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Abstract

The analysis of RNA-Seq data from individual differentiating cells enables us
to reconstruct the differentiation process and the degree of differentiation (in
pseudo-time) of each cell. Such analyses can reveal detailed expression dynam-
ics and functional relationships for differentiation. To further elucidate dif-
ferentiation processes, more insight into gene regulatory networks is required.
The pseudo-time can be regarded as time information and, therefore, single-cell
RNA-Seq data are time-course data with high time resolution. Although time-
course data are useful for inferring networks, conventional inference algorithms
for such data suffer from high time complexity when the number of samples and
genes is large. Therefore, a novel algorithm is necessary to infer networks from
single-cell RNA-Seq during differentiation.
In this study, we developed the novel and efficient algorithm SCODE to in-
fer regulatory networks, based on ordinary differential equations. We applied
SCODE to three single-cell RNA-Seq datasets and confirmed that SCODE can
reconstruct observed expression dynamics. We evaluated SCODE by compar-
ing its inferred networks with use of a DNaseI-footprint based network. The
performance of SCODE was best for two of the datasets and nearly best for
the remaining dataset. We also compared the runtimes and showed that the
runtimes for SCODE are significantly shorter than for alternatives. Thus, our
algorithm provides a promising approach for further single-cell differentiation
analyses.
The R source code of SCODE is available at https://github.com/hmatsu1226/SCODE.
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1. Introduction

Conventional bulk RNA-Seq reveals the average gene expression of an en-
semble of cells, and therefore does not permit the analysis of detailed states of
individual cells. With the advancement of single-cell RNA-Seq (scRNA-Seq),
we can now quantify the expression of individual cells and analyze detailed dif-
ferences among cells [1]. This enables several analyses such as the identification
of cell types [2, 3], especially of rare cells [4, 5], and the estimation of cellular
lineages [6, 7].

In analyses by scRNA-Seq, the reconstruction of cellular differentiation pro-
cesses attracts attention as a novel approach to revealing differentiation mech-
anisms [8]. The differentiation process can be reconstructed using dimension
reduction [9, 10] and stochastic processes [11], for example, and the degree of
differentiation (in pseudo-time) of each cell is characterized by the position in the
reconstructed process. By investigating the expression pattern in pseudo-time,
genes can be clustered into multiple groups with different biological functions
[9]. Moreover, the regulatory cascade of cellular state transitions, such as differ-
entiation, can be inferred by comparing the timings of up- and down-regulation
[11, 12, 13].

In addition, scRNA-Seq also enables the calculation of accurate correlations
of expression between genes because scRNA-Seq can distinguish the detailed
states of individual cells without contamination from multiple cell types. The
accurate co-expression pattern of each cell type (progenitor cells and multiple
types of differentiated cells) can reveal the key regulatory factors for lineage
programming [14].

In this way, expression dynamics in pseudo-time and accurate relationships
among genes can be inferred from scRNA-Seq data. For the next step in dif-
ferentiation analyses using scRNA-Seq, it is important to reveal the regulatory
interactions among genes that bring about the observed expression dynamics
during differentiation, namely, gene regulatory network (GRN) inference from
scRNA-Seq data. Pseudo-time can be regarded as time information, and hence,
scRNA-Seq performed on cells undergoing differentiation can be regarded as
time-course expression data at a high temporal resolution. Although several
algorithms have been proposed to reconstruct GRN from time-course data [15],
most of them are not suitable for scRNA-Seq data, such as that collected over
continuous time and with a large number of samples. Moreover, time complexity
is a serious problem, and runtime becomes infeasibly long with large numbers
of samples and genes for the network inference from time-course data.

Recently, Boolean network-based algorithms have been proposed for infer-
ring GRN from single-cell data [16, 17, 18]. Although these algorithms have
revealed some interesting regulatory relationships, their time complexity in-
creases significantly as the number of genes and cells increases, and they have
thus been applied to data with a small number of genes. In addition, the expres-
sion data must first be converted into binary data for Boolean network inference,
and therefore the relationship between networks and the underlying dynamics
becomes obscured [19].
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As another approach, ordinary differentiation equations (ODEs) have been
used to describe regulatory network and expression dynamics. ODEs can de-
scribe continuous variables over continuous time and the underlying physical
phenomena, and therefore they are suitable for inferring GRN from scRNA-
Seq during differentiation. Although several ODE-based network-inference al-
gorithms have been proposed [20, 21], most of them are not suitable for the
differentiation case because these algorithms assume a steady-state condition.
There are some ODE-based algorithms that infer GRNs such that the observed
expression dynamics can be reconstructed from the optimized ODE [22]. How-
ever, time complexity is still a serious problem for such ODE-based algorithms
[15]. Previous research has described optimizing an ODE by using single-cell
data and pseudo-time to infer key GRNs [23]. Although it is a suggestive ap-
proach, the optimization assumes that the GRNs are given and learns the ODE
for a specific GRN. Therefore, a novel and efficient algorithm is necessary to
learn GRNs from ODEs designed for scRNA-Seq performed on differentiating
cells and for a large number of samples and genes.

Accordingly, we developed an approach to describe regulatory networks and
expression dynamics with linear ODEs as well as a novel, highly efficient opti-
mization algorithm, SCODE, for scRNA-Seq performed on differentiating cells
by integrating the transformation of linear ODEs and linear regression. In
the Methods section, we show that linear ODEs can be transformed from fixed-
parameter linear ODEs if they satisfy a relational expression. We also show that
the relational expression can be estimated analytically and efficiently by linear
regression. In addition, SCODE uses a small number of factors to reconstruct
expression dynamics, which results in a marked reduction of time complexity. In
the Results sections, we described the application of SCODE for three scRNA-
Seq datasets during differentiation. First, we validated that the optimized ODEs
can reconstruct observed expression dynamics accurately. Second, we evaluated
the inferred network by comparing it to the transcription factor (TF) regu-
latory network database based on DNaseI footprints and transcription factor
binding motifs. SCODE performed best with two of the datasets and was the
close second best algorithm for the remaining dataset. Third, we compared the
runtimes of the algorithms, and SCODE was significantly faster than previous
algorithm that was designed for time-course data. Moreover, SCODE is faster
than some algorithms that do not use time parameters. These results illustrate
the remarkable efficiency of SCODE. Lastly, we analyzed the network inferred
from a dataset and determined that the de novo methyltransferases Dnmt3a
and Dnmt3b might be key regulators of differentiation.

In this paper, we propose a novel algorithm for scRNA-Seq performed on
differentiating cells to reconstruct expression dynamics and infer regulatory net-
works with a highly efficient optimization method. We believe that our approach
will substantially advance the development of regulatory network inference and
promote the development of further single-cell differentiation analyses and bioin-
formatics methods.
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2. Methods

2.1. Describing regulatory networks and expression dynamics with linear ODEs

In this research, we focus on TFs and inferring TF regulatory networks.
First, we describe TF expression dynamics throughout differentiation with linear
ODEs:

dx = Axdt, (1)

where x is a vector of length G (G is the number of TFs) that denotes the
expression of TFs and A is a square matrix with dimensions equal to G that
denotes the regulatory network among TFs. We infer the TF regulatory network
by optimizing A such that the ODE can successfully describe the observed
expression data.

The observed expression data consist of a G× C matrix (X(e)), where C is
the number of cells. In addition, the time parameter of a cell c is given as tc.
Therefore, our objective is to optimize A such that dx = Axdt can properly
represent X(e) at a corresponding time point.

Here, A contains G×G parameters and an efficient parameter optimization
algorithm is necessary for large values of G. This is because the time complexity
is typically O(G3) for operation on a G×G matrix, and it will exceed O(CG3)
to optimize A with a general algorithm. As experimental technologies have
advanced, the number of cells that may be subjected to scRNA-Seq has been
increasing, and hence C can be quite large. Therefore, we developed a novel
algorithm to optimizeA efficiently, even if bothG and C are large, by integrating
the transformation of linear ODEs and linear regression.

2.1.1. Deriving A from a linear ODE transformation

At first, we consider the following linear ODE:

dz = Bzdt, (2)

where z is a vector of length G and B is a known square matrix. If we know a
matrix W that satisfies x = Wz, we can derive the ODE of x by transforming
the ODE of z as follows:

dz = Bzdt

dz = BW−1Wzdt

Wdz = WBW−1Wzdt

dx = WBW−1xdt.

(3)

Therefore, if the parameter B of dz = Bzdt and the relationship x = Wz are
given, we can derive A from WBW−1.
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2.1.2. Estimating W using linear regression

To infer A, we have to estimate a matrix W that satisfies x = Wz. Here, we
assume that the problem of W inference can be regarded as a linear regression
problem. Initially, from dz = Bzdt, we calculate z at t = tc for each cell and
generate a G × C matrix (Z(e)) (Fig 1(a)). With this Z(e), we optimize W to
successfully represent the relationship X(e) ≃ WZ(e), which results in x ≃ Wz.
The above problem can be regarded as solving the linear regression for each
gene, as follows:

X(e)
gc =

G∑
i=1

WgiZ
(e)
ic + ϵ, (4)

where ϵ is a noise term. Therefore, W can be optimized analytically and ef-
ficiently by linear regression for each TF (Fig 1(b)), and A can be efficiently
calculated from WBW−1.

2.1.3. Dimension reduction of z

The basic idea of reduction is that the patterns of expression dynamics are
limited and expression dynamics can be reconstructed with a small number of
patterns. For the next step, we consider a small vector z to represent the original
expression dynamics. Hereafter, z is a vector of length D, with D << G. In
this case, W is a G × D matrix, and hence we used a pseudo-inverse matrix
W+ instead of the inverse matrix, and A is derived from A = WBW+. The
matrix W is estimated as before, via linear regression. By using a small vector
z, the time complexity of estimation of W becomes much lower.

Recently, such dimensionality reduction approach has also been proposed to
infer network [24]. Although it is a sophisticated algorithm, it is designed for
discrete time-course data and small samples, and is not suitable for scRNA-Seq
data.

2.1.4. Optimizing B

Thus far, we have assumed B is given. To represent the original expression
dynamics with small values of D, we optimize B for the next step. We suppose
that the appropriate value of B satisfies the condition that the Z(e) generated
from dz = Bzdt can predictX(e) withWZ(e) accurately. Therefore, we evaluate
the appropriateness of the matrix B with the following residual sum of squares
(RSS):

RSS(B,W) =
∑
g,c

(
X(e)

gc −
D∑
i=1

WgiZ
(e)
ic

)2

. (5)

In this research, we assume B is a diagonal matrix and the elements Bii satisfy
bmin ≤ Bii ≤ bmax (we set bmin and bmax to -10 and 2, respectively). This
limitation is acceptable because large and small values of Bii represent a dy-
namics of sharp change and seem to be an inefficient basis for reconstructing
the expression dynamics.
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We optimize B by random sampling and iterative optimization so that the
RSS decreases (Fig 1(c)). The brief pseudocode is given below (see the supple-
mentary text for the detailed procedure).

Algorithm 1 Iterative optimization of B

Initialize a diagonal matrix B(1) randomly
for k = 1 : I do
Z(e) ⇐ Generate from dz = B(k)zdt
W(k) ⇐ Solution of linear regression (X(e) ≃ WZ(e))

if RSS(B(k),W(k)) < RSS(B̂,Ŵ) then

B̂ ⇐ B(k)

Ŵ ⇐ W(k)

end if
B(k+1) ⇐ B̂
i ⇐ uniform random value ∈ [1, D]

B
(k+1)
ii ⇐ uniform random value ∈ [bmin, bmax]

end for

After the above optimization, A is inferred with A = ŴB̂Ŵ+ (Fig 1(d)).

2.1.5. Time complexity

The time complexity of optimizingW and B is O(I(GD3+GCD2)), where I
is the number of iterations ofB optimization. The time complexity of calculating
A is O(DG2). Because we assume that D is small, the total time complexity is
about O(IGC +G2). As matrix operations on A, such as multiplication, have
a time complexity of O(G3), our algorithm is highly efficient to infer regulatory
network even though it integrates time-course information into the model.

2.2. Other network inference approaches

For comparison, we also developed a simple network inference algorithm
based on linear regression that predicts expression of a particular TF from the
expression of the remaining TFs as follows:

X(e)
gc =

∑
i ̸=g

W
′

giX
(e)
ic + ϵ. (6)

With this method, the optimized W
′
is regarded as a regulatory network. In

this research, we optimized W
′
using two criteria. The first criterion is based

on normal linear regression, and we estimated W
′
with the lm function in R.

The second criterion is based on lasso regression, and we estimated with the
msgps package in R, which automatically selects the optimal degrees of freedom
[25]. We used the Bayesian information criterion for model selection in msgps.

In addition, we inferred networks with GENIE3 [26], which also predicts
TF expression from the expression of other TFs by using regression trees. The
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performance of GENIE3 was best in the DREAM5 Network Inference challenge
for population data [27].

We also inferred networks with Jump3 [28], which is the expansion of GE-
NIE3 for reconstructing a network from time-course expression data. Jump3
is based on jump trees and showed high performance for multiple time-course
datasets.

2.3. Dataset

We analyzed three time-course scRNA-Seq datasets by the following proce-
dures. First, transcripts per million reads (TPM) and fragments per millions of
kilobases mapped (FPKM) were transformed as log(TPM+1) and log(FPKM+1),
and we regarded these log-transformed values as the expression value. Next, we
calculated the averaged expression of each TF at each time point and calcu-
lated the variance of the averaged expression for each TF. For TF data, we used
Riken TFdb for mouse [29], and animalTFDB for human [30]. (Riken TFdb
contains not only TFs but also their related genes, and we called all genes in
the database transcription factors in this study.) Lastly, we regarded the TFs
with large variances as variable TFs during differentiation. Hereafter, we used
the top 100 variable TFs for network inference. For these 100 TFs, we estimated
pseudo-time (tc) with Monocle [9]. We also excluded 100 randomly selected cells
from the training data in order to use them as test data to evaluate adequate
sizes of z (D).

2.3.1. Data1: mouse ES cells to primitive endoderm cells

The first time-course scRNA-Seq dataset (at 0, 12, 24, 48, and 72 h) analyzed
was derived from primitive endoderm (PrE) cells differentiated from mouse ES
cells (by using G6GR ES cells [31]), containing 456 cells. This dataset was
produced with RamDA-Seq, a novel scRNA-Seq protocol developed by our lab-
oratory (in submission).

2.3.2. Data2: mouse embryonic fibroblast cells to myocytes

The second dataset was derived from scRNA-Seq data obtained to examine
direct reprogramming from mouse embryonic fibroblast (MEF) cells to myocytes
at days 0, 2, 5, and 22 [32]. This dataset contained 405 cells.

2.3.3. Data3: human ES cells to definitive endoderm cells

The third dataset was a scRNA-Seq time course (at 0, 12, 24, 36, 72, and 96
h) derived from definitive endoderm (DE) cells differentiated from human ES
cells, containing 758 cells [33].

2.4. Network validation method

To validate the inferred networks, we used the Transcription Factor Regu-
latory Network database (http://www.regulatorynetworks.org), which was con-
structed from DNaseI footprints and TF-binding motifs [34, 35]. We integrated
the TF regulatory networks of all cells for human and mouse, and extracted
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100× 100 TF regulatory networks for each dataset. We regarded these TF reg-
ulatory networks as correct networks for each dataset and calculated the AUC
values of the inferred networks. The AUC values were calculated by regard-
ing the directed edges that show higher absolute values as representing reliable
regulatory relationships. We removed self-loop regulation and TFs that do not
have an edge in the correct network from AUC calculation in order to avoid
biases.

3. Results

3.1. Selection of the size of z (D) and reproducibility of A

Our model was overfitted to the training data, and the inferred A was un-
stable with needlessly large D. Additionally, the model cannot reconstruct
expression dynamics with insufficiently small values of D. Therefore, the selec-
tion of appropriate values for D is necessary, and we applied SCODE to training
data and evaluated the validity of the optimized model on the basis of the RSS
of independent test data for various values of D (D = 2, 4, 6, and 8). For each
D, we executed SCODE 100 times independently, and the first, second, and
third quantiles of the RSS values of test data are shown in Fig. 2(a). For every
dataset, the median of RSS is almost saturated at D = 4.

Because we used random sampling during optimization, we validated the
reproducibility of the optimized A. We calculated the correlation coefficient
among optimized A for the top 50 replicates (in ascending order of RSS values)
of test data for each D. The corresponding first, second, and third quantiles of
correlation coefficients are shown in Fig. 2(b). For D = 4, the medians of the
correlation coefficients are 0.71, 0.94, and 0.88 for each dataset. The medians
tend to decrease for large D because the matrix A is unstable with needlessly
large D. The medians also decrease for small D, possibly because the optimized
A is trapped in local optima. In summary, the correlations among replicates
are high, and therefore, an optimized matrix A is stable for D = 4.

Because the RSS values for test data are almost saturated and the estimated
A are stable with D = 4, we used D = 4 unless otherwise specified. For
optimizedA of eachD, we used the mean of optimizedA of the top 50 replicates,
hereafter.

3.2. Validation of A optimization with simulation data

Next, we investigated whether SCODE can infer genuine A by using simu-
lated data. Because the dynamics of x become unrealistic with randomly deter-
mined A, we used previously inferred A (for D = 4) as genuine A and simulated
data with the same condition for each dataset (such as the same pseudo-time).
We also added uniform random numbers (ϵ ∈ [−0.1, 0.1]) to simulated data as
a noise term. We optimized A for each simulated dataset 100 times, and Fig. 3
shows the first, second, and third quantiles of the correlation coefficients be-
tween the genuine A and optimized A for each D. The medians are 0.70, 0.71,
and 0.91 for D = 4, and 0.61, 0.48, and 0.49 for D = 6. Therefore, SCODE
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can accurately infer the genuine A with appropriate D, and can roughly infer
A with slightly different D values unless we set extremely large or small D.

3.3. Reconstruction of expression dynamics

Although RSS values for test data were almost saturated at D = 4, this does
not necessarily mean that SCODE can successfully learn the dynamics. Next,
we investigated whether the optimized ODE can accurately reconstruct observed
expression dynamics to verify the optimization of SCODE (Fig 1(e)). For each
set of dynamics, the initial values (x at t = 0) were set to the mean expression
of 0-h or day 0 cells. At first, we compared the reconstructed dynamics with
observed data in the principal component analysis (PCA) space (Fig 4). For
every dataset, SCODE was able to reconstruct the dynamics with D ≥ 4.

Next, we compared the reconstructed dynamics with observed expression
dynamics for some TFs (Sox2, Utf1, Epas1, and Foxq1) in Data1 (Fig 5). The
analysis for every TF and dataset is described in the supplementary text. Al-
though the reconstructed dynamics of SCODE with D = 2 differ from the
observed data, the model with D ≥ 4 successfully reconstructed complicated
dynamics, such as transient patterns. Therefore, we concluded that SCODE
can successfully optimize A and learn the ODE of x

3.4. Validation of inferred network

We also evaluated the inferred network of each algorithm including the corre-
lation network by comparing them to TF regulatory networks based on DNaseI
footprints and TF-binding motifs (see section 2.4). Because the runtimes of
Jump3 are significantly large for large numbers of cells, we used 25 cells at even
intervals in the pseudo-time order as the data for Jump3. The AUC values of
each method for each dataset are shown in Table 1.

For Data1 and Data2, the AUC values of SCODE are significantly larger than
those of the other algorithms. This is because our model considers the dynamics
of expression and fully uses time information. Although Jump3 is also designed
for time-course expression data, the AUC values are not high. This is because
Jump3 is not designed for scRNA-Seq conducted during differentiation, but is
designed for multiple time-course data. This suggests the necessity of a novel
computational algorithm designed for scRNA-Seq data.

The performance of SCODE is second, but almost equal to the best perfor-
mance for Data3. Given that the reconstructed path in PCA space is a little
out of alignment for Data3 (Fig 4), our model based on linear ODEs might be
slightly insufficient to describe the expression dynamics of Data3.

In summary, our algorithm can infer TF regulatory networks with high per-
formance in comparison to other network inference algorithms, especially for
Data1 and Data2. This results implies the importance of time parameters in
network inference and the necessity of a novel network inference algorithm de-
signed for scRNA-Seq data obtained during differentiation.
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3.5. Runtimes

We investigated the runtime of each method and the runtimes for Data1 are
shown in Table 2. The runtime of Jump3 is calculated using the data from 25
cells as stated above. The runtime of SCODE is 11 seconds and is significantly
smaller than that of Jump3. Moreover, the runtime of SCODE is smaller than
those of msgps and GENIE3, which do not consider time dynamics. These
results show that SCODE can infer regulatory networks efficiently, even though
it considers a time parameter in its model.

3.6. Network analysis

Lastly, we investigated the structure of the inferred regulatory network of
Data1. At first, we defined the threshold α as the value of the 1000th largest
absolute value in A, and we counted the number of positive edges (Aij ≥ α)
and negative edges (Aij ≤ −α) for TF j. Figure 6(a) shows the total counts
for each TF in decreasing order. About 39% of edges are included in the top 10
TFs, and this result implies the existence of key regulators for differentiation.
Interestingly, most TFs mainly have either positive or negative edges, and this
result suggests that TFs might mainly work as either activators or inhibitors
in differentiation. This tendency was shared with Data3, but was not seen in
Data2 (see supplementary text). This result might reflect a difference in the
systems; Data1 and Data3 represent differentiation from ES cells, while Data2
represents direct reprogramming from MEF cells.

We also visualized the top 10 TF results Fig 6(b). Interestingly, Dnmt3a
and Dnmt3b, which are the de novo DNA methyltransferase have several positive
edges. Data1 is derived from scRNA-Seq obtained from cells differentiating from
mouse ES cells into PrE cells. To maintain the pluripotency of ES cells, Dnmt3a
and Dnmt3b seem dispensable, and these genes must be unimportant for ES cells
[36]. However, several studies have suggested the importance of Dnmt3a and
Dnmt3b in differentiation. For example, these TFs restrict the lineage-specific
function of TFs during differentiation via DNA methylation [37]. In addition,
Dnmt3a is essential for hematopoietic stem cell differentiation and it seems to
enhance differentiation by epigenetic silencing of multipotency genes [38]. Thus,
Dnmt3a and Dnmt3b are known to affect differentiation based on de novo DNA
methylation.

In this study, these genes were inferred to regulate several TFs positively.
Because DNA methylation essentially silences expression, these TFs might be
regulated positively indirectly via the inactivation of negative regulators of these
TFs. Although the direct targets of Dnmt3a and Dnmt3b are obscure, our result
suggests that they are the key regulators of this differentiation.

4. Discussion

The advancement of scRNA-Seq and the analysis of differentiation recon-
struction and pseudo-time have elucidated differentiation mechanisms. The in-
ference of regulatory networks associated with differentiation is necessary to

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088856doi: bioRxiv preprint 

https://doi.org/10.1101/088856
http://creativecommons.org/licenses/by/4.0/


further our understanding of differentiation and development. In the inference
of regulatory networks, it is important to fully use pseudo-time information and
expression dynamics. However, there are no efficient algorithms for inferring the
regulatory networks of many TFs from continuous time expression data. Thus,
we developed SCODE, an efficient algorithm based on linear ODEs. SCODE is
based on the transformation of linear ODEs and linear regression, and the time
complexity is significantly small.

We applied SCODE to three scRNA-Seq datasets during differentiation and
showed that SCODE can successfully optimize ODEs so that these ODEs can
reconstruct observed expression dynamics. In the validation of the inferred
network, the AUC values of SCODE were higher than those of other methods
in almost of all cases. The runtime of SCODE is significantly smaller than
that of Jump3, which also infers networks from time-course data. Additionally,
SCODE is faster than GENIE3, which does not use time information. These
performance results show the efficiency of SCODE.

Single-cell sequencing technologies are developing rapidly, and the number of
scRNA-Seq datasets produced from differentiating cells will therefore increase.
Our novel and efficient method for inferring regulatory networks demonstrated
high performance and will therefore enhance the analysis of regulatory networks.

Moreover, our model can reconstruct expression dynamics accurately. This
means that we can simulate expression dynamics (such as those associated with
the knockout of a TF) by using an optimized model, and such simulation-based
analyses will be useful for many types of research, such as detection of drivers
of differentiation. Thus, SCODE is useful not only for regulatory network infer-
ence, but also for various analyses using simulation, and therefore, our research
is a promising computational tool for further single-cell sequence analyses.
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Figures

Figure 1: Abstract illustration of SCODE. (a) Sample Z(e) from the ODE of z (b) Estimate
W based on linear regression. (c) Optimize B iteratively. (d) Infer A from optimized W and
B. (e) The expression dynamics can be reconstructed from the optimized ODE of x.

Figure 2: (a) The first, second, and third quantiles of the RSS values of test data (a) and the
correlations among optimized A of the top 50 replicates (b) for each D (D = 2, 4, 6, and 8)
for each dataset.
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Figure 3: The first, second, and third quantiles of the correlation coefficients between genuine
A and inferred A for each D.

Figure 4: PCA of scRNA-Seq data for each dataset. Each circle represents a cell, and its
color represents experimental time (from light gray to black). The reconstructed expression
dynamics are projected onto PCA space and are represented by colored lines (green, yellow,
orange, and red correspond to D=2, 4, 6, and 8, respectively).
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Figure 5: Observed expression of four TFs and reconstructed dynamics for each D (green,
yellow, orange, and red correspond to D=2, 4, 6, and 8, respectively). The x-axis represents
pseudo-time and y-axis represents log(TPM+1).

Figure 6: (a) Bar graph of positive and negative edges of each TF in decreasing order. For
visibility, only the top 60 TFs are shown (see supplementary text for plot of all TFs). (b) Bar
graph of the top 10 TFs.
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Tables

SCODE lm msgps Cor GENIE3 Jump3
Data1 0.536 0.480 0.510 0.505 0.474 0.504
Data2 0.581 0.489 0.516 0.492 0.472 0.492
Data3 0.523 0.480 0.499 0.524 0.522 0.501

Table 1: The AUC values of each method for each dataset. Cor is the correlation network.

SCODE lm msgps Cor GENIE3 Jump3
Runtime (s) 11 1.0 40 0.73 2.9× 102 2.7× 103*

Table 2: The runtimes of each method for Data1 (456 cells). The runtime of Jump3 is
calculated using data from 25 cells. The computations were performed on a MacBook Pro
equipped with a 3.1 GHz Intel Core i7 processor and 16 GB of 1867 MHz DDR3 RAM.
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