherwise, this is a 224

phenomenologic form that allows either cell’s coefficient to affect the cell-cell interaction 225

strength, with equal and opposite effect on both cells. We plan future improvements to 226

move beyond the current phenomenologic forms to more mechanistic models. 227

Also d(x) is the distance to the nearest basement membrane (if any), n(x) is a unit 228

vector normal to the basement membrane, and so −d(xi)n (xi) points from the cell’s 229

position xi to the nearest point on the basement membrane, located at xi−d (xi)n (xi) . 230

(See [23–25] for more information on level set (distance function) representations of 231

surfaces, there applied to tumor growth models.) N (i) is the (finite) list of cells that 232

could potentially interact with cell i. (See Key code optimizations.) Further references 233

and the full forms of the potential functions are given in the supplementary materials. 234

The cell’s position is updated using the second-order Adam’s Bashforth discretization: 235

xi (t+ ∆tmech) = xi(t) +
1

2
∆tmech

(
3vi(t)− vi (t−∆tmech)

)
(10)

Cell cycling PhysiCell includes a cell cycle modeling framework, where each cell cycle 236

model is a collection of phases {Xi}, transition rates {rij} between the phases, and a 237

cell division phase transition. As of Version 1.2.0, users can also set phase entry and exit 238

functions (associated with the phases Xi) that are executed at entry into or exit from the 239

phase; these can be used to model processes such as mutation of cell parameters. The 240

framework also allows users to set arrest functions (associated with the transition rates 241

rij) that block the transition. This is useful for modeling effects like volume restrictions. 242

See the user manual for full details. As in [19], we use the phase transition rates to 243

calculate the phase change probabilities in any time interval [t, t+ ∆t]: the probability 244
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of transitioning from phase Xi to phase Xj in this time interval is given by 245

Prob (transition from Xi to Xj | not arrested ) rij∆t (11)

Users can set individual transitions rij to have deterministic duration, with duration 246

1/rij . See the user manual for full details. 247

Each cell agent tracks its current cell cycle phase Sk and its total time spent in 248

that phase (tk). Users can change the transition rates at any time, in part based upon 249

microenvironmental conditions (e.g., based upon oxygenation or cell contact). 250

As a concrete example, consider the “Ki67 Advanced” model from our prior work 251

calibrating oxygen-dependent growth to Ki67 data in ductal carcinoma in situ (DCIS) 252

[19,26,27]. The phases are K1 (Ki67+ cycling cells, prior to cell division), K2 (Ki67+ 253

cycling cells, after cell division), and Q (Ki67- quiescent cells). K1 and K2 have stochastic 254

durations (with means T1 and T2). We model the transition rate from Q to K1 as 255

rQ1 =
1

TQ

max

{(
pO2 − pO2,hypoxia

pO2 − pO2,hypoxia

)
, 0

}
, (12)

where cells spend a mean time of TQ in the Q phase when pO2 = pO2. Cells double 256

V ∗NS when transitioning from Q to K1 (to double their nuclear content), and they halve 257

V ∗NS (and all the sub-volumes) when dividing into two daughter cells at the K1 −→ K2 258

transition. The full set of supported cell cycle models—along with reference parameter 259

values—is given in the supplementary materials. 260

Cell death PhysiCell currently includes models for two types of cell death: apoptosis 261

(programmed cell death) and necrosis (unprogrammed cell death) [28]. At any time, 262

each agent (with index i) has two death rates (rA,i for apoptosis, and rN,i for necrosis), 263

which can be continually updated. For any death rate ri and any time interval [t, t+ ∆t], 264

the cell has a probability of entering the corresponding death state D: 265

Prob
(
Si(t+ ∆t) = D

)
= 1− exp

(
−ri∆t

)
≈ ri∆t. (13)

Apoptosis: Upon entering the apoptotic state, we set fCN = 0 (to simulate shrinking 266

and blebbing of the cytoplasm), V ∗NS = 0 (to simulate degradation of the nucleus), and 267

fF = 0 (to simulate the active elimination of water from the cell). The rates rN, rF, 268

and rC are set to match time scales of cell volume loss in apoptotic cells. The cell 269

is removed once its volume drops below a user-set threshold, or after mean duration of TA. 270

271

Necrosis: When a cell becomes necrotic, we set fCN = V ∗NS = 0 to model cytoplasmic and 272

nuclear degradation. Early necrotic cells undergo oncosis (cell death-related swelling); 273

we model this by setting fF = 1. (Note that some regard oncosis as the actual death 274

process, and necrosis as post-mortem cell degradation [29, 30].) Once the cell volume 275

passes a critical threshold, it lyses, and we set fF = 0. The rate parameters rF, rN, and 276

rC are set to match expected time scales throughout necrosis [28]. PhysiCell includes 277

codes to trigger necrosis deterministically or stochastically: 278

279

Deterministic Necrosis: This implements a common model of necrosis (see the review [2]), 280

where cells instantly become necrotic whenever oxygenation pO2 drops below a threshold 281

value pO2,threshold, as in our earlier work [19]. This is equivalent to the letting rN →∞. 282

283

Stochastic Necrosis: This model updates our prior work [19], based upon in vitro 284
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observations that cells can survive low oxygen conditions for hours or days. Here, 285

rN (pO2) =



0 if pO2,threshold < pO2

rN,max

(
pO2,threshold−pO2

pO2,threshold−pO2,crit

)
if pO2,crit < pO2 ≤ pO2,threshold

rN,max if pO2 ≤ pO2,crit.

(14)

That is, necrotic death begins when pO2 < pO2,threshold, and the death rate ramps 286

linearly until saturating at a maximum rate rN,max for pO2 < pO2,crit. Equivalently, 287

cells survive on average 1/rN,max time in very low oxygen conditions [19]. 288

Numerical implementation 289

Time steps: PhysiCell has three time steps to model (fast) diffusive biotransport 290

processes (∆tdiff ; default 0.01 min), cell movement (∆tmech; default 0.1 min), and 291

(relatively slow) cell processes (∆tcells; default 6 min). We use these time steps to set 292

how frequently biotransport processes, cell movement processes, and cell phenotype 293

processes are updated. See Fig. 1. 294

The default ∆tdiff was chosen for diffusion, decay, and uptake/secretion parameter 295

values typical for the cancer and tissue engineering problems that drove PhysiCell’s 296

development. In prior testing, relative errors did not exceed 5% for this value [6]. In 297

mechanical relaxation tests for overlapping cells and compressed tumor spheroids, we 298

found that ∆tmech = 0.1 min gave solutions that converged at first-to-second order 299

accuracy, had relative errors 5% or less, and avoided spurious oscillations and other 300

artifacts for cell velocities under ∼ 1 µm/min (typical for cancer biology problems); 301

see the Supplementary Materials. The cell cycle, death, and volume change models 302

were numerically stable and first-order accurate with relative errors of 5% or less for 303

∆tcells = 6 min. See the Supplementary Materials. Users should reduce ∆tcells for 304

problems with faster phenotypic processes. Users anticipating faster cell movement (e.g., 305

motile bacteria) should reduce ∆tmech. We recommend setting ∆tdiff ≤ 1
10∆tmech. 306

Mathematically, this time scale separation allows us to hold cell positions fixed 307

(quasi-static) when updating the PDE solutions, and then hold the chemical fields 308

fixed when updating cell positions and phenotypes. We have used similar techniques 309

in nonlinear continuum models of tumor growth (slow time scale) in heterogeneous 310

biochemical microenvironments (fast time scale) [23–25]. 311

Overall program flow After initializing the microenvironment (through BioFVM) 312

and cells, and initializing the current simulation time t = 0, PhysiCell tracks (internally) 313

tmech (the next time at which cell mechanics functions are run), tcells (the next time at 314

which cell processes are run), and tsave (the next simulation data output time), with 315

output frequency ∆tsave. Initially, we set: 316

tmech = ∆tmech, tcells = ∆tcells, tsave = 0.0. (15)

PhysiCell repeats the main program loop until reaching the maximum simulation time: 317

1. Save the simulation state if t ≥ tsave. Set tsave = tsave + ∆tsave. 318

2. Run BioFVM to update the biochemical microenvironment for cell-based secretions 319

and uptake, and reaction-diffusion, for the current fixed cell positions. 320

3. For the fixed cell positions and chemical substrate fields, if t ≥ tcells, run the cell 321

processes for each cell: 322
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(a) Update cell parameters using the cell’s update phenotype functions. 323

(b) Advance the cell cycle (or death) model. 324

(c) Advance the cell’s volume (and sub-volume) using the volume update function. 325

Then set tcells = tcells + ∆tcells. 326

4. If t ≥ tmech, then: 327

(a) For each cell, calculate the force-based cell velocities via update velocity, 328

add the contribution of motility (which runs update migration bias as 329

needed), and run the custom function custom cell rule. 330

(b) For each cell, update the position as discussed before. 331

Set tmech = tmech + ∆tmech. 332

5. Update the current simulation time by t = t+ ∆tdiff . Return to Step 1. 333

Steps 3a-c can be combined in a parallelized OpenMP loop; we flag cells for division and 334

removal and process these queues serially after the parallel loop to avoid data corruption. 335

Step 4a can be parallelized across the cells by OpenMP (because cell velocities are 336

location-dependent, and the cell positions are fixed throughout 4a), and then Step 4b 337

can be parallelized across the cells with these computed velocities. 338

Estimated computational cost scaling We now assess the computational effort 339

needed for each iteration in the main program loop. Step 1 (save simulation data), Step 340

3 (run cell processes), and Step 4b (update positions) clearly entail a constant amount 341

of work for each cell. Thus, summing these steps over all cells n(t) requires O(n) work. 342

By prior analysis, BioFVM (Step 2) also scales linearly in n(t) [6]. 343

Step 4a (update velocities) is the most computationally expensive step. In straight- 344

forward implementations, each cell tests for mechanical interaction with n − 1 other 345

cells, giving an O(n2) total computational cost at each time step. However, the IDS 346

(interaction testing data structure; see Key code optimizations) restricts interaction 347

testing to a smaller set N (i). 348

In the appendix, we show that each N (i) has at most Nmax cells. Thus, Step 4b has 349

a fixed maximum cost for each cell, and the cost of the loop scales linearly in n. 350

Key code optimizations To prevent computational costs from scaling quadratically 351

in the number of cells, we designed a cell-cell interaction data structure (IDS) that 352

efficiently estimates a set N of possible neighbor cells for each cell agent. See the 353

supplementary material for further detail. 354

PhysiCell uses OpenMP to parallelize most loops over the list of cells. This includes 355

sampling the microenvironment, updating cell phenotype parameters, advancing the 356

cell cycle or death model, advancing the volume model, running any custom function, 357

and calculating the cell velocity. We do not parallelize loops that change the IDS: cell 358

division, cell removal, and updating the cell position. 359

As discussed above, we defined three separate computational step sizes (∆tdiff < 360

∆tmech < ∆tcells) to take advantage of the multiple time scales of the multicellular system. 361

As indicated in the overall program flow above, we update each process according to its 362

own time step, rather than at each simulation step. Fig. 1 further illustrates how the 363

multiple times steps reduce the computational cost. See the supplementary materials for 364

further detail and the default step sizes for cancer biology. 365
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Convergence and validation testing 366

We performed convergence testing on all the major components of PhysiCell. BioFVM 367

was previously tested as first-order accurate in ∆t, second-order accurate in ∆x, and 368

sufficiently accurate at ∆x = 20 µm and ∆tdiff = 0.01 to 0.05 min for tumor growth 369

problems [6]. We performed two tests for cell-cell mechanics and motion: First, we placed 370

two cells in partial overlap, simulated their relaxation to equilibrium, and measured the 371

cell spacing at several times. Second, we created a compressed cluster of 50,000 cells, 372

simulated its mechanical relation to equilibrium, and measured its diameter at several 373

times. Both tests converged to first-order accuracy in ∆t at all measured times, showing 374

that PhysiCell converged in both short-time mechanical dynamics and in long-time 375

behavior. ∆tmech ∼ 0.1 min gives sufficent accuracy for typical cancer problems. 376

We simulated the volume model for a single proliferating, apoptotic, and necrotic cell, 377

and measured the sub-volumes at multiple times. It converged with first-order accuracy 378

in ∆t at all tested times, and ∆tcell = 6 min gave sufficient accuracy. We tested the 379

stochastic transition codes by simulating the Ki67-advanced cell cycle model and the 380

apoptosis death model (with stochastic duration), and measuring the sub-population 381

counts and population fractions over time for several values of ∆tcell. For each ∆t, we 382

performed 100 simulations and compared the mean solution behavior against known 383

coarse-grained ODE model behavior. ∆tcell = 6 min and 60 min both gave an excellent 384

match between the PhysiCell behavior and theory for all the compared curves. See the 385

supplementary materials for full testing results. 386

Performance testing (summary) 387

By our testing, recent quad-core desktop workstations (with hyperthreading, for 8 total 388

execution threads) can simulate 10-30 days in systems of up to 105 to 106 cells in 3 389

days or less (wall time). Single HPC compute nodes (typically two 6-8 core processors, 390

with hyperthreading and 24-32 execution threads) can simulate larger systems up to 391

∼2 million cells in about 2 days. Future releases of PhysiCell will address current 392

performance bottlenecks; see Availability and Future Directions. The Results will give a 393

demonstration of O(n) computational cost scaling. 394

Results 395

We demonstrated PhysiCell’s potential to simulate large multicellular systems—and 396

its ability to test the emergent tissue-scale effects of cell-scale hypotheses—on several 397

examples arising from cancer biology and synthetic multicellular systems bioengineering. 398

For the first two examples, we compared the impact of the deterministic and stochastic 399

necrosis models. (See Cell death above.) We used the Ki67-advanced cell cycle model 400

with deterministic K1, K2, and A phase durations for the first two examples. (See Cell 401

cycling.) We used a simpler “live cells” cycle model [14] in the remaining examples, where 402

live cells proliferate with a variable birthrate, apoptose, or necrose. We provide detailed 403

parameter values in the supplementary materials for the HDS and DCIS examples‘, and 404

the full source code and postprocessing ‘ routines for both examples in every PhysiCell 405

download. Full source code and simple build instructions are provided for the remaining 406

examples. Reference simulation outputs for the first two examples are available at 407

http://PhysiCell.MathCancer.org. 408

Test platforms 409

The Hanging drop tumor spheroids and Ductal carcinoma in situ (DCIS) examples were 410

tested on (1) a desktop workstation (quad-core Intel i7-4790, 3.60 GHz, 8 execution 411
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threads, 16 GB memory) with mingw-w64 (g++ ver. 4.9.1) on 64-bit Windows 7, 412

and (2) a single HPC compute node (dual 6-core Intel Xeon X5690, 3.47 GHz, 24 413

execution threads, 48 GB memory) with g++ (ver. 4.8.4) on Ubuntu 14.04. The tests 414

were performed using PhysiCell 1.0.0, although release 1.2.0 has updated the tests for 415

compatibility. The CPU architecture was newer on the desktop (2014 Haswell) than on 416

the HPC node (2011 Westmere). The newer “Biorobots”, Anti-cancer biorobots, Cancer 417

heterogeneity and immune response, and Adding an immune response examples were 418

tested on a quad-core Intel i7-4770K, 4.06 GHz, 8 execution threads, 32 GB memory, 419

using PhysiCell Verisons 1.2.1 with g++ 7.1.0 on 64-bit Windows 10 (via MinGW-w-64). 420

Hanging drop tumor spheroids 421

Hanging drop spheroids (HDS)—a 3-D cell culture model where a small cluster or 422

aggregate of tumor cells is suspended in a drop of growth medium by surface tension—are 423

increasingly used to approximate 3-D in vivo growth conditions [31]. Unlike traditional 424

2-D monolayer experiments, HDSs allow scientists to investigate the impact of substrate 425

gradients on tumor growth, particularly oxygen gradients. Their relatively simple 426

geometry makes them ideal for testing computational models. 427

We simulated HDS growth by placing an initial cluster of ∼ 2300 cells in an 8 mm3
428

fluid domain, with Dirichlet conditions pO2 = 38 mmHg (5% oxygen: physioxic conditions 429

[32]) on the computational boundary. The simulation results are shown in Fig. 2 for 430

deterministic necrosis (left column) and stochastic necrosis (right column), at 4, 8, and 431

16 days. In Fig. 3, we show the tumor diameter (left panel) and number of agents (right 432

panel) versus time. Both simulations reached ∼ 106 cells by 18 days. See the simulation 433

videos Video S1 and Video S2. 434

Deterministic versus stochastic necrosis Both models yielded similar dynamics. 435

Hypoxic gradients emerged quickly, limiting (pO2-dependent) cell division to the outer- 436

most portions of the tumors. This, in turn, lead the tumor diameters to grow linearly 437

(at similar rates); see Fig. 3. This matches our theoretical expectations for a spheroid of 438

radius R(t) whose growth is restricted to an outer layer of fixed thickness T : 439

d

dt
V (t) = c ·

growing region︷ ︸︸ ︷
4πR2(t) · T =⇒ d

dt

(
4

3
πR3(t)

)
= c · 4πR2(t) · T (16)

=⇒ d

dt
R(t) = cT = constant. (17)

In both models, the innermost portion of the necrotic core developed a network of 440

fluid voids or cracks. This phenomenon emerges from competing biophysical effects of the 441

multicellular system and its cell-scale mechanical details: necrotic cells lose volume, even 442

as they continue to adhere, leading to the formation of cracks. To our knowledge, this is 443

the only model that has predicted this necrotic tumor microarchitecture, which would be 444

very difficult to simulate by continuum methods except with very high-resolution meshes 445

comparable to the ∼ 1 to 10 µm feature size. These cracked necrotic core structures 446

have been observed with in vitro hanging drop spheroids (e.g., [5, 33,34]) See Fig. 2. 447

There were notable differences between the models. The deterministic model had 448

a sharp perinecrotic boundary between the viable and necrotic tissues, whereas the 449

stochastic model demonstrated a perinecrotic transition zone with substantial mixing 450

of viable and necrotic cells. Because cells do not immediately necrose in the stochastic 451

model, it retained a center of quiescent viable cells longer than the deterministic model. 452

The growth curves for the deterministic and stochastic models appear to diverge after 453

approximately 8 days, when the deterministic necrotic core is better defined with more 454
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cracks than the stochastic core. This may be due to differences in hypoxic gradients 455

(the tumor with more void spaces will have shallower oxygen gradients, and hence 456

more cell cycle entry), but further simulations would be required to rule out stochastic 457

effects. Interestingly, the stochastic model’s growth curve appears to run parallel to the 458

deterministic curve for later times, once its necrotic core becomes better defined. 459

Performance scaling Throughout the simulations, the computational cost (the wall 460

time required to simulate one hour) scaled approximately linearly with the number of 461

agents present in the simuation, on both the desktop workstation and the HPC node; 462

see Fig. 4. (See also Estimated computational cost scaling.) Increasing the number of 463

execution threads improved performance, even when running on slower processor cores. 464

See the right panel in Fig. 4, where moving from the newer 8-threaded machine to the 465

older 24-threaded machine improved performance by a factor of 2 to 2.5. 466

The simulations reached ∼ 106 cells on our HPC tests after 67 hours (deterministic, 17 467

simulated days) to 76 hours (stochastic, 18.2 simulated days) of wall time, including saving 468

full simulation output data once per simulated hour. See Fig. 3. The desktop workstation 469

simulated past 573,000 cells (about 14.6 days of simulated time) in approxiately 80 hours 470

of wall time. The desktop tests did not run out of memory, and the simulations can be 471

completed to the full 18 days and 106 cells if needed. 472

Ductal carcinoma in situ (DCIS) 473

DCIS is a pre-malignant breast condition where epithelial cells (“tumor cells”) divide 474

abnormally to fill the breast duct lumen. Oxygen can only reach the tumor cells by 475

diffusion from outside the duct, leading to the emergence of hypoxia and an inner 476

necrotic core. See [19, 26, 27] for further biological and clinical discussion. As in [19], we 477

approximate a partly-filled breast duct as a 3-D “test tube” with a level set function 478

representation. Cell adhere to cells and the duct wall; cells and the duct wall push 479

against cells to resist deformation. Oxygen diffuses from the duct wall and is consumed 480

by tumor cells. The rate of cycle entry increases linearly with pO2 (see Cell cycling). 481

In Fig. 5, we show DCIS simulations in a 1 mm segment of breast duct (317.5 µm 482

diameter), using deterministic necrosis (left side) and stochastic necrosis (right side), 483

plotted at 10 and 30 days. See also Video S3 and Video S4. As in prior work [19], the 484

simulations predict cell-scale details observed in DCIS pathology, such as the appearance 485

of pairs of Ki67+ daughter cells, the spatially isolated apoptotic cells (which arises 486

from the model assumption that apoptosis is a stochastic, low-frequency event that is 487

independent of oxygenation), and the higher occurrence of Ki67+ cells near the duct wall 488

(where we modeled the probability of cell cycle entry as proportional to oxygenation). 489

Comparison of necrosis models; comparison with the spheroid example As 490

in the HDS example, the deterministic model had a sharp, smooth perinecrotic boundary, 491

whereas the stochastic model demonstrated a perinecrotic boundary region with mixed 492

viable and necrotic cells. In the stochastic model, proliferation halted in the duct center, 493

but necrosis appeared later. The perinecrotic mixing effect was most pronouced at the 494

leading edge of the tumor, where tissue was transitioning from non-hypoxic/non-necrotic 495

to necrotic. Areas with longer-term hypoxia had smoother necrotic boundaries. This 496

effect did not emerge in the HDS example due to its symmetry. 497

Interestingly, the mechanical “cracks” seen in the tumor spheroids do not appear 498

here, because the breast duct compresses the necrotic core to collapse any fluid-filled 499

voids. This shows the importance of the 3-D geometry and the biophysical impact of the 500

basement membrane, as well as the need to account for such effects when approximating 501

in vivo conditions with bioengineered model systems. 502
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Both models gave approximately the same growth rate of ∼ 1 cm/year (Fig. 6, left). 503

We cannot select one model over the other based solely upon continuum-scale, coarse- 504

grained outputs. However, we could further assess the models by comparing their distinct 505

differences in multicellular-scale patterning to DCIS pathology. This further highlights 506

the need and potential for multicellular modeling in evaluating cell-scale hypotheses. 507

Comparison with prior 2-D modeling results In 3D, neither necrosis model 508

reproduced the mechanical “tears” between the proliferative rim and the necrotic core 509

predicted by earlier 2-D simulations [19]; this is because more viable tissue is fluxing 510

into smaller necrotic areas in the 3-D geometry compared to the 2-D geometry. 511

“Biorobots” 512

In the following examples, we demonstrate PhysiCell in applications involving interactions 513

via contact and chemical factors between multiple cell types, in 2-D and 3-D simulations. 514

Most of the examples include cell motility and additional “custom” mechanics. 515

First, we tested PhysiCell for its potential in aiding in the design of synthetic 516

multicellular systems. We investigated rulesets to create a cellular cargo delivery system, 517

including the following main components: 518

1. “Director” cells secrete a diffusible chemoattractant c1 and are otherwise static. 519

They use the typical cell-cell repulsion mechanics. 520

2. “Cargo” cells have a surface receptor 0 ≤ R ≤ 1. When R = 1, they secrete a 521

diffusible chemoattractant c2. When R = 0, they stop secreting the factor. They 522

use the typical cell-cell repulsion mechanics. 523

3. “Worker” cells can either be adhered or not adhered to cargo cells. 524

(a) When they are unadhered, they perform biased random migration towards 525

gradients of ∇c2. Whenever they touch a cell, they test for presence of 526

receptor R. If R is expressed (i.e., the worker has found cargo), the worker 527

forms an elastic adhesion with the cell and sets R = 0 on the cargo cell. 528

(b) When they are adhered, they perform biased random migration towards ∇c1. 529

When c1 exceeds a threshold, they break their adhesive bond. 530

As a simple model of this targeted cell adhesion, we used a custom cell rule to 531

implement: 532

vi,Hook = k (xj − xi) (18)

vj,Hook = k (xi − xj) (19)

for adhered cells j and i. We then add these to the cell’s velocities. PhysiCell evaluates 533

the custom rule when evaluating cell mechanics (velocity update). 534

Simulation outputs are shown in Fig. 7; see also Video S5. As we can see, the cargo and 535

worker cells successfully interact to modulate their behaviors. Notably, the worker cells are 536

seen making multiple transits from the supply of cellular cargo to the directors, showing 537

the robustness of both the rules and their implementation in PhysiCell. Please visit 538

http://www.mathcancer.org/blog/physicell-sample-projects/ for instructions on 539

building, running, and visualizing this and the following sample projects. 540

This and the following examples also demonstrate the intended arrangement of 541

projects: users do not modify the contents of ./core/, but instead place their codes 542

in ./custom modules/, include these in a main project main.cpp, and modify the 543

Makefile to compile and link the components. This design is intended to allow users 544

to update the PhysiCell and BioFVM core components without overwriting their own 545

customizations. 546
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Anti-cancer biorobots We adapted the “biorobots” to test their potential as an 547

anti-cancer treatment. Many proposed cancer therapies attempt to target cancer cells 548

by finding unique surface or other molecules to target, so that drugs can be conjugated 549

to custom antibodies or encapsulated in custom nanoparticles. These still generally rely 550

upon passive delivery of the therapeutics, even though cancers are often poorly perfused. 551

See e.g. [35,36]. We tested the “biorobots” as a potential solution, with the following 552

modifications: 553

1. There are no “director” cells. Instead, cancer cells consume oxygen (as in prior 554

examples), which creates an oxygen gradient that can be leveraged for worker cell 555

“homing.” 556

2. Adhered “cargo” cells detach themselves from “worker” cells when pO2 < pO2,drop 557

and secrete a therapeutic compound [drug] that diffuses with the typical form 558

given in Biochemical microenvironment. 559

3. Adhered worker cells perform biased random migration along −∇pO2. 560

4. In any time interval [t, t+ ∆tcells], cancer cells accumulate drug-induced damage 561

according to: 562

d

dt
[damage] = rdamage [drug]− rrepair [damage] (20)

where rdamage and rrepair are the damage and repair rates. Each tumor cell agent 563

tracks its own level of damage. In the same time interval the probability of a cell 564

apoptosing due to the drug is 565

Prob (apoptosis) = rdeath [drug] ∆tcells, (21)

where rdeath is the death rate when [damage] = 1. 566

5. Unadhered worker cells disabled motility if c1 falls below a threshold value. 567

We simulated 1 week of tumor growth, and “injected” a mixture of 10% worker cells 568

and 90% cargo cells near the tumor, and set the parameter pO2,drop to 10 mmHg. In 569

the simulation (Fig. 8 and Video S6), overall the cargo cells were delivered into the 570

tumor (and they can be seen pushing tumor cells out of the way), tumor cells were 571

indeed killed. However, once enough cancer cells were killed, hypoxia was reduced so 572

that worker cells clustered near the oxygen minimum, but no longer released their “cargo” 573

(because pO2 > pO2,drop throughout the domain). Setting pO2,drop = 15 mmHg reduced 574

but did not eliminate this behavior. See Fig. 8 and Video S6. Thus, an “anti-cancer 575

biorobot” system as explored here could potentially be beneficial (in particular, homing 576

towards and penetrating tumors without need for cancer-specific targets), but the “cargo 577

release” rules need to be carefully engineered. Such a system could potentially activate 578

and deactivate to keep a tumor cell population in control, and to reduce hypoxia (which 579

is known to drive cancer cell adaptation to more aggressive phenotypes [37,38]). 580

Cancer heterogeneity and immune response 581

Next, we applied PhysiCell to another area of interest in the cancer community: het- 582

erogeneity. We seeded an initial tumor, and assigned each cell a random expression of 583

a mutant “oncoprotein” 0 ≤ p ≤ 2. We started the simulation with a normal distri- 584

bution of p, with mean 1 and standard deviation of approximately 0.3. We used the 585

same oxygen-dependent stochastic cell cycle entry and necrosis as in prior examples. 586

We modified the model to set the rate of cycle entry to scale proportionally to p, so 587
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that increased p increases the rate of cell division. The initial, intermediate, and final 588

morphologies of the tumor are plotted in Fig. 9, along with the changing histograms of 589

p. In the plot, cell color ranges from blue (p = 0) to yellow (p = 2). We can see clear 590

selection for the yellower cells with greater expression of p. Moreover, see that while the 591

initial tumor began with an uniform “salt and pepper” distribution of blue and yellow 592

cells and a symmetric morphology, symmetry was broken by the end as regions with 593

higher initial p and greater access to oxygen form dominant focal growths of “yellow” 594

clones. This demonstrates further stochasticity in the simulation that would be difficult 595

to predict with continuum approaches. See Video S7 to better examine these dynamics. 596

Adding an immune response We extended the heterogeneity example to 3D, and 597

integrated a simple model of an immune attack on the heterogeneous tumor: 598

1. All cancer cells consume oxygen as before. They also secrete an immunostimulatory 599

factor c (e.g., a chemokine such as basic fibroblast growth factor (bFGF) [39]), 600

which diffuses according to the standard PDE we introduced earlier. 601

2. As a simple model of immunogenicity, the mutant oncoprotein is assumed to 602

increase immunogenicity proportionally to p, similarly to mutant tumor-associated 603

epitopes being presented on MHCs (major histocompatibility complexes) [40,41]. 604

3. Unadhered immune cells perform biased random migration (in our simulations 605

b = 0.5) towards ∇c and test for contact with cells. If they detect contact, they 606

form an adhesion using the same model as in the “Biorobots” example and switch 607

off motility. In any time interval [], we give the cell a probability of forming an 608

adhesion regulated by 609

Prob(forming a new adhesion to the tested cell) = radhesion∆t, (22)

where radhesion is the immune cell’s rate of forming new cell adhesions. 610

4. While adhered, immune cells attempt to induce apoptosis in the adhered cell with 611

probability 612

Prob(inducing inducing apoptosis) = rkillp∆t, (23)

where p is used as our surrogate marker for immunogenicity (see above), and rkill is 613

the rate at which adhered immune cells kill tumor cells with p = 1. If they induce 614

apoptosis, they detach and resume their search for new cells. 615

5. Adhered immune cells have a probability of detachment given by 616

Prob(detaching from an adhered tumor cell) = rdetach∆t. (24)

In Fig. 10 and Video S8, we first simulate two weeks of tumor growth without an 617

immune reaction. As in the prior example, we see the initially symmetric tumor develop 618

asymmetric focal growths of “yellow” cells, again showing the selection for cells with 619

the most oncoprotein. At two weeks, we introduce 7500 immune cells (red) that invade 620

the tumor. Apoptotic tumor cells are labeled in cyan. The immune cells continue to 621

migrate towards the center of the tumor up gradients of c, and within a few days, the 622

tumor cell population is drastically reduced, with more “blue” cells (less immunogenic) 623

remaining than “yellow cells” (most immunogenic). However, because the immune cell 624

migration was strongly biased along ∇c, they pass by some tumor cells at the outer 625

periphery. These surviving cells repopulate the tumor. This highlights the importance 626

of stochasticity in immune cell migration; if homing is too strong, immune cells cannot 627

mix with tumor cells, leading them to cluster in dense regions which can only interact 628

with tumor cells on their edges. Less biased migration would increase mixing of cancer 629

and immune cells and increase the efficacy of the immune attack. 630
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Availability and Future Directions 631

PhysiCell is available from PhysiCell.MathCancer.org and physicell.sf.net under 632

the (3-clause) BSD license. A user manual with detailed examples is included with every 633

PhysiCell download, along with 2-D and 3-D project templates, and the sample projects. 634

Scientific limitations and potential solutions BioFVM does not implement ad- 635

vective transport as of Version 1.1.7, and so PhysiCell cannot readily be applied to 636

advection-dominated problems with user-supplied advection solvers. We also have not 637

yet written a model of extracellar matrix; users could add this effect by introducing 638

custom data that (1) “anchor” each cell to a position in space beyond cell-cell mechanical 639

operations, and (2) slowly evolve these “anchor points” to model ECM rearrangement. 640

We are currently exploring this approach to model liver parenchyma, and we will post 641

sample codes as the work progresses. Alternatively, users could introduce an independent 642

finite element mesh for the ECM, evolve it under (e.g., viscoelastic) laws, and attach 643

cells to the nearest lattice site. 644

PhysiCell does not model cell morphology, and so it cannot directly model cell 645

elongation processes needed in some morphogenesis problems. However, users could 646

potentially model elongated cells as two or more agents, and introduce manual adhesive 647

links similar to our “biorobots” examples. PhysiCell has not implemented cell fusion 648

(another mechanism of morphogenesis), but users could manually implement this by (1) 649

testing for cell-cell contact, (2) moving one cell to the center of volume of the two cells, 650

(3) updating that cell’s volume to include both original cells’ volumes, and (4) deleting 651

the second cell. PhysiCell has not yet written functions to deal with polarized cell-cell 652

adhesion, or to update its orientation. Thus, PhysiCell may need further development 653

and user contributions to model the full spectrum of morphogenetic mechanisms. Lastly, 654

we note that PhysiCell can manually implement molecular-scale biology as ODEs (e.g., 655

as in the drug damage example) via custom data, but this is currently difficult to scale 656

to large systems of ODEs with many parameters. 657

PhysiCell does not currently provide direct methods to model contact-based cell-cell 658

interactions; these can be manually implemented as we did in the immune and biorobots 659

examples. We also do not yet provide alternative mechanics models (e.g., viscoelastic) 660

out-of-the-box, but users can design their own cell velocity functions as needed to replace 661

the default mechanics. We have not yet implemented direct calculations of cell pressures 662

and strains, so this could hinder some applications in mechanobiology. Users could 663

implement this by creating a custom velocity update function that calculates pressures 664

and strains from the potential functions. 665

Software limitations and potential solutions PhysiCell is intended to function as a 666

modular engine and to interact with standardized data (e.g., MultiCellDS [14]), but it has 667

not yet fully implemented MultiCellDS import and export. Graphical simulation design 668

tools, data visualization tools, and analysis tools are needed to widen its accessibility 669

beyond seasoned C++ programmers and reduce its learning curve. In the future, 670

PhysiCell should switch from Makefiles to CMake to facilitate simpler cross-platform 671

compiling. 672

Numerical improvements The biggest code bottleneck is cell-cell interaction testing: 673

cell volume can vary by a factor of 100, and hence the cell diameter (and interaction 674

distance) can vary by a factor of 50. The number of cells in the list of interacting neighbors 675

N (i) scales inversely with the minimum cell volume; see the supplementary material. 676

Future versions of PhysiCell will introduce a nested mesh interaction testing structure 677

to more accurately estimate N (i) in regions with small cells. Although PhysiCell’s 678
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design objectives are not focused on larger simulations with 108 − 109 cells, extension to 679

supercomputers by wrapping the code in MPI with appropriate data mirroring could be 680

useful. Likewise, the algorithms used in BioFVM could be implemented on a graphics 681

card via OpenCL. We will explore these approaches in the future. 682

Scientific improvements We will develop SBML (systems biology markup language) 683

importers for molecular-scale biology, most likely by the C code generation features 684

in COPASI [42]. This will make it straightforward to integrate systems of ODEs to 685

individual cells. We will add new cycle models for flow cytometry-driven problems (G1, 686

S, and G2/M phases). We plan to add more advanced cell mechanics models (e.g., as 687

in [9, 43, 44]), and to extend PhysiCell to include extracellular matrix mechanics. We 688

also plan to introduce built-in functions for polarized cell adhesion and updating the 689

cells’ orientations. 690

User-focused improvements In the coming months, we will continue publishing 691

blog posts and code samples at http://MathCancer.org/blog/physicell-tutorials/. 692

We will create , and pre-compiled clients that can initiate simulations based upon a 693

digital snapshot (intitial arrangement of cells) and digital cell lines (self-contained, model- 694

independent sets of cell phenotype data), using the emerging MultiCellDS standard 695

[14, 15]. We will develop support to read parameters from XML configuration files, and 696

we plan to offer PhysiCell as a compiled, linkable library. 697

Supporting Information 698

Video S1 699

3-D simulation of 18 days of hanging drop tumor spheroid growth from 2300 cells to 1.2 700

million cells, using the deterministic necrosis model. Available at: 701

https://www.youtube.com/watch?v=WMhYW9D4SqM 702

Video S2 703

3-D simulation of 18 days of hanging drop tumor spheroid growth from 2300 cells to 1 704

million cells, using the stochastic necrosis model. Available at: 705

https://www.youtube.com/watch?v=xrOqqJ_Exd4 706

Video S3 707

3-D simulation video of 30 days of DCIS growth in a 1 mm length of breast duct, using 708

the deterministic necrosis model. Available at: 709

https://www.youtube.com/watch?v=ntVKOr9poro 710

Video S4 711

3-D simulation video of 30 days of DCIS growth in a 1 mm length of breast duct, using 712

the stochastic necrosis model. Available at: 713

https://www.youtube.com/watch?v=-lRot-dfwJk 714

Video S5 715

2-D simulation of the “biorobots” example, showing a synthetic multicellular cargo 716

delivery system. Available at: https://www.youtube.com/watch?v=NdjvXI_x8uE 717
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Video S6 718

2-D simulations of the “biorobots” adapted for use as a cancer treatment, where cargo 719

cells detach and secrete a therapeutic once reaching hypoxic tissues. Available at: 720

https://www.youtube.com/watch?v=wuDZ40jW__M 721

Video S7 722

2-D simulation of a tumor whose heterogeneous oncoprotein expression drives proliferation 723

and selection. Available at: https://www.youtube.com/watch?v=bPDw6l4zkF0 724

Video S8 725

3-D simulation of immune cells attacking a tumor with heterogeneous proliferation and 726

immunogenicity. Available at: https://www.youtube.com/watch?v=nJ2urSm4ilU 727

User manual 728

User Manual for PhysiCell 1.2.0. 729

Supplementary materials 730

Extensive supplementary materials include: full mathematical model details, supporting 731

literature, and reference parameter values for breast epithelial cells; expanded numerical 732

implementation details; convergence and validation testing results; full parameter values 733

for the main tests; and an expanded feature comparison of PhysiCell and other 3-D 734

multicellular simulation projects. 735
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Appendix: computational cost estimates (expanded)

In the main text, we discussed that most of the simulation steps have computational cost
that scales linearly in the number of cells. The step that requires additional analysis
(and relies upon PhysiCell’s IDS) is the step where cell-cell mechanical interactions are
used to set the cell velocities. Bounding this computational costs requires that we find a
fixed upper bound on the number of cell-cell interactions, so that the computational
cost is O(1) for single cells, and O(n2) for all the cells.

We estimate an upper bound on the of cells in any voxel Bi by

Nmax ≤
Vmech

min {Vi : xi ∈ Bi}
, , (25)

where Vmech is the fixed volume of the voxels in the interaction testing data structure.
For cycling cells with “mature” volume V , we have Vi ≥ 1

2V . By default, dead cells are
removed when Vi ≤ 20 µm3(≈ 1

100 V ). Since a typical N (i) is constructed from up to 27
such voxels, we have

Nmax ≤ 27
Vmech
1
2V

= 54
Vmech

V
(26)

for simulations dominated by live cells, and

Nmax ≤ 27
Vmech
1

100V
= 2700

Vmech

V
(27)

for simulations dominated by dead cells. Thus, the computational cost for a single
cell’s mechanical interactions is bounded by a fixed constant, and the total cost over all
cell-cell mechanical interactions scales linearly in n. The slope of the cost-versus-n curve
may be shallower for early, non-necrotic simulations, and it can be up to a factor of 100
steeper for necrosis-dominated simulations. In some cases, simulations may temporarily
show a nonlinear relationship with n when transitioning from non-necrotic to necrotic.
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Figure 1. PhysiCell and multiple time scales: PhysiCell uses BioFVM to update
the microenvironment at the short green tick marks, corresponding to ∆tdiff . It updates
cell mechanics (including cell position) less frequently at the medium black tick marks
(∆tmech), and it runs the cell volume and cycle/death models least frequently at the
long red tick marks (∆tcell). Note that the time steps shown are for illustrative purpose;
the default step sizes are given in the supplementary materials.
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Figure 2. Hanging drop spheroid (HDS) simulations with deterministic
necrosis (left) and stochastic necrosis (right), plotted at 4, 8, and 16 days. Videos are
available at Video S1 and Video S2. Legend: Ki67+ cells are green before mitosis (K1)
and magenta afterwards (K2). Pale blue cells are Ki67- (Q), dead cells are red
(apoptotic) and brown (necrotic), and nuclei are dark blue. Bottom: Hanging drop
spheroid experiment (HCC827 non-small cell lung carcinoma) showing a similar necrotic
core microstructure. PhysiCell is the first simulation to predict this structure arising
from cell-scale mechanical interactions. Image courtesy Mumenthaler lab, Lawrence J.
Ellison Center for Transformative Medicine, University of Southern California.
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Figure 3. HDS growth: Left: The deterministic and stochastic necrosis models
both give approximately linear growth (left), but the HDS with deterministic necrosis
model grows faster (∼ 5% difference in diameter at day 18). Right: The HDS with
stochastic necrosis has fewer cells than the deterministic model (∼ 26% difference in cell
count at day 18), due to its delay in necrosis. The difference in cell count is larger than
the difference in tumor diameter because most of the difference lies in the number of
necrotic cells, and necrotic cells are smaller than viable cells.

Figure 4. HDS computational cost scaling: Left: Wall-time vs. cell count for
the stochastic (red) and deterministic (blue) necrosis necrosis models on a single HPC
compute node. Both models show approximately linear cost scaling with the number of
cell agents. right: Wall time vs. cell count for stochastic necrosis model on the desktop
workstation (orange) and the single HPC node (green).
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Figure 5. Ductal carcinoma in situ (DCIS) simulations with deterministic
necrosis (left) and stochastic necrosis (right), plotted at 10 and 30 days (multiple views).
Videos are available at Video S3 and Video S4. The figure legend is the same as Fig.2.

Figure 6. DCIS growth: The deterministic and stochastic necrosis models both
result in linear DCIS growth at approximately 1 cm/year (left), even while their cell
counts differ by 21% by the end of the simulations (right).
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Figure 7. “Biorobots” example. Director cells (green) release a chemoattractant c1
to guide worker cells (red). Cargo cells (blue) release a separate chemoattractant c2.
Unadhered worker cells chemotax towards ∇c2, test for contact with cargo cells, form
adhesive bonds, and then pull them towards the directors by following ∇c1. If c1
exceeds a threshold, the worker cells release the cargo and return to seek more cargo
cells, repeating the cycle. A video is available at Video S5.

Figure 8. Anti-cancer “biorobots” example. By modifying the worker cells in
the previous example (Fig. 7) to move up hypoxic gradients (along −∇pO2) and drop
their cargo in hypoxic zones, we can deliver cargo to a growing tumor. In this example,
the cargo cells secrete a therapeutic that induces apoptosis in nearby tumor cells,
leading to partial tumor regression. A video is available at Video S6.
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Figure 9. Cancer heterogeneity example. Each cell has an independent
expression of a mutant “oncoprotein” p (dimensionless, bounded in [0,2]), which scales
the oxygen-based rate of cell cycle entry. Blue cells have least p, and yellow cells have
most. Initially, the population has normally distributed p with mean 1, standard
deviation, and a “salt and pepper” mixed spatial arrangement. The proliferative
advantage for cells with higher p leads to selection and enrichment of the most yellow
cells. Stochastic effects lead to emergence of fast-growing foci and a lost of tumor
symmetry. A video is available at Video S7.

Figure 10. Cancer immunology example. In this 3-D example, tumor cells secrete
an immunostimulatory factor, and its immunogenicity is modeled as proportional to its
mutant oncoprotein expression. (See the previous example in Fig. 9.) After 14 days, red
immune cells perform a biased random walk towards the immunostimulatory factor, test
for contact with cells, form adhesions, and attempt to induce apoptosis for cells with
greater immunogenicity. The immune cells successfully attack the tumor initially,
leading to partial regression; apoptotic cells are cyan. But strong homing towards
gradients of the immunostimulatory factor causes immune cells to “pass” some cells at
the outer edge, leading to tumor regrowth. Eventually, immune cells leave the necrotic
regions and press their attack on the tumor. This highlight the importance of
stochasticity in immune cell movement in mixing with the tumor cells for a more
successful immune response. A video is available at Video S8.
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