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Abstract

Many multicellular systems problems can only be understood by studying how cells
move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of
many interacting cells as they respond to and influence their microenvironment. The
ideal “virtual laboratory” for such multicellular systems simulates both the biochemical
microenvironment (the “stage”) and many mechanically and biochemically interacting
cells (the “players” upon the stage).

PhysiCell—physics-based multicellular simulator—is an open source agent-based
simulator that provides both the stage and the players for studying many interacting
cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport
solver to link cell phenotype to multiple diffusing substrates and signaling factors. It
includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid
volume changes, mechanics, and motility “out of the box.” The C++ code has minimal
dependencies, making it simple to maintain and deploy across platforms. PhysiCell has
been parallelized with OpenMP, and its performance scales linearly with the number
of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations;
larger simulations are attainable on single HPC compute nodes.

We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D
geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal
carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical
and contact-based interaction of multiple cell types, and the extensibility of PhysiCell
with examples in synthetic multicellular systems (a “cellular cargo delivery” system, with
application to anti-cancer treatments), cancer heterogeneity, and cancer immunology.
PhysiCell is a powerful multicellular systems simulator that will be continually improved
with new capabilities and performance improvements. It also represents a significant
independent code base for replicating results from other simulation platforms. The
PhysiCell source code, examples, documentation, and support are available under the
BSD license at http://PhysiCell.MathCancer.org and http://PhysiCell.sf.net.
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Author Summary

This paper introduces PhysiCell: an open source, agent-based modeling framework
for 3-D multicellular simulations. It includes a standard library of sub-models for cell
fluid and solid volume changes, cycle progression, apoptosis, necrosis, mechanics, and
motility. PhysiCell is directly coupled to a biotransport solver to simulate many diffusing
substrates and cell-secreted signals. Each cell can dynamically update its phenotype
based on its microenvironmental conditions. Users can customize or replace the included
sub-models.

PhysiCell runs on a variety of platforms (Linux, OSX, and Windows) with few
software dependencies. Its computational cost scales linearly in the number of cells. It
is feasible to simulate 500,000 cells on quad-core desktop workstations, and millions of
cells on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact
of necrotic core biomechanics, 3-D geometry, and stochasticity on hanging drop tumor
spheroids (HDS) and ductal carcinoma in situ (DCIS) of the breast. We demonstrate
contact- and chemokine-based interactions among multiple cell types with examples in
synthetic multicellular bioengineering, cancer heterogeneity, and cancer immunology.

We developed PhysiCell to help the scientific community tackle multicellular systems
biology problems involving many interacting cells in multi-substrate microenvironments.
PhysiCell is also an independent, cross-platform codebase for replicating results from
other simulators.

Introduction

Many significant multicellular systems problems—such as tissue engineering, evolution
in bacterial colonies, and tumor metastasis—can only be understood by studying how
individual cells grow, divide, die, move, and interact [1–5]. Tissue-scale dynamics emerge
as cells are influenced by biochemical and biophysical signals in the microenvironment,
even as the cells continually remodel the microenvironment. Thus, the ideal “virtual
laboratory” for multicellular systems biology must simultaneously simulate (1) tissue
microenvironments with multiple diffusing chemical signals (e.g., oxygen, drugs, and
signaling factors), and (2) the dynamics of many mechanically and biochemically inter-
acting cells [5]. We recently published and open sourced the first part of such a platform:
BioFVM, a biotransport solver that can efficiently simulate secretion, diffusion, uptake,
and decay of multiple substrates in large 3-D microenvironments, even on desktop
workstations [6]. We now introduce and release as open source PhysiCell: a mechanistic
off-lattice agent-based model that extends BioFVM to simulate the tissue-scale behaviors
that emerge from basic biological and biophysical cell processes.

Prior work

Several major computational frameworks are available for studying 3-D multicellular
systems. CompuCell3D [7] and Morpheus [8] use Cellular Potts methods to simulate
cells and their morphologies. They are very user-friendly packages with graphical model
editors, integrated ODE and PDE solvers, and support for molecular-scale sub-models,
but they currently cannot scale to large numbers (105 or more) of cells. TiSim (part of
the CellSys package [9]) can simulate many more cells by using a cell-centered, off-lattice
approach. However, it is currently closed source, and its executables are restricted to
a limited set of simulation types. Chaste [10] is a powerful, well-developed framework
for multicellular modeling with integrated PDE and ODE solvers, and both cell- and
vertex-based simulations of 105 or more cells. However, its complex codebase has many
dependencies that can impede participation by new developers; it is only cross-platform
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compatible by virtual machines. Biocellion [11] can simulate billions of cells on cluster
computers, but it is closed source, and its restrictive user license has hindered adoption.
Timothy was recently developed to simulate large-scale colonies of 109 cells on high-
performance supercomputers [12,13]. Most of these platforms offer a general-purpose
pre-compiled “client” that can load models and settings from an XML file; this helps
overcome difficulties stemming from complex dependencies. See S1 Text for a detailed
software comparison.

These platforms typically require users to write their own code for all cell activities,
by scripting basic built-in functions. (e.g., build a cell cycle model from API functions
to overwrite cell volume and duplicate agents when appropriate.) As configured “out
of the box,” none have built-in models for cell cycling, apoptosis, and necrosis, even
though these fundamental behaviors are needed in many multicellular simulations. Only
CompuCell3D and Morpheus have built-in volume regulation features. Most of these
packages include PDE solvers that can simulate 3-D biotransport of one or more diffusible
factors in the microenvironment, but generally they are applied sequentially to one PDE
at a time, meaning that solving 10 PDEs requires 10 times more computational work
than solving a single PDE. This approach is not expected to efficiently scale to 3-D
simulations with many diffusible factors—a key requirement in reconciling secretomics
with single-cell and multicellular systems biology, particularly as we work to understand
cell-cell communication involving many cell-secreted factors.

Scientific design goals and use cases

We aim to create a framework for building multicellular simulations that investigate
the relationship between (diffusional) substrate limitations, multicellular biochemical
communication, and essential phenotypic processes: cell cycling/division, death, volume
changes, motility, adhesion, and volume exclusion/“repulsion” [1]. Building upon our
experiences in agent-based modeling [14–16], we seek a system with a minimal set of
mechanics to avoid cell lattice effects [2]; hence we use an off-lattice model with basic cell
adhesion and “repulsion” implemented as simple potential functions [9,10,14]. Following
our work in [14–16], we include basic models of gradual cell volume changes, rather
than static cell volumes. This avoids non-physical “jumps” in cell velocity following
cell division events: the sudden localized doubling of cell density causes cells to overlap,
leading to large, temporary, and non-physical “repulsive” forces that can manifest as
non-physical “tears” in simulated tissues.

While PhysiCell was originally developed for problems in cancer [14], its diffusional and
phenotypic processes are not specific to cancer. Users can introduce new environmental
substrates (e.g., extracellular matrix (ECM) as a substrate with zero diffusion coefficient),
new cell types (e.g., fibroblasts with high motility, low proliferation, and secretion and
degradation of ECM), or new systems of cells (e.g., a network of vascular agents that
release oxygen as in [6], and that can divide and move along gradients of angiogenic
growth factors). Modelers can also use PhysiCell’s core functions to create new libraries
that simulate physiological systems, similar to how Microvessel Chaste [17] built upon the
core functions of Chaste [10] to simulate new classes of problems in vascular remodeling.
In Additional PhysiCell examples, we use PhysiCell’s basic building blocks to simulate
synthetic multicellular systems, heterogeneous tumors, and the innate immune system
as it interacts with tumor cells. As we continue to apply PhysiCell to our own work
in tissue engineering, angiogenesis, microbial dynamics, and cancer, we plan to release
new optional modules that introduce new capabilities and simplify modeling of in vivo
tissues and other systems. See Availability and Future Directions.

Thus, PhysiCell is designed to be a general-purpose toolkit for exploring multicel-
lular systems, and the multicellular behaviors that emerge from a user-implemented
set of cell phenotypic rules (i.e., a set of hypotheses). Other potential uses include
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simulation-generated synthetic datasets that investigate the meaning and shortcomings
of experimental measurements [18,19]. PhysiCell’s design has allowed straightforward
deployment on supercomputers for high-throughput simulation studies. We recently
explored over 250 instances of a 3-D cancer-immune model (see Additional PhysiCell
examples) to study the impact of immune cell motility and cancer-immune adhesion
dynamics on a cancer immune response, thus reducing 1.5 years’ worth of simulations
to 2 days on a Cray supercomputer [20,21]. We anticipate that users can similarly use
PhysiCell to efficiently explore large spaces of parameter values and hypotheses (model
rules) with biophysically realistic, 3-D models. In Fall 2017, we started using PhysiCell
in undergraduate and graduate education, as a self-contained tool for computational
tissue engineering and cancer systems engineering. Lastly, PhysiCell also serves as an
independent codebase to cross-validate model predictions in Chaste, Biocellion, TiSim,
Timothy, and other platforms.

Computational design goals

PhysiCell aims to balance computational speed, built-in standard functionality, flexibility,
and codebase simplicity. It includes a built-in library of standardized cell cycle and cell
death models co-developed with biologists and modelers here and in the MultiCellDS
standardization process [22, 23], force-based cell-cell interaction mechanics, motility,
and volume regulation. Users can replace any of these built-in models with their own,
and they can dynamically assign custom functions to any agent at any time. Through
BioFVM, PhysiCell can couple cell phenotype to many diffusible substrates. It is the
only simulation package to explicitly model the cell’s fluid content—a key aspect in
problems such as cryobiology [24]. It can simulate systems of 105-106 cells on desktop
workstations, and 106 or more cells on single HPC compute nodes. All this functionality
and performance is achieved with only two external dependencies, and a fully cross-
platform C++ codebase that we have compiled and tested on Linux, OSX, and Windows.
We also distribute PhysiCell as a virtual appliance—with a full Linux desktop, 64-bit g++
compiler, and visualization tools—that can run in widespread virtual machine software
like VirtualBox.

Design and Implementation

PhysiCell is designed to study the dynamics and interactions of thousands or millions
of cells in 3-D microenvironments, with microenvironment-dependent phenotypes. It
uses a lattice-free, physics-based approach to reduce grid-based artifacts. It provides
optimized, biologically realistic functions for key cell behaviors, including: cell cycling
(multiple models for in vitro and in vivo-focused simulations) cell death (apoptosis
and necrosis), volume regulation (fluid and solid biomass; nuclear and cytoplasmic
sub-volumes), motility, and cell-cell mechanical interactions. Each cell agent is built
with a hierarchical Phenotype data structure; key phenotypic processes are triggered
and controlled by modifying the phenotype data. This allows users to focus on modeling
microenvironment-dependent triggers of standard cell processes, rather than coding
these basic processes. However, to maintain flexibility, PhysiCell is written in a modular
manner so that users can extend, rewrite, or replace its functions. Users can also
create custom rules, and assign them to individual agents. It is fully coupled to a fast
multi-substrate diffusion code (BioFVM) that solves for vectors of diffusing substrates,
so that users can tie cell phenotype to many diffusing signals.

We note that for many problems in cancer biology and tissue engineering that drove
development of PhysiCell, diffusive biotransport occurs at relatively fast time scales
(on the order of 0.1 min or faster) compared to cell mechanics (∼ 1 min) and cell
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processes (∼ 10 to 100 min or slower). PhysiCell takes advantage of this by using three
separate time step sizes (∆tdiff , ∆tmech, and ∆tcells). In particular, the cell phenotypes
and arrangement (operating on slow time scales) can be treated as quasi-static when
advancing the solution to the biotransport PDEs, so BioFVM can be called without
modification with the cell arrangements fixed. See Time steps for further discussion.
We provide default time step sizes that should suffice for typical applications in cancer
biology and tissue engineering. Problems with inherently different time scales (e.g.,
advection-dominated problems, or with fast-moving bacteria) will need to adjust the
time steps accordingly to avoid spurious oscillations that would be expected if cell-based
sources and sinks are moving relatively quickly.

PhysiCell was built by extending the Basic Agent class in BioFVM [6] (a static, non-
moving object that can secrete and uptake substrates) into a fully dynamic Cell class with
changing cell volume, cycle progression, death processes, motility, and mechanics. This
allows the cells to directly and efficiently interface with the multi-substrate microenviron-
ment. PhysiCell is written in cross-platform compatible C++ and is self-contained (with
minimal dependencies). It can be compiled in any C++11 compiler with OpenMP sup-
port. This simplifies installation and improves the reproducibility of the experiments. We
have tested PhysiCell on Windows through MinGW-w64, and on OSX and Linux via g++.
(OSX users should note that Xcode does not include a compliant OpenMP-compatible
g++; they should follow our tutorials for installing a compliant g++ via Homebrew or
MacPorts. See http://MathCancer.org/blog/physicell-tutorials/.) PhysiCell’s
only external dependencies are pugixml [25] (for XML parsing) and BioFVM [6] for 3-D
multi-substrate diffusion. For the user’s convenience, compatible versions of pugixml
and BioFVM are included in every download.

The code has been parallelized in OpenMP to make use of multi-core desktop work-
stations and single HPC compute nodes. In testing, its performance (the computational
time to simulate a fixed amount of time on a fixed domain) scales linearly in the number
of cells present in the simulation. Simulations of up to 106 cells are feasible on desktop
workstations, and simulations beyond 106 cells are possible on typical HPC compute
nodes.

Overall program flow

After initializing the microenvironment (through BioFVM [6]) and cells, and initializing
the current simulation time t = 0, PhysiCell tracks (internally) tmech (the next time at
which cell mechanics functions are run), tcells (the next time at which cell processes are
run), and tsave (the next simulation data output time), with output frequency ∆tsave.
Initially, we set:

tmech = ∆tmech, tcells = ∆tcells, tsave = 0.0. (1)

PhysiCell repeats the main program loop until reaching the maximum simulation time:

1. Save the simulation state if t ≥ tsave. Set tsave = tsave + ∆tsave.

2. Run BioFVM to update the biochemical microenvironment for cell-based secre-
tions and uptake, and reaction-diffusion, for the current fixed cell positions. See
Biochemical microenvironment.

3. For the fixed cell positions and chemical substrate fields, if t ≥ tcells, run the cell
processes for each cell:

(a) Update cell parameters using the cell’s update phenotype functions. See Cell
characteristics and state.
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(b) Advance the cell cycle (or death) model. See Cell cycling and Cell death

(c) Advance the cell’s volume (and sub-volumes) using the volume update function.
See Cell volume.

Then set tcells = tcells + ∆tcells.

4. If t ≥ tmech, then:

(a) For each cell, calculate the force-based cell velocities via update velocity,
add the contribution of motility (which runs update migration bias as
needed), and run the custom function custom cell rule. See Cell motility
and Cell mechanics and motion.

(b) For each cell, update the position using the Adams-Bashforth method. See
Cell mechanics and motion.

Set tmech = tmech + ∆tmech.

5. Update the current simulation time by t = t+ ∆tdiff . Return to Step 1.

Steps 3a-c can be combined in a parallelized OpenMP loop; we flag cells for division and
removal and process these queues serially after the parallel loop to avoid data corruption.
Step 4a can be parallelized across the cells by OpenMP (because cell velocities are
location-dependent, and the cell positions are fixed throughout 4a), and then Step 4b
can be parallelized across the cells with these computed velocities.

Biochemical microenvironment

We use BioFVM to simulate the chemical microenvironment with a vector of reaction-
diffusion PDEs with both bulk source/sinks and cell-centered sources and sinks [6].
To briefly summarize that prior work, we model the biochemical microenvironment
(with computational domain Ω and boundary ∂Ω, discretized as a Cartesian mesh for
computational efficiency) as a vector of reaction-diffusion PDEs for a vector of chemical
substrates ρ of the form

∂ρ

∂t
=

diffusion︷ ︸︸ ︷
D∇2ρ −

decay︷︸︸︷
λρ +

bulk source︷ ︸︸ ︷
S(ρ∗ − ρ)−

bulk uptake︷︸︸︷
Uρ

+

sources and uptake by cells︷ ︸︸ ︷∑
cells k

δ (x− xk)Wk [Sk(ρ∗k − ρ)−Ukρ] in Ω (2)

with zero flux conditions on ∂Ω. Here, δ(x) is the Dirac delta function, xk is the kth

cell’s position, Wk is its volume, Sk is its vector of source rates, Uk is its vector of
uptake rates, and ρ∗ is the vector of saturation densities (the densities at which the cells
stop secreting). Likewise, D and λ are the vectors of diffusion coefficients and decay
rates, S is the bulk supply rate, and U is the bulk uptake function. All vector-vector
products ab are element-wise (Hadamard product).

Numerically, we solve for the solution at time t + ∆tdiff by a first-order operator
splitting: we first solve the bulk source/sink terms across the domain (and overwrite
the stored solution), then solve the cell-centered source/sink terms (and overwrite the
solution), and then the reaction-diffusion terms (again, overwriting the stored solutions).
As we detailed and verified in [6], because we used (numerically stable) first-order
backward differences in all our time discretizations, the overall method is first-order
accurate in time and numerically stable.
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After this operator splitting, the bulk source/sink terms are a decoupled set of
systems of ODEs (one vector of ODEs in each computational voxel), which we solve
by the backwards Euler method for first-order accuracy and numerical stability. This
is trivially parallelized by OpenMP by dividing the voxels across the processor cores.
Similarly, we solve the cell-based source/sink equations (one system of ODEs per cell) by
backwards-Euler, overwriting the solution in the voxel containing the cell’s center. As
we showed in [6], this is first-order accurate and numerically stable, and it performs best
when the computational voxels are comparable to the cells’ sizes or larger. In all our
work, we satisfy this requirement by using 20 µm voxels. As with the bulk source/sinks,
we trivially parallelize by dividing the cell source/sinks (one system of ODEs per cell)
across the processor cores with OpenMP.

To solve the vector of diffusion-decay PDEs, we use the locally one-dimensional
method: a specialized operator splitting that turns the 3-D PDEs into a sequence of
one-dimensional PDEs. In each x-strip, y-strip, or z-strip, we discretize the PDEs
with second-order centered differences (spatial derivatives) and first-order backwards
differences (time derivatives) to obtain a tridiagonal linear system in each strip, which
we solve exactly with a tailored Thomas solver. The Thomas solver itself cannot be
trivially parallelized, but because we have many simultaneous x-, y-, and z-strips, we
can distribute many instances of the Thomas solver across processor cores by OpenMP.
This technique, along with other optimizations (tailored overloaded vector operators,
a vectorized Thomas solver, pre-computing and caching the forward sweeps of the
Thomas solvers, and other similar optimizations) was tested to scale linearly in the
number of substrates (number of PDEs), the number of computational voxels, and the
number of discrete cell sources/sinks. The method was numerically stable even for large
∆t, first-order accurate in time, and second-order accurate in space. Simulating 10
PDEs on 1,000,000 voxels takes approximately 2.6 times more computational time than
simulating a single PDE. We found that for typical magnitudes of D, S, U, and λ, using
∆tdiff = 0.01 min and ∆x = 20 µm gave solutions with 5% relative accuracy or better.
For more algorithmic detail and extensive convergence testing on a variety of problems,
see [6] and its supplementary material.

Agent-based cell model

PhysiCell implements key cell-scale processes—cell cycling and death, volume changes,
mechanics, and motility—and lets users link the parameters of these processes to
microenvironmental conditions. PhysiCell then scales these basic cell-scale hypotheses to
simulate thousands or millions of cells, from which tissue-scale behavior emerges. Here,
we summarize the key functions. For each sub-model, see S1 Text for the full equations,
further biological motivation, and reference parameter values.

Cell characteristics and state. Cell agents have a variety of phenotypic proper-
ties, including position (xi), volume (and sub-volumes), cell cycle or death status,
and mechanics (adhesive, deformation, and motility) parameters. Each cell has a
hierarchically-structured, independent Phenotype object that organizes information on
cell cycling, death, volume, geometry, mechanics, motility, and secretion. Each cell
also has an independent Cell Functions object that collects functions to update cell
volume, motility, velocity (mechanics), and other properties. See the User Guide (S2
Text, included in every PhysiCell download Version 1.2.0 or later) for a list of all the cell
agents’ attributes and functions to access/update them. Below, we describe standardized,
built-in models to update these properties. The models can be replaced by user-defined
functions; the supplied models serve as biophysically reasonable default functions that
capture the key aspects of these processes.
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Cell volume. Each cell tracks V (total volume), VF (total fluid volume), VS (total
solid volume), VNS (nuclear solid volume), VCS (cytoplasmic solid volume), VN (total
nuclear volume), and VC (total cytoplasmic volume). Key parameters include nuclear
solid, cytoplasmic solid, and fluid rate change parameters (rN, rC, and rF), the cell’s
“target” fluid fraction fF, target solid volume V ∗NS, and target cytoplasmic to nuclear
volume ratio fCN. For each cell, these volumes are modeled with a system of ODEs:

dVF
dt

= rF (V ∗F (t)− VF) (3)

dVNS

dt
= rN (V ∗NS(t)− VNS) (4)

dVCS

dt
= rC (V ∗CS(t)− VCS) (5)

where we use the constitutive laws

V ∗CS(t) = fCNV
∗
NS(t) (6)

V ∗F (t) = fFV (t). (7)

These parameters are updated as the cell progresses through its current cycle or death
process. (See Cell cycling and Cell death.) For example, we halve V ∗NS after a cell division
and double it upon re-entry to the cell cycle. We set V ∗NS = fCN = 0 at the onset of
apoptosis, and we set rF, rC, and rN based on key apoptosis time scales. See S1 Text
for the full equations, sample solution plots, further biological motivation, convergence
testing, and reference parameter values. These ODEs are numerically solved using
first-order forward Euler discretizations.

Cell motility. Each cell can set its own persistence time (Tper), migration speed
(smot), migration bias direction (dbias, a unit vector), and a migration bias b that ranges
from 0 (Brownian motion) to 1 (deterministic motion along dbias). When updating the
cell’s velocity, its migration velocity vmot is added to the currently velocity (as calculated
by mechanics; see Cell mechanics and motion). The cell changes its migration velocity
stochastically between t and t+ ∆tmech with probability

Prob(change vmot) =
∆tmech

Tper
(8)

The user-defined function update migration bias (see the User Guide S2 Text and S1
Text) sets vbias, b, and smot. The migration velocity vmot is then updated according to

vmot = smot
(1− b)ξ + bdbias

||(1− b)ξ + bdbias||
(9)

where ξ is a random unit vector. See the user manual (S2 Text) and S1 Text for more
details, as well as examples for biased migration along chemical gradients.

Cell mechanics and motion. We model cell mechanics and motion as in our prior
work [14]: we update each cell’s position xi by calculating its current velocity vi based
upon the balance of forces acting upon it. The main forces include cell motility, drag-
like forces, and cell-cell and cell-matrix interaction forces: adhesion and “repulsion”
(resistance to deformation and/or volume exclusion [26]). As in prior cell-centered
models [14, 27,28], we apply an inertialess assumption (miv̇i ≈ 0) to explicitly solve for
each cell’s velocity. As before [14], we model adhesion and repulsion with interaction
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potentials that depend upon each cell’s size, maximum adhesion distance, adhesion and
repulsion parameters, and distance to other cells. The cell’s velocity vi is given by

vi =
∑

j∈N (i)

−
cell-cell adhesion︷ ︸︸ ︷√

ciccac
j
cca∇φ1,Ri,A+Rj,A

(xi − xj)−

cell-cell repulsion︷ ︸︸ ︷√
ciccrc

j
ccr∇ψ1,Ri+Rj

(xi − xj)

 .

−

cell-BM adhesion︷ ︸︸ ︷
cicba∇φ1,Ri,A

(−d(xi)n(xj))−

cell-BM repulsion︷ ︸︸ ︷
cicbr∇ψ1,Ri (−d(xi)n(xj)) +vi,mot (10)

where as in [14] φn,R(x) is an adhesion interaction potential function which is zero
for ||x|| > R, and approaches zero with smoothness given by n. Similarly, ψn,R(x)
is a repulsion interaction potential function that is zero for ||x|| > R. Thus, cell-cell
mechanical interactions occur over finite distances. Here, cicca and ciccr are the ith cell’s
cell-cell adhesion and repulsion parameters, Ri is its radius, and Ri,A is its maximum
adhesion distance (typically a fixed multiple of Ri). Note that if cell i and j have
identical cell-cell adhesion and repulsion parameters ccca and cccr, then the cell-cell
interaction coefficients simplify to the form we published in [14]; otherwise, this is a
phenomenologic form that allows either cell’s coefficient to affect the cell-cell interaction
strength, with equal and opposite effect on both cells. We plan future improvements to
move beyond the current phenomenologic forms to more mechanistic models.

Also d(x) is the distance to the nearest basement membrane (if any), n(x) is a unit
vector normal to the basement membrane, and so −d(xi)n (xi) points from the cell’s
position xi to the nearest point on the basement membrane, located at xi−d (xi)n (xi) .
(See [29–31] for more information on level set (distance function) representations of
surfaces, there applied to tumor growth models.) N (i) is the (finite) list of cells that
could potentially interact with cell i. (See Key code optimizations.) Further references
and the full forms of the potential functions are given in S1 Text.

The cell’s position is updated using the second-order Adam’s Bashforth discretization:

xi (t+ ∆tmech) = xi(t) +
1

2
∆tmech

(
3vi(t)− vi (t−∆tmech)

)
(11)

Cell cycling. PhysiCell includes a cell cycle modeling framework, where each cell cycle
model is a collection of phases {Xi}, transition rates {rij} between the phases, and a
cell division phase transition. As of Version 1.2.0, users can also set phase entry and exit
functions (associated with the phases Xi) that are executed at entry into or exit from the
phase; these can be used to model processes such as mutation of cell parameters. The
framework also allows users to set arrest functions (associated with the transition rates
rij) that block the transition. This is useful for modeling effects like volume restrictions.
See the User Guide (S2 Text) for full details. As in [14], we use the phase transition
rates to calculate the phase change probabilities in any time interval [t, t + ∆t]: the
probability of transitioning from phase Xi to phase Xj in this time interval is given by

Prob (transition from Xi to Xj | not arrested ) ≈ rij∆t. (12)

Users can set individual transitions rij to have deterministic duration, with duration
1/rij . See the User Guide (S2 Text) for full details.

Each cell agent tracks its current cell cycle phase Sk and its total time spent in
that phase (tk). Users can change the transition rates at any time, in part based upon
microenvironmental conditions (e.g., based upon oxygenation or cell contact).

As a concrete example, consider the “Ki67 Advanced” model from our prior work
calibrating oxygen-dependent growth to Ki67 data in ductal carcinoma in situ (DCIS)
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[14,15,32]. The phases are K1 (Ki67+ cycling cells, prior to cell division), K2 (Ki67+
cycling cells, after cell division), and Q (Ki67- quiescent cells). K1 and K2 have stochastic
durations (with means T1 and T2). We model the transition rate from Q to K1 as

rQ1 =
1

TQ

max

{(
pO2 − pO2,hypoxia

pO2 − pO2,hypoxia

)
, 0

}
, (13)

where cells spend a mean time of TQ in the Q phase when pO2 = pO2. Cells double
V ∗NS when transitioning from Q to K1 (to double their nuclear content), and they halve
V ∗NS (and all the sub-volumes) when dividing into two daughter cells at the K1 −→ K2

transition. The full set of supported cell cycle models—along with reference parameter
values—is given in S1 Text.

Cell death. PhysiCell currently includes models for two types of cell death: apoptosis
(programmed cell death) and necrosis (unprogrammed cell death) [33]. At any time,
each agent (with index i) has two death rates (rA,i for apoptosis, and rN,i for necrosis),
which can be continually updated. For any death rate ri and any time interval [t, t+ ∆t],
the cell has a probability of entering the corresponding death state Di:

Prob
(
Si(t+ ∆t) = Di

)
= 1− exp

(
−ri∆t

)
≈ ri∆t. (14)

Apoptosis: Upon entering the apoptotic state, we set fCN = 0 (to simulate shrinking
and blebbing of the cytoplasm), V ∗NS = 0 (to simulate degradation of the nucleus), and
fF = 0 (to simulate the active elimination of water from the cell). The rates rN, rF,
and rC are set to match time scales of cell volume loss in apoptotic cells. The cell
is removed once its volume drops below a user-set threshold, or after mean duration of TA.

Necrosis: When a cell becomes necrotic, we set fCN = V ∗NS = 0 to model cytoplasmic and
nuclear degradation. Early necrotic cells undergo oncosis (cell death-related swelling);
we model this by setting fF = 1. (Note that some regard oncosis as the actual death
process, and necrosis as post-mortem cell degradation [34, 35].) Once the cell volume
passes a critical threshold, it lyses, and we set fF = 0. The rate parameters rF, rN, and
rC are set to match expected time scales throughout necrosis [33]. PhysiCell includes
codes to trigger necrosis deterministically or stochastically:

Deterministic Necrosis: This implements a common model of necrosis (see the review [2]),
where cells instantly become necrotic whenever oxygenation pO2 drops below a threshold
value pO2,threshold, as in our earlier work [14]. This is equivalent to the letting rN →∞.

Stochastic Necrosis: This model updates our prior work [14], based upon in vitro
observations that cells can survive low oxygen conditions for hours or days. Here,

rN (pO2) =



0 if pO2,threshold < pO2

rN,max

(
pO2,threshold−pO2

pO2,threshold−pO2,crit

)
if pO2,crit < pO2 ≤ pO2,threshold

rN,max if pO2 ≤ pO2,crit.

(15)

That is, necrotic death begins when pO2 < pO2,threshold, and the death rate ramps
linearly until saturating at a maximum rate rN,max for pO2 < pO2,crit. Equivalently,
cells survive on average 1/rN,max time in very low oxygen conditions [14].
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Numerical implementation

Time steps. PhysiCell has three time steps to model (fast) diffusive biotransport
processes (∆tdiff ; default 0.01 min), cell movement (∆tmech; default 0.1 min), and
(relatively slow) cell processes (∆tcells; default 6 min). We use these time steps to set
how frequently biotransport processes, cell movement processes, and cell phenotype
processes are updated. See Fig. 1.

The default ∆tdiff was chosen for diffusion, decay, and uptake/secretion parameter
values typical for the cancer and tissue engineering problems that drove PhysiCell’s
development. In prior testing, relative errors did not exceed 5% for this value [6]. In
mechanical relaxation tests for overlapping cells and compressed tumor spheroids, we
found that ∆tmech = 0.1 min gave solutions that converged at first-to-second order
accuracy, had relative errors 5% or less, and avoided spurious oscillations and other
artifacts for cell velocities under ∼ 1 µm/min (typical for cancer biology problems);
see S1 Text. The cell cycle, death, and volume change models were numerically stable
and first-order accurate with relative errors of 5% or less for ∆tcells = 6 min. See S1
Text. Users should reduce ∆tcells for problems with faster phenotypic processes. Users
anticipating faster cell movement (e.g., motile bacteria) should reduce ∆tmech. We
recommend setting ∆tdiff ≤ 1

10∆tmech.
Mathematically, this time scale separation allows us to hold cell positions fixed

(quasi-static) when updating the PDE solutions, and then hold the chemical fields
fixed when updating cell positions and phenotypes. We have used similar techniques
in nonlinear continuum models of tumor growth (slow time scale) in heterogeneous
biochemical microenvironments (fast time scale) [29–31].

Estimated computational cost scaling. We now assess the computational effort
needed for each iteration in the main program loop. (See Overall program flow.) Step
1 (save simulation data), Step 3 (run cell processes), and Step 4b (update positions)
clearly entail a constant amount of work for each cell. Thus, summing these steps over
all cells n(t) requires O(n) work. By prior analysis, BioFVM (Step 2) also scales linearly
in n(t) [6].

Step 4a (update velocities) is the most computationally expensive step. In straight-
forward implementations, each cell tests for mechanical interaction with n− 1 other cells,
giving an O(n2) total computational cost at each time step. However, the interaction
data structure (see Key code optimizations) restricts interaction testing to a smaller set
N (i).

In Expanded computational cost estimates, we show that each N (i) has at most
Nmax cells. Thus, Step 4b has a fixed maximum cost for each cell, and the cost of the
loop scales linearly in n.

Key code optimizations. To prevent computational costs from scaling quadratically
in the number of cells, we designed a cell-cell interaction data structure (IDS) that
efficiently estimates a set N of possible neighbor cells for each cell agent. See S1 Text
for further detail.

PhysiCell uses OpenMP to parallelize most loops over the list of cells. This includes
sampling the microenvironment, updating cell phenotype parameters, advancing the
cell cycle or death model, advancing the volume model, running any custom function,
and calculating the cell velocity. We do not parallelize loops that change the IDS: cell
division, cell removal, and updating the cell position.

As discussed above, we defined three separate computational step sizes (∆tdiff <
∆tmech < ∆tcells) to take advantage of the multiple time scales of the multicellular system.
As indicated in the overall program flow above, we update each process according to its
own time step, rather than at each simulation step. Fig. 1 further illustrates how the
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multiple times steps reduce the computational cost. See S1 Text for further detail and
the default step sizes for cancer biology and tissue engineering.

Expanded computational cost estimates. Most of the simulation steps have com-
putational cost that scales linearly in the number of cells. (See Estimated computational
cost scaling.) The step that requires additional analysis (and relies upon PhysiCell’s
IDS) is the step where cell-cell mechanical interactions are used to set the cell velocities.
Bounding this computational costs requires that we find a fixed upper bound on the
number of cell-cell interactions, so that the computational cost is O(1) for single cells,
and O(n) for all the cells.

We estimate an upper bound on the of cells in any voxel Bi by

Nmax ≤
Vmech

min {Vi : xi ∈ Bi}
, (16)

where Vmech is the fixed volume of the voxels in the interaction testing data structure.
For cycling cells with “mature” volume V , we have Vi ≥ 1

2V . By default, dead cells are
removed when Vi ≤ 20 µm3(≈ 1

100 V ). Since a typical N (i) is constructed from up to 27
such voxels, we have

Nmax ≤ 27
Vmech
1
2V

= 54
Vmech

V
(17)

for simulations dominated by live cells, and

Nmax ≤ 27
Vmech
1

100V
= 2700

Vmech

V
(18)

for simulations dominated by dead cells. Thus, the computational cost for a single
cell’s mechanical interactions is bounded by a fixed constant, and the total cost over all
cell-cell mechanical interactions scales linearly in n. The slope of the cost-versus-n curve
may be shallower for early, non-necrotic simulations, and it can be up to a factor of 100
steeper for necrosis-dominated simulations. In some cases, simulations may temporarily
show a nonlinear relationship with n when transitioning from non-necrotic to necrotic.

Convergence and validation testing

We performed convergence testing on all the major components of PhysiCell. BioFVM
was previously tested as first-order accurate in ∆t, second-order accurate in ∆x, and
sufficiently accurate at ∆x = 20 µm and ∆tdiff = 0.01 to 0.05 min for tumor growth
problems [6]. We performed two tests for cell-cell mechanics and motion: First, we placed
two cells in partial overlap, simulated their relaxation to equilibrium, and measured the
cell spacing at several times. Second, we created a compressed cluster of 50,000 cells,
simulated its mechanical relaxation to equilibrium, and measured its diameter at several
times. Both tests converged to first-order accuracy in ∆t at all measured times, showing
that PhysiCell converged in both short-time mechanical dynamics and in long-time
behavior. ∆tmech ∼ 0.1 min gives sufficient accuracy for typical cancer problems.

We simulated the volume model for a single proliferating, apoptotic, and necrotic cell,
and measured the sub-volumes at multiple times. It converged with first-order accuracy
in ∆t at all tested times, and ∆tcell = 6 min gave sufficient accuracy. We tested the
stochastic transition codes by simulating the Ki67-advanced cell cycle model and the
apoptosis death model (with stochastic duration), and measuring the sub-population
counts and population fractions over time for several values of ∆tcell. For each ∆t, we
performed 100 simulations and compared the mean solution behavior against known
coarse-grained ODE model behavior. ∆tcell = 6 min and 60 min both gave an excellent
match between the PhysiCell behavior and theory for all the compared curves. See S1
Text for full testing results.
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Performance testing (summary)

By our testing, recent quad-core desktop workstations (with hyperthreading, for 8 total
execution threads) can simulate 10-30 days in systems of up to 105 to 106 cells in 3
days or less (wall time). Single HPC compute nodes (typically two 6-8 core processors,
with hyperthreading and 24-32 execution threads) can simulate larger systems up to
∼2 million cells in about 2 days. Future releases of PhysiCell will address current
performance bottlenecks; see Availability and Future Directions. The Results will give a
demonstration of O(n) computational cost scaling.

Results

We demonstrated PhysiCell’s potential to simulate large multicellular systems—and
its ability to test the emergent tissue-scale effects of cell-scale hypotheses—on several
examples arising from cancer biology and synthetic multicellular systems bioengineering.
For the first two examples, we compared the impact of the deterministic and stochastic
necrosis models. (See Cell death above.) We used the Ki67-advanced cell cycle model
with deterministic K1, K2, and A phase durations for the first two examples. (See Cell
cycling.) We used a simpler “live cells” cycle model [22] in the remaining examples,
where live cells proliferate with a variable birthrate, apoptose, or necrose. We provide
detailed parameter values in S1 Text for the HDS and DCIS examples, and the full
source code and postprocessing routines for both examples in every PhysiCell down-
load. Full source code and simple build instructions are provided for the remaining
examples. Reference simulation outputs for the first two examples are available at
http://PhysiCell.MathCancer.org.

Test platforms

The Hanging drop tumor spheroids and Ductal carcinoma in situ (DCIS) examples were
tested on (1) a desktop workstation (quad-core Intel i7-4790, 3.60 GHz, 8 execution
threads, 16 GB memory) with mingw-w64 (g++ ver. 4.9.1) on 64-bit Windows 7, and (2) a
single HPC compute node (dual 6-core Intel Xeon X5690, 3.47 GHz, 24 execution threads,
48 GB memory) with g++ (ver. 4.8.4) on Ubuntu 14.04. The tests were performed using
PhysiCell 1.0.0, although release 1.2.0 has updated the tests for compatibility. The CPU
architecture was newer on the desktop (2014 Haswell) than on the HPC node (2011
Westmere). The newer “Biorobots”, Anti-cancer biorobots, Cancer heterogeneity and
immune response, and Adding an immune response examples were tested on a quad-core
Intel i7-4770K, 4.06 GHz, 8 execution threads, 32 GB memory, using PhysiCell Version
1.2.1 with g++ 7.1.0 on 64-bit Windows 10 (via MinGW-w64).

Hanging drop tumor spheroids

Hanging drop spheroids (HDS)—a 3-D cell culture model where a small cluster or
aggregate of tumor cells is suspended in a drop of growth medium by surface tension—are
increasingly used to approximate 3-D in vivo growth conditions [36]. Unlike traditional
2-D monolayer experiments, HDSs allow scientists to investigate the impact of substrate
gradients on tumor growth, particularly oxygen gradients. Their relatively simple
geometry makes them ideal for testing computational models.

We simulated HDS growth by placing an initial cluster of ∼ 2300 cells in an 8 mm3

fluid domain, with Dirichlet conditions pO2 = 38 mmHg (5% oxygen: physioxic conditions
[37]) on the computational boundary. The simulation results are shown in Fig. 2 for
deterministic necrosis (left column) and stochastic necrosis (right column), at 4, 8, and
16 days. In Fig. 3, we show the tumor diameter (left panel) and number of agents (right
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panel) versus time. Both simulations reached ∼ 106 cells by 18 days. See the simulation
videos S1 Video and S2 Video.

Deterministic versus stochastic necrosis. Both models yielded similar dynamics.
Hypoxic gradients emerged quickly, limiting (pO2-dependent) cell division to the outer-
most portions of the tumors. This, in turn, lead the tumor diameters to grow linearly
(at similar rates); see Fig. 3. This matches our theoretical expectations for a spheroid of
radius R(t) whose growth is restricted to an outer layer of fixed thickness T :

d

dt
V (t) = c ·

growing region︷ ︸︸ ︷
4πR2(t) · T =⇒ d

dt

(
4

3
πR3(t)

)
= c · 4πR2(t) · T (19)

=⇒ d

dt
R(t) = cT = constant. (20)

In both models, the innermost portion of the necrotic core developed a network of
fluid voids or cracks. This phenomenon emerges from competing biophysical effects of the
multicellular system and its cell-scale mechanical details: necrotic cells lose volume, even
as they continue to adhere, leading to the formation of cracks. To our knowledge, this is
the only model that has predicted this necrotic tumor microarchitecture, which would be
very difficult to simulate by continuum methods except with very high-resolution meshes
comparable to the ∼ 1 to 10 µm feature size. These cracked necrotic core structures
have been observed with in vitro hanging drop spheroids (e.g., [5, 38,39]) See Fig. 2.

There were notable differences between the models. The deterministic model had
a sharp perinecrotic boundary between the viable and necrotic tissues, whereas the
stochastic model demonstrated a perinecrotic transition zone with substantial mixing
of viable and necrotic cells. Because cells do not immediately necrose in the stochastic
model, it retained a center of quiescent viable cells longer than the deterministic model.
The growth curves for the deterministic and stochastic models appear to diverge after
approximately 8 days, when the deterministic necrotic core is better defined with more
cracks than the stochastic core. This may be due to differences in hypoxic gradients
(the tumor with more void spaces will have shallower oxygen gradients, and hence
more cell cycle entry), but further simulations would be required to rule out stochastic
effects. Interestingly, the stochastic model’s growth curve appears to run parallel to the
deterministic curve for later times, once its necrotic core becomes better defined.

Performance scaling. Throughout the simulations, the computational cost (the wall
time required to simulate one hour) scaled approximately linearly with the number of
agents present in the simulation, on both the desktop workstation and the HPC node;
see Fig. 4. (See also Estimated computational cost scaling.) Increasing the number of
execution threads improved performance, even when running on slower processor cores.
See the right panel in Fig. 4, where moving from the newer 8-threaded machine to the
older 24-threaded machine improved performance by a factor of 2 to 2.5.

The simulations reached ∼ 106 cells on our HPC tests after 67 hours (deterministic, 17
simulated days) to 76 hours (stochastic, 18.2 simulated days) of wall time, including saving
full simulation output data once per simulated hour. See Fig. 3. The desktop workstation
simulated past 573,000 cells (about 14.6 days of simulated time) in approximately 80
hours of wall time. The desktop tests did not run out of memory, and the simulations
can be completed to the full 18 days and 106 cells if needed.

Ductal carcinoma in situ (DCIS)

DCIS is a pre-malignant breast condition where epithelial cells (“tumor cells”) divide
abnormally to fill the breast duct lumen. Oxygen can only reach the tumor cells by
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diffusion from outside the duct, leading to the emergence of hypoxia and an inner
necrotic core. See [14, 15, 32] for further biological and clinical discussion. As in [14], we
approximate a partly-filled breast duct as a 3-D “test tube” with a level set function
representation. Cells adhere to cells and the duct wall; cells and the duct wall push
against cells to resist deformation. Oxygen diffuses from the duct wall and is consumed
by tumor cells. The rate of cycle entry increases linearly with pO2 (see Cell cycling).

In Fig. 5, we show DCIS simulations in a 1 mm segment of breast duct (317.5 µm
diameter), using deterministic necrosis (left side) and stochastic necrosis (right side),
plotted at 10 and 30 days. See also S3 Video and S4 Video. As in prior work [14], the
simulations predict cell-scale details observed in DCIS pathology, such as the appearance
of pairs of Ki67+ daughter cells, the spatially isolated apoptotic cells (which arises
from the model assumption that apoptosis is a stochastic, low-frequency event that is
independent of oxygenation), and the higher occurrence of Ki67+ cells near the duct wall
(where we modeled the probability of cell cycle entry as proportional to oxygenation).

Comparison of necrosis models; comparison with the spheroid example. As
in the HDS example, the deterministic model had a sharp, smooth perinecrotic boundary,
whereas the stochastic model demonstrated a perinecrotic boundary region with mixed
viable and necrotic cells. In the stochastic model, proliferation halted in the duct center,
but necrosis appeared later. The perinecrotic mixing effect was most pronounced at the
leading edge of the tumor, where tissue was transitioning from non-hypoxic/non-necrotic
to necrotic. Areas with longer-term hypoxia had smoother necrotic boundaries. This
effect did not emerge in the HDS example due to its symmetry.

Interestingly, the mechanical “cracks” seen in the tumor spheroids do not appear
here, because the breast duct compresses the necrotic core to collapse any fluid-filled
voids. This shows the importance of the 3-D geometry and the biophysical impact of the
basement membrane, as well as the need to account for such effects when approximating
in vivo conditions with bioengineered model systems.

Both models gave approximately the same growth rate of ∼ 1 cm/year (Fig. 6, left).
We cannot select one model over the other based solely upon continuum-scale, coarse-
grained outputs. However, we could further assess the models by comparing their distinct
differences in multicellular-scale patterning to DCIS pathology. This further highlights
the need and potential for multicellular modeling in evaluating cell-scale hypotheses.

Comparison with prior 2-D modeling results. In 3D, neither necrosis model
reproduced the mechanical “tears” between the proliferative rim and the necrotic core
predicted by earlier 2-D simulations [14]; this is because more viable tissue is fluxing
into smaller necrotic areas in the 3-D geometry compared to the 2-D geometry.

Additional PhysiCell examples

In the following examples, we demonstrate PhysiCell in applications involving interactions
via contact and chemical factors between multiple cell types, in 2-D and 3-D simulations.
Most of the examples include cell motility, “custom” phenotype rules, additional “custom”
mechanics, and custom data.

Please visit http://www.mathcancer.org/blog/physicell-sample-projects/ for
instructions on building, running, and visualizing the following sample projects. The
sample projects are structured to mirror the intended design of user projects: a project-
tailored Makefile and main.cpp in the main directory, and most custom code in the
project-tailored functions in the custom modules directory.

The instructions can also be found in the User Guide (S2 Text, found in the docu-
mentation folder of every PhysiCell download) and the Quickstart guide (S3 Text, found
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in the root directory of every PhysiCell download).

“Biorobots”. First, we tested PhysiCell for its potential in aiding in the design of
synthetic multicellular systems. We investigated rulesets to create a cellular cargo
delivery system, including the following main components:

1. “Director” cells secrete a diffusible chemoattractant c1 and are otherwise static.
They use the typical cell-cell repulsion mechanics.

2. “Cargo” cells have a surface receptor 0 ≤ R ≤ 1. When R = 1, they secrete a
diffusible chemoattractant c2. When R = 0, they stop secreting the factor. They
use the typical cell-cell repulsion mechanics.

3. “Worker” cells can either be adhered or not adhered to cargo cells.

(a) When they are unadhered, they perform biased random migration towards
gradients of ∇c2. Whenever they touch a cell, they test for presence of
receptor R. If R is expressed (i.e., the worker has found cargo), the worker
forms an elastic adhesion with the cell and sets R = 0 on the cargo cell.

(b) When they are adhered, they perform biased random migration towards ∇c1.
When c1 exceeds a threshold, they break their adhesive bond.

As a simple model of this targeted cell adhesion, we used a custom cell rule to
implement:

vi,Hook = k (xj − xi) (21)

vj,Hook = k (xi − xj) (22)

for adhered cells j and i. We then add these to the cell’s velocities. PhysiCell evaluates
the custom rule when evaluating cell mechanics (velocity update).

Simulation outputs are shown in Fig. 7; see also S5 Video. As we can see, the cargo
and worker cells successfully interact to modulate their behaviors. Notably, the worker
cells are seen making multiple transits from the supply of cellular cargo to the directors,
showing the robustness of both the rules and their implementation in PhysiCell.

This and the following examples also demonstrate the intended arrangement of
projects: users do not modify the contents of ./core/, but instead place their codes
in ./custom modules/, include these in a main project main.cpp, and modify the
Makefile to compile and link the components. This design is intended to allow users
to update the PhysiCell and BioFVM core components without overwriting their own
customizations.

Anti-cancer biorobots. We adapted the “biorobots” to test their potential as an
anti-cancer treatment. Many proposed cancer therapies attempt to target cancer cells
by finding unique surface or other molecules to target, so that drugs can be conjugated
to custom antibodies or encapsulated in custom nanoparticles. These still generally rely
upon passive delivery of the therapeutics, even though cancers are often poorly perfused.
See e.g. [40,41]. We tested the “biorobots” as a potential solution, with the following
modifications:

1. There are no “director” cells. Instead, cancer cells consume oxygen (as in prior
examples), which creates an oxygen gradient that can be leveraged for worker cell
“homing.”

2. Adhered “cargo” cells detach themselves from “worker” cells when pO2 < pO2,drop

and secrete a therapeutic compound [drug] that diffuses with the typical form
given in Biochemical microenvironment.
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3. Adhered worker cells perform biased random migration along −∇pO2.

4. In any time interval [t, t+ ∆tcells], cancer cells accumulate drug-induced damage
according to:

d

dt
[damage] = rdamage [drug]− rrepair [damage] (23)

where rdamage and rrepair are the damage and repair rates. Each tumor cell agent
tracks its own level of damage. In the same time interval the probability of a cell
apoptosing due to the drug is

Prob (apoptosis) = rdeath [damage] ∆tcells, (24)

where rdeath is the death rate when [damage] = 1.

5. Unadhered worker cells disabled motility if c1 falls below a threshold value.

We simulated 1 week of tumor growth, “injected” a mixture of 10% worker cells and
90% cargo cells near the tumor, and set the parameter pO2,drop to 10 mmHg. In the
simulation (Fig. 8 and S6 Video), overall the cargo cells were delivered into the tumor
(and they can be seen pushing tumor cells out of the way), tumor cells were indeed killed.
However, once enough cancer cells were killed, hypoxia was reduced so that worker
cells clustered near the oxygen minimum, but no longer released their “cargo” (because
pO2 > pO2,drop throughout the domain). Setting pO2,drop = 15 mmHg reduced but did
not eliminate this behavior. See Fig. 8 and S6 Video. Thus, an “anti-cancer biorobot”
system as explored here could potentially be beneficial (in particular, homing towards
and penetrating tumors without need for cancer-specific targets), but the “cargo release”
rules need to be carefully engineered. Such a system could potentially activate and
deactivate to keep a tumor cell population in control, and to reduce hypoxia (which is
known to drive cancer cell adaptation to more aggressive phenotypes [42,43]).

Cancer heterogeneity and immune response. Next, we applied PhysiCell to
another area of interest in the cancer community: heterogeneity. We seeded an initial
tumor, and assigned each cell a random expression of a mutant “oncoprotein” 0 ≤ p ≤ 2.
We started the simulation with a normal distribution of p, with mean 1 and standard
deviation of approximately 0.3. We used the same oxygen-dependent stochastic cell
cycle entry and necrosis as in prior examples. We modified the model to set the rate
of cycle entry to scale proportionally to p, so that increased p increases the rate of cell
division. The initial, intermediate, and final morphologies of the tumor are plotted in
Fig. 9, along with the changing histograms of p. In the plot, cell color ranges from blue
(p = 0) to yellow (p = 2). We can see clear selection for the yellower cells with greater
expression of p. Moreover, see that while the initial tumor began with a uniform “salt
and pepper” distribution of blue and yellow cells and a symmetric morphology, symmetry
was broken by the end as regions with higher initial p and greater access to oxygen form
dominant focal growths of “yellow” clones. This demonstrates further stochasticity in
the simulation that would be difficult to predict with continuum approaches. See S7
Video to better examine these dynamics.

Adding an immune response. We extended the heterogeneity example to 3D, and
integrated a simple model of an immune attack on the heterogeneous tumor:

1. All cancer cells consume oxygen as before. They also secrete an immunostimulatory
factor c (e.g., a chemokine such as basic fibroblast growth factor (bFGF) [44]),
which diffuses according to the standard PDE we introduced earlier.
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2. As a simple model of immunogenicity, the mutant oncoprotein is assumed to
increase immunogenicity proportionally to p, similarly to mutant tumor-associated
epitopes being presented on MHCs (major histocompatibility complexes) [45,46].

3. Unadhered immune cells perform biased random migration (in our simulations
b = 0.5) towards ∇c and test for contact with cells. If they detect contact, they
form an adhesion using the same model as in the “Biorobots” example and switch
off motility. In any time interval [t, t+ ∆t], we give the cell a probability of forming
an adhesion regulated by

Prob(forming a new adhesion to the tested cell) = radhesion∆t, (25)

where radhesion is the immune cell’s rate of forming new cell adhesions.

4. While adhered, immune cells attempt to induce apoptosis in the adhered cell with
probability

Prob(inducing apoptosis) = rkillp∆t, (26)

where p is used as our surrogate marker for immunogenicity (see above), and rkill is
the rate at which adhered immune cells kill tumor cells with p = 1. If they induce
apoptosis, they detach and resume their search for new cells.

5. Adhered immune cells have a probability of detachment given by

Prob(detaching from an adhered tumor cell) = rdetach∆t. (27)

In Fig. 10 and S8 Video, we first simulate two weeks of tumor growth without an
immune reaction. As in the prior example, we see the initially symmetric tumor develop
asymmetric focal growths of “yellow” cells, again showing the selection for cells with
the most oncoprotein. At two weeks, we introduce 7500 immune cells (red) that invade
the tumor. Apoptotic tumor cells are labeled in cyan. The immune cells continue to
migrate towards the center of the tumor up gradients of c, and within a few days, the
tumor cell population is drastically reduced, with more “blue” cells (less immunogenic)
remaining than “yellow cells” (most immunogenic). However, because the immune cell
migration was strongly biased along ∇c, they pass by some tumor cells at the outer
periphery. These surviving cells repopulate the tumor. This highlights the importance
of stochasticity in immune cell migration; if homing is too strong, immune cells cannot
mix with tumor cells, leading them to cluster in dense regions which can only interact
with tumor cells on their edges. Less biased migration would increase mixing of cancer
and immune cells and increase the efficacy of the immune attack.

In [20, 21], we used high-throughput computing to further expand this investigation
to explore the impact of stochastic migration and tumor-immune cell adhesion dynamics
on the treatment efficacy.

Availability and Future Directions

Getting started as a new PhysiCell user/developer

Necessary tools. Users need a working g++ development environment with support
for OpenMP and Makefiles (or a reasonably compatible 64-bit C++11 compliant com-
piler). (Future releases will likely include compile options using cmake.) We provide
tutorials to set up a g++ environment in Windows and OSX at:

OSX via Homebrew:
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http://www.mathcancer.org/blog/setting-up-gcc-openmp-on-osx-homebrew-edition/

OSX via MacPorts:
http://www.mathcancer.org/blog/setting-up-gcc-openmp-on-osx-macports-edition/

Windows via mingw-w64:
http://www.mathcancer.org/blog/setting-up-a-64-bit-gcc-environment-on-windows/

Mac OSX users should use the tutorials above; the version of g++ included with XCode

does not support OpenMP. Moreover, OSX users need to set a PHYSICELL CPP environ-
ment variable as noted in the Homebrew and MacPorts tutorials.

Alternatively, users can code within a virtual machine using the PhysiCell virtual
appliance. See the tutorial at

http://www.mathcancer.org/blog/getting-started-with-a-physicell-virtual-appliance/.

Downloading PhysiCell. Users can download a PhysiCell release at:

SourceForge:
https://sourceforge.net/projects/physicell/

The green “download” button will download the most recent source file (as a zip file).
You can get the most recent virtual appliance by browsing to:

https://sourceforge.net/projects/physicell/files/PhysiCell/

then browsing a recent release directory (e.g., PhysiCell 1.2.2), and downloading
the ova file.

GitHub:
https://github.com/MathCancer/PhysiCell/releases/latest

Download either PhysiCell V.x.y.z.zip (source) or PhysiCell.x.y.z.ova (virtual
appliance).

PhysiCell is licensed under the (3-clause) BSD license, which is compatible with com-
mercial products and can be included in GPL-licensed projects.

Learning to use PhysiCell. PhysiCell’s main project website can be found at

http://PhysiCell.MathCancer.org.

Each PhysiCell download comes with a Quickstart guide (Quickstart.pdf) in the
main directory (see S3 Text). We recommend running through this guide to popu-
late, compile, run, and visualize your first projects. (The four examples in Additional
PhysiCell examples are included as sample projects, with compile instructions in the
Quickstart; see S3 Text.)

A full User Guide (see S2 Text) is included in the documentation directory of every
PhysiCell download. See documentation/User Guide.pdf. The User Guide includes
full details on how to access and modify each cell’s Phenotype, how to write custom
fuctions and data elements, and how to interact with the BioFVM microenvironment [6].

Users creating their own simulation projects should start with the 2-D and 3-D
template projects. User-created code should be placed in the custom modules directory;
users should not modify functions in core (core PhysiCell functionality) or modules
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(PhysiCell-provided, non-core functions). See the Quickstart (S3 Text) and User Guide
(S2 Text) for further details.

We post tutorials at our PhysiCell blog, available at

http://mathcancer.org/blog/physicell-tutorials.

Check there for tips and tricks to building simulators, and visualizing results. We
also frequently post updates on PhysiCell on Twitter, under the hashtag #PhysiCell.

Getting started as a new PhysiCell contributor

We welcome new functionality and bug fix contributions from the community. No special
tools or libraries are required for PhysiCell development aside from a C++11/OpenMP
compliant compiler, make, and a copy of the PhysiCell source. Developers should fork
the current development version of the PhysiCell repository (available on GitHub at
https://github.com/MathCancer/PhysiCell), develop their contributions (either in
the modules directory as new functions, named as PhysiCell [name].cpp, or as fixes
to existing files), and then submit a pull request. Users should also email the PhysiCell
mailing list when submitting code contributions.

Project coding conventions can be found at

http://www.mathcancer.org/blog/mathcancer-c-style-and-practices-guide/.

Getting help

Users encountering problems in compiling PhysiCell projects should first consult the
FAQ page at:

http://www.mathcancer.org/blog/common-problems-and-solutions/

Users (and developers) can join the PhysiCell mailing list to ask the community ques-
tions or discuss ideas, at physicell-users@googlegroups.com. Users can submit bug
reports at the GitHub issue tracker:

https://github.com/MathCancer/PhysiCell/issues

Limitations and potential solutions

Scientific limitations. BioFVM does not implement advective transport as of Version
1.1.7, and so PhysiCell cannot readily be applied to advection-dominated problems
without user-supplied advection solvers. We also have not yet written a model of
extracellular matrix; users could add this effect by introducing custom data that (1)
“anchors” each cell to a position in space beyond cell-cell mechanical operations, and (2)
slowly evolve these “anchor points” to model ECM rearrangement. We are currently
exploring this approach to model liver parenchyma, and we will post sample codes as the
work progresses. Alternatively, users could introduce an independent finite element mesh
for the ECM, evolve it under (e.g., viscoelastic) laws, and attach cells to the nearest
lattice site. As a simpler approach, users could include a non-diffusing ECM substrate
(in BioFVM), which could be used to reduce the cells’ velocities (as extra drag). Vary
the cell-cell mechanics parameters in phenotype.mechanics with the ECM density for
this approach.
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PhysiCell’s cell-centered approach may not be ideal for application to some morpho-
genesis problems; see the recent work by Osborne and co-workers that compared several
discrete modeling frameworks in morphogenesis test problems [47]. PhysiCell does not
model cell morphology, and so it cannot directly model cell elongation processes needed
in some morphogenesis problems. However, users could potentially model elongated cells
as two or more agents, and introduce manual adhesive links similar to our “biorobots”
examples. PhysiCell has not implemented cell fusion (another mechanism of morpho-
genesis), but users could manually implement this by (1) testing for cell-cell contact,
(2) moving one cell to the center of volume of the two cells, (3) updating that cell’s
volume to include both original cells’ volumes, and (4) deleting the second cell. PhysiCell
has not yet written functions to deal with polarized cell-cell adhesion, or to update its
orientation. Thus, PhysiCell may need further development and user contributions to
model the full spectrum of morphogenetic mechanisms.

We note that PhysiCell can manually implement molecular-scale biology as ODEs
(e.g., as in the drug damage example) via custom functions and data, but this is currently
difficult to scale to large systems of ODEs with many parameters. Moreover, while we
have provided examples of user-defined cell cycle models and other custom functions
in the User Guide, sample codes, and tutorials, we do not provide templates for such
functions beyond the documentation. We are currently testing methods to support
SBML specification of ODE models in the cell agents (e.g., via libRoadrunner [48]), but
until SBML is supported, we do not provide templates to integrate ODE models into
PhysiCell functions to alter cell phenotype.

PhysiCell does not currently provide direct methods to model contact-based cell-cell
interactions; these can be manually implemented as we did in the immune and biorobots
examples. We also do not yet provide alternative mechanics models (e.g., viscoelastic)
out-of-the-box, but users can design their own cell velocity functions as needed to replace
the default mechanics. We have not yet implemented direct calculations of cell pressures
and strains, so this could hinder some applications in mechanobiology. Users could
implement this by creating a custom velocity update function that calculates pressures
and strains from the potential functions. A preliminary version—calculated from the
“resistance” potential functions similarly to [49]—is included as state.basic pressure.
See the User Guide (S2 Text) for more details.

Software limitations. PhysiCell is intended to function as a modular engine and
to interact with standardized data (e.g., MultiCellDS [22]), but it has not yet fully
implemented MultiCellDS import and export. Graphical simulation design tools, data
visualization tools, and analysis tools are needed to widen its accessibility beyond
seasoned C++ programmers and reduce its learning curve. In the future, PhysiCell
should switch from Makefiles to CMake to facilitate simpler cross-platform compiling.

Future improvements

Numerical improvements. The biggest performance bottleneck is cell-cell interac-
tion testing: cell volume can vary by a factor of 100, and hence the cell diameter (and
interaction distance) can vary by a factor of 50. The number of cells in the list of
interacting neighbors N (i) scales inversely with the minimum cell volume; see Expanded
computational cost estimates. Future versions of PhysiCell will introduce a nested
mesh interaction testing structure to more accurately estimate N (i) in regions with
small cells. Although PhysiCell’s design objectives are not focused on larger simulations
with 108-109 cells, extension to supercomputers by wrapping the code in MPI with
appropriate data mirroring could be useful. Likewise, the algorithms used in BioFVM
could be implemented on a graphics card via OpenCL or OpenACC. We will explore
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these approaches in the future.

Scientific improvements. We will develop SBML (systems biology markup language)
importers for molecular-scale biology, most likely by the C code generation features
in COPASI [50] or libRoadrunner [48]. This will make it straightforward to integrate
systems of ODEs to individual cells. We will add new cycle models for flow cytometry-
driven problems (G1, S, and G2/M phases). We plan to add more advanced cell
mechanics models (e.g., as in [9,51,52]), and to extend PhysiCell’s included standard
functions to include extracellular matrix mechanics. We also plan to introduce built-
in functions for polarized cell adhesion and updating the cells’ orientations. As our
PhysiCell-based projects progress, we will “upstream” our new functions to PhysiCell
as new optional modules. We are currently testing and refining the elastic-based cell
adhesions in Additional PhysiCell examples for inclusion as standard models, and we
are also developing vascularization libraries as part of our work to simulate metastatic
breast cancers injected in mammary fat pads.

User-focused improvements. In the coming months, we will continue publishing
blog posts and code samples at http://MathCancer.org/blog/physicell-tutorials/.
We will create pre-compiled clients that can initiate simulations based upon a digital
snapshot (intitial arrangement of cells) and digital cell lines (self-contained, model-
independent sets of cell phenotype data), using the emerging MultiCellDS standard
[22, 23]. We will develop support to read parameters from XML configuration files, and
we plan to offer PhysiCell as a compiled, linkable library. Moreover, we plan to develop
user-friendly, web-based applications of PhysiCell to simulate the multicellular response
to diffusing engineered nanoparticles [53].

Supporting Information

S1 Text

Supplemental information. Extensive supplemental information including: full
mathematical model details, supporting literature, and reference parameter values for
breast epithelial cells; expanded numerical implementation details; convergence and
validation testing results; full parameter values for the main tests; and an expanded
feature comparison of PhysiCell and other 3-D multicellular simulation platforms.

S2 Text

User Guide. User Guide for PhysiCell 1.2.2. Includes full API documentation and
examples.

S3 Text

Quickstart guide to PhysiCell. A fast guide to building, running, and visualizing
your first PhysiCell simulations. We recommend that new users start with this guide.

S1 Video

Deterministic 3-D hanging drop spheroid simulation. 3-D simulation of 18 days
of hanging drop tumor spheroid growth from 2300 cells to 1.2 million cells, using the
deterministic necrosis model. Available at:
https://www.youtube.com/watch?v=WMhYW9D4SqM and
https://doi.org/10.6084/m9.figshare.5716600
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S2 Video

Stochastic 3-D hanging drop spheroid simulation. 3-D simulation of 18 days
of hanging drop tumor spheroid growth from 2300 cells to 1 million cells, using the
stochastic necrosis model. Available at:
https://www.youtube.com/watch?v=xrOqqJ_Exd4 and
https://doi.org/10.6084/m9.figshare.5716597

S3 Video

Deterministic 3-D ductal carcinoma in situ (DCIS) simulation. 3-D simulation
video of 30 days of DCIS growth in a 1 mm length of breast duct, using the deterministic
necrosis model. Available at:
https://www.youtube.com/watch?v=ntVKOr9poro and
https://doi.org/10.6084/m9.figshare.5716480

S4 Video

Stochastic 3-D ductal carcinoma in situ (DCIS) simulation. 3-D simulation
video of 30 days of DCIS growth in a 1 mm length of breast duct, using the stochastic
necrosis model. Available at:
https://www.youtube.com/watch?v=-lRot-dfwJk and
http://dx.doi.org/10.6084/m9.figshare.5721088.v1

S5 Video

2-D biorobots simulation. 2-D simulation of the “biorobots” example, showing a
synthetic multicellular cargo delivery system. Available at:
https://www.youtube.com/watch?v=NdjvXI_x8uE and
https://doi.org/10.6084/m9.figshare.5721136

S6 Video

2-D biorobots, applied to cancer therapeutics delivery. 2-D simulations of the
“biorobots” adapted for use as a cancer treatment, where cargo cells detach and secrete a
therapeutic once reaching hypoxic tissues. Available at:
https://www.youtube.com/watch?v=wuDZ40jW__M and
https://doi.org/10.6084/m9.figshare.5721145

S7 Video

2-D simulation of a heterogeneous tumor. 2-D simulation of a tumor whose
heterogeneous oncoprotein expression drives proliferation and selection. Available at:
https://www.youtube.com/watch?v=bPDw6l4zkF0 and
https://doi.org/10.6084/m9.figshare.5721151

S8 Video

3-D simulation of a tumor immune response. 3-D simulation of immune cells
attacking a tumor with heterogeneous proliferation and immunogenicity. Available at:
https://www.youtube.com/watch?v=nJ2urSm4ilU and
https://doi.org/10.6084/m9.figshare.5717887
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Figure 1. PhysiCell and multiple time scales: PhysiCell uses BioFVM to update
the microenvironment at the short green tick marks, corresponding to ∆tdiff . It updates
cell mechanics (including cell position) less frequently at the medium black tick marks
(∆tmech), and it runs the cell volume and cycle/death models least frequently at the
long red tick marks (∆tcell). Note that the time steps shown are for illustrative purpose;
the default step sizes are given in Time steps.
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Figure 2. Hanging drop spheroid (HDS) simulations with deterministic
necrosis (left) and stochastic necrosis (right), plotted at 4, 8, and 16 days. Videos are
available at S1 Video and S2 Video. Legend: Ki67+ cells are green before mitosis (K1)
and magenta afterwards (K2). Pale blue cells are Ki67- (Q), dead cells are red
(apoptotic) and brown (necrotic), and nuclei are dark blue. Bottom: Hanging drop
spheroid experiment (HCC827 non-small cell lung carcinoma) showing a similar necrotic
core microstructure. PhysiCell is the first simulation to predict this structure arising
from cell-scale mechanical interactions. Image courtesy Mumenthaler lab, Lawrence J.
Ellison Center for Transformative Medicine, University of Southern California.

30/34

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2017. ; https://doi.org/10.1101/088773doi: bioRxiv preprint 

https://doi.org/10.1101/088773
http://creativecommons.org/licenses/by/4.0/


Figure 3. HDS growth: Left: The deterministic and stochastic necrosis models
both give approximately linear growth (left), but the HDS with deterministic necrosis
model grows faster (∼ 5% difference in diameter at day 18). Right: The HDS with
stochastic necrosis has fewer cells than the deterministic model (∼ 26% difference in cell
count at day 18), due to its delay in necrosis. The difference in cell count is larger than
the difference in tumor diameter because most of the difference lies in the number of
necrotic cells, and necrotic cells are smaller than viable cells.

Figure 4. HDS computational cost scaling: Left: Wall-time vs. cell count for
the stochastic (red) and deterministic (blue) necrosis necrosis models on a single HPC
compute node. Both models show approximately linear cost scaling with the number of
cell agents. right: Wall time vs. cell count for stochastic necrosis model on the desktop
workstation (orange) and the single HPC node (green).
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Figure 5. Ductal carcinoma in situ (DCIS) simulations with deterministic
necrosis (left) and stochastic necrosis (right), plotted at 10 and 30 days (multiple views).
Videos are available at S3 Video and S4 Video. The figure legend is the same as Fig.2.

Figure 6. DCIS growth: The deterministic and stochastic necrosis models both
result in linear DCIS growth at approximately 1 cm/year (left), even while their cell
counts differ by 21% by the end of the simulations (right).
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Figure 7. “Biorobots” example. Director cells (green) release a chemoattractant c1
to guide worker cells (red). Cargo cells (blue) release a separate chemoattractant c2.
Unadhered worker cells chemotax towards ∇c2, test for contact with cargo cells, form
adhesive bonds, and then pull them towards the directors by following ∇c1. If c1
exceeds a threshold, the worker cells release the cargo and return to seek more cargo
cells, repeating the cycle. A video is available at S5 Video.

Figure 8. Anti-cancer “biorobots” example. By modifying the worker cells in
the previous example (Fig. 7) to move up hypoxic gradients (along −∇pO2) and drop
their cargo in hypoxic zones, we can deliver cargo to a growing tumor. In this example,
the cargo cells secrete a therapeutic that induces apoptosis in nearby tumor cells,
leading to partial tumor regression. A video is available at S6 Video.
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Figure 9. Cancer heterogeneity example. Each cell has an independent
expression of a mutant “oncoprotein” p (dimensionless, bounded in [0,2]), which scales
the oxygen-based rate of cell cycle entry. Blue cells have least p, and yellow cells have
most. Initially, the population has normally distributed p with mean 1, standard
deviation 0.3, and a “salt and pepper” mixed spatial arrangement. The proliferative
advantage for cells with higher p leads to selection and enrichment of the most yellow
cells. Stochastic effects lead to emergence of fast-growing foci and a loss of tumor
symmetry. A video is available at S7 Video.

Figure 10. Cancer immunology example. In this 3-D example, each tumor cell
secretes an immunostimulatory factor, and its immunogenicity is modeled as
proportional to its mutant oncoprotein expression. (See the previous example in Fig. 9.)
After 14 days, red immune cells perform a biased random walk towards the
immunostimulatory factor, test for contact with cells, form adhesions, and attempt to
induce apoptosis for cells with greater immunogenicity. The immune cells successfully
attack the tumor initially, leading to partial regression; apoptotic cells are cyan. But
strong homing towards gradients of the immunostimulatory factor causes immune cells
to “pass” some cells at the outer edge, leading to tumor regrowth. Eventually, immune
cells leave the necrotic regions and press their attack on the tumor. This highlights the
importance of stochasticity in immune cell movement in mixing with the tumor cells for
a more successful immune response. A video is available at S8 Video.
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