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Summary  
Access to primary research data is vital for the advancement of the scientific enterprise. It 
facilitates the validation of existing observations and provides the raw materials to build new 
hypotheses and make new discoveries. In the life sciences, research communities have 
repeatedly collaborated to build resources that allow for submission, archiving and access to 
gene sequences, macromolecular structures, and data from functional genomics 
experiments. Added value databases build on these archives by harmonising and integrating 
different datasets to enable simple queries and to unravel underlying biology. To extend the 
range of data types supported by community repositories, we have built a prototype Image 
Data Resource (IDR) that collects and integrates imaging data acquired using many different 
imaging modalities including high-content screening, super-resolution microscopy, time-
lapse imaging and digital pathology, and links them in a single resource. IDR links 
experimental perturbations to public genetic or chemical databases, and cell and tissue 
phenotypes to controlled vocabularies expressed as ontologies. By integrating the 
phenotypic and genetic metadata from multiple studies, IDR makes it possible to reveal 
novel functional networks of genetic interactions linked to specific cell phenotypes. To 
enhance the access to IDR’s integrated datasets, we have built a computational resource 
based on IPython notebooks that allows remote access to the full complement of IDR data. 
IDR is built as a platform that others can use to publish their own image data, and to 
enhance and extend the sharing and re-analysis of scientific image data. 

Introduction  
Much of the published research in the life sciences is based on image datasets that sample 
3D space, time, and the spectral characteristics of detected signal (e.g., photons, electrons, 
proton relaxation, etc.) to provide quantitative measures of cell, tissue and organismal 
processes and structures. The sheer size of biological image data sets makes data 
submission, handling and publication extremely challenging. An image-based genome-wide 
“high-content” screen (HCS) may contain over a million images, and new “virtual slide” and 
“light sheet” tissue imaging technologies generate individual images that contain gigapixels 
of data showing tissues or whole organisms at subcellular resolutions. At the same time, 
published versions of image data often are mere illustrations: they are presented in 
processed, compressed formats that cannot convey the measurements and multiple 
dimensions contained in the original image data and that can no longer be easily subjected 
to re-analysis. Furthermore, conventional publications neither include the metadata that 
defines imaging protocols, biological systems and perturbations nor the processing and 
analytic outputs that convert the image data into quantitative measurements.  
 
Several public image databases have appeared over the last few years. These provide on-
line access to image data, enable browsing and visualisation, and in some cases include 
experimental metadata. The Allen Brain Atlas, the Human Protein Atlas, and the Edinburgh 
Mouse Atlas all synthesise measurements of gene expression, protein localization and/or 
other analytic metadata with coordinate systems that place biomolecular localisation and 
concentration into a spatial and biological context (1-3). Similarly, many other examples of 
dedicated databases for specific imaging projects exist, each tailored to its aims and its 
target community (4-8). There are also a number of public resources that serve as true 
scientific, structured repositories for image data, i.e., that collect, store and provide 
persistent identifiers for long-term access to submitted datasets, as well as provide rich 
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functionalities for browsing, search and query. One archetype is the EMDataBank, the 
definitive community repository for molecular reconstructions recorded by electron 
microscopy (9). The Journal of Cell Biology has built the JCB DataViewer, which publishes 
image datasets associated with its on-line publications (10). The CELL Image Library 
publishes several thousand community-submitted images, some of which are linked to 
publications (11). FigShare stores 2D pictures derived from image datasets, and can provide 
links for download of image datasets (http://figshare.com). The EMDataBank recently has 
released a prototype repository for 3-D tomograms, the EMPIAR resource (12). Finally, the 
BioStudies and Dryad archives include support for browsing and downloading image data 
files linked to studies or publications (13)(https://datadryad.org/). Some of the these provide 
a resource for a specific imaging domain (e.g., EMDataBank) or experiment (e.g., 
Mitocheck), while others archive datasets and provide links to a related publication available 
at an external journal’s website (e.g., BioStudies). However, no existing resource links 
several independent biological imaging datasets to provide an “added value” platform, like 
the Expression Atlas achieves for a broad set of gene expression datasets (14) and UniProt 
delivers for protein structure and function datasets (15).  
 
Inspired by these “added value” resources, we have built a next-generation Image Data 
Resource (IDR) – an added value platform that combines data from multiple independent 
imaging experiments and from many different imaging modalities, integrates them into a 
single resource, and makes the data available for re-analysis in a convenient, scalable form. 
IDR provides, for the first time, a prototyped resource that supports browsing, search, 
visualisation and computational processing within and across datasets acquired from a wide 
variety of imaging domains. For each study, metadata related to the experimental design 
and execution, the acquisition of the image data, and downstream interpretation and 
analysis are stored in IDR alongside the image data and made available for search and 
query through a web interface and a single API. Wherever possible, we have mapped the 
phenotypes determined by dataset authors to a common ontology. For several studies, we 
have calculated comprehensive sets of image features that can be used by others for re-
analysis and the development of phenotypic classifiers. By harmonising the data from 
multiple imaging studies into a single system, IDR users can query across studies and 
identify phenotypic links between different experiments and perturbations.  

Results 

Current IDR 
IDR is currently populated with 25 imaging datasets from the biological imaging community, 
most of which are related to and linked to published works (Table 1). IDR holds ~41 TB of 
image data in ~30M image planes and ~988K individual experiments, and includes all 
associated experimental (e.g., genes, RNAi, chemistry, geographic location), analytic (e.g., 
submitter-calculated regions and features), and functional annotations. Datasets in human 
cells (e.g., http://idr-demo.openmicroscopy.org/webclient/?show=well-45407; http://idr-
demo.openmicroscopy.org/webclient/?show=well-547609) and fungi (e.g., http://idr-
demo.openmicroscopy.org/webclient/?show=well-590686; http://idr-
demo.openmicroscopy.org/webclient/?show=well-469267), super resolution 3DSIM images 
of centrosomes (http://idr-demo.openmicroscopy.org/webclient/?show=dataset-51) and 
dSTORM images of nuclear pores (http://idr-
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demo.openmicroscopy.org/webclient/?show=dataset-61), a comprehensive chemical screen 
in human cells (http://idr-demo.openmicroscopy.org/webclient/?show=plate-4101), a live cell 
screen in human cells (Mitocheck; http://idr-
demo.openmicroscopy.org/webclient/?show=well-771034) and histopathology whole slide 
images of tissues from several mouse mutants (https://idr-
demo.openmicroscopy.org/webclient/?show=dataset-369) are included. Finally, imaging 
from Tara Oceans, a global survey of plankton and other marine organisms, is also included 
(http://idr-demo.openmicroscopy.org/webclient/?show=plate-4751). The current collection of 
datasets samples a variety of biomedically-relevant biological processes like cell shape, 
division and adhesion, at scales ranging from nanometre-scale localisation of proteins in 
cells to millimetre-scale structure of tissues from animals.   

Genetic, Chemical and Functional Annotation in IDR 
To enable querying across the different data sets stored in IDR, we have included 
annotations describing experimental perturbations (genetic mutants, siRNA targets and 
reagents, expressed proteins, cell lines, drugs, etc.) and phenotypes declared by the study 
authors either from quantitative analysis or visual inspection of the image data. Wherever 
possible, experimental metadata in IDR link to external resources that are the authoritative 
resource for those metadata (Ensembl, NCBI, PubChem, etc). 
 
The result is that IDR is a sampling of phenotypes related to experimental perturbations 
across several independent studies. Many of the studies in IDR perturb gene function by 
mutation or siRNA depletion. To calculate the sampling of gene orthologues, we used 
Ensembl's BioMart resource (16) to access a normalised list of gene orthologues. Overall, 
19,598 gene orthologues are sampled, and 83.9% of gene orthologues are sampled more 
than 20 times. 90.2% of gene orthologues are sampled in three or more studies, so even in 
this early incarnation the phenotypes of perturbations in the majority of known genes are 
sampled in several different assays and organisms. 
 
We also sought to normalise the phenotypes defined by submitting study authors in IDR. 
Functional annotations (e.g., “increased peripheral actin") have been converted to defined 
terms in the Cellular Microscopy Phenotype Ontology (CMPO) or other ontologies (17), in 
collaboration with the data submitters (e.g.,  http://idr-
demo.openmicroscopy.org/webclient/?show=image-109846). Overall, 89% of the functional 
annotations have links to defined, published controlled vocabularies. 151 different ontology-
normalised phenotypes (e.g., "increased number of actin filaments", "mitosis arrested") are 
included in IDR, and 71 are reported by authors in only one study. Nonetheless, these 
phenotypes are well-sampled-- the mean number of samples per phenotype, across HCS 
and other imaging datasets is 688 and the median is 107. This skewing occurs because 
some phenotypes are very common or are over-represented in specific assays, e.g. “protein 
localized in cytosol phenotype”, (CMPO_0000393; http://idr-
demo.openmicroscopy.org/mapr/phenotype/?value=CMPO_0000393). Nonetheless, there 
are several cases where phenotypes are observed in multiple orthogonal assays. Two 
examples are the “round cell” phenotype (CMPO_0000118; http://idr-
demo.openmicroscopy.org/mapr/phenotype/?value=CMPO_0000118) and the "increased 
nuclear size" phenotype (CMPO_0000140; http://idr-
demo.openmicroscopy.org/mapr/phenotype/?value=CMPO_0000140). Figure 1 summarises 
the sampling of phenotypes across the current IDR datasets. Several classes of phenotypes 
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are included, and many cases are sampled in thousands of individual experiments. In total, 
IDR includes nearly one million individual experiments (Table 1), annotated with 
experimentally observed phenotypes.  

Data Visualization in IDR 
IDR integrates image data and metadata from several studies into a single resource. The 
current IDR web user interface (WUI) is based on the open source OMERO.web application 
(18) supplemented with a plugin allowing datasets to be viewed by ‘Study’, ‘Genes’, 
‘Phenotypes’, ‘siRNAs’, ‘Compounds’, and ‘Organisms’ (see Supplemental Information). 
Using this architecture makes the integrated data resource available for access and re-use 
in several ways. Image data are viewable as thumbnails for each study (e.g., http://idr-
demo.openmicroscopy.org/webclient/?show=plate-4349) and multi-dimensional images can 
be viewed and browsed (e.g., http://idr-demo.openmicroscopy.org/webclient/?show=well-
45501 and http://idr-demo.openmicroscopy.org/webclient/?show=well-93714). Tiled whole 
slide images used in histopathology are also supported (e.g., http://idr-
demo.openmicroscopy.org/webclient/?show=image-1920135). Where identified regions of 
interest (ROIs) have been submitted with the image data, these have been included and 
linked, and where possible, made available through the IDR WUI (e.g., http://idr-
demo.openmicroscopy.org/webclient/?show=well-590686 and http://idr-
demo.openmicroscopy.org/webclient/img_detail/1230005/). IDR images, thumbnails and 
metadata are accessible through the IDR WUI and web-based API in JSON format (see 
Supplemental Information). They also can be embedded into other pages using the 
OMERO.web gateway (e.g., https://www.eurobioimaging-interim.eu/image-data-
repository.html). 

Standardised Interfaces for Imaging Metadata  
IDR integrates imaging data from many different, independent studies. These data were 
acquired using several different imaging modalities, in the absence of any over-arching 
standards for experimental, imaging or analytic metadata. While efforts like MIACA 
(http://miaca.sourceforge.net/), NeuroVault (19), MULTIMOT (20) and several other projects 
have proposed data standards in specific imaging subdomains, there is not yet a metadata 
standard that crosses all of the imaging domains potentially served by IDR.  We therefore 
sought to adopt lightweight methods from other communities that have had broad 
acceptance (21) and converted metadata submitted in custom formats – spreadsheets, 
PDFs, MySQL databases, and Microsoft Word documents -- into a consistent tabular format 
inspired by the MAGE-TAB and ISA-TAB specifications (22, 23) that could then be used for 
importing semi-structured metadata like gene and ontology identifiers into OMERO. We also 
used the Bio-Formats software library to identify and convert well-defined, semantically-
typed elements that describe the imaging metadata (e.g., image pixel size) as specified in 
the OME Data Model (24, 25). The resulting translation scripts were used to integrate 
datasets from multiple distinct studies and imaging modalities into a single resource. The 
scripts are publicly available (see Methods) and thus comprise a framework for recognising 
and reading a range of metadata types across several imaging domains into a common, 
open specification. 
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Added Value of IDR  
Because IDR links gene names and phenotypes, query results that combine genes and 
phenotypes across multiple studies are possible through simple text-based search. 
Searching for the gene SGOL1 (http://idr-
demo.openmicroscopy.org/mapr/gene/?value=SGOL1) returns a range of phenotypes from 
four separate studies associated with mitotic defects (for example, CMPO_0000118, 
CMPO_0000305, CMPO_0000212, CMPO_0000344, etc.) (4, 26) but also an accelerated 
secretion phenotype (CMPO_0000246) in a screen for defects in protein secretion (27). A 
second example is provided in a histopathology study of tissue phenotypes in a series of 
mouse mutants. Knockout of carbonic anhydrase 4 (CAR4; http://idr-
demo.openmicroscopy.org/mapr/gene/?value=Car4) in mouse results in a range of defects 
in homeostasis in the brain, rib growth and male fertility (28-30). Data held in IDR show 
abnormal nuclear phenotypes in several tissues from CAR4-/- mice (e.g., GI: http://idr-
demo.openmicroscopy.org/webclient/?show=dataset-153; liver: http://idr-
demo.openmicroscopy.org/webclient/?show=image-1918940; male reproductive tract: 
http://idr-demo.openmicroscopy.org/webclient/?show=image-1918953). The human 
orthologue, CA4, is involved in certain forms of retinitis pigmentosa (31, 32). Data presented 
in IDR from the Mitocheck study show that siRNA depletion of CA4 in HeLa cells (4) also 
results in abnormally shaped nuclei (http://idr-
demo.openmicroscopy.org/webclient/?show=well-828419) consistent with a defect in some 
aspect of the cell division cycle.  
 
Phenotypes across distinct studies can also be used to build novel representations of gene 
networks. Figure 2A shows the gene network created when the gene knockouts or 
knockdowns that caused an elongated cell phenotype (CMPO_0000077) in studies in S. 
pombe and human cells are linked by queries to String DB and visualised in Cytoscape (33). 
The genes discovered in the three studies form interconnected, non-overlapping, 
complementary networks that connect specific macromolecular complexes to the elongated 
cell phenotype. For example, HELZ2, MED30, MED18 and MED20 are all part of the 
Mediator Complex, but were identified as “elongated cell” hits in separate studies using 
different biological models (idr0001-A, idr0008-B, idr0012-A, Figure 2B). In another example, 
POLR2G (from idr0012-A), PAF1 (from idr0001-A) and SUPT16H (from idr0008-B) were 
scored as elongated cell hits in these studies and are all part of the Elongation complex in 
the RNA Polymerase II transcription pathway. Finally, ASH2L (“elongated cell phenotype” in 
idr0012-A), associates with SETD1A and SETD1B (“elongated cell phenotype” in idr0001-A) 
to form the Set1 histone methyltransferase (HMT). These examples demonstrate that these 
individual hits are probably not due to off-target effects or characteristics of individual 
biological models but arise through conserved, specific functions of large macromolecular 
complexes. This shows the utility and importance of combining phenotypic data of studies 
from different organisms and scales, and of integrating the metadata from independent 
studies, to generate added value that enhances the understanding of biological 
mechanisms. 
 
The integration of experimental, image and analytic metadata also provides an opportunity 
to include new functionalities for more advanced visualization and analytics of imaging data 
and metadata, bringing further added value to the original studies and datasets. As an 
example, we have added the data analytics tool Mineotaur (34) to one of IDR’s datasets 
(http://mineotaur-demo.openmicroscopy.org/mineotaur/). This allows visual querying and 
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analysis of quantitative feature data. For instance, having shown that components of the 
Set1 HMT function in controlling cell morphology in S. pombe and human cells, we noticed 
that genes like ASH2L were in the “elongated cell” network based on human cell data 
(idr0012-A) but not S. pombe data, where ash2, the S. pombe ASH2L orthologue, was not 
annotated as a cell elongation “hit”. We first noted that ash2 has a microtubule cytoskeleton 
phenotype (http://idr-demo.openmicroscopy.org/webclient/?show=well-592371). We then 
queried the criteria previously used for cell shape hits in the Sysgro screen (idr0001-A) and 
found that ash2 fell just below the cutoff originally used in this study to define phenotypic hits 
for cell shape (Supplemental Information). When combined with results on ASH2L from 
HeLa cells (idr0012-A, idr0008-B) (Figure 2B) these results suggest that the Set1 HMT has a 
strongly conserved role in controlling cell shape and the cytoskeleton in unicellular and 
multicellular organisms.  

Data Integration and Access 
Like most modern on-line resources IDR makes data available through a web user-interface 
as well as a web-based JSON API. This encourages third-parties to make use of IDR in their 
own sites. For example, IDR metadata has been downloaded from http://idr-
demo.openmicroscopy.org/webclient/?show=screen-102 and used to create interactive 
image and metadata visualisations based on third party software 
(http://demo.zegami.com/omero-idr.html). Similarly, image data in IDR has been linked to 
study data in BioStudies, thereby extending the linkage of study and image metadata (e.g., 
https://www.ebi.ac.uk/biostudies/studies/S-EPMC4704494), and to PhenoImageShare (35), 
an on-line phenotypic repository (e.g., 
http://www.phenoimageshare.org/search/?term=&hostName=Image+Data+Repository+(IDR)
). These are examples of use of IDR as a service that delivers data for other applications to 
integrate and reuse.  
 
To add further value and extend the possibilities for reuse of IDR data, we have initiated the 
calculation of comprehensive sets of feature vectors of IDR image data. For this purpose, we 
have used WND-CHRM, an open source tool that calculates a broad set of image features 
(36). To date full WND-CHRM features have been calculated for images in idr0002-A, 
idr0005-A, idr0008-B, idr0009-A, idr0009-B, idr0012-A, and parts of idr0013-A and idr0013-
B. Feature calculations for other IDR datasets are in progress.  Features are stored in IDR 
using OMERO’s HDF5-based tabular data store and available through the OMERO API in 
IDR’s computational resource (see Supplemental Information). 
 
The integration of image-based study phenotypes and calculated features makes IDR an 
attractive candidate for computational re-analysis. However, given the size of IDR, 
downloading the full complement of data it contains is impractical. We have therefore built 
two methods of accessing IDR data. In the first, we have connected IDR to a computational 
resource that provides remote, API-based access to IDR datasets. This resource 
authenticates against GitHub and is based on IPython notebooks. This provides a flexible, 
web browser-based analysis capability for IDR. To demonstrate the utility of this resource, 
and exemplify its use, we have developed and deposited notebooks that provide 
visualisation of single tile WND-CHRM features using PCA, access to images annotated with 
CMPO phenotypes, calculation of gene networks, and calculation of WND-CHRM features 
for individual images that are not yet associated with WND-CHRM features. In particular, we 
provide notebooks to build interactive versions of Figures 1 and 2 directly from the IDR. 
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Users can access their own analysis notebooks stored in GitHub (http://github.com/idr-
notebooks). IDR’s computational resource is available at https://idr-
demo.openmicroscopy.org/jupyter/.   
 
In addition, to enable local access to IDR metadata, we have built scripts in Ansible that 
automate the deployment of the IDR software stack and have made all the databases, 
metadata and thumbnails in IDR available for download (see Supplemental Information). 
The downloadable IDR misses the original image data, but contains all image thumbnails 
and all experimental, phenotypic and analytic metadata associated with IDR images. These 
can be deployed via the IDR software stack and re-used in a local context.  

Conclusion  
Making data public and available is a critical part of the scientific enterprise (37) 
(https://wellcome.ac.uk/what-we-do/our-work/expert-advisory-group-data-access) 
(https://royalsociety.org/topics-policy/projects/science-public-enterprise/report/). To take the 
next step in facilitating the reuse and meta-analysis of image datasets we have built IDR, a 
next-generation data technology that integrates and publishes image data and metadata 
from a wide range of imaging modalities and scales in a consistent format. IDR integrates 
experimental, imaging, phenotypic and analytic metadata from several studies into a single 
resource, allowing new modes of biological Big Data querying and analysis. As more 
datasets are added to and integrated with IDR, they will potentiate and catalyze the 
generation of new biological hypotheses and discoveries.  
 
IDR’s resource and technology provides a foundation for others to build on-- to use and 
connect their own datasets and repositories, and to integrate in their own data resources 
and applications. IDR therefore functions as a next step in building the on-line databases 
and services that will ultimately integrate and serve imaging data from studies based on 
complex, multi-modal image technologies.  
 
In IDR, we have linked image metadata from several independent studies. Experimental, 
imaging phenotypic and analytic metadata are recorded in a consistent format. Rather than 
declaring and attempting to enforce a strict imaging data standard, IDR provides tools for 
supporting community formats and releases these as a framework that facilitates data reuse. 
We hope that the availability of this framework will provide incentives for others to structure 
their metadata in shareable formats that can be read into IDR, or other applications, whether 
based on OMERO or not. In the future, we can imagine that these and other capabilities 
could be extended in IDR - or similar repositories that link to IDR - to enable systematic 
integration, visualization and analytics across imaging studies, thereby helping to harness 
and capitalize on the exponentially increasing amounts of bio-imaging data.  

Methods 

Architecture and Population of IDR 
IDR (http://idr-demo.openmicroscopy.org) was built using open-source OMERO (18) and 
Bio-Formats (24) as a foundation. Deployments are managed by Ansible playbooks along 
with re-usable roles on an OpenStack-based cloud contained within the EMBL-EBI Embassy 
resource. Datasets (see Table 1) were collected by shipped USB-drive or transferred by 
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Aspera. Included datasets were selected according to the criteria defined by the Euro-
BioImaging/Elixir Data Strategy concept of "reference images" 
(http://www.eurobioimaging.eu/content-news/euro-bioimaging-elixir-image-data-strategy), 
which states that image datasets for publication should be related to published studies, 
linked as much as possible to other resources and be candidates for re-use, re-analysis, 
and/or integration with other studies. 
 
Experimental and analytic metadata were submitted in either spreadsheets (CSV, XLS), 
PDF or HDF5 files or a MySQL database, each using its own custom format. We converted 
these custom formats to a consistent tabular format inspired by the MAGE and ISA-TAB 
specifications (22, 23) and combined into a single CSV file using a custom script (available 
in http://github.com/IDR/idr-metadata) and imported into OMERO. Imaging metadata and 
binary data were imported into OMERO using Bio-Formats. Experimental and analytic 
metadata were stored using OMERO.tables, an HDF5-backed tabular data store used by 
OMERO. For each dataset, metadata that were valuable for querying and search were 
copied to OMERO’s key-value-based Map Annotation facility (38). This strategy meant that 
different metadata types and elements can be accessed using different parts of the OMERO 
API, depending on the search and querying capabilities they require. For more information 
on the construction of queries, see Supplemental Information. 
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Table 1. List of Datasets in IDR 
The phenotype column contains the number of submitted phenotypes. The number of genes, compounds or proteins identified as 
targets for analysis is listed in the Targets column and the ‘Experiments’ column lists the number of individual wells in HCS studies or 
imaging experiments in non-screen datasets.  
 

Study Species Type 
5D 

Images 
Size 
(TB) 

Pheno- 
types Targets   

Experi- 
ments Reference 

idr0001-graml-sysgro S. pombe 

gene 
deletion 
screen 109,728 10.06 19 3,005 18,432 (5) 

idr0002-heriche- 
condensation Human 

RNAi 
screen 1,152 2.10 2 102 1,152 (26) 

idr0003-breker-plasticity S. cerevisiae 
protein 
screen 97,920 0.20 14 6,234 32,640 (39) 

idr0004-thorpe-rad52 S. cerevisiae 

gene 
deletion 
screen 3,765 0.17 1 4,195 4,512 (40) 

idr0005-toret-adhesion D. melanogaster 
RNAi 
screen 40,608 0.12 1 12,976 13,536 (41) 

idr0005-toret-adhesion D. melanogaster 
RNAi 
screen 5,184 0.02 1 803 1,728 (41) 

idr0006-fong-nuclearbodies Human 

protein 
localization 
screen 240,848 1.40 8 12,743 16,224 (42) 

idr0007-srikumar-sumo S. cerevisiae 

protein 
localization 
screen 3,456 0.02 23 377 1,152 (43) 

idr0008-rohn-actinome D. melanogaster 
RNAi 
screen 44,538 0.09 26 12,274 22,272 (44) 

idr0008-rohn-actinome Human 
RNAi 
screen 11,406 0.03 40 552 4,224 (44) 

idr0009-simpson-secretion Human 
RNAi 
screen 370,176 3.04 4 17,953 370,176 (27)  

idr0009-simpson-secretion Human 
RNAi 
screen 26,880 0.21 1 1,392 26,880 (27)  
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idr0010-doil-dnadamage Human 
RNAi 
screen 56,832 0.08 2 18,393 56,832 (45) 

idr0012-fuchs-cellmorph Human 
RNAi 
screen 45,692 0.38 18 16,701 26,112 (46) 

idr0013-neumann-
mitocheck Human 

RNAi 
screen 191,368 13.90 18 18,393 195,840 (4)  

idr0013-neumann-
mitocheck Human 

RNAi 
screen 9,627 0.64 9 1,145 10,752  (4) 

idr0015-UNKNOWN-
taraoceans multi-species 

geographic 
screen 32,776 2.49 0 84 84 (47) 

idr0016-wawer- 
bioactivecompoundprofiling Human 

small 
molecule 
screen 869,820 3.19 2 29,542 144,000 (48) 

idr0017-breinig-drugscreen Human 

small 
molecule 
screen 147,456 2.48 0 1,281 36,864 (49) 

idr0018-neff-histopathology Mus musculus 

histopatholo
gy of gene 
knockouts 899 0.27 48 9 248 

 

idr0019-sero-nfkappab Human 
HCS image 
analysis  25,872 0.03 0 198 2,156 (50) 

idr0020-barr-chtog Human 
RNAi 
screen 36,960 0.03 2 241 1,232 (51) 

idr0021-lawo- 
pericentriolarmaterial Human 

protein 
localization 
using 3D-
SIM 414 0.0003 1 9 414 (52) 

idr0023-szymborska- 
nuclearpore Human 

protein 
localization 
using 
dSTORM 524 0.0005 1 7 359 (53) 

idr0027-dickerson- 
chromatin S. cerevisiae 

3D-tracking 
of tagged 
chromatin 
loci 229 0.03 0 8 112 (54) 

Sum     2,374,130 40.98 241 158,617 987,933 
 

Average     94,965 1.639 9.640 6,345 39,517 
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Figure Legends 
 
Figure 1. Sampling of Phenotypes in the IDR.  
The numbers of samples per phenotype. Each sample represents a well from a micro-well plate 
in a screen or image from a dataset. Wells annotated as controls were not included. User 
submitted phenotype terms were mapped to the CMPO terms shown here. Colours represent 
higher-level groupings of phenotype terms. Point size shows the number of studies (group of 
related screens) each phenotype is linked to with small, medium and large points representing 
1, 2 or 3 studies respectively.  
 
 
Figure 2.  Network Analysis of Genes Linked to the Elongated Cell Phenotype in the IDR. 
A.  Protein-protein interaction network produced in StringDB and visualized using Cytoscape 
(http://www.cytoscape.org/ (33)) based on the genes linked to the elongated cell phenotype 
(CMPO_000077) in three distinct studies in IDR. Genes from S. pombe (green, idr0001-A, (5)), 
HeLa cell morphology (blue, idr0012-A, (46) ) and HeLa Actinome (red, idr0008-B, (44)) are 
displayed with linkages (gray) from StringDB. To enable comparisons in Cytoscape, the human 
orthologues of S. pombe genes are used for the genes identified in idr0001-A.  
 
B. Zoomed view of network in A, with gene names. See Supplemental Information for the list of 
gene names used in the figure. 
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