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Abstract 

Anorexia nervosa (AN) is a serious eating disorder characterized by restriction of energy intake 

relative to requirements, resulting in abnormally low body weight. It has a lifetime prevalence of 

approximately 1%, disproportionately affects females1,2, and has no well replicated evidence of 

effective pharmacological or psychological treatments despite high morbidity and mortality2. 

Twin studies support a genetic basis for the observed aggregation of AN in families3, with 

heritability estimates of 48%-74%4. Although initial genome-wide association studies (GWASs) 

were underpowered5,6, evidence suggested that signals for AN would be detected with increased 

power5. We present a GWAS of 3,495 AN cases and 10,982 controls with one genome-wide 

significant locus (index variant rs4622308, p=4.3x10-9) in a region (chr12:56,372,585-

56,482,185) which includes six genes. The SNP-chip heritability (h"#$% ) of AN from these data is 

0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability stems from 

common genetic variation. Using these GWAS results, we also find significant positive genetic 

correlations with schizophrenia, neuroticism, educational attainment, and HDL cholesterol, and 

significant negative genetic correlations with body mass, insulin, glucose, and lipid phenotypes. 

Our results support the reconceptualization of AN as a disorder with both psychiatric and 

metabolic components. 
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Following uniform quality control and imputation using the 1000 Genomes Project (phase 3)7 in 

12 anorexia nervosa (AN) case-control cohorts, we performed association analysis using an 

additive model on the dosage data for each cohort and an inverse-variance weighted meta-

analysis across cohorts (see Supplementary Text for methods, quality control details and see 

Supplementary Table S1 for individual study details). Results were obtained for 10,641,224 

SNPs and insertion-deletion variants with minor allele frequency > 1% and imputation quality 

scores > 0.6 (see Supplementary Figure S1 for quantile-quantile plot). GWAS statistic inflation 

(𝜆) was 1.045, and the sample size adjusted 𝜆'((( was 1.008, suggesting minimal inflation due to 

population stratification or other systematic biases.  

 

One locus achieved genome-wide significance for AN (Figure 1). Information for the top ten 

loci is given in Supplementary Table S2. The chromosome 12 (12q13.2) locus reported here is 

multigenic, overlaps six genes (IKZF4, RPS26, ERBB3, PA2G4, RPL41, and ZC3H10), and is 

located near six additional genes (ESYT1, SUOX, RAB5B, CDK2, PMEL, and DGKA). 

Supplementary Figure S2 provides a forest plot and information about effects across cohorts 

for the top SNP (rs4622308, P=4.3x10-9, OR (C allele) =1.2, SE=0.03, MAFcases=0.48, 

MAFcontrols=0.44), which were relatively consistent across cohorts. Results of conditional 

analyses are consistent with the existence of one signal at this locus (see Supplementary Figure 

S3). Several other immune-related phenotypes: vitiligo, alopecia areata, and asthma (see 

Supplementary Figure S4) have associations in the region, although these are (somewhat) LD 

independent. The second (rs200312312 on chromosome 5, p=6.7x10-8) and fourth (rs11174202 

on chromosome 12, p=3.1x10-7) most significant loci in our analyses also have consistent 

evidence for association across multiple cohorts and patterns of correlated variants with similar 

p-values (see Supplementary Figure S5 for area plots of these loci). The fourth best locus is 

intronic in the FAM19A2 gene.  
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Figure 1. Manhattan and regional plots of the genome-wide significant locus associated 

with AN. A. Manhattan plot depicts a genome-wide significant locus on chromosome 12. B. Regional 

plot of the top locus reveals numerous genes in the region. Results depicted here reflect the full meta-

analysis. Per text, see Supplementary Figure 1 for area plot with phenotypic associations. The right axis 

gives recombination rate, depicted with a light blue line. 
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Gene-wide and pathway analyses were also carried out. Multiple genes, all of which were in the 

region around the top SNP (rs4622308) reached gene-wide significance (reflecting the high LD 

in the region). Pathway analyses did not reveal experiment-wise significance (see 

Supplementary Table S3 for the complete gene-wide and pathway analysis results); the top 

ranked pathway was CP:KEGG_LONG_TERM_POTENTIATION. As has typically been 

reported for other psychiatric disorders, candidate genes from previous studies did not reach 

significance (for a detailed review of the candidate gene literature see8). 

 

Interrogation of databases such as GTeX9 does not indicate that any of the genes in the top 

region have distinct patterns of brain gene expression and searches using both GTeX and the 

SNP tag lookup function in MRbase (www.mrbase.org/beta) indicate that that the top SNP 

(rs4622308) is not, directly or via LD tagging, an eQTL or mQTL. Analyses of gene expression 

of the genes surrounding rs4622308 in hypothalamus from fasted and refed mice did not 

implicate specific genes (See Supplementary Figure S6). However, we note that rs4622308 is 

in high LD (r2=0.86; D'>0.99) with rs11171739, which has been found to be associated in 

GWASs of autoimmune phenotypes including type I diabetes10 and rheumatoid arthritis11. The 

risk associated alleles of both SNPs (C-C) are typically found on the same haplotype. 

 

LD score regression (LDSC)12 was used to calculate genome-wide common variant heritability 

(ℎ*+,% ), partitioned heritability, and genetic correlations (𝑟.) between AN and other psychiatric, 

medical, and educational phenotypes. In our cohort, ℎ*+,%
 for AN was 0.20 (SE=0.021, intercept 

constrained to one), comparable to ℎ*+,% estimates for other psychiatric disorders (Figure 2). 

Partitioned heritability estimates for annotation categories and cell types were not significant 

after multiple testing correction (for complete results see Supplementary Table S4).  
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Figure 2. Genome-wide common variant SNP heritability estimate (ℎ*+,% ) for AN is 
comparable to that of other psychiatric disorders.  
 

 
LDSC=Linkage disequilibrium score regression, PGC-AN=Psychiatric Genomics Consortium-Anorexia 
Nervosa group, CI=confidence interval, SCZ=schizophrenia, BIP=bipolar disorder, MDD=major 
depressive disorder, ASD=autism spectrum disorder, ADHD=attention deficit hyperactivity disorder. 
Error bars show ±1.96xSE. 
 

A wide range of genetic correlations between AN and other phenotypes were statistically 

significant. Of 159 phenotypes tested, 29 had FDR<0.05 (uncorrected p-values reported below). 

See Figure 3 for depiction of these genetic correlations and text below for selected examples. All 

159 genetic correlations and relevant references are available in Supplementary Table S5.  
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Figure 3. Genetic correlations between AN and diverse phenotypes reveal overlap across 
psychiatric, educational, weight, insulin, lipoprotein, and cholesterol phenotypes. The 24 
correlations depicted here (of 159 phenotypes tested) have FDR<0.05. Bars are ± standard error. 
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Notable significant genetic correlations between AN and psychiatric traits and disorders included 

neuroticism (𝑟.=0.39, SE=0.14, p=4.4x10-3), schizophrenia (𝑟.=0.29, SE=0.07, p=4.4x10-5), and 

results from a meta-analysis across psychiatric phenotypes (𝑟.=0.22, SE=0.07, p=3.4x10-3). 

Genetic correlations between AN and educational phenotypes such as years of education 

(𝑟.=0.34, SE=0.08, p=5.2x10-6) and attending college (𝑟.=0.30, SE=0.07, p=4.4x10-5) were also 

significant. Obsessive compulsive disorder (OCD) GWAS data were unavailable to us but a 

previous analysis has reported a 𝑟. of 0.53 (SE=0.11, SE=0.13, p=5.5x10-6)13. 

 

Several significant negative genetic correlations emerged between AN and weight-related 

phenotypes, suggesting shared genetic loci underlying these phenotypes and opposing effects for 

relevant alleles. Extreme high BMI was significantly negatively correlated with AN (𝑟.=-0.29, 

SE=0.08, p=2.0x10-4) as were obesity, BMI in the normal range, overweight, and hip 

circumference, with genetic correlations ranging from -0.2 to -0.3.  

 

We also observed significant negative genetic correlations between AN and insulin and glucose 

related traits—importantly GWAS of these traits were corrected for the effects of weight/BMI: 

e.g., HOMA-IR (𝑟.=-0.50, SE=0.11, p=1.3x10-5); fasting insulin (𝑟.=-0.41, SE=0.09, p=5.2x10-

6); and fasting glucose (𝑟.=-0.26, SE=0.07, p=3.0x10-4). Regarding cholesterol and lipid 

measures, a sharp distinction between different lipid fractions is evident, for some but not all 

HDL vs. LDL and VLDL phenotypes. Genetic correlations between AN and HDL phenotypes 

were positive: e.g., total cholesterol in large HDL particles (𝑟.=0.39, SE=0.12, p=1.6x10-3); free 

cholesterol in large HDL particles (𝑟.=0.37, SE=0.12, p=2.2x10-3); and phospholipids in large 

HDL particles (𝑟.=0.30, SE=0.11, p=6.7x10-3). In contrast, VLDL cholesterol phenotypes were 

negatively correlated with AN, albeit with nominal significance: e.g., total lipids in VLDL (𝑟.=-

0.30, SE=0.12, p=0.01); phospholipids in VLDL (𝑟.=-0.33, SE=0.13, p=4.4x10-3); and LDL 

cholesterol (𝑟.=-0.20, SE=0.08, p=0.011).  

 

To our knowledge, this is the first robust report of a genome-wide significant association for AN. 

As is typical of many GWAS loci for complex disorders, the region implicated is relatively 

broad, and the genetic effect is relatively subtle14. Our genome-wide ℎ*+,%  estimate of 20% for 
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AN supports a substantial role for common genetic variation. As we now expect15, the ℎ*+,%  

estimate reported here indicates that common variants account for a substantial portion of twin-

based heritability (ℎ/012%  48-74%)6. In general, ℎ/012%  should exceed ℎ*+,%  because it captures the 

effects of all types of genetic variation (common and rare, as well as variation not captured with 

current methods).  

 

Although genetic correlations must be interpreted in the context of multiple caveats, the observed 

pattern of genetic correlations with other phenotypes provides grounds for broadening our 

conceptualization of the disorder. First, the strong positive genetic correlations of AN with OCD 

and neuroticism reinforce clinical observations that high perfectionism and neuroticism predicts 

subsequent onset of AN1, which also accords with evidence of familial co-aggregation with 

multiple anxiety phenotypes, even when controlling for proband comorbidity16. Second, the 

positive genetic correlations seen with schizophrenia and the cross psychiatric disorder 

phenotype firmly anchor AN with other adult psychiatric disorders and reflect the substantial 

evidence for partially shared genetic risk across many psychiatric disorders17. Third, positive 

genetic correlations between AN and educational attainment suggest that genetic factors may 

partially account for reported associations of AN with higher familial educational attainment18. A 

positive genetic correlation between an earlier AN GWAS and educational attainment and 

weaker (although nominally significant) positive correlations between AN and old age general 

cognitive function were also previously reported19. Intriguingly, the association between AN and 

educational attainment has typically been attributed to socioeconomic factors or demands to 

succeed18; however, our data suggest potential confounding as overlapping genetic factors may 

mediate both. 

 

Fourth, the identification of significant negative correlations between AN and BMI-related and 

anthropometric measures could potentially serve as an important first step toward gaining a 

better understanding of the shared biology underlying extremes of weight dysregulation (i.e., 

obesity vs. AN). As noted by Bulik-Sullivan et al.12 and Hinney et al.20, these results extend our 

understanding that the same genetic factors that influence normal variation in BMI, body shape, 

and body composition may also influence extreme dysregulation of these weight-related features 

in AN. This pattern of observations complements prior strong evidence for the involvement of 
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neural mechanisms in obesity21. Finally, positive correlations with (BMI corrected) “favorable” 

metabolic phenotypes (i.e., HDL and lipid measures) and negative correlations with 

“unfavorable” metabolic phenotypes (i.e., fasting insulin, fasting glucose, HOMA-IR) encourage 

additional exploration of the role metabolic factors may play in extreme dysregulation of appetite 

and weight in AN.  

 

Adequate explanations for how individuals with AN reach and sustain exceedingly low BMIs 

have been elusive. Whether the observed metabolic correlations are driven by low BMI is 

unknown (although most of the effects are independent of general BMI, as those GWASs 

corrected the phenotypes for BMI); however, future identification of specific shared risk loci and 

emerging analytic techniques may enable us to determine causal pathways. A physiological 

consequence of AN is loss of fat tissue, and similarly, there have been reports of severe 

metabolic changes in both acquired or congenital lipodystrophies22. It is possible that our final 

AN samples are enriched for a subgroup of patients with incipient AN who have a genetic 

predisposition of metabolic dysfunction, thus generating the observed genetic correlations. 

Additionally, the pathophysiology of AN may require two different considerations: one where 

the primary dysfunction is in metabolism and the eating disorder part is secondary, and vice 

versa.  

 

Finally, also worthy of further investigation are the numerous immune-related phenotypic 

associations nearby our top locus for AN. The shared effects between AN and immune 

phenotypes fit into a broader pattern of above-chance comorbidity across psychiatric and 

immune phenotypes23,24. Evidence suggests that shared risk is at least partly genetic in origin12,25. 

A negative genetic correlation between AN and rheumatoid arthritis was previously reported12, 

and our LDSC estimate—though only nominally significant—is in the negative direction as well 

(see Supplementary Table S5).  

 

The locus we identified to be associated with AN is broad and multigenic (chr12:56,372,585-

56,482,185). Mechanistic explanations about the role of this variant require functional data; 

nevertheless, we note the possible role for genes at this locus in the pathophysiology of AN. 

PA2G4 is involved in growth regulation and acts as a corepressor of the androgen receptor26. 
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ESYT1 (extended synaptotagmin-1 which binds and transports lipids27) is enriched in the 

postsynaptic density of individuals with schizophrenia28 and involved in calcium signaling29. 

Various studies have implicated post-synaptic density in schizophrenia pathology30, and calcium 

signaling is now believed to be etiologically relevant to schizophrenia, bipolar disorder, and 

autism. We speculate that the positive genetic correlation observed between AN and 

schizophrenia could potentially reflect these processes. Finally, rs4622308 is in high LD with 

autoimmune GWAS hits for type 1 diabetes10, and rheumatoid arthritis11, and the region around 

it harbors multiple other autoimmune associations.  

 

In summary, we identify the first robust genome-wide significant locus for AN, which is also a 

previously reported type 1 diabetes and general autoimmune disorder locus. Perhaps of greater 

importance, is that we find AN is a complex heritable phenotype with intriguingly large and 

significant genetic correlations not only with psychiatric disorders but also multiple metabolic 

traits. This encourages a reconceptualization of this frequently lethal disorder as both psychiatric 

and metabolic. Just as obesity is increasingly considered to be both a metabolic/endocrine and 

psychiatric disorder, approaching AN as both a psychiatric and metabolic condition could ignite 

interest in developing or repositioning pharmacologic agents for its treatment where currently 

none exist.  

 

URLs 
SNP results, https://www.med.unc.edu/pgc. 
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Supplementary Figure S1. QQ plot of 10,641,224 variants with MAF>1% and imputation 
quality (INFO)>0.6.  15,043,779 total variants, lambda=1.045, lambda1000=1.008. 
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Supplementary Figure S2. Forest plot for top SNP rs4622308 
 

 
Abbreviations: ngt=number genotyped, info=imputation quality score, f_ca(n)=frequency for 
allele 1 in cases with number of cases in parentheses, f_co(n)=frequency for allele 1 in controls 
with number of controls in parentheses, ln(OR)=natural logarithm of odds ratio, 
STDerr=standard error. 
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Supplementary Figure S3. Results for top locus before and after conditioning on 
individuals’ dosage data at top SNP rs4622308 are consistent with the existence of only one 
signal at this locus. A. Before conditioning (i.e. original analysis). B. After conditioning. 
 
A.   

 
B.   
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Supplementary Figure S4. Area plot for top locus with other phenotypic associations in the 
region. The top SNP rs4622308 is located near phenotypic associations to numerous immune-
related traits. 
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Supplementary Figure S5. Area plots for second and fourth best loci. A) Second best locus 
with top SNP rs200312312. B) Fourth best locus with top SNP rs11174202. The third best locus 
(not shown) is a lone, rare SNP (minor allele frequency=.02), with moderate imputation quality 
(INFO=.7), and was consequently deemed less interesting than the 2nd and 4th best loci. 
 
A) rs200312312   p=6.73e-8, OR=.83, MAF=.32, INFO=.90 
 

 
 
B) rs11174202   p=3.11e-7, OR=.86, MAF=.45, INFO=.97 
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Supplementary Figure S6. Gene expression of the genes in the rs4622308 region in mouse 
hypothalamus from fasted and refed C57BL/6J mice (N=5-7 for each gene). Normalised 
gene expression with standard errors are shown. No changes reached significance. 
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Ad lib 12 hrs fast 24 hrs fast 36 hrs fast 36 hrs fast + FFD 36 hrs fast + HFD
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