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Abstract  

Psychiatric illness is unlikely to arise from pathology occurring uniformly across all cell types in affected 

brain regions. Despite this, transcriptomic analyses of the human brain have typically been conducted 

using macro-dissected tissue due to the difficulty of performing single-cell type analyses with donated 

post-mortem brains. To address this issue statistically, we compiled a database of several thousand 

transcripts that were specifically-enriched in one of 10 primary cortical cell types, as identified in 

previous publications. Using this database, we predicted the relative cell type composition for 833 human 

cortical samples using microarray or RNA-Seq data from the Pritzker Consortium (GSE92538) or 

publicly-available databases (GSE53987, GSE21935, GSE21138, CommonMind Consortium). These 

predictions were generated by averaging normalized expression levels across transcripts specific to each 

cell type using our R-package BrainInABlender (validated and publicly-released: 

https://github.com/hagenaue/BrainInABlender). Using this method, we found that the principal 

components of variation in the datasets were largely explained by the neuron to glia ratio of the samples. 

This variability was not simply due to dissection – the relative balance of brain cell types was influenced 

by a variety of demographic, pre- and post-mortem variables. Prolonged hypoxia around the time of death 

predicted increased astrocytic and endothelial content in the tissue, illustrating vascular upregulation. 

Aging was associated with decreased neuronal content. Red blood cell content was reduced in individuals 

who died following systemic blood loss. Subjects with Major Depressive Disorder had decreased 

astrocytic content, mirroring previous morphometric observations. Subjects with Schizophrenia had 

reduced red blood cell content, resembling the hypofrontality detected in fMRI experiments. Finally, in 

datasets containing samples with especially variable cell content, we found that controlling for predicted 

sample cell content while evaluating differential expression improved the detection of previously-

identified psychiatric effects. We conclude that accounting for cell type can greatly improve the 

interpretability of microarray data. 
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1. Introduction 1	

The human brain is a remarkable mosaic of diverse cell types stratified into rolling cortical layers, 2	

arching white matter highways, and interlocking deep nuclei. In the past decade, we have come to 3	

recognize the importance of this cellular diversity in even the most basic neural circuits. At the same time, 4	

we have developed the capability to comprehensively measure the thousands of molecules essential for 5	

cell function. These insights have provided conflicting priorities within the study of psychiatric illness: do 6	

we carefully examine individual molecules within their cellular and anatomical context or do we extract 7	

transcript or protein en masse to perform large-scale unbiased transcriptomic or proteomic analyses?  In 8	

rodent models, researchers have escaped this dilemma by a boon of new technology: single cell laser 9	

capture, cell culture, and cell-sorting techniques that can provide sufficient extract for transcriptomic and 10	

proteomic analyses.  However, single cell analyses of the human brain are far more challenging (1–3) – 11	

live tissue is only available in the rarest of circumstances (such as temporal lobe resection) and intact 12	

single cells are difficult to dissociate from post-mortem tissue without intensive procedures like laser 13	

capture microscopy.  14	

Therefore, to date, the vast majority of unbiased transcriptomic analyses of the human brain have 15	

been conducted using macro-dissected, cell-type heterogeneous tissue. On Gene Expression Omnibus 16	

alone, there are at least 63* publicly-available macro-dissected post-mortem human brain tissue datasets, 17	

and many other macro-dissected human brain datasets are available to researchers via privately-funded 18	

portals (Stanley Medical Research Institute, Allen Brain Atlas, CommonMind Consortium). These 19	

datasets have provided us with novel hypotheses (e.g., (4,5)), but researchers who work with the data 20	

often report frustration with the relatively small number of candidate molecules that survive analyses 21	

using their painstakingly-collected samples, as well as the overwhelming challenge of interpreting 22	

molecular results in isolation from their respective cellular context. At the core of this issue is the inability 23	

to differentiate between (1) alterations in gene expression that reflect an overall disturbance in the relative 24	

																																																								
* As of 9-14-2017 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2017. ; https://doi.org/10.1101/089391doi: bioRxiv preprint 

https://doi.org/10.1101/089391


Running	Head:	PREDICTING	CELL	TYPE	BALANCE	

	 6	

ratio of the different cell types comprising the tissue sample, and (2) intrinsic dysregulation of one or 25	

more cell types, indicating perturbed biological function. 26	

In this manuscript, we present results from an easily accessible solution to this problem that 27	

allows researchers to statistically estimate the relative number or transcriptional activity of particular cell 28	

types in macro-dissected human brain microarray data by tracking the collective rise and fall of 29	

previously identified cell type specific transcripts. Similar techniques have been used to successfully 30	

predict cell type content in human blood samples (6–9), as well as diseased and aged brain samples (10–31	

12). Our method was specifically designed for application to large, highly-normalized human brain 32	

transcriptional profiling datasets, such as those commonly used by neuroscientific research bodies such as 33	

the Pritzker Neuropsychiatric Research Consortium and the Allen Brain Institute. 34	

We took advantage of a series of newly available data sources depicting the transcriptome of 35	

known cell types, and applied them to infer the relative balance of cell types in our tissue samples in a 36	

semi-supervised fashion.  We draw from seven large studies detailing cell-type specific gene expression 37	

in a wide variety of cells in the forebrain and cortex (2,13–18). Our analyses include all major categories 38	

of cortical cell types (17), including two overarching categories of neurons that have been implicated in 39	

psychiatric illness (19): projection neurons, which are large, pyramidal, and predominantly excitatory, and 40	

interneurons, which are small and predominantly inhibitory (20). These are accompanied by the three 41	

prevalent forms of glia that make up the majority of cells in the brain: oligodendrocytes, which provide 42	

the insulating myelin sheath that enhances electrical transmission in axons (21), astrocytes, which help 43	

create the blood-brain barrier and provide structural and metabolic support for neurons, including 44	

extracellular chemical and electrical homeostasis, signal propagation, and response to injury (21), and 45	

microglia, which serve as the brain’s resident macrophages and provide an active immune response (21). 46	

We also incorporate structural and vascular cell types: endothelial cells, which line the interior surface of 47	

blood vessels, and mural cells (smooth muscle cells and pericytes), which regulate blood flow (22). 48	

Progenitor cells were also included in our analysis because they are widely regarded as important for the 49	

pathogenesis of mood disorders (23). Within the cortex, these cells mostly take the form of immature 50	
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oligodendrocytes (17). Finally, the primary cells found in blood, erythrocytes or red blood cells (RBCs), 51	

carry essential oxygen throughout the brain. These cells do not contain a cell nucleus and do not generate 52	

new RNA, but still contain an existing, highly-specialized transcriptome (24). The relative presence of 53	

these cells could arguably represent overall blood flow, the functional marker of regional neural activity 54	

traditionally used in human imaging studies. 55	

To characterize the balance of these cell types in psychiatric samples, we first compared the 56	

predictive value of cell type specific transcripts identified by diverse data sources and then summarized 57	

their collective predictions of relative cell type balance into covariates that could be used in larger linear 58	

regression models. We find that these “cell type indices” can successfully predict relative cell content in 59	

validation datasets, including in vitro and post-mortem datasets. We discover that the variability in the 60	

relative cell type balance of samples can explain a large percentage of the variation in macro-dissected 61	

human brain microarray and RNA-Seq datasets. This variability is driven by pre- and post-mortem 62	

subject variables, such as age, aerobic environment, and large scale blood loss, in addition to dissection. 63	

Finally, we demonstrate that this method enhances our ability to discover and interpret psychiatric effects 64	

in human brain microarray datasets, uncovering known changes in cell type balance in relationship to 65	

Major Depressive Disorder and Schizophrenia and potentially increasing our sensitivity to detect genes 66	

with previously-identified relationships to Bipolar Disorder and Schizophrenia in datasets that contain 67	

samples with highly-variable cell content.  68	

 69	

2. Methods & Validation 70	

 71	

2.1 Compiling a Database of Cell Type Specific Transcripts 72	

To perform this analysis, we compiled a database of several thousand transcripts that were 73	

specifically-enriched in one of nine primary brain cell types within seven published single-cell or purified 74	

cell type transcriptomic experiments using mammalian brain tissues (2,13–18) (Suppl. Table 1). These 75	
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primary brain cell types included six types of support cells: astrocytes, endothelial cells, mural cells, 76	

microglia, immature and mature oligodendrocytes, as well as two broad categories of neurons 77	

(interneurons and projection neurons). We also included a category for neurons that were generically 78	

extracted (“neuron_all”). The experimental and statistical methods for determining whether a transcript 79	

was enriched in a particular cell type varied by publication (Figure 1), and included both RNA-Seq and 80	

microarray datasets. We focused on cell-type specific transcripts identified using cortical or forebrain 81	

samples because the data available for these brain regions was more plentiful than for the deep nuclei or 82	

the cerebellum. In addition, we artificially generated a list of 17 transcripts specific to erythrocytes (red 83	

blood cells or RBC) by searching Gene Card for erythrocyte and hemoglobin-related genes 84	

(http://www.genecards.org/).  85	

 In all, we curated gene expression signatures for 10 cell types expected to account for most of the 86	

cells in the cortex. Our final database included 2499 unique human-derived or orthologous (as predicted 87	

by HCOP using 11 available databases: http://www.genenames.org/cgi-bin/hcop) transcripts, with a focus 88	

on coding varieties. We have made this database publicly accessible within our R package 89	

(https://github.com/hagenaue/BrainInABlender) and as a downloadable spreadsheet 90	

(https://sites.google.com/a/umich.edu/megan-hastings-hagenauer/home/cell-type-analysis).   91	
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 92	

Figure 1. Thousands of transcripts have been identified as specifically-enriched in particular cortical 93	
cell types within published single-cell or purified cell type transcriptomic experiments (“reference 94	
datasets”). The experimental and statistical methods for determining whether a transcript was enriched 95	
in a cell type varied by publication, and included both RNA-Seq and microarray datasets.  96	

 97	

Citation Cell)Origin Method Stringency Derived)Cortical)Cell)Type)Indices) Transcripts/
Orthologs

Astrocyte_All 73
Neuron_All 80
Oligodendrocyte_All 50

Astrocyte_All 40
Endothelial_All 40
Microglia_All 40
Mural_Pericyte 40
Neuron_All 40
Oligodendrocyte_Myelinating 40
Oligodendrocyte_Newly>Formed 39
Oligodendrocyte_ProgenitorBCell 40

Astrocyte_All 240
Endothelial_All 353
Microglia_All 436
Mural_All 155
Neuron_Interneuron 365
Neuron_Pyramidal_Cortical 294
Oligodendrocyte_All 453

Astrocyte_All 21
Endothelial_All 21
Microglia_All 21
Neuron_All 21
Oligodendrocyte_Mature 21
Oligodendrocyte_ProgenitorBCell 21

Astrocyte_All 25
Neuron_CorticoSpinal 25
Neuron_CorticoStriatal 25
Neuron_CorticoThalamic 25
Neuron_Interneuron_CORT 25
Neuron_Neuron_CCK 25
Neuron_Neuron_PNOC 24
Oligodendrocyte_All 25
Oligodendrocyte_Mature 25

Endothelial_All 49

Mural_Vascular 50

Neuron_GABA 32

Neuron_Glutamate 67
Gene$card Human Erythrocyte>relatedBgenes Unknown RBC_All 17

CahoyBetBal.,B
J$Neuro,$
2008.

ForebrainBofByoungBtransgenicB
mice

FluorescentBcellBsortingBusingB
antibodiesBtoBdepleteBnon>

specificBcellBtypesBfollowedBbyB
AffymetrixBmicroarray

>20BFoldB
Enrichment

ZhangBetBal.,B
J$Neuro ,B
2014

CortexBofByoungBtransgenicB
mice

FluorescentBcellBsortingBusingB
antibodiesBtoBdepleteBnon>

specificBcellBtypesBfollowedBbyB
RNAseq

TopB40BtranscriptsB
withB>20BFoldB
Enrichment

ZeiselBetBal.,B
Science,$
2015

SomatosensoryBcortexBandB
CA1BhippocampusBofBjuvenileB

mice

UnbiasedBcaptureBofBsingleBcellsB
fromBwholeBtissueBcellB

suspensionBfollowedBbyBRNAseq

EnrichedBwithB
99.9%BposteriorB

probability

DarmanisBetB
al.,BPNAS,B
2015

AnteriorBtemporalBlobeB
resectedBfromBadultBhumanB
epilepticBpatientsBandBcortexB

fromBfetusesB16>18BwksB
postgestation.

UnbiasedBcaptureBofBsingleBcellsB
fromBwholeBtissueBcellB

suspensionBfollowedBbyBRNAseq

TopB20BenrichedB
transcriptsB

SuginoBetBal.,B
Nature$

Neuro, B2006

CingulateBandBSomatosensoryB
Cortices,BBasolateralB
Amygdala,BCA1>CA3B

Hippocampus,BandBDorsalB
LateralBGeniculateBNucleusBofB
theBThalamusBofBtransgenicB

mice

Hand>sortingBfluorescently>
labeledBcellsBfollowedBbyB

amplificationBandBAffymetrixB
microarray

EnrichedBwithBp<B
1.5E>11

DoyleBetBal.,B
Cell,$2008

Cortex,BStriatum,BCerebellum,B
SpinalBCord,BBasalBForebrain,B
andBBrainBStemBofByoungB

transgenicBmice

CaptureBofBtranslatedBmRNAB
fromBspecificBcellBtypesBlabeledBinB
transgenicBmiceBusingBtranslatingB
ribosomeBaffinityBpurificationB
(TRAP)BfollowedBbyBmicroarray.

TopB25BenrichedB
transcriptsB

determinedBbyB
iterativeBrankB
comparisons

DanemanBetB
al.,$PLOS,$
2010

CortexBofByoungBtransgenicB
mice

FluorescentBcellBsortingBusingB
antibodiesBtoBdepleteBnon>

specificBcellBtypesBfollowedBbyB
AffymetrixBmicroarray

>20BFoldB
enrichmentBforB
endothelial,B>8BB
foldBenrichmentB
forBvasculature
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2.2 “BrainInABlender”:  Employing the Database of Cell Type Specific Transcripts to Predict 98	

Relative Cell Type Balance in Heterogenous Brain Samples   99	

Next, we designed a method that uses the collective expression of cell type specific transcripts in 100	

brain tissue samples to predict the relative cell type balance of the samples (“BrainInABlender”). We 101	

specifically designed our method to be compatible with large, highly-normalized human brain 102	

transcriptional profiling datasets such as those used by our neuropsychiatric research consortium 103	

(Pritzker). We have made our method publicly-available in the form of a downloadable R package 104	

(https://github.com/hagenaue/BrainInABlender). 105	

In brief, BrainInABlender extracts the data from any particular transcriptional profiling dataset 106	

(microarray, RNA-Seq) that represent genes identified in our database as having cell type specific 107	

expression in the brain (as curated by official gene symbol). The expression-level data for each of these 108	

transcripts (RNA-Seq: gene-level summary, microarray: probe or probeset summary) are then centered 109	

and scaled across samples (mean=0, sd=1) to prevent transcripts with more variable signal from exerting 110	

disproportionate influence on the results. Then, if necessary, the normalized data from all transcripts 111	

representing the same gene are averaged for each sample and re-normalized.  Finally, for each sample, 112	

these values are averaged across the genes identified as having expression specific to a particular cell type 113	

in each publication included in the database of cell transcripts. This creates 38 cell type signatures derived 114	

from the cell type specific genes identified by the eight publications ("Cell Type Indices", Figure 1), each 115	

of which predicts the relative content for one of the 10 primary cell types in our brain samples (Figure 2).  116	

Please note that our method was specifically designed to tackle challenges present in the Pritzker 117	

Consortium microarray data, but we later discovered that it bears some resemblance to the existing 118	

method of Population Specific Expression Analysis (PSEA, (10–12)). A more detailed discussion of the 119	

similarities and differences between the techniques can be found in Section 7.2. 120	
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Figure 2. Predicting the relative cell type balance in human brain samples using genes previously-121	
identified as having cell type specific expression. Within macro-dissected brain tissue samples, variable 122	
cell type balance is likely to influence the pattern of gene expression. To estimate this variability, we 123	
extracted the microarray data for probe sets representing genes that had been previously identified as 124	
having cell type specific expression in previous publications (“Lists of Cell Type Specific Genes”, Figure 125	
1) and then averaged across the transcripts identified as specific to a particular cell type in each 126	
publication to create 38 different "Cell Type Indices" that predicted relative cell content in each of the 127	
brain samples. 128	

 129	

2.3 Validation of Relative Cell Content Predictions Using Datasets Derived from Purified or 130	

Cultured Cells   131	

We validated the method using publicly-available datasets from purified cell types and artificial 132	

cell mixtures (Supplementary Methods and Results). We found that the statistical cell type indices easily 133	

predicted the cell type identities of purified samples (datasets GSE52564 and GSE6783; (2,18); Suppl. 134	

Figure 1, Suppl. Figure 2). This was true regardless of the publication from which the cell type specific 135	

genes were derived: cell type specific gene lists derived from publications using different species (human 136	

Sample	A:
More	Grey
Matter

Sample	C:
More	White	

Matter

Sample	B:
Even	
Mix

Publication1:	
Oligodendrocyte	
Specific	Genes:

MAG
MOG
…

Neuron	Specific	
Genes:
NEFL

SNAP25
…

Publication	2:	
Oligodendrocyte	
Specific	Genes:

MAG
PLLP
…

Neuron	Specific	
Genes:
NEFL
VSNL1
…

Lists	of	Cell	Type	
Specific	Genes:Human	

Brain	
Samples

Microarray

Relative	
Expression
(Z-Score)

Average	the	data	for	genes	in	each	
publication’s	list:

Relative	Predictions	of	Sample	Cell	Type	Balance
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vs. mouse), platforms (microarray vs. RNA-Seq), methodologies (florescent cell sorting vs. suspension), 137	

or statistical stringency all performed fairly equivalently, with some minor exception. Occasionally, we 138	

found that the cell type indices associated with cell type specific gene lists derived from TRAP 139	

methodology (15) did not properly predict the cell identity of the samples. In general the cell type indices 140	

associated with immature oligodendrocytes were somewhat inconsistent, most likely due to their 141	

dependency on developmental stage and experimental conditions.  142	

Therefore, overall we found substantial support for simply averaging the individual publication-143	

specific cell type indices within each of ten primary categories (astrocytes, endothelial cells, mural cells, 144	

microglia, immature and mature oligodendrocytes, red blood cells, interneurons, projection neurons, and 145	

indices derived from neurons in general) to produce ten consolidated primary cell-type indices for each 146	

sample. To perform this consolidation, we also removed any transcripts that were identified as “cell type 147	

specific” to multiple primary cell type categories (Suppl. Figure 5). These consolidated indices are 148	

included as a output from BrainInABlender. 149	

Next, as further validation, we determined whether relative cell type balance could be accurately 150	

deciphered from microarray data for samples containing artificially-generated mixtures of cultured cells 151	

(GSE19380; (12)).  We found that the consolidated cell type indices produced by BrainInABlender 152	

strongly correlated with the actual percentage of cells of a particular type included in the artificial 153	

mixtures (Figure 3, Neuron% vs. Neuron_All Index: R-squared=0.93, p=1.54e-15, Astrocyte % vs. 154	

Astrocyte Index: R-squared=0.77, p=5.05e-09,  Microglia% vs. Microglia Index: R-Squared=0.64, p= 155	

8.2e-07), although we found that the cell type index for immature oligodendrocytes better predicted the 156	

percentage of cultured oligodendrocytes in the samples than the cell type index for mature 157	

oligodendrocytes (Mature: R-squared=0.45, p=0.000179, Immature: R-squared=0.81, p= 4.14e-10). We 158	

believe this discrepancy is likely to reflect the specific cell culture conditions used in the original 159	

admixture experiment. In a follow-up analysis, artificial mixtures of cells produced in silico by averaging 160	

randomly-selected data from purified cell types similarly indicated that the cell type indices produced by 161	
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BrainInABlender follow a linear relationship with actual cell type balance in mixed samples, even for less 162	

prevalent cell varieties (endothelial, Suppl. Figure 3, Suppl. Figure 4).  163	
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Figure 3. Validation of Relative Cell Content Predictions.  A) Using a microarray dataset derived from 164	
samples that contained artificially-generated mixtures of cultured cells (GSE19380; (12)), we found that 165	
our relative cell content predictions (“cell type indices”) closely reflected actual known content. B) Our 166	
cell type indices also easily differentiated human post-mortem samples derived from brain regions that 167	
are known to contain relatively more (+) or less (-) of the targeted the cell type of interest. Results from 168	
the middle frontal gyrus are included for comparison, since the rest of the paper primarily focuses on 169	
prefrontal cortical data. (Bars: average +/-SE). 170	

 171	

2.4 Validation of Relative Cell Content Predictions Using a Dataset Derived from Human Post-172	

Mortem Tissue 173	

Next, we wanted to see whether the cell content predictions produced by BrainInABlender 174	

correctly reflected relative cell type balance in human post-mortem samples.  To test this, we applied our 175	

method to a large human post-mortem Agilent microarray dataset (841 samples) spanning 160 cortical 176	

and subcortical brain regions from the Allen Brain Atlas (Suppl. Table 2; (25)). This dataset was derived 177	

from high-quality tissue (absence of neuropathology, pH>6.7, post-mortem interval<31 hrs, RIN>5.5) 178	

from 6 human subjects (26). The tissue samples were collected using a mixture of block dissection and 179	

laser capture microscopy guided by adjacent tissue sections histologically stained to identify traditional 180	

anatomical boundaries (27). Prior to data release, the dataset had been subjected to a wide variety of 181	

normalization procedures to eliminate technical variation (28) which included log(base2) transformation, 182	

centering and scaling for each probe (http://human.brain-map.org/microarray/search, December 2015).  183	

After applying BrainInABlender to the dataset, we extracted the results for a selection of brain 184	

regions that are known to contain relatively more (+) or less (-) of particular cell types (the results for the 185	

other brain regions can be found in Suppl. Table 3). The results clearly indicated that our cell type 186	

analyses could identify well-established differences in cell type balance across brain regions (Figure 3).  187	

Within the choroid plexus, which is a villous structure located in the ventricles made up of support cells 188	

(epithelium) and an extensive capillary network (29), there was an elevation of gene expression specific 189	

to vasculature (endothelial cells, mural cells). In the corpus callosum and cingulum bundle, which are 190	

large myelinated fiber tracts (29), there was an enrichment of oligodendrocytes- and microglia-specific 191	

gene expression. The central glial substance was enriched with gene expression specific to glia and 192	
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support cells, with a particular emphasis on astrocytes. The dentate gyrus, which contains densely packed 193	

glutamatergic granule cells projecting to the mossy fibre pathway (30), was enriched for gene expression 194	

specific to projection neurons. The central nucleus of the amygdala, which includes a large number of 195	

GABA-ergic neurons (31), had a slight enrichment of gene expression specific to interneurons. These 196	

results provide fundamental validation that our methodology can accurately predict relative cell type 197	

balance in human post-mortem samples. Moreover, these results suggest that each of the consolidated cell 198	

type indices is capable of generally tracking their respective cell types in subcortical structures, despite 199	

the fact that our analysis method relies on cell type specific genes originally identified in the forebrain 200	

and cortex. 201	

 202	

2.5 Using Cell Type Specific Transcripts to Predict Relative Cell Content in Transcriptomic Data 203	

from Macro-Dissected Human Cortical Tissue from Psychiatric Subjects 204	

Next, we examined the collective variation in the levels of cell type specific transcripts in several 205	

large psychiatric human brain microarray datasets. The first was a large Pritzker Consortium Affymetrix 206	

U133A microarray dataset derived from high-quality human post-mortem dorsolateral prefrontal cortex 207	

samples (final sample size of 157 subjects, Suppl. Table 14), including tissue from subjects without a 208	

psychiatric or neurological diagnosis (“Controls”, n=71), or diagnosed with Major Depressive Disorder 209	

(“MDD”, n=40), Bipolar Disorder (“BP”, n=24), or Schizophrenia (“Schiz”, n= 22). The severity and 210	

duration of physiological stress at the time of death was estimated by calculating an agonal factor score 211	

for each subject (ranging from 0-4, with 4 representing severe physiological stress; (32,33)). Additionally, 212	

we measured the pH of cerebellar tissue as an indicator of the extent of oxygen deprivation experienced 213	

around the time of death (32,33) and calculated the interval between the estimated time of death and the 214	

freezing of the brain tissue (the postmortem interval or PMI) using coroner records. The transcriptional 215	

profiling of these samples had originally been processed in batches across multiple laboratories (1-5 216	

replicates per sample). Before averaging the replicate samples for each subject, the data was highly 217	

normalized to correct for technical variation, including robust multi-array analysis (RMA) (34) and 218	
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median-centering (detailed procedure: (35)).  Our current analyses began with this subject-level summary 219	

gene expression data (GSE92538). 220	

We determined the replicability of our results using three smaller publicly-available post-mortem 221	

human cortical Affymetrix U133Plus2 microarray datasets (GSE53987 (36), GSE21935 (37), GSE21138 222	

(38), Figure 4). These datasets were selected because they included both psychiatric and control samples, 223	

and provided pH, PMI, age, and gender in the demographic information on the Gene Expression Omnibus 224	

website (https://www.ncbi.nlm.nih.gov/geo/). To control for technical variation, the sample processing 225	

batches were estimated using the microarray chip scan dates extracted from the .CEL files and RNA 226	

degradation was estimated using the R package AffyRNADegradation (39). Prior to running 227	

BrainInABlender, the probe-level signal data from each dataset was normalized using RMA (34), 228	

summarized using a custom .cdf (http://nmg-r.bioinformatics.nl/NuGO_R.html,  229	

“hgu133plus2hsentrezgcdf_19.0.0”), and cleaned of any samples that appeared low-quality or 230	

misidentified.  231	

Finally,  we also explored replicability within the recently-released large CommonMind 232	

Consortium (CMC) human dorsolateral prefrontal cortex RNA-seq dataset (603 individuals (40)). This 233	

dataset was downloaded from the CommonMind Consortium Knowledge Portal 234	

(https://www.synapse.org/CMC) and analyzed at UCI. The bam files were converted to fastq files and re-235	

mapped to a more recent build of the human genome (GRCh38, (41)). The total reads mapping uniquely 236	

to exons (defined by Ensembl) were transformed into logCPM values (42). Prior to data upload, poor 237	

quality samples from the original dataset (40) were removed (<50 million reads, RIN<5.5) by the CMC 238	

and replaced with higher quality samples. We additionally excluded data from 10 replicates and 89 239	

individuals with incomplete demographic data (missing pH), leaving a final sample size of 514 samples. 240	

We predicted the relative cell type content of these samples using a newer version of BrainInABlender 241	

(v2) which excluded a few of the weaker cell type specific gene sets (15).  Later, the expression data were 242	

further filtered by expression threshold (CPM>1 in at least 50 individuals), leaving data from 243	

approximately 17,000 genes.  244	
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In general, the code for all analyses in the paper can be found at https://github.com/hagenaue/ or 245	

https://github.com/aschulmann/CMC_celltype_index.   246	

  247	

 248	

Figure 4. We examined the pattern of cell-type specific gene expression in five post-mortem human 249	
cortical tissue datasets that included samples from subjects with psychiatric illness.  Abbreviations: 250	
CTRL: control, BP: Bipolar Disorder, MDD: Major Depressive Disorder, SCHIZ: Schizophrenia, GEO: 251	
Gene Expression Omnibus, BA: Brodmann’s Area, PMI: Post-mortem interval, SD: Standard Deviation, 252	
Brain Banks: UC-Irvine (University of California – Irvine), PITT (University of Pittsburgh), CCHPC 253	
(Charing Cross Hospital Prospective Collection), MSSM (Mount Sinai Icahn School of Medicine), MHRI 254	
(Mental Health Research Institute Australia), PENN (University of Pennsylvania) 255	

 256	

2.6 Does the Reference Dataset Matter? Cell Type Specific Transcripts Identified by Different 257	

Publications Produce Similar Predictions of Relative Cell Type Balance 258	

We first confirmed that the predicted cell content for our post-mortem human cortical samples 259	

(“cell type indices”) was similar regardless of the methodology used to generate the cell type specific 260	

gene lists used in the predictions. Within all five of the human cortical transcriptomic datasets, there was 261	

a strong positive correlation between cell type indices representing the same cell type, even when the 262	

predictions were derived using cell type specific gene lists from different species, cell type purification 263	
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strategies, and platforms. Clustering within broad cell type categories was clear using visual inspection of 264	

the correlation matrices (Suppl. Figure 11, Suppl. Figure 12), hierarchical clustering, or consensus 265	

clustering (Suppl. Figure 13, ConsensusClusterPlus: (43), Suppl. Figure 14, Suppl. Figure 16). In some 266	

datasets, the cell type indices for support cell subcategories were nicely clustered and in others they were 267	

difficult to fully differentiate (Suppl. Figure 11, Suppl. Figure 12). Clustering was not able to reliably 268	

discern neuronal subcategories (interneurons, projection neurons) in any dataset. Similar to our previous 269	

validation analyses, oligodendrocyte progenitor cell indices derived from different publications did not 270	

strongly correlate with each other, perhaps due to heterogeneity in the progenitor cell types sampled by 271	

the original publications.  272	

Therefore, for further analyses in the post-mortem human datasets, we consolidated the cell type 273	

indices using a procedure similar to our previous validation analyses. To do this, we averaged the 38 274	

publication-specific cell type indices within each of ten primary categories: astrocytes, endothelial cells, 275	

mural cells, microglia, immature and mature oligodendrocytes, red blood cells, interneurons, projection 276	

neurons, and indices derived from neurons in general, with any transcripts that overlapped between 277	

categories removed (Suppl. Figure 17). This led to ten consolidated primary cell-type indices for each 278	

sample. 279	

 280	

3. Results  281	

 282	

3.1 Inferred Cell Type Composition Explains a Large Percentage of the Sample-Sample Variability 283	

in Microarray Data from Macro-Dissected Human Cortical Tissue 284	

Using principal components analysis we found that the primary gradients of variation in all four 285	

of the cortical datasets strongly correlated with our estimates of cell type balance. For example, while 286	

analyzing the Pritzker dorsolateral prefrontal cortex microarray dataset, we found that the first principal 287	

component, which encompassed 23% of the variation in the dataset, spanned from samples with high 288	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2017. ; https://doi.org/10.1101/089391doi: bioRxiv preprint 

https://doi.org/10.1101/089391


Running	Head:	PREDICTING	CELL	TYPE	BALANCE	

	 20	

support cell content to samples with high neuronal content. Therefore, a large percentage of the variation 289	

in PC1 (91%) was accounted for by an average of the astrocyte and endothelial indices (p<2.2e-82, with a 290	

respective r-squared of 0.80 and 0.75 for each index analyzed separately) or by the general neuron index 291	

(p<6.3e-32, r-squared=0.59; Figure 5). The second notable gradient in the dataset (PC2) encompassed 292	

12% of the variation overall, and spanned samples with high projection neuron content to samples with 293	

high oligodendrocyte content (with a respective r-squared of 0.62 and 0.42, and respective p-values of 294	

p<8.5e-35 and p<8.7e-20).  295	

 296	

Figure 5. Cell content predictions explain a large percentage of the variability in microarray data 297	
derived from the human cortex. As an example, within the Pritzker dataset the first principal component 298	
of variation (PC1) encompassed 23% of the variation in the dataset, and was A) positively correlated 299	
with predicted “support cell” content in the samples (a combination of the astrocyte and endothelial 300	
indices: r-squared: 0.91, p<2.2e-82) and B) negatively correlated with predicted neuronal content (r-301	
squared=0.59, p<6.3e-32). The second principal component of variation (PC2) encompassed 12% of 302	
variation in the dataset, and was C) positively correlated with predicted oligodendrocyte content in the 303	
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samples (r-squared: 0.42, p<8.7e-20) and D) negatively correlated with predicted projection neuron 304	
content (r-squared: 0.62, p<8.5e-35). Examples in other datasets can be found in Suppl. Figure 20. 305	

	306	
 When digging deeper, we found that none of the original 38 publication-specific cell type indices 307	

were noticeably superior to the consolidated indices when predicting the principal components of 308	

variation in the dataset. Human-derived indices did not outperform mouse-derived indices, and indices 309	

derived from studies using stricter definitions of cell type specificity (fold enrichment cut-off in Figure 1, 310	

e.g., (13) vs. (17)) did not outperform less strict indices.  311	

Within the other four human cortical tissue datasets, the relationships between the top principal 312	

components of variation and the consolidated cell type indices were similarly strong (Suppl. Figure 20), 313	

despite the fact that these datasets had received less preprocessing to remove the effects of technical 314	

variation.  Within the GSE21935 dataset (published in (37)) the first principal component of variation 315	

accounted for 37% of the variation in the dataset and similarly seemed to represent a gradient running 316	

from samples with high support cell content (PC1 vs. endothelial index: r-squared= 0.85, p<3.6e-18, PC1 317	

vs. astrocyte index: r-squared= 0.67, p<3.6e-11) to samples with high neuronal content (PC1 vs. 318	

neuron_all index: r-squared= 0.85, p<3.9e-18). Within the GSE53987 dataset (submitted to GEO by 319	

Lanz, 2014), which had samples derived exclusively from gray-matter-only dissections, the first principal 320	

component of variation accounted for 13% of the variation in the dataset and was highly correlated with 321	

predicted astrocyte content (PC1 vs. astrocyte index: r-squared=0.80, p<4.6e-24). In GSE21138 322	

(published in (39)), which also had samples derived exclusively from gray-matter-only dissections, the 323	

first principal component of variation accounted for 23% of the variation in the dataset and was strongly 324	

related to technical variation (batch), but the second principal component of variation, which accounted 325	

for 14% of the variation in the dataset, again represented a gradient from samples with high support cell 326	

content to high neuronal content (PC2 vs. astrocyte: r-squared=0.56, p<8.3e-11, PC2 vs. neuron_all: r-327	

squared=0.54, p<2.3e-10). Finally, within the CMC RNA-Seq dataset, the first principal component of 328	

variation accounted for 16% of the variation in the dataset and was highly correlated with projection 329	

neuron content (PC1 vs. Neuron_Projection: r-squared=0.54, p=5.77e-104). 330	
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To confirm that the strong relationship between the top principal components of variation and our 331	

cell type composition indices did not originate artificially due to cell type specific genes representing a 332	

large percentage of the most highly variable transcripts in the dataset, we repeated the principal 333	

components analysis in the Pritzker dataset after excluding all cell type specific transcripts from the 334	

dataset and still found these strong correlations (Suppl. Figure 21). Indeed, individual cell type indices 335	

better accounted for the main principal components of variation in the microarray data than all other 336	

major subject variables combined (pH, Agonal Factor, PMI, Age, Gender, Diagnosis, Suicide; PC1: R-337	

squared=0.4272, PC2: R-squared=0.2176). When examining the dataset as a whole, the six subject 338	

variables accounted for an average of only 12% of the variation for any particular probe (R-squared, 339	

Adj.R-squared=0.0715), whereas just the astrocyte and projection neuron indices alone were able to 340	

account for 17% (R-squared, Adj.R-squared=0.1601) and all 10 cell types accounted for an average of 341	

31% (R-squared, Adj.R-squared=0.263), almost one third of the variation present in the data for any 342	

particular probe (Suppl. Figure 22).   343	

These results indicated that accounting for cell type balance is important for the interpretation of 344	

post-mortem human brain microarray and RNA-Seq data and might improve the signal-to-noise ratio in 345	

analyses aimed at identifying psychiatric risk genes. 346	

 

3.2 Cell Content Predictions Derived from Microarray Data Match Known Relationships Between 347	

Clinical/Biological Variables and Brain Tissue Cell Content 348	

 We next set out to observe the relationship between the predicted cell content of our samples and 349	

a variety of medically-relevant subject variables, including variables that had already been demonstrated 350	

to alter cell content in the brain in other paradigms or animal models. To perform this analysis, we first 351	

examined the relationship between seven relevant subject variables and each of the ten cell type indices in 352	

the Pritzker prefrontal cortex dataset using a linear model that allowed us to simultaneously control for 353	

other likely confounding variables in the dataset: 354	

Equation 1: 355	
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Cell Type Index= β0 +β1*(Brain pH)+β2*(Agonal Factor) 356	
+β3*(PMI)+β4*(Age)+β5*(Sex)+β6*(Diagnosis)+ β7*(Exsanguination)+ e 357	

 358	

We then examined the replicability of these relationships using data from the three smaller 359	

publicly-available human post-mortem microarray datasets (GSE53987, GSE21935, GSE21138).  For 360	

these datasets, we initially lacked detailed information about manner of death (agonal factor and 361	

exsanguination), but were able to control for technical variation within the model using statistical 362	

estimates of RNA degradation and batch (scan date): 363	

Equation 2: 364	

Cell Type Index= β0 +β1*(Brain pH)+β2*(PMI)+β3*(Age)+β4*(Sex)+β5*(Diagnosis)+ 365	
β6*(RNA Degradation)+ β7*(Batch, when applicable)+ e 366	

We evaluated the replicability of these relationships across the four microarray datasets by performing a 367	

meta-analysis for each variable and cell type combination. To do this, we applied random effects 368	

modeling to the respective betas and accompanying sampling variance derived from each dataset using 369	

the rma.mv() function within the metafor package (44). P-values were then corrected for multiple 370	

comparisons following the Benjamini-Hochberg method (q-value) using the mt.rawp2adjp function 371	

within the multtest package (45).  372	

Finally, we characterized these relationships in the large CMC human post-mortem RNA-Seq  373	

dataset. For this dataset, we had some information about manner of death but lacked knowledge of agonal 374	

factor or exsanguination. We controlled for technical variation due to dissection site (institution) and 375	

RNA degradation (RIN): 376	

Equation 3: 377	

Cell Type Index= β0 +β1*(Brain pH)+β2*(PMI)+β3*(Age)+β4*(Sex)+β5*(Diagnosis)+ 378	
β6*(RNA Degradation)+ β7*(Institution)+ β8*(MannerOfDeath)+e 379	
 380	

This analysis uncovered many well-known relationships between brain tissue cell content and clinical 381	

or biological variables (Figure 6, Suppl. Table 4). First, as a proof of principle, we were able to clearly 382	
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observe dissection differences between institutions within the large CMC RNA-Seq dataset, with samples 383	

from University of Pittsburgh having a predicted relative cell type balance that closely matched what 384	

would be expected due to their gray matter only dissection method (Oligodendrocyte: β =-0.404, p=2.42e-385	

11, q=4.03e-10; Microglia: β =-0.274, p=3.06e-05, q=2.42e-04; Neuron_Interneuron: β=0.0916, 386	

p=0.0161, q=0.525; Neuron_Projection: β=0.145, p=2.31e-05, q=1.93e-04; Mural: β=0.170, p=2.14e-08, 387	

q=2.68e-07; Endothelial: β=0.200, p=1.12e-05, q=1.12e-04). Samples from University of Pennsylvania 388	

were associated with lower predicted cell content related to vasculature (Endothelial: β =-0.255, p=4.01-389	

04, q=2.40e-03; Mural: β =-0.168, p=4.59e-04, q=2.59e-03; Astrocyte: β =-0.189, p=7.47e-03, q=0.0287). 390	

Predicted cell type content was also closely related to manner of death. For example, within the 391	

Pritzker dataset we found that subjects who died in a manner that involved exsanguination had a notably 392	

low red blood cell index (β =-0.398; p=0.00056). Later, we were able replicate this result within 393	

GSE21138 using data from 5 subjects who we discovered were also likely to have died in a manner 394	

involving exsanguination (β =-0.516, p=0.052*trend, manner of death reported in suppl. in (38)). The 395	

presence of prolonged hypoxia around the time of death, as indicated by either low brain pH or high 396	

agonal factor score within the Pritzker dataset, was associated with a large increase in the endothelial cell 397	

index (Agonal Factor: β=0.118 p=2.85e-07; Brain pH: β=-0.210, p= 0.0003) and astrocyte index (Brain 398	

pH: β=-0.437, p=2.26e-07; Agonal Factor: β=0.071, p=0.024), matching previous demonstrations of 399	

cerebral angiogenesis, endothelial and astrocyte activation and proliferation in low oxygen environments 400	

(46). Small increases were also seen in the mural index in response to low-oxygen (Mural vs. Agonal 401	

Factor: β= 0.0493493, p= 0.0286), most likely reflecting angiogenesis. In contrast, prolonged hypoxia 402	

was associated with a clear decrease in all of the neuronal indices (Neuron_All vs. Agonal Factor: β=-403	

0.242, p=3.58e-09; Neuron_All vs. Brain pH: β=0.334, p=0.000982; Neuron_Interneuron vs. Agonal 404	

Factor: β=-0.078, p=4.13e-05; Neuron_Interneuron vs. Brain pH: β=0.102, p=0.034; Neuron_Projection 405	

vs. Agonal Factor: β=-0.096, p= 0.000188), mirroring the notorious vulnerability of neurons to low 406	

oxygen (e.g., (47)).  These overall effects of hypoxia on cell type balance replicated in the smaller human 407	

microarray post-mortem datasets, despite lack of information about agonal factor (Astrocyte vs. Brain pH 408	
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(meta-analysis: b= -0.459, p=2.59e-11, q=2.33e-09): Narayan et al. 2008: β= -0.856, p=0.00661, Lanz 409	

2014: β=-0.461, p=0.00812,  Neuron_All vs. Brain pH (meta-analysis: b= 0.245, p=7.72e-04, q=1.16e-410	

02), Neuron_Interneuron vs. Brain pH (meta-analysis: b= 0.109, p=7.89e-03, q=5.52e-02*trend): Narayan 411	

et al. 2008: β= 0.381134, p=0.0277) and partially replicated in the CMC human RNA-Seq dataset 412	

(Neuron_Interneuron vs. Brain pH: β=0.186, p=9.81e-05, q=6.69e-04). In several datasets, we also found 413	

that prolonged hypoxia correlated with fewer microglia (Microglia vs. Brain pH: Lanz 2014: β=0.462, 414	

p=0.00603; CMC: β=0.286, p=4.66e-04, q=2.59e-03), which may suggest that our microglia cell type 415	

index is specifically tracking ramified microglia, although we did not observe a relationship between 416	

microglia and death related to infection/parasitic disease (CMC: Microglia vs. CauseOfDeath(infection): 417	

β=0.231, p=0.121, q=0.256). 418	

  419	
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Hypoxia:
Astrocyte	vs.	Brain	pH -5.4 -2.7 -1.1 -2.9 2.59E-11 2.33E-09 2.1 3.25E-02 9.55E-02
Neuron_All	vs.	Brain	pH 3.4 0.1 1.3 1.9 7.72E-04 1.16E-02 0.6 5.60E-01 7.00E-01 *
Neuron_Interneuron	vs.	Brain	pH 2.1 1.0 -0.5 2.3 7.89E-03 5.52E-02 3.9 9.81E-05 6.69E-04 **
Microglia	vs.	Brain	pH -1.0 2.9 -0.1 1.9 5.41E-01 7.91E-01 3.5 4.66E-04 2.59E-03 *
Oligodendrocyte_Immature	vs.	Brain	pH -3.0 0.4 -0.5 1.4 1.40E-01 3.71E-01 3.0 2.68E-03 1.22E-02
Age
Neuron_All	vs.	Age -1.9 -2.1 -1.2 -1.2 1.57E-03 2.02E-02 -4.3 2.27E-05 1.93E-04 **
Neuron_Interneuron	vs.	Age -3.4 -0.5 -2.5 -2.5 2.91E-06 6.56E-05 -6.5 2.10E-10 3.15E-09 **
Neuron_Projection	vs.	Age -2.8 -3.7 -0.5 -3.1 1.61E-06 4.83E-05 -7.5 2.93E-13 7.33E-12 **
Oligodendrocyte	vs.	Age 1.8 1.2 0.3 3.1 2.74E-03 2.74E-02 1.6 1.02E-01 2.25E-01 *
Oligodendrocyte_Immature	vs.	Age -3.7 -4.7 -0.2 -4.5 5.98E-11 2.69E-09 -11.0 3.32E-25 2.49E-23 **
PMI
Oligodendrocyte	vs.	PMI -3.6 -3.6 -1.6 -0.5 2.23E-05 4.02E-04 -4.1 4.70E-05 3.36E-04 **
Endothelial	vs.	PMI -2.0 -0.8 0.4 -0.1 5.51E-02 2.36E-01 -3.9 1.32E-04 8.60E-04 *
Microglia	vs.	PMI -1.0 -1.5 -1.2 -0.7 9.72E-02 3.05E-01 -3.5 5.15E-04 2.76E-03 *
Oligodendrocyte_Immature	vs.	PMI 3.5 1.0 1.6 -0.4 4.81E-03 4.33E-02 -0.4 6.86E-01 8.04E-01
Neuron_Projection	vs.	PMI 3.9 1.6 -0.2 -1.2 2.28E-03 2.56E-02 3.1 1.97E-03 9.24E-03 **
Neuron_All	vs.	PMI 2.5 1.8 -0.4 0.0 1.74E-02 9.81E-02 2.6 1.10E-02 3.88E-02 *
Diagnosis:
Astrocyte	vs.	Diagnosis_MDD -2.6 -1.0 5.88E-03 4.81E-02
Neuron_All	vs.	Diagnosis	BP -0.9 -0.7 2.46E-01 5.39E-01 2.6 8.44E-03 3.17E-02
RBC	vs.	Diagnosis_Schiz -1.2 0.1 -1.0 -0.5 2.04E-01 4.96E-01 -2.5 1.41E-02 4.71E-02 *
Gender:
Neuron_Interneuron	vs.	GenderFemale -0.9 0.0 0.7 0.3 6.65E-01 9.06E-01 -2.5 1.20E-02 4.09E-02
Neuron_Projection	vs.	GenderFemale 1.0 -0.3 -0.4 1.6 3.60E-01 6.46E-01 -2.5 1.11E-02 3.88E-02
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Figure 6. Cell content predictions derived from microarray data match known relationships between 421	
subject variables and brain tissue cell content. Boxplots represent the median and interquartile range, 422	
with whiskers illustrating either the full range of the data or 1.5x the interquartile range. A. Within the 423	
CMC dataset, cortical tissue samples that were dissected to only contain gray matter (PITT) show lower 424	
predicted oligodendrocyte and microglia content and more neurons and vasculature (bars: β+/- SE, 425	
red/blue: p<0.05). B. Subjects that died in a manner that involved exsanguination (n=14) had a notably 426	
low red blood cell index in both the Pritzker (p=0.00056) and Narayan et al. datasets (p=0.052*trend). 427	
C. The presence of prolonged hypoxia around the time of death, as indicated by high agonal factor score, 428	
was associated with a large increase in the endothelial cell index (p=2.85e-07) matching previous 429	
demonstrations of cerebral angiogenesis, activation, and proliferation in low oxygen environments (46). 430	
D. High agonal factor was also associated with a clear decrease in neuronal indices (p=3.58e-09) 431	
mirroring the vulnerability of neurons to low oxygen (47). E. Age was associated with a decrease in the 432	
neuronal indices (p= 0.000956) which fits known decreases in gray matter density in the frontal cortex in 433	
aging humans (48). F. Major Depressive Disorder was associated with a moderate decrease in astrocyte 434	
index (p= 0.0118), which fits what has been observed morphometrically (49). G. The most highly-435	
replicated relationships between subject variables and predicted cortical tissue cell content across all five 436	
of the post-mortem human datasets. Provided in the table are the T-stats for the effects 437	
(red=upregulation, blue=downregulation), derived from a larger linear model controlling for confounds 438	
(Equation 1, Equation 2, Equation 3), as well as the nominal p-values from the meta-analysis of the 439	
results across the four microarray studies, and p-values following multiple-comparisons correction (q-440	
value). Only effects that had a q<0.05 in either our meta-analysis or the large CMC RNA-Seq dataset are 441	
included in the table. Asterisks denote effects that had consistent directionality in the meta-analysis and 442	
CMC dataset (*) or consistent directionality and q<0.05 in both datasets (**). Please note that lower pH 443	
and higher agonal factor are both indicators of greater hypoxia prior to death, but have an inverted 444	
relationship and therefore show opposing relationships with the cell type indices (e.g., when pH is low 445	
and agonal factor is high, support cell content is increased). 446	

 447	
In the Pritzker dataset, age was associated with a moderate decrease in two of the neuronal indices 448	

(Neuron_Interneuron vs. Age: β=- -0.00291, p= 0.000956; Neuron_Projection Neuron vs. Age: β=- 449	

0.00336, p=0.00505) and was strongly replicated in the large CMC RNA-Seq dataset (Neuron_All vs. 450	

Age: β=-0.00497, p=2.27e-05, q=1.93e-04; Neuron_Projection Neuron vs. Age: β=-0.00612, p=2.93e-13, 451	

q=7.33e-12; Neuron_Interneuron vs. Age: β=-0.00591, p=2.10e-10, q=3.15e-09). A similar decrease in 452	

predicted neuronal content was seen in all three of the smaller human post-mortem datasets (Neuron_All 453	

vs. Age (meta-analysis: b=-0.00415, p=1.57e-03, q=2.02e-02): Lanz 2014: β=-0.00722, p=0.0432, 454	

Neuron_Interneuron vs. Age (meta-analysis: b=-0.00335, p=2.91e-06, q=6.56e-05): Narayan et al. 2008: 455	

β=-0.00494, p=0.0173, Barnes et al. 2011: β=-0.00506, p=0.0172, Neuron_Projection vs. Age (meta-456	

analysis: b=-0.00449, p=1.61e-06, q=4.83e-05):  Lanz 2014: β=-0.0103, p=0.000497,  Narayan et al. 457	

2008: β=-0.00763, p=0.00386). This result fits with known decreases in gray matter density in the frontal 458	

cortex in aging humans (48), as well as age-related sub-region specific decreases in frontal neuron 459	
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numbers in primates (50) and rats (51).  There was also a consistent decrease in immature 460	

oligodendrocytes in relationship to age across datasets (Oligodendrocyte_Immature vs. Age (meta-461	

analysis: b=-0.00514, p=5.98e-11, q=2.69e-09): Pritzker: β=-0.00432, p=0.000354, Narayan et al. 2008: 462	

β=-0.00721, p=5.73e-05, Lanz 2014: β=-0.00913, p=1.85e-05; CMCC: β=-0.00621, p=3.32e-25, 463	

q=2.49e-23), which seems intuitive, but actually contradicts animal studies on the topic (52). Since the 464	

validation of the Oligodendrocyte_Immature index was relatively weak, this result should perhaps be 465	

considered with caution. 466	

Other non-canonical relationships between subject variables and predicted cell content can be found 467	

in the tables in Figure 6.  In some datasets, there appears to be an increase in oligodendrocyte index with 468	

age (Oligodendrocyte vs. Age (meta-analysis: b=0.00343, p=2.74e-03, q=2.74e-02): Narayan et al. 2008, 469	

β= 0.00957, p=0.00349) which, at initial face value, seems to contrast with well-replicated observations 470	

that frontal white matter decreases with age in human imaging studies (48,53,54). However, it is worth 471	

noting that several histological studies in aging primates suggest that brain regions that are experiencing 472	

demyelination with age actually show an increasing number of oligodendrocytes, which is thought to be 473	

driven by the need for repair (52,55).  474	

Another prominent unexpected effect was a large decrease in the oligodendrocyte index with longer 475	

post-mortem interval (Oligodendrocyte vs. PMI (meta-analysis: b=-0.00764, p=2.23e-05, 4.02e-04): 476	

Pritzker: β= -0.00749, p=0.000474, Lanz 2014: β= -0.0318, p=0.000749; CMC: β=-0.00759, p=4.70e-05, 477	

q=3.36e-04). Upon further investigation, we found a publication documenting a 52% decrease in the 478	

fractional anisotropy of white matter with 24 hrs post-mortem interval as detected by neuroimaging (56), 479	

but to our knowledge the topic is otherwise not well studied. These changes were paralleled by a decrease 480	

in endothelial cells (CMC: β=-0.00542, p=1.32e-04, q=8.60e-04) and microglia (CMC: β=-0.00710, 481	

p=5.15e-04, q=2.76e-03) and relative increase in immature oligodendrocytes (Oligodendrocyte_Immature 482	

vs. PMI (meta-analysis: b=0.00353, p=4.81e-03, q=4.33e-02): Pritzker: β= 0.00635, p= 0.000683) and 483	

neurons (Neuron_All vs. PMI: Pritzker: β= 0.006997, p= 0.000982; CMC: β=0.00386, p=0.0110, 484	

q=0.0388 ;  Neuron_Projection vs. PMI (meta-analysis: b=0.00456, p=2.28e-03, q=2.56e-02): Pritzker: 485	
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β= 0.00708, p=1.64e-04; CMC: β=0.00331, p=0.00197, q=0.00924).  This result could arise from the 486	

zero-sum nature of microarray analysis: due to the use of a standardized dissection size, RNA 487	

concentration, and data normalization, if there are large decreases in gene expression for one common 488	

variety of cell type in relationship to post-mortem interval (oligodendrocytes), then gene expression 489	

related to other cell types may appear increase. 490	

Overall, these results indicate that statistical predictions of the cell content of samples effectively 491	

capture many known biological changes in cell type balance, and imply that within both chronic (age) and 492	

acute conditions (agonal, PMI, pH) there is substantial influences upon the relative representation of 493	

different cell types. Thus, when interpreting microarray data, it is as important to consider the chronic and 494	

acute demographic factors at the population level as well as cellular functional regulation.   495	

 496	

3.3 Cell Type Balance Changes in Response to Psychiatric Diagnosis 497	

Of most interest to us were potential changes in cell type balance in relation to psychiatric illness. In 498	

previous post-mortem morphometric studies, there was evidence of glial loss in the prefrontal cortex of 499	

subjects with Major Depressive Disorder, Bipolar Disorder, and Schizophrenia (reviewed in (57)). This 500	

decrease in glia, and particularly astrocytes, was replicated experimentally in animals exposed to chronic 501	

stress (58), and when induced pharmacologically, was capable of driving animals into a depressive-like 502	

condition (58). Replicating the results of (49), we observed a moderate decrease in astrocyte index in the 503	

prefrontal cortex of subjects with Major Depressive Disorder (meta-analysis: b= -0.132, p=5.88e-03, 504	

q=4.81e-02, Pritzker: β = -0.133, p= 0.0118, Figure 6f), but did not see similar changes in the brains of 505	

subjects with Bipolar Disorder or Schizophrenia.  We also observed a decrease in red blood cell index in 506	

association with Schizophrenia (CMC: β=-0.104, p=0.0141, q=0.0471) which is tempting to ascribe to 507	

reduced blood flow due to hypofrontality (59). This decrease in red blood cell content could also arise due 508	

to psychiatric subjects having an increased probability of dying a violent death, but the effect remained 509	

present when we controlled for exsanguination, therefore the effect is likely to be genuinely tied to the 510	

illness itself. 511	
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 512	

3.4 Discriminating Between Changes in Cell Type Balance and Cell-Type Specific Function 513	

Gray matter density has been shown to decrease in the frontal cortex in aging humans (48), and 514	

frontal neuron numbers decrease in specific subregions in aging primates (50) and rats (51). However, 515	

many scientists would argue that age-related decreases in gray matter are primarily driven by synaptic 516	

atrophy instead of decreased cell number (60). This raised the question of whether the decline that we saw 517	

in neuronal cell indices with age was being largely driven by the enrichment of genes related to synaptic 518	

function in the index. More generally, it raised the question of how well cell type indices could 519	

discriminate changes in cell number from changes in cell-type function. 520	

We examined this question using two methods. First, we specifically examined the relationship 521	

between age and the functional annotation for genes found in the Neuron_All index in more depth. To do 522	

this, we evaluated the relationship between age and gene expression in the Pritzker dataset while 523	

controlling for likely confounds using the signal data for all probesets in the dataset: 524	

Equation 4:   525	

Gene Expression (Probeset Signal) =  526	
β0 + β1*(Diagnosis)+β2*(Brain pH)+β3*(Agonal Factor)+β4*(PMI)+β5*(Age)+β6*(Sex) + e 527	

 528	

 We used “DAVID: Functional Annotation Tool” (//david.ncifcrf.gov/summary.jsp, (61,62) to 529	

identify the functional clusters that were overrepresented by the genes included in our neuronal cell type 530	

indices (using the full HT-U133A chip as background), and then determined the average effect of age 531	

(beta) for the genes included in each of the 240 functional clusters (Suppl. Table 5). The vast majority of 532	

these functional clusters showed a negative relationship with age on average (Suppl. Figure 13). 533	

However, these functional clusters overrepresented dendritic/axonal related functions, so in a manner that 534	

was blind to the results, we identified 29 functional clusters that were clearly related to dendritic/axonal 535	

functions and 41 functional clusters that seemed distinctly unrelated to dendritic/axonal functions (Suppl. 536	

Table 5).  Using this approach, we found that transcripts from both classifications of functional clusters 537	

showed an average decrease in expression with age (dendritic/axonal: T(28)=-4.5612, p= 9.197e-05, non-538	
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dendritic/axonal: T(40)=-2.7566, p=0.008756), but the decrease was larger for transcripts associated with 539	

dendritic/axonal-related functions (T(50.082)=2.3385, p= 0.02339, Suppl. Figure 23). Based on this 540	

analysis, we conclude that synaptic atrophy could be partially driving age-related effects on neuronal cell 541	

type indices in the human prefrontal cortex dataset but are unlikely to fully explain the relationship. 542	

Next, we decided to make the process of differentiating between altered cell type-specific functions 543	

and relative cell type balance more efficient. We used our cell type specific gene lists to construct gene 544	

sets in a file format (.gmt) compatible with the popular tool Gene Set Enrichment Analysis (63,64) and 545	

combined them with two other commonly-used gene set collections from the molecular signatures 546	

database (MSigDB: http://software.broadinstitute.org/gsea/msigdb/index.jsp, downloaded 09/2017, “C2: 547	

Curated Gene Sets” and “C5: GO Gene Sets”, Suppl. Table 6). Then we tested the utility of 548	

incorporating our new gene sets into GSEA (fGSEA: (65)) using the ranked results (betas) for the 549	

relationship between each subject variable (Equation 4) and each probeset in the Pritzker dataset. Using 550	

this method, we could compare the enrichment of the effects of subject variables within gene sets defined 551	

by brain cell type to the enrichment seen within gene sets for other functional categories. In general, we 552	

found that gene sets for brain cell types tended to be the top result (most extreme normalized enrichment 553	

score, NES) for each of the subject variables that showed a strong relationship with cell type in our 554	

previous analyses (Agonal Factor vs. “Neuron_All_Cahoy_JNeuro_2008”: NES=-2.46, p=	0.00098, q=	555	

0.012, Brain pH vs. “Astrocyte_All_Cahoy_JNeuro_2008”: NES=-2.48, p=	0.0011, q=0.014, MDD vs. 556	

“Astrocyte_All_Cahoy_JNeuro_2008”: NES=	-2.60, p=	0.0010, q=	0.017, PMI vs. 557	

“GO_OLIGODENDROCYTE_DIFFERENTIATION”: NES=-2.42, p=	0.00078, q=	0.027; Suppl. Table 558	

7). Similarly, the relationship between the effects of age and neuron-specific gene expression was ranked 559	

#4, following the gene sets “GO_SYNAPTIC_SIGNALING”, 560	

“REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES”, 561	

“REACTOME_OPIOID_SIGNALLING”, but each of them was assigned a similar p-value (p=0.001) and 562	

adjusted p-value (q=0.036).  We conclude that it is important to consider cell type-specific expression 563	

during the analysis of macro-dissected brain microarray data above and beyond the consideration of 564	
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specific functional pathways, and have submitted our .gmt files to the Broad Institute for potential 565	

addition to their curated gene sets in MSigDB to promote this form of analysis. 566	

 567	

3.5 Including Cell Content Predictions in the Analysis of Microarray Data Improves Model Fit And 568	

Enhances the Detection of Diagnosis-Related Genes in Some Datasets 569	

 Over the years, many researchers have been concerned that transcriptomic and genomic analyses 570	

of psychiatric disease often produce non-replicable or contradictory results and, perhaps more 571	

disturbingly, are typically unable to replicate well-documented effects detected by other methods. We 572	

posited that this lack of sensitivity and replicability might be partially due to cell type variability in the 573	

samples, especially since such a large percentage of the principal components of variation in our samples 574	

were explained by neuron to glia ratio. Within the Pritzker dataset, we were particularly interested in 575	

controlling for cell type variability, because there were indications that dissection might have differed 576	

between technical batches that were unevenly distributed across diagnosis categories (Figure 8, Suppl. 577	

Figure 10). There was a similarly uneven distribution of dissection methods across diagnosis categories 578	

within the large CMC RNA-Seq dataset. In this dataset, the majority of the bipolar samples (75%) were 579	

collected by a brain bank that performed gray matter only dissections (PITT), whereas the control and 580	

schizophrenia samples were more evenly distributed across all three institutions (40).  581	

 We hypothesized that controlling for cell type while performing differential expression analyses 582	

in these datasets would improve our ability to detect previously-documented psychiatric effects on gene 583	

expression, especially psychiatric effects on gene expression that were previously-identified within 584	

individual cells, since these effects on gene expression should not be mediated by psychiatric changes in 585	

overall cell type balance. To test the hypothesis, we first compiled a list of 130 strong, previously-586	

documented relationships between Schizophrenia or Psychosis and gene expression in particular cell 587	

types in the human cortex, as detected by in situ hybridization or immunocytochemistry (reviewed further 588	

in (19);  GAD1: (66–68); RELN:(66); SST: (69), SLC6A1 (GAT1): (70), PVALB:(67), suicide: HTR2A 589	

(71)), or by single-cell type laser capture microscopy (Figure 7, Suppl. Table 8 (1,72,73)). 590	
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 591	

Figure 7. Gene lists used to assess whether controlling for cell type while performing differential 592	
expression analyses enhances the detection of previously-documented psychiatric effects on cortical 593	
gene expression. These lists include genes with documented relationships to psychiatric illness in either 594	
1) particular cortical cell types or 2) macro-dissected cortex. The full lists can be found in Suppl. Table 595	
8. Abbreviations: LCM: Laser Capture Microscopy, PVALB: Parvalbumin, BA: Brodmann’s Area, PMI: 596	
Post-mortem interval, FDR: False detection ratio (or q-value), Brain Banks: PITT (University of 597	
Pittsburgh), HBTRC (Harvard Brain Resource Tissue Center), CCHPC (Charing Cross Hospital 598	
Prospective Collection), MSSM (Mount Sinai Icahn School of Medicine), MHRI (Mental Health Research 599	
Institute Australia). 600	

As a comparison, we also considered lists of transcripts strongly-associated with Schizophrenia 601	

(74) and Bipolar Disorder (75) in meta-analyses of microarray data derived from human frontal cortical 602	

tissue (Figure 7). The effects of psychiatric illness on the expression of these transcripts could be 603	

mediated by either psychiatric effects on cell type balance or by effects within individual cells. Therefore, 604	

controlling for cell type balance while performing differential expression analyses could detract from the 605	

detection of some psychiatric effects, but perhaps also enhance the detection of other psychiatric effects 606	

by controlling for large, confounding sources of noise (e.g., dissection variability).  607	

 Next, we examined our ability to detect these previously-documented psychiatric effects using 608	

regression models of increasing complexity (Figure 8 B), including a simple base model containing just 609	

Validation	
Datasets:

#	of	
Genes Method: Brain	Bank:

#	of	
Subjects Brain	Region

Co-Variates:	
Controlled? Co-Variates:	Balanced?

Statistical	
Stringency

Schizophrenia	Effects	In	Particular	Cortical	Cell	Types:
Reviewed	in	

Lewis	&	Sweet	

(2009) 7

ICC/in	situ	

hybridization Variable,	often	PITT Variable

Prefrontal	

cortex Variable Variable Variable

Arion	et	al.	

(2015) 41

LCM-Microarray:	

Pyramidal	Neurons	

(Layers	3	&5) PITT 72 BA9

Direction	of	effect	

evaluated,	but	

covariates	not	included	

in	final	model.

Sex,	Age,	PMI,	pH,	RIN,	

tissue	storage	time,	

race

Top	40	(FDR<0.1	in	

both	layers,	Table	

2A),	Top	2	in	Table	

2B,	FDR<10E-17	for	

Layer5)

Pietersen	et	al.	

(2014) 47

LCM-Microarray:	

PVALB	

Interneurons HBTRC	(MacLean) 16 BA42

Batch.	Considered	

effects	of	Sex,	Age,	

PMI	but	not	included	

in	final	model.

Sex,	Age,	PMI,	pH	not	

significantly	different

Top	47	(FDR<0.01,	

FC>2,	Table	3)

Mauney	et	al.	

(2015) 35

LCM-Microarray:	

Oligodendrocyte	

Precursors HBTRC	(MacLean) 18 BA9 None

Sex,	Age,	PMI,	pH	not	
reported

Top	35	(FDR<0.001,	

Table	S2)

Psychiatric	Effects	in	Macro-dissected	Prefrontal	Cortex:

Mistry	et	al.	

(2013) 126

Meta-analysis	of	

microarray	data:	

Schizophrenia	

effects

Stanley	Foundation,	

HBTRC	(MacLean),	

PITT,	CCHPC	,	

MSSM,	MHRI 306

BA9,	BA10,	

BA46

Model	selection	

procedure	included	

Batch,	Age,	pH,	Study Sex,	PMI FDR<0.1	(Table	S2)

Choi	et	al.	

(2011) 367

Meta-analysis	of	

microarray	data:	

Bipolar	effects Stanley	Foundation 83

BA46	(grey	

matter	only)

Batch	(Scan	Date),	pH,		

Psychosis,	Medication	

at	TOD

Age,	BMI,	PMI	not	
reported

FDR<0.05,	FC>1.3	

(Table	S1)
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the variable of interest (“Model 1”), a standard model controlling for traditional co-variates (“Model 2”), 610	

and a model controlling for traditional co-variates as well as each of the cell type indices (“Model 5”: 611	

Equation 5). We also used two reduced models that only included the most prevalent cell types 612	

(Astrocyte, Microglia, Oligodendrocyte, Neuron_Interneuron, Neuron_Projection; (21)) to avoid issues 613	

with multicollinearity. The first of these models included traditional co-variates as well (“Model 4”), 614	

whereas the second model excluded them (“Model 3”). 615	
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Figure 8.  Including Cell Content Predictions in the Analysis of Microarray Data Improves Model Fit 617	
and Enhances the Detection of Previously-Identified Diagnosis-Related Genes in Some Datasets. A. 618	
Diagnosis effects were likely to be partially confounded by dissection variability within the Pritzker and 619	
CMC datasets. B: We examined a series of differential expression models of increasing complexity, 620	
including a base model (M1), a standard model (M2), and three models that included cell type co-621	
variates (M3-M5). C.  Model fit improved with the addition of cell type (M1/M2 vs. M3-M5) when 622	
examining all expressed genes in the dataset (example from CMC: points= AVE +/-SE).  D. Model fit 623	
improved with the addition of cell type (M1/M2 vs. M3-M5) when examining genes with previously-624	
documented relationships with psychiatric illness in particular cell types (example from Pritzker: BIC 625	
values for all models for each gene were centered prior to analysis). Boxplots represent the median and 626	
interquartile range, with whiskers illustrating either the full range of the data or 1.5x the interquartile 627	
range. E. Evaluating the replication of previously-detected psychiatric effects (Figure 7) in three datasets 628	
(Pritzker, CMC, and Barnes) using a standard differential expression model (M2) vs. models that include 629	
cell type co-variates (M3-5). Top graphs: The percentage of genes (y-axis: 0-1) replicating the direction 630	
of previously-documented psychiatric effects on cortical gene expression sometimes increases with the 631	
addition of cell type to the model (Barnes (effects of Schiz): M2 vs. M5, CMC (effects of Bipolar 632	
Disorder): M2 vs. M3). Middle graphs: The detection of  previously-identified psychiatric effects on gene 633	
expression (p<0.05 & replicated direction of effect) increases with the addition of cell type to the model 634	
in some datasets (Barnes: M2 vs. M5, Pritzker: M2 vs. M5) but decreases in others (CMC: M2 vs. M5, 635	
M3 vs. M5). Bottom graphs: In some datasets we see an enrichment of psychiatric effects (p<0.05) in 636	
previously-identified psychiatric gene sets only after controlling for cell type (Barnes: M3, M4, Pritzker: 637	
M5, M3). For the CMC dataset, we see an enrichment using all models. The full results for all models can 638	
be found in Suppl. Table 9, Suppl. Table 10, Suppl. Table 11, Suppl. Table 12, and Suppl. Table 13. 639	

 640	

Equation 5: A model of gene expression for each dataset, colored to illustrate the subcomponents 641	
evaluated during our model comparison (#M1-M5). The base model (intercept and variable of interest) 642	
is presented in green, the typical subject variable covariates included in a standard model are blue, the 643	
cell type indices for the most prevalent cell types are colored red, and the remaining cell type indices are 644	
in purple. Model components unique to each dataset are underlined. 645	

The Pritzker microarray dataset: 646	
Gene Expression (Probeset Signal) =  647	
β0 + β1*(The variable of interest: Diagnosis) 648	
+β2*(Brain pH)+ β3*(PMI)+ β4*(Age)+ β5*(Sex)+ β6*(Agonal Factor)+  649	
+ β7*(Astrocyte)+β8*(Oligodendrocyte)+β9*(Microglia)+β10*(Interneuron)+β11*(ProjectionNeuron) 650	
+β12*(Endothelial)+β13*(Neuron_All)+β14*(Oligodendrocyte_Immature)+β15*(Mural)+β16*(RBC)+ e 651	

The CMC RNA-Seq dataset: 652	
Gene Expression (Probeset Signal) =  653	
β0 + β1*(The variable of interest: Diagnosis) 654	
+β2*(Brain pH)+β3*(PMI)+ β4*(Age)+ β5*(Sex)+ β6*(RIN)+β7*(Institution)+ β8*(CauseOfDeath)+ 655	
+ β9*(Astrocyte)+β10*(Oligodendrocyte)+β11*(Microglia)+β12*(Interneuron)+β13*(ProjectionNeuron) 656	
+β14*(Endothelial)+β15*(Neuron_All)+β16*(Oligodendrocyte_Immature)+β17*(Mural)+β18*(RBC)+ e 657	
 658	
The smaller microarray datasets (GSE53987, GSE21935, GSE21138): 659	
Gene Expression (Probeset Signal) =  660	
β0 + β1*(The variable of interest: Diagnosis) 661	
+β2*(Brain pH)+β3*(PMI)+ β4*(Age)+ β5*(Sex)+ β6*(RNADegradation)+ 662	
+ β7*(Astrocyte)+β8*(Oligodendrocyte)+β9*(Microglia)+β10*(Interneuron)+β11*(ProjectionNeuron) 663	
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+β12*(Endothelial)+β13*(Neuron_All)+β14*(Oligodendrocyte_Immature)+β15*(Mural)+β16*(RBC)+ e 664	

 665	

We found that including predictions of cell type balance in our models assessing the effect of 666	

diagnosis on gene expression dramatically improved model fit as assessed by Akaike’s Information 667	

Criterion (AIC) or Bayesian Information Criterion (BIC) (Figure 8).  These improvements were largest 668	

with the addition of the five most prevalent cell types to the model (M3, M4); the addition of less 669	

common cell types produced smaller gains (M5). These improvements were clear whether we considered 670	

the average model fit for all expressed genes (e.g., Figure 8B) or just genes with previously-identified 671	

psychiatric effects (e.g., Figure 8C).   672	

However, models that included cell type were not necessarily superior at replicating previously-673	

observed psychiatric effects on gene expression (Figure 7), even when examining psychiatric effects that 674	

were likely to be independent of changes in cell type balance. For each model, we quantified the 675	

percentage of genes replicating the previously-observed direction of effect in relationship to psychiatric 676	

illness, as well as the percentage of genes that replicated the effect using a common threshold for 677	

detection (p<0.05). Finally, we also looked at the enrichment of psychiatric effects (p<0.05) in each of the 678	

previously-documented psychiatric gene sets in comparison to the other genes in our datasets. For this 679	

analysis, to improve comparisons across datasets, we defined the statistical background for enrichment 680	

using genes universally represented in all three datasets (Pritzker, CMC, Barnes).  681	

In general, we found that the two datasets that had the most variability in gene expression related 682	

to cell type (Pritzker, Barnes: Results 3.1) were more likely to replicate previously-documented 683	

psychiatric effects on gene expression when the differential expression model included cell type 684	

covariates. For example, in the Barnes dataset, adding cell type co-variates to the model increased our 685	

ability to detect effects of Schizophrenia that had been previously documented within particular cell types 686	

or macro-dissected tissue (Figure 8E, Fisher’s exact test: M2 vs. M5, p<0.05 in both gene sets). 687	

Similarly, adding cell type co-variates to the model allowed us to see a significant enrichment of 688	

Schizophrenia effects (p<0.05) in genes with previously-documented psychiatric effects in particular cell 689	
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types (Fisher’s exact test p<0.05: M3 & M4). In the Pritzker dataset, we saw that adding cell type co-690	

variates to the model increased our ability to detect previously-documented effects of Schizophrenia in 691	

macrodissected tissue (M2 vs. M5: p<0.05). Likewise, adding cell type co-variates to the model allowed 692	

us to see a significant enrichment of Schizophrenia and Bipolar effects (p<0.05) in genes with previously-693	

documented psychiatric effects in macro-dissected tissue (Fisher’s exact test p<0.05: Schizophrenia: M5, 694	

Bipolar: M3). This mirrored the results of another analysis that we had conducted suggesting that 695	

controlling for cell type increased the overlap between the top diagnosis results in the Pritzker dataset and 696	

previous findings in the literature as a whole (Suppl. Figure 24, Suppl. Figure 25). 697	

In the large CMC RNA-Seq dataset, the rate of replication of previously-documented effects of 698	

Schizophrenia was already quite high using a standard differential expression model containing traditional 699	

co-variates (M2). Using a standard model, we could detect 27% of the previously-documented effects in 700	

cortical cell types and 55% of the previously-documented effects in macro-dissected tissue (with a 701	

replicated direction of effect and p<0.05).  However, in contrast to what we had observed in the Pritzker 702	

and Barnes datasets, controlling for cell type seemed to actually diminish the ability to detect effects of 703	

Schizophrenia that had been previously-observed within particular cell types or macrodissected tissue in a 704	

manner that scaled with the number of co-variates included in the model (M2 or M3 vs. M5: p<0.05 for 705	

both gene sets), despite improvements in model fit parameters and a lack of significant relationship 706	

between Schizophrenia and any of the prevalent cell types (Section 3.3). Including cell type co-variates in 707	

the model did not improve our ability to observe a significant enrichment of Schizophrenia effects in 708	

genes with previously-documented psychiatric effects in macro-dissected tissue – this enrichment was 709	

present in the results from all differential expression models (Fisher’s exact test p<0.05: M2-M5). In 710	

contrast, controlling for cell type slightly improved the replication of the direction of previously-711	

documented Bipolar Disorder effects (Fisher’s exact test: M2 vs. M3: p<0.05) in a manner that would 712	

seem appropriate due to the highly uneven distribution of bipolar samples across institutions and 713	

dissection methods, but even after this improvement the rate of replication was still no better than chance 714	

(48%), and, counterintuitively, the ability to successfully detect those effects still diminished in a manner 715	
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that seemed to scale with the number of co-variates included in the model (Fisher’s exact test: M2 vs. M5, 716	

p<0.05). In a preliminary analysis of the two smaller human microarray datasets that were derived from 717	

gray-matter only dissections (GSE53987, GSE21138), the addition of cell type co-variates to differential 718	

expression models clearly diminished both the percentage of genes replicating the previously-documented 719	

direction of effect of Schizophrenia in particular cell types (Fisher’s exact test: Narayan et al.: M2 vs. M4 720	

or M5: p<0.05, Lanz et al.: M2 vs. M4 or M5) and the ability to successfully detect previously-721	

documented effects (Fisher’s exact test: Narayan et al.: M2 vs. M4 or M5: p<0.05).  722	

 Therefore, we conclude that the addition of cell type covariates to differential expression models 723	

is only recommended when there is a particularly large amount of variability in the dataset associated 724	

with cell type balance. For public use we have released the full results for each dataset analyzed using the 725	

different models discussed above (Suppl. Table 9, Suppl. Table 10, Suppl. Table 11, Suppl. Table 12, 726	

and Suppl. Table 13). 727	

 728	

4. Discussion 729	

In this manuscript, we have demonstrated that the statistical cell type index is a relatively simple 730	

manner of interrogating cell-type specific expression in transcriptomic datasets from macro-dissected 731	

human brain tissue.  We find that statistical estimations of cell type balance almost fully account for the 732	

top principal components of variation in microarray data derived from macro-dissected brain tissue 733	

samples, far surpassing the effects of traditional subject variables (post-mortem interval, hypoxia, age, 734	

gender). Indeed, our results suggest that many variables of medical interest are themselves accompanied 735	

by strong changes in cell type composition in naturally-observed human brains. We find that within both 736	

chronic (age, sex, diagnosis) and acute conditions (agonal, PMI, pH) there are substantial changes in the 737	

relative representation of different cell types. Thus, accounting for demography at the cellular population 738	

level is as important for the interpretation of microarray data as cell-level functional regulation. This form 739	

of data deconvolution was also useful for identifying the subtler effects of psychiatric illness within our 740	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2017. ; https://doi.org/10.1101/089391doi: bioRxiv preprint 

https://doi.org/10.1101/089391


Running	Head:	PREDICTING	CELL	TYPE	BALANCE	

	 40	

samples, divulging the decrease in astrocytes that is known to occur in Major Depressive Disorder and the 741	

decrease in red blood cell content in the frontal cortex in Schizophrenia, resembling known fMRI 742	

hypofrontality. This form of data deconvolution may also aid in the detection of psychiatric effects while 743	

conducting differential expression analyses in datasets that have highly-variable cell content. 744	

These results touch upon the fundamental question as to whether organ-level function responds to 745	

challenge by changing the biological states of individual cells (Lamarckian) or the life and death of 746	

different cell populations (Darwinian). To reach such a sweeping perspective in human brain tissue using 747	

classic cell biology methods would require epic efforts in labeling, cell sorting, and counting. We have 748	

demonstrated that you can approximate this vantage point using an elegant, supervised signal 749	

decomposition exploiting increasingly available genomic data.  However, it should be noted that, similar 750	

to other forms of functional annotation, cell type indices are best treated as a hypothesis-generation tool 751	

instead of a final conclusion regarding tissue cell content. We have demonstrated the utility of cell type 752	

indices for detecting large-scale alterations in cell content in relationship with known subject variables in 753	

post-mortem tissue. We have not tested the sensitivity of the technique for detecting smaller effects or the 754	

validity under all circumstances or non-cortical tissue types. Likewise, while using this technique it is 755	

impossible to distinguish between alterations in cell type balance and cell-type specific transcriptional 756	

activity: when a sample shows a higher value of a particular cell type index, it could have a larger number 757	

of such cells, or each cell could have produced more of its unique group of transcripts, via a larger cell 758	

body, slower mRNA degradation, or an overall change in transcription rate. In this regard, the index that 759	

we calculate does not have a specific interpretation; rather it is a holistic property of the cell populations, 760	

the “neuron-ness” or “microglia-ness” of the sample. Such an abstract index represents the ecological 761	

shifts inferred from the pooled transcriptome. That said, unlike principal component scores or other 762	

associated techniques of removing unwanted variation from genomic data, our cell type indices do have 763	

real biological meaning - they can be interpreted in a known system of cell type taxonomy.  When single-764	

cell genomic data uncovers new cell types (e.g., the Allen Brain Atlas cellular taxonomy initiative (76)) 765	

or meta-analyses refine the list of genes defined as having cell-type specific expression (e.g., (77)), our 766	
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indices will surely evolve with these new classification frameworks, but the power of the approach will 767	

remain, in that we can disentangle the intrinsic changes of individual genes from the population-level 768	

shifts of major cell types.  769	

 We found that many variables of medical interest are accompanied by strong changes in cell type 770	

composition in naturally-observed human brains.  One result from this analysis seems particularly worth 771	

discussing in greater depth. It has been acknowledged for a long time that exposure to a hypoxic 772	

environment prior to death has a huge impact on gene expression in human post-mortem brains (e.g., 773	

(32,33,78–80)). This impact on gene expression is so large that up until recently the primary principal 774	

component of variation (PC1) in our Pritzker data was assumed to represent the degree of hypoxia, and 775	

was sometimes even systematically removed before performing diagnosis-related analyses (e.g., (35)). 776	

The strong relationship between hypoxia and gene expression in human post-mortem samples was 777	

hypothesized to be partially mediated by neuronal necrosis (81) and lactic acidosis (79). However, the 778	

magnitude of the effect of hypoxia on gene expression was still puzzling, especially when compared to 779	

the much more moderate effects of post-mortem interval, even when the intervals ranged from 8-40+ hrs. 780	

Our current analysis provides an explanation for this discrepancy, since it is clear from our results that the 781	

brains of our subjects are actively compensating for a hypoxic environment prior to death by altering the 782	

balance or overall transcriptional activity of support cells and neurons. The differential effects of hypoxia 783	

on neurons and glial cells have been studied since the 1960’s (82), but to our knowledge this is the first 784	

time that anyone has related the large effects of hypoxia in post-mortem transcriptomic data to a 785	

corresponding upregulation in the transcriptional activity of vascular cell types (46).  786	

This connection is important for understanding why results associating gene expression and 787	

psychiatric illness in human post-mortem tissue sometimes do not replicate. If a study contains mostly 788	

tissue from individuals who experienced greater hypoxia before death (e.g., hospital care with artificial 789	

respiration or drug overdose followed by coma), then the evaluation of the effect of neuropsychiatric 790	

illness is likely to inadvertently focus on differential expression in support cell types (astrocytes, 791	

endothelial cells), whereas a study that mostly contains tissue from individuals who died a fast death (e.g., 792	
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car accident or myocardial infarction) will emphasize the effects of neuropsychiatric illness in neurons. 793	

That said, although both indicators of perimortem hypoxia (agonal factor and acidosis (pH)) showed 794	

similar strong relationships with cell type balance, we do recommend some caution when interpreting the 795	

relationship between pH and cell type in tissue from subjects with psychiatric disorders, as pH can 796	

indicate other biological changes besides hypoxia. For example, there are small consistent decreases in 797	

pH associated with Bipolar Disorder even in live subjects (83–85) and metabolic changes associated with 798	

pH are theorized to play an important role in Schizophrenia (80). Therefore, some of the relationship 799	

between pH and cell type balance may be driven by a third variable (psychiatric illness or psychiatric 800	

treatment). It is also possible that a change in the cell content of brain tissue could cause a change in pH 801	

(86).  802	

We found that including cell type indices as co-variates while running differential expression 803	

analyses helped improve our ability to detect previously-documented relationships between psychiatric 804	

illness and gene expression in datasets that were particularly affected by variability in cell type balance.  805	

This improvement was not seen in datasets that were less affected by variability in cell type balance, 806	

despite improvements in model fit and a lack of strong multicollinearity between diagnosis and the cell 807	

type indices.  This finding was initially surprising to us, but upon further consideration makes sense, as 808	

the cell type indices are multi-parameter gene expression variables. Therefore, there is increased risk of 809	

overfitting when modeling the data for any particular gene.  We conclude that the addition of cell type 810	

covariates to differential expression models is only recommended when there is a particularly large 811	

amount of variability in the dataset associated with cell type balance, or when there is strong reason to 812	

believe that technical variation associated with cell type (such as dissection) may be highly confounding 813	

in the result. We strongly recommend that model selection while conducting differential expression 814	

analyses should be considered carefully, and evaluated not only in terms of fit parameters but also validity 815	

and interpretability. 816	

Regarding the importance of model selection for interpretability, it is worth noting that an 817	

important difference between our final analysis methods and those used by some previous researchers 818	
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(e.g., 10–12) was the lack of cell type interaction terms included in our models (e.g., Diagnosis*Astrocyte 819	

Index). Theoretically, the addition of cell type interaction terms should allow the researcher to statistically 820	

interrogate cell-type differentiated diagnosis effects because samples that contain more of a particular cell 821	

type should exhibit more of that cell type’s respective diagnosis effect. Versions of this form of analysis 822	

have been successful in other investigations (e.g., (11,12,87)) but we were not able to validate the method 823	

using our database of previously-documented relationships with diagnosis in prefrontal cell types (Figure 824	

7) and a variety of model specifications (e.g., Suppl. Figure 26). Upon consideration, we realized that 825	

these negative results were difficult to interpret because significant diagnosis*cell type interactions should 826	

only become evident if the effect of diagnosis in a particular cell type is different from what is occurring 827	

in all cell types on average. For genes with expression that is reasonably specific to a particular cell type 828	

(e.g., GAD1, PVALB), the overall average diagnosis effect may already largely reflect the effect within 829	

that cell type and the respective interaction term will not be significantly different, even though the 830	

disease effect is clearly tracking the balance of that cell population. In the end, we decided that the 831	

addition of interaction terms to our models was not demonstrably worth the associated decrease in overall 832	

model fit and statistical power. 833	

Finally, our work drives home the fact that any comprehensive theory of psychiatric illness needs 834	

to account for the dichotomy between the health of individual cells and that of their ecosystem. We found 835	

that the functional changes accompanying psychiatric illness in the cortex occurred both at the level of 836	

cell population shifts (decreased astrocytic presence and red blood cell count) and at the level of intrinsic 837	

gene regulation not explained by population shifts. A similar conclusion regarding the importance of cell 838	

type balance in association with psychiatric illness was recently drawn by our collaborators (e.g.,(88)) 839	

using a similar technique to analyze RNA-Seq data from the anterior cingulate cortex. In the future, we 840	

plan to use our technique to re-analyze many of the other large microarray datasets existing within the 841	

Pritzker Neuropsychiatric Consortium with the hope of gaining better insight into psychiatric disease 842	

effects. This application of our technique seems particularly important in light of recent evidence linking 843	

disrupted neuroimmunity (89) and neuroglia (e.g., (49,58,90)) to psychiatric illness, as well as growing 844	
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evidence that growth factors with cell type specific effects play an important role in depressive illness and 845	

emotional regulation (for a review see (23,91)).  846	

In conclusion, we have found this method to be a valuable addition to traditional functional 847	

ontology tools as a manner of improving the interpretation of transcriptomic results. The capability to 848	

unravel alterations of cell type composition from modulation of cell state, even just probabilistically, is 849	

inherently useful for understanding the higher-level function of the brain as emergent properties of brain 850	

activity, such as emotion, cognition, memory, and addiction, usually involve ensembles of many cells. 851	

Facilitating the interpretation of gene activity data in macro-dissected tissue in light of both processes 852	

provides new opportunities to integrate results with findings from other approaches, such as 853	

electrophysiology analysis of brain circuits, brain imaging, optogenetic manipulations, and naturally 854	

occurring variation in response to injury and brain diseases. 855	

 For the benefit of other researchers, we have made our database of brain cell type specific genes 856	

(https://sites.google.com/a/umich.edu/megan-hastings-hagenauer/home/cell-type-analysis) and R code for 857	

conducting cell type analyses publicly available in the form of a downloadable R package 858	

(https://github.com/hagenaue/BrainInABlender) and we are happy to assist researchers in their usage for 859	

pursuing better insight into psychiatric illness and neurological disease. 860	

 861	
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7.1 Detailed Methods and Results: Using Cell Type Specific Transcripts to Predict Relative Cell 1214	

Content in Datasets from Purified Cells and Artificial Cell Mixtures 1215	

To validate our technique, we used the expression of the cell type specific transcripts included in 1216	

our database to predict the relative balance of cell types in samples with known cell content (purified cells 1217	

and artificial cell mixtures). To do this analysis, we used two RNA-Seq datasets: one derived from from 1218	

purified cortical cell types in mice (n=17: two samples per purified cell type and 3 whole brain samples: 1219	

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52564) (18), and one derived from 466 single-1220	

cells dissociated from freshly-resected human cortex 1221	

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835) (2). To estimate the limitations and 1222	

noise inherant in our technique, we also constructed in silico mixtures of 100 cells with known 1223	

percentages of each cell type by randomly sampling from each dataset (with replacement).  1224	

The RNA-Seq data that we downloaded from GEO (Gene expression Omnibus) was already in 1225	

the format of FPKM values (Fragments Per Kilobase of exon model per million mapped fragments) (18) 1226	

or counts per gene (2). To stabilize the variance in the data, we used a log transformation (base 2), and 1227	

then filtered out the data for any genes that completely lacked variation across samples (sd=0). Within the 1228	

mouse dataset (18) this filtering decreased the dataset from 22462 genes to 17148 genes. Within the 1229	

human dataset (2), this filtering decreased the dataset from 22085 genes to 21627 genes.  1230	

Then, using the methods now found in the BrainInABlender package, we extracted the data for 1231	

genes previously identified as having cell type specific expression in our curated database. Within the 1232	

mouse dataset, there were data from 2513 genes that aligned with 2914 entries in our database of cell type 1233	

specific transcripts (as matched by official gene symbol). Within the human dataset, there were data from 1234	

2374 genes that aligned with 2882 entries in our database of cell type specific transcripts (as matched by 1235	

gene symbol). We centered and scaled the expression levels for each gene across samples (mean=0, sd=1) 1236	

to prevent genes with more variable signal from exerting disproportionate influence, and then, for each 1237	

sample, averaged this value across the transcripts identified in each publication as specific to a particular 1238	

cell type. This created 38 cell type signatures derived from the cell type specific genes identified by the 1239	
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eight publications ("Cell Type Indices"), each of which predicted the relative content for one of the 10 1240	

primary cell types in our cortical samples. All of the R script documenting these analyses can be found at 1241	

https://github.com/hagenaue/CellTypeAnalyses_Darmanis and 1242	

https://github.com/hagenaue/CellTypeAnalyses_Zhang.  1243	

We found that the statistical cell type indices easily predicted the cell type identities of the 1244	

original samples (Suppl. Figure 1, Suppl. Figure 2). This was true regardless of the publication from 1245	

which the cell type specific genes were derived: cell type specific gene lists derived from publications 1246	

using different species (human vs. mouse), platforms (microarray vs. RNA-Seq), methodologies 1247	

(florescent cell sorting vs. suspension), or statistical stringency all performed fairly equivalently, with 1248	

some minor exception. Occassionally, we found that the cell type indices associated with cell type 1249	

specific gene lists derived from TRAP methodology (15) did not properly predict the cell identity of the 1250	

samples, and in general the cell type indices associated with immature oligodendrocytes were somewhat 1251	

inconsistent. As would be expected, the cell type indices derived from cell type specific genes identified 1252	

by the same publication that produced the test datasets (2,18) were (by definition) superb predictors of the 1253	

sample cell identity in their own dataset, and were thus excluded from later validation analyses. 1254	

1255	
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 1256	

  1257	

Cell$ type$indices:$ Applied$ to$an$RNAseq dataset$ from$purified$cell$ types$(Zhang$et$al.,$2014)

Cell$ type$indices:$ Applied$ to$an$RNAseq dataset$ from$purified$cell$ types$(Zhang$et$al.,$2014)
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 1258	

Suppl. Figure 1. The cell content predictions derived from cell type specific transcripts originating 1259	
from different publications successfully predict sample cell type in mouse purified cell type RNA-Seq 1260	
data. The sample cell type in a mouse purified cell type RNA-Seq dataset (18) was predicted equally well 1261	
by cell type indices derived from cell type specific transcripts originating from publications using 1262	
different species, methodologies, and platforms. The actual sample cell type is indicated in the main 1263	
heading above the plot (NFO: “newly-formed oligodendrocyte”), and each bar represents the average 1264	
for two samples for each cell type index (identified by primary cell type, subtype, and publication on the 1265	
x-axis). The cell type indices that fall within a particular primary category of cell are further identified by 1266	
color (lavender: astrocytes, orange: endothelial, green: microglia, yellow: mural, purple: neuron_all, 1267	
blue: neuron_projection, red: neuron_interneuron, pink: oligodendrocyte, gray: oligodendrocyte 1268	
progenitor cell (OPC), brown: red blood cell (RBC)).  1269	

 1270	

 1271	

 1272	

 1273	

  1274	
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 1275	

 1276	

 1277	

1278	
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Suppl. Figure 2. The cell content predictions derived from cell type specific transcripts originating 1279	
from different publications successfully predict sample cell type in human single cell RNA-Seq data. 1280	
The sample cell type in a human single cell RNA-Seq dataset (2) was predicted equally well by cell type 1281	
indices derived from cell type specific transcripts originating from publications using different species, 1282	
methodologies, and platforms. The sample cell type (as identified in the publication) is indicated in the 1283	
main heading above the plot, and each bar represents the average cell type index (identified by primary 1284	
cell type, subtype, and publication on the x-axis) for all samples of that cell type. The cell type indices that 1285	
fall within a particular primary category of cell are further identified by color (lavender: astrocytes, 1286	
orange: endothelial, green: microglia, yellow: mural, purple: neuron_all, blue: neuron_projection, red: 1287	
neuron_interneuron, pink: oligodendrocyte, gray: oligodendrocyte progenitor cell (OPC), brown: red 1288	
blood cell (RBC)). 1289	

  1290	

 For further analyses, individual cell type indices were averaged within each of ten primary 1291	

categories: astrocytes, endothelial cells, mural cells, microglia, immature and mature oligodendrocytes, 1292	

red blood cells, interneurons, projection neurons, and indices derived from neurons in general, with any 1293	

genes that were identifed as being specific to more than one category removed (e.g., a gene identified as 1294	

being specifically expressed in both microglia and endothelial cells). This led to ten consolidated primary 1295	

cell-type indices for each sample. We then examined the relationship between these consolidated cell type 1296	

indices and actual cell content in artificial mixtures of 100 cells generated in silico by randomly sampling 1297	

from the purified cell datasets (with replacement). We found that the consolidated cell type indices 1298	

strongly predicted the percentage of their respective cell type included in our artificial mixtures of 100 1299	

cells in a linear manner (Suppl. Figure 3, Suppl. Figure 4) across a range of values likely to encompass 1300	

the true proportion of these cells in our cortical samples. The amount of noise present in these predictions 1301	

varied by data type, with the predictions generated from single-cell data having substantially more noise 1302	

than that generated from pooled, purified cells, but even the noiser data was associated with most of the 1303	

data (+/- 1 stdev) falling within +/- 5% of the prediction. Therefore, we conclude that cell type indices are 1304	

a relatively easy manner to estimate relative cell type balance across samples.  1305	

 1306	

 1307	
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 1308	

Suppl. Figure 3. Cell type indices successfully predict the percentage of cells of a particular type in 1309	
artificial mixtures of 100 cells created using mouse purified cell type RNA-Seq data. Depicted are the 1310	
cell type indices (y-axis) calculated for mixed cell samples generated in silico using random sampling 1311	
(with replacement) from a mouse purified cell type RNA-Seq dataset (18). Each sample contains 100 cells 1312	
total, with a designated percentage of the cell type of interest (x-axis), with the percentages designed to 1313	
roughly span what might be found in cortical tissue samples. The black best fit line (as defined by a linear 1314	
model) is accompanied by the standard error of the regression (gray), and the green and red lines are 1315	
visual guides to help illustrate a 5% increase in the cell type of interest. 1316	

 1317	

 1318	

 1319	
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 1320	

Suppl. Figure 4. Cell type indices successfully predict the percentage of cells of a particular type in 1321	
artificial mixtures of 100 cells created using human single-cell RNA-Seq data. Depicted are the cell 1322	
type indices (y-axis) calculated for mixed cell samples generated in silico using random sampling (with 1323	
replacement) from a human single cell RNA-Seq dataset (2). Each sample contains 100 cells total, with a 1324	
designated percentage of the cell type of interest (x-axis), with the percentages designed to roughly span 1325	
what might be found in cortical tissue samples. The black best fit line (as defined by a linear model) is 1326	
accompanied by the standard error of the regression (gray), and the green and red lines are visual guides 1327	
to help illustrate a 5% increase in the cell type of interest. Note the greater amount of variation present in 1328	
the predictions for this dataset (based on single-cell data) versus the predictions based on mouse purified 1329	
cell data (Suppl. Figure 3). 1330	

 1331	

As further validation, we determined whether relative cell type balance could be accurately 1332	

deciphered from microarray data for samples containing artificially-generated mixtures of cultured cells 1333	

(GSE19380; (12)).  The cells used to make these mixtures were cultured from the cerebral cortices of rat 1334	

P1 pups.  The microarray profiling was then performed using a Affymetrix Rat Genome 230 2.0 Array, 1335	

We downloaded the pre-processed gene expression dataset from GEO using the R package GEOquery. 1336	

According to the methods published on GEO, this data had already undergone probe set summarization 1337	

and normalization using robust multi-array averaging (RMA, affy package), including background 1338	
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subtraction, summarization by median polish, log (base 2) transformation, and quantile normalization. We 1339	

used the R package GEOquery to extract out the description of the cell type mixture associated with each 1340	

sample, and then used this data to construct a new matrix that contained the percent of each cell type 1341	

(columns: neuron, astrocyte, oligodendrocyte, microglia) found in each sample. We then predicted the 1342	

cell content of each sample from the microarray data using BrainInABlender, and plotted these 1343	

predictions against the actual percent of each cell type found in the mixtures. We made these plots both 1344	

for predictions derived from cell type specific gene lists from particular publications (Suppl. Figure 6) 1345	

and after averaging these individual cell type indices within each of ten primary categories, with any 1346	

genes that were identifed as being specific to more than one category removed (e.g., a gene identified as 1347	

being specifically expressed in both microglia and endothelial cells, Suppl. Figure 5). These results are 1348	

included in main text of paper (Figure 3). The code for all of these analyses can be found at: 1349	

https://github.com/hagenaue/CellTypeAnalyses_KuhnMixtures/tree/master. 1350	

 1351	

 1352	
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Astrocyte_All_Cahoy_JNeuro_2008 47 87%
Astrocyte_All_Darmanis_PNAS_2015 14 93%
Astrocyte_All_Doyle_Cell_2008 12 100%
Astrocyte_All_Zeisel_Science_2015 181 88%
Astrocyte_All_Zhang_JNeuro_2014 32 78%
Endothelial_All_Daneman_PLOS_2010 34 76%
Endothelial_All_Darmanis_PNAS_2015 14 93%
Endothelial_All_Zeisel_Science_2015 261 90%
Endothelial_All_Zhang_JNeuro_2014 30 83%
Microglia_All_Darmanis_PNAS_2015 17 94%
Microglia_All_Zeisel_Science_2015 305 91%
Microglia_All_Zhang_JNeuro_2014 26 88%
Mural_All_Zeisel_Science_2015 114 93%
Mural_Pericyte_Zhang_JNeuro_2014 32 69%
Mural_Vascular_Daneman_PLOS_2010 36 64%
Neuron_All_Cahoy_JNeuro_2008 60 63%
Neuron_All_Darmanis_PNAS_2015 18 72%
Neuron_All_Zhang_JNeuro_2014 22 68%
Neuron_CorticoSpinal_Doyle_Cell_2008 17 59%
Neuron_CorticoStriatal_Doyle_Cell_2008 16 6%
Neuron_CorticoThalamic_Doyle_Cell_2008 14 64%
Neuron_GABA_Sugino_NatNeuro_2006 23 83%
Neuron_Glutamate_Sugino_NatNeuro_2006 48 81%
Neuron_Interneuron_CORT_Doyle_Cell_2008 13 77%
Neuron_Interneuron_Zeisel_Science_2015 259 90%
Neuron_Neuron_CCK_Doyle_Cell_2008 12 58%
Neuron_Neuron_PNOC_Doyle_Cell_2008 18 67%
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 189 88%
Oligodendrocyte_All_Cahoy_JNeuro_2008 33 94%
Oligodendrocyte_All_Doyle_Cell_2008 19 74%
Oligodendrocyte_All_Zeisel_Science_2015 323 93%
Oligodendrocyte_Mature_Darmanis_PNAS_2015 15 100%
Oligodendrocyte_Mature_Doyle_Cell_2008 18 72%
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 34 100%
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 31 65%
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 15 73%
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 32 59%
RBC_All_GeneCardSearch_Hemoglobin_ErythrocyteSpecific 5 100%
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Suppl. Figure 5. Identifying non-specific “cell-type specific genes”:  An example from dataset 1354	
GSE19380 of the number of probesets that  represented genes identified as cell type specific in each 1355	
publication in our database vs. the percentage that were actually found to truly specific to that cell type 1356	
(i.e., not identified as "specific" to another category of cell type in a different publication).  The data 1357	
from genes that were identifed as being specific to more than one category of cell type (e.g., a gene 1358	
identified as being specifically expressed in both microglia and endothelial cells) was removed before 1359	
averaging the individual cell type indices within each of ten primary categories (astrocytes, endothelial 1360	
cells, mural cells, microglia, immature and mature oligodendrocytes, red blood cells, interneurons, 1361	
projection neurons, and indices derived from neurons in general) to create the ten consolidated primary 1362	
cell-type indices used throughout our paper. 1363	

 1364	

 1365	
 1366	
 1367	
 1368	
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1369	
  1370	

Suppl. Figure 6. Validation of Relative Cell Content Predictions.  A) Using a microarray dataset 1371	
derived from samples that contained artificially-generated mixtures of cultured cells (GSE19380; (12)), 1372	
we found that our relative cell content predictions (“cell type indices”) closely reflected actual known 1373	
content, except that the percentage of cultured oligodendrocytes included in the mixtures was better 1374	
predicted using cell type specific gene lists derived from immature oligodendrocytes instead of mature 1375	
oligodendrocytes. 1376	

 1377	

 1378	

 1379	
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 1380	

 1381	

7.2 Comparison of Our Method vs. PSEA:  Predicting Cell Identity in a Human Single-Cell RNA-1382	

Seq Dataset 1383	

Although we generated our method independently to address microarray analysis questions that arose 1384	

within the Pritzker Neuropsychiatric Consortium, we later discovered that it was quite similar to the 1385	

technique of population-specific expression analysis (PSEA) introduced by (12) with several notable 1386	

differences. Similar to our method, PSEA is a carefully-validated analysis method which aims to estimate 1387	

cell type-differentiated disease effects from microarray data derived from brain tissue of heterogeneous 1388	

composition and approaches this problem by including the averaged, normalized expression of cell type 1389	

specific markers within a larger linear model that is used to estimate differential expression in microarray 1390	

data (10–12). Analyses using PSEA similarly indicated that individual variability in neuronal, astrocytic, 1391	

oligodendrocytic, and microglial cell content was sufficient to account for substantial variability in the 1392	

vast majority of probe sets in microarray data from human brain samples, even within non-diseased 1393	

samples (12). The differences between our techniques are mostly due to the recent growth of the literature 1394	

documenting cell type specific expression in brain cell types. PSEA uses a very small set of markers (4-7) 1395	

to represent each cell type, and screens these markers for tight co-expression within the dataset of interest, 1396	

since co-expression networks have been previously demonstrated to often represent cell type signatures in 1397	

the data (92). This is essential for the analysis of microarray data for brain regions that have not been well 1398	

characterized for cell type specific expression (e.g., the substantia nigra), but risks the possibility of 1399	

closely tracking variability in a particular cell function instead of cell content (as described in our results 1400	

related to aging). Our analysis predominantly focused on the well-studied cortex, thus enabling us to 1401	

expand our analysis to include hundreds of cell type specific markers derived from a variety of 1402	

experimental techniques.  1403	

Our manner of normalizing data also differs: PSEA normalizes the expression values for each gene by 1404	

dividing by the average expression of that gene across samples, whereas we use z-score normalization, 1405	
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both at the level of the individual transcript and later at the level of the gene level summary data. Due to 1406	

the dependence of PSEA on ratios, genes that have average expression values that are close to zero can 1407	

end up with normalized values that are extremely high for a handful of samples. For microarray data, this 1408	

form of normalization should function well because log2 expression values rarely drop below 5. 1409	

However, within RNA-Seq, counts of zero are quite common and therefore we suspected that the ratio-1410	

form of normalization used by PSEA might not function optimally for this data type.  1411	

 Therefore, we decided to run a head-to-head comparison of our method and PSEA using a single-1412	

cell RNA-Seq dataset derived from freshly-resected human cortex (2). To make the comparison as 1413	

interpretable as possible, we used the same list of cell type specific genes for both methods: the cell type 1414	

specific genes remaining in our database following the removal of all transcripts that were found to be 1415	

“specifically expressed” in multiple categories of cell types (e.g., a transcript that is “specific” to both 1416	

astrocytes and neurons). In order to avoid circular reasoning, we also did not include any cell type 1417	

specific genes that had originally been identified by the publication currently used as the test dataset (2). 1418	

Then we extracted the variance-stabilized and filtered data (see Section 7.1) for the cell type specific 1419	

genes. For PSEA, we downloaded the PSEA package from Bioconductor 1420	

(https://www.bioconductor.org/packages/release/bioc/vignettes/PSEA/inst/doc/PSEA.pdf) and used the 1421	

marker() function to calculate the “Reference Signal” for the most common primary categories of cell 1422	

types (astrocytes, endothelial cells, microglia, mature oligodendrocytes, and neurons in general). For our 1423	

method, we used a procedure similar to that used in the manuscript. We applied a z-score transformation 1424	

to the data for each gene (mean=0, sd=1), and then either averaged by the primary cell type category (to 1425	

conduct an analysis most similar to PSEA), or averaged the data from the cell type specific genes 1426	

identified by each publication, followed by averaging by primary cell type category (to create 1427	

consolidated cell type indices similar to those used in most of our manuscript).   1428	

To compare the efficacy of each method, we ran a linear model to determine the percentage of 1429	

variation in the population “reference signal” (PSEA) or “cell type index” (our method) accounted for by 1430	

the cell type identities assigned to each cell in the original publication (2). We found that both the 1431	
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population reference signals (PSEA) and cell type indices (our method) for each cell were strongly related 1432	

to their previously-assigned cell type identity, but in general the relationship was stronger when using our 1433	

method: on average, 34% of the variation in the reference signal for each cell type was accounted for by 1434	

cell identity, whereas an average of either 45% or 49% of the variation in our cell type indices was 1435	

accounted for by cell identity using either the simplified or consolidated versions of our method, 1436	

respectively (Suppl. Figure 7). An illustration of this improvement can be found in Suppl. Figure 8: note 1437	

the presence of extreme outliers in the population reference signal when using the PSEA method. We 1438	

conclude that the simple use of a different normalization method is sufficient to make our method a more 1439	

effective manner of predicting cell type balance in some datasets. We also find that averaging the 1440	

predictions drawn from the cell type specific genes identified by multiple publications into a consolidated 1441	

index produces some additional improvement.  1442	

  1443	
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 1444	

  1445	

Suppl. Figure 7. The method for deriving predicted relative cell content determines the strength of the 1446	
relationship with sample cell type. Depicted below is a comparison of the efficacy of three different 1447	
manners of predicting the relative cell content of samples (columns) in a human single-cell RNA-seq 1448	
dataset (2): 1) the “population reference signal” generated by PSEA, 2) a simplified version of our 1449	
method that is meant to be relatively analogous to PSEA (a simple average of the z-score-transformed 1450	
data for all genes specific to a particular cell type in our database), 3) the version of our method used in 1451	
this manuscript, which consolidates the predictions derived from the cell type specific genes identified in 1452	
different publications. For the predicted relative content of each of the major cell types (rows) derived 1453	
using these different methods, the table provides the percentage of variation (r-squared) that is accounted 1454	
for by the original cell type identities of the samples provided by the publication (2). Overall, there is a 1455	
strong relationship between the predictions generated by all methods and sample cell type identity, but 1456	
the method used in this manuscript produces predictions that best fit sample cell type. 1457	

1458	

The$method$for$deriving$a$statistical$cell$type$signal$determines$the$strength$of$the$relationship$with$cell$identity
The$percentage$of$the$variation$in$a$statistically3derived$cell$type$signal$accounted$for$by$cell$identity
(Darmanis)Data)Set)

Method$of$deriving$a$statistical$cell$type$signal:

Signal$from$cell$type$
specific$genes$for:

PSEA$(mean$
signal$ratio$
average)

Our$Cell$Type$
Indices$(z3score$
average)

Our$Cell$Type$
Indices:$After$$
first$averaging$
by$Publication

Astrocytes 34% 52% 57%
Oligodendrocytes 38% 45% 50%
Microglia 36% 42% 51%
Endothelial 30% 28% 33%
Neurons 33% 57% 53%

The$same$cell$ type$specific$genes$were$used$in$all$methods
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 1459	

 1460	

PSEA:

Our)Cell)Type)Index:

Our)Cell)Type)Index:)After)First)Averaging)by)Publication

PSEA:

Our)Cell)Type)Index:

Our)Cell)Type)Index:)After)First)Averaging)by)Publication
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 1463	

Suppl. Figure 8. The method for deriving predicted relative cell content determines the strength of the 1464	
relationship with sample cell type. Depicted below is a comparison of the efficacy of three different 1465	
manners of predicting the relative cell content of samples (columns) in a human single-cell RNA-seq 1466	
dataset (2): 1) the “population reference signal” generated by PSEA, 2) a simplified version of our 1467	
method that is meant to be relatively analogous to PSEA (a simple average of the z-score-transformed 1468	
data for all genes specific to a particular cell type in our database), 3) the version of our method used in 1469	
this manuscript, which consolidates the predictions derived from the cell type specific genes identified in 1470	
different publications. Boxplots illustrate the distribution of the relative cell content predictions across 1471	
samples identified as different cell types in the original publication (2). Lavender: astrocytes, orange: 1472	
endothelial cells, green: microglia, pink: oligodendrocytes, purple: neurons.  Note the presence of several 1473	
extreme outliers (red) in the predictions produced by PSEA.  1474	

 1475	

Using similar methodology, we also calculated the population “reference signal” with PSEA for 1476	

microarray data from artificially-created mixtures of cultured cells (GSE19380 – see discussion of data 1477	

preprocessing in Section 7.1). The results strongly tracked the actual cell content of the mixed samples 1478	

(Suppl. Figure 9) in a manner that was not strikingly better or worse than the predictions made using 1479	

BrainInABlender for the same dataset (Figure 3). This again drives home the fact that the ratio-based 1480	

PSEA:

Our)Cell)Type)Index:

Our)Cell)Type)Index:)After)First)Averaging)by)Publication
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normalization methods used in PSEA are particularly incompatible with low count data in RNA-Seq – 1481	

results derived from microarray data are fine. 1482	

 1483	

 1484	

Suppl. Figure 9. Relative cell content predictions made using PSEA and our cell type specific gene 1485	
lists.  Using a microarray dataset derived from samples that contained artificially-generated mixtures of 1486	
cultured cells (GSE19380; (12)), we found that the relative cell content predictions (“cell type reference 1487	
signal”) produced by PSEA closely reflected actual known content, similar to the predictions made by 1488	
BrainInABlender (Figure 3). 1489	

 1490	

 1491	
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7.3 Additional Detailed Preprocessing Methods for the Macro-Dissected Microarray Datasets 1492	

 1493	

7.3.1 Pritzker Dorsolateral Prefrontal Cortex Microarray Dataset (GSE92538) 1494	

The original dataset included tissue from 172 high-quality human post-mortem brains donated to 1495	

the Brain Donor Program at the University of California, Irvine with the consent of the next of kin. 1496	

Frozen coronal slabs were macro-dissected to obtain dorsolateral prefrontal cortex samples. Clinical 1497	

information was obtained from medical examiners, coroners’ medical records, and a family member. 1498	

Patients were diagnosed with either Major Depressive Disorder, Bipolar Disorder, or Schizophrenia by 1499	

consensus based on criteria from the Diagnostic and Statistical Manual of Mental Disorders (93). Due to 1500	

the extended nature of this study, this sample collection occurred in waves (“cohorts”) over a period of 1501	

many years. This research was overseen and approved by the University of Michigan Institutional Review 1502	

Board (IRB # HUM00043530, Pritzker Neuropsychiatric Disorders Research Consortium (2001-0826)) 1503	

and the University of California Irvine (UCI) Institutional Review Board (IRB# 1997-74).  1504	

As described previously (32,35), total RNA from these samples was then distributed to 1505	

laboratories at three different institutions (University of Michigan (UM), University of California-Davis 1506	

(UCD), University of California-Irvine (UCI)) to be hybridized to either Affymetrix HT-U133A or HT-1507	

U133Plus-v2 chips (1-5 replicates per sample, n=367).  Before conducting the current analysis, the subset 1508	

of probes found on both the Affymetrix HT-U133A and HT-U133Plus-v2 chips was extracted, 1509	

reannotated for probe-to-transcript correspondance (94), summarized using robust multi-array analysis 1510	

(RMA) (34), log (base 2)-transformed, quantile normalized, and gender-checked. Then, 15 batches of 1511	

highly-correlated samples were identified that were defined a combination of cohort, chip, and laboratory 1512	

(Suppl. Figure 10).  1513	
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 1514	

Suppl. Figure 10. The number of microarray chips run in each batch, defined by processing site, 1515	
Affymetrix chip type, and sample collection cohort. Samples from the four diagnostic categories 1516	
(Control, Bipolar Disorder, Major Depressive Disorder, Schizophrenia) were unevenly distributed across 1517	
batches.  1518	

 1519	

Samples that exhibited markedly low average sample-sample correlation coefficients (<0.85: 1520	

outliers) were removed from the dataset, including data from one batch that exhibited overall low sample-1521	

sample correlation coefficients with other batches and was a poor match with their duplicate microarrays 1522	

run in a separate laboratory. The batch effects were then subtracted out using median-centering (detailed 1523	

procedure: (35)) and the replicate samples were averaged for each subject.  Our current analyses began 1524	

with this sample-level summary gene expression data (publicly available in the Gene Expression 1525	

Omnibus, GEO: GSE92538). We further removed data from any subjects lacking information regarding 1526	

critical pre- or post-mortem variables necessary for our analysis, leaving a final sample size of n=157. All 1527	

of the R script documenting these analyses can be found at 1528	

https://github.com/hagenaue/CellTypeAnalyses_PritzkerAffyDLPFC.  1529	

 1530	

 1531	
 1532	

 1533	

Batch# Site Chip Cohort Control BP MDD SCHIZ
1 UCD U133A Dep	Cohort	1	&	2 20 9 11 0
2 UCD U133A Dep	Cohort	3 11 6 5 0
3 UCD U133A Dep	Cohort	4 16 4 7 0
4 UCD U133Plus2 Dep	Cohort	5 13 5 10 0
5 UCD U133A Schiz	Cohort	1 9 0 0 9
6 UCD U133Plus2 Schiz	Cohort	1 8 0 0 8
7 UCD U133Plus2 Schiz	Cohort	2 8 0 0 10
8 UCI U133A Schiz	Cohort	1 9 0 0 9
9 UM U133A Dep	Cohort	1 16 10 9 0
10 UM U133A Dep	Cohort	2 3 2 5 0
11 UM U133A Dep	Cohort	3	&	4 27 11 11 0
12 UM U133Plus2 Dep	Cohort	5 13 5 10 0
13 UM U133Plus2 Dep	Cohort	6 7 2 9 3
14 UM U133A Schiz	Cohort	1 9 0 0 9
15 UM U133Plus2 Schiz	Cohort	2 9 0 0 10
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  1534	

7.3.2 Allen Brain Atlas Cross-Regional Microarray Dataset 1535	

The Allen Brain Atlas microarray data was downloaded from http://human.brain-1536	

map.org/microarray/search on December 2015. This microarray survey was performed in brain-specific 1537	

batches, with multiple batches per subject. To remove technical variation across batches, a variety of 1538	

normalization procedures had been performed by the original authors both within and across batches 1539	

using internal controls, as well as across subjects (28). The dataset available for download had already 1540	

been log-transformed (base 2) and converted to z-scores using the average and standard deviation for each 1541	

probe. These normalization procedures were designed to remove technical artifacts while best preserving 1542	

cross-regional effects in the data, but the full information about relative levels of expression within an 1543	

individual sample were unavailable and the effects of subject-level variables (such as age and pH) were 1544	

likely to be de-emphasized due to the inability to fully separate out subject and batch during the 1545	

normalization process. 1546	

Prior to conducting other analyses, we averaged the expression level of the multiple probes that 1547	

corresponded to the same gene, and re-scaled, so that the data associated with each gene symbol 1548	

continued to be a z-score (mean=0, sd=1). The 30,000 probes mapped onto 18,787 unique genes (as 1549	

determined by gene symbol). We then extracted the z-score data for the list of cell type specific genes 1550	

derived from each publication (1608 total). Then, based on our results from analyzing the Pritzker dataset, 1551	

we excluded the data for genes that were non-specific (i.e., included in a list of cell type specific genes 1552	

from a different category of cells within any of the publications), and then averaged the data from the 1553	

cell-type specific genes derived from each publication to predict the relative content of each of the 10 1554	

primary cell types in each sample. All of the R script documenting these analyses can be found at 1555	

https://github.com/hagenaue/CellTypeAnalyses_AllenBrainAtlas.  1556	

 1557	

 1558	
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7.3.3 Human Cortical Microarray Dataset GSE53987 (submitted to GEO by Lanz et al. (36)) 1559	

The full publicly-available dataset GSE53987 (described in (36)) contained Affymetrix 1560	

U133Plus2 microarray data from 205 post-mortem human brain samples from three brain regions: the 1561	

DLPFC (Brodmann Area 46, focusing on gray matter only (Lanz T.A., personal communication)), the 1562	

hippocampus, and the striatum. These samples were collected by the University of Pittsburgh brain bank. 1563	

For the purposes of our current analysis, we only downloaded the microarray .CEL files for the 1564	

dorsolateral prefrontal cortex samples. We summarized these data with robust multi-array analysis 1565	

(RMA) (from the R package affy (34)) using a custom up-to-date chip definition file (.cdf) to define 1566	

probe-to-transcript correspondence (“hgu133plus2hsentrezgcdf_19.0.0.tar.gz” from http://nmg-1567	

r.bioinformatics.nl/NuGO_R.html (94)). This process included background subtraction, log (base 2)-1568	

transformation, and quantile normalization. Gene Symbol annotation for probeset Entrez gene ids were 1569	

provided by the R package org.Hs.eg.db. We extracted the sample characteristics from the GEO website 1570	

using the R package GEOquery. To control for technical variation, the sample processing batches were 1571	

estimated using the microarray chip scan dates extracted from the microarray .CEL files (using the 1572	

function protocolData in the GEOquery package), but it appeared that all chips for the DLPFC were on 1573	

the same date. RNA degradation was estimated using the R package AffyRNADegradation (39). During 1574	

quality control, two samples were removed - GSM1304979 had a range of sample-sample correlations 1575	

that was unusually low compared (median=0.978) compared to range for the dataset as a whole (median: 1576	

0.993) and GSM1304953 appeared to be falsely identified as female (signal for XIST<7).  We then 1577	

predicted the cell content of each sample from the microarray data using BrainInABlender.  The code for 1578	

all analyses can be found at: 1579	

https://github.com/hagenaue/CellTypeAnalyses_LanzHumanDLPFC/tree/master 1580	

 1581	

7.3.4 Human Cortical Microarray Dataset GSE21138 (submitted to GEO by Narayan et al. (38)) 1582	

 The publicly-available dataset GSE21138 (described in (38))) contained Affymetrix U133Plus2 1583	

microarray data from 59 post-mortem human brain samples from the DLPFC (Brodmann Area 46, gray 1584	
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matter only (Thomas E.A., personal communication)) collected by the Mental Health Research Institute 1585	

in Victoria, Australia. The procedures for data download and pre-processing were identical to those used 1586	

above for GSE53987 with a few minor exceptions. In particular, there were six separate scan dates 1587	

associated with the microarray .CEL files, but one of these scan dates was not included as a co-variate in 1588	

our analyses because it had an n=1 (“06/14/06”). During quality control, the data for two subjects because 1589	

they appeared to be falsely-identified as male (XIST>7, GSM528839 & GSM528840) , and one subject 1590	

that appeared to be falsely-identified as female (XIST<7, GSM528880).  Data for two more subjects were 1591	

removed as outliers due to having an unsually low range of sample-sample correlations (GSM528866, 1592	

GSM528873) as compared to the dataset as a whole.  The code for all analyses can be found at: 1593	

https://github.com/hagenaue/CellTypeAnalyses_NarayanHumanDLPFC. 1594	

 1595	

7.3.5 Human Cortical Microarray Dataset GSE21935 (submitted to GEO by Barnes et al. (37)) 1596	

The publicly-available dataset GSE21935 (described in (37)) contained Affymetrix U133Plus2 1597	

microarray data from 42 post-mortem human brain samples from the temporal cortex (Brodmann Area 1598	

22) collected at the Charing Cross campus of the Imperial College of London. The procedures for data 1599	

download and pre-processing were identical to those used above for GSE53987 with a few minor 1600	

exceptions. In particular, there were two separate scan dates associated with the microarray .CEL files, 1601	

but they were closely spaced (6/25/04 vs. 6/29/04) and we did not find any strong association between 1602	

scan date and any of the top principal components of variation in the data, so we opted to not include scan 1603	

date as a co-variate in our statistical models.  Quality control did not identify any problematic samples.  1604	

The code for all analyses can be found at: 1605	

https://github.com/hagenaue/CellTypeAnalyses_BarnesHumanCortex/tree/master. 1606	

 1607	
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7.3.6 CommonMind Consortium Human Cortical RNA-Seq Dataset 1608	

The CommonMind Consortium (CMC) RNA-seq dataset profiled prefrontal cortex samples from 603 1609	

individuals (40) collected at three brain banks: Mount Sinai School of Medicine, University of Pittsburgh, 1610	

and University of Pennsylvania.  This dataset was downloaded as GRCh37-aligned bam files from the 1611	

CommonMind Consortium Knowledge Portal (https://www.synapse.org/CMC). Tophat-aligned bam files 1612	

were converted back to fastq format and mapped to GRCh38 using HISAT2 (41) with default settings. 1613	

Reads mapping uniquely to exons were then counted using subread featureCounts with ensembl transcript 1614	

models. RNA-seq read counts were analyzed using limma/voom (42); cell type indices were calculated on 1615	

logCPM values, and analysis of differential gene expression was performed using limma with observed 1616	

precision weights in a weighted least squares linear regression. Prior to upload, poor quality samples from 1617	

the original dataset (40) had already been removed (<50 million reads, RIN<5.5) and replaced with higher 1618	

quality samples. We further excluded data from 10 replicates and 89 individuals with incomplete 1619	

demographic data (missing pH), leaving a final sample size of 514 samples.  The dataset was further 1620	

filtered using an expression threshold (CPM>1 in at least 50 individuals) which reduced the dataset from 1621	

including data from all annotated genes (about 60,000) to data from around 17.000 genes. 1622	

 1623	

 1624	

7.4 Additional figures and results:  Does the Reference Dataset Matter?  There is a Strong 1625	

Convergence of Cell Content Predictions Derived from Cell Type Specific Transcripts 1626	

Identified by Different Publications  1627	

Similar to what we observed during our validation analyses using data from purified cell types, 1628	

we found that the predicted cell content for our post-mortem human cortical samples (“cell type indices”) 1629	

was similar regardless of the methodology used to generate the cell type specific gene lists used in the 1630	

predictions. Within all four of the cortical microarray datasets, there was a strong positive correlation 1631	

between cell type indices representing the same cell type, even when the predictions were derived using 1632	

cell type specific gene lists from different species, cell type purification strategies, and platforms. In 1633	
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general, we found that the pattern of correlations between the 38 cell type indices clearly clustered within 1634	

three large umbrella categories: neurons, oligodendrocytes, and support cells (astrocytes, microglia, and 1635	

neurovasculature).  This clustering was clear using visual inspection of the correlation matrices (Suppl. 1636	

Figure 11, Suppl. Figure 12), hierarchical clustering, or consensus clustering (Suppl. Figure 13; 1637	

ConsensusClusterPlus: (43)) and persisted even after removing data from genes identified as cell type 1638	

specific in multiple publications (e.g., gene expression identified as astrocyte-expression in both 1639	

Cahoy_Astrocyte and Zhang_Astrocyte; Suppl. Figure 14, Suppl. Figure 16). In some datasets, the cell 1640	

type indices for support cell subcategories were also clearly clustered (Suppl. Figure 11). In contrast, 1641	

clustering was not able to reliably discern neuronal subcategories (interneurons, projection neurons) in 1642	

any dataset. Likewise, oligodendrocyte progenitor cell indices derived from different publications did not 1643	

strongly correlate with each other, perhaps indicating a lack of significant presence of progenitor cells in 1644	

the cortex of the primarily middle-aged subjects.  1645	
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Astrocyte_All_Cahoy_JNeuro_2008 1 0.92 0.94 0.89 0.78 -0 0.28 0.24 0.21 0.41 0.55 0.45 0.32 0.41 0.37 -0.6 -0.7 -0.3 -0.2 -0.2 0.13 -0.6 -0.5 -0.5 -0.4 -0.4 -0.1 -0.1 0.1 -0.2 0.13 -0 0.26 0.19 -0.5 0.41 -0.1 0.12
Astrocyte_All_Darmanis_PNAS_2015 0.92 1 0.91 0.82 0.54 -0.1 0.05 -0 0 0.28 0.43 0.22 0.04 0.16 0.15 -0.5 -0.5 -0.5 -0.3 -0.2 -0.1 -0.6 -0.7 -0.4 -0.5 -0.6 -0.3 -0.3 0.22 -0.4 0.32 0.2 0.24 0.25 -0.4 0.17 -0.3 -0.2
Astrocyte_All_Doyle_Cell_2008 0.94 0.91 1 0.86 0.66 0.02 0.21 0.15 0.09 0.26 0.44 0.28 0.15 0.24 0.25 -0.4 -0.5 -0.3 -0.2 -0.1 0.06 -0.5 -0.5 -0.4 -0.4 -0.4 -0.1 -0 0.12 -0.2 0.2 0.03 0.17 0.16 -0.4 0.3 -0 0.01
Astrocyte_All_Zeisel_Science_2015 0.89 0.82 0.86 1 0.63 -0.1 0.22 0.08 0.26 0.41 0.64 0.44 0.41 0.37 0.44 -0.5 -0.6 -0.3 -0.1 -0.2 0.22 -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.2 0.06 -0.1 0.28 -0 0.32 0.23 -0.3 0.28 -0.1 0
Astrocyte_All_Zhang_JNeuro_2014 0.78 0.54 0.66 0.63 1 0.11 0.56 0.59 0.3 0.49 0.53 0.68 0.61 0.72 0.5 -0.6 -0.8 0.09 -0.1 0.02 0.41 -0.5 -0.2 -0.7 -0.4 -0.2 0.2 0.2 0.02 0.03 -0.2 -0.2 0.29 0.18 -0.6 0.77 0.26 0.44
Microglia_All_Darmanis_PNAS_2015 -0 -0.1 0.02 -0.1 0.11 1 0.77 0.65 0.26 0.28 0.19 0.2 0.15 0.24 -0.1 -0.2 -0.2 0.02 -0.4 -0 -0.1 -0.1 -0 0 0.15 0 0.31 0.18 0.24 0.29 0.1 0.12 0.26 0.26 -0.2 0.26 0.03 0.13
Microglia_All_Zeisel_Science_2015 0.28 0.05 0.21 0.22 0.56 0.77 1 0.87 0.46 0.47 0.47 0.61 0.6 0.61 0.27 -0.5 -0.6 0.16 -0.3 -0.1 0.26 -0.3 0.03 -0.3 0.04 #### 0.41 0.29 0.24 0.39 0.03 -0 0.51 0.37 -0.5 0.69 0.29 0.48
Microglia_All_Zhang_JNeuro_2014 0.24 -0 0.15 0.08 0.59 0.65 0.87 1 0.29 0.31 0.18 0.52 0.47 0.61 0.14 -0.4 -0.6 0.37 -0.3 0.05 0.15 -0.2 0.15 -0.4 -0.1 0.02 0.57 0.35 0.17 0.37 -0.2 -0.2 0.37 0.29 -0.6 0.69 0.35 0.67
Endothelial_All_Daneman_PLOS_2010 0.21 0 0.09 0.26 0.3 0.26 0.46 0.29 1 0.61 0.67 0.62 0.61 0.43 0.48 -0.2 -0.2 0.14 0.08 -0.2 0.36 -0.1 0.3 -0.1 0.3 0.1 0.05 -0 -0.2 -0.1 -0.3 -0.3 0.11 -0.1 -0.1 0.31 0.1 0.37
Endothelial_All_Darmanis_PNAS_2015 0.41 0.28 0.26 0.41 0.49 0.28 0.47 0.31 0.61 1 0.82 0.77 0.63 0.69 0.42 -0.6 -0.5 -0.3 -0.3 -0.5 0.22 -0.5 -0.2 -0.3 -0.2 -0.3 -0.1 -0.2 0.09 -0.2 0.02 -0 0.39 0.24 -0.3 0.41 -0 0.14
Endothelial_All_Zeisel_Science_2015 0.55 0.43 0.44 0.64 0.53 0.19 0.47 0.18 0.67 0.82 1 0.73 0.71 0.57 0.56 -0.6 -0.5 -0.3 -0.2 -0.4 0.37 -0.5 -0.3 -0.3 -0.1 -0.3 -0.3 -0.2 0.04 -0.2 0.11 -0 0.45 0.22 -0.2 0.47 -0.1 0.05
Endothelial_All_Zhang_JNeuro_2014 0.45 0.22 0.28 0.44 0.68 0.2 0.61 0.52 0.62 0.77 0.73 1 0.78 0.72 0.47 -0.6 -0.6 0.04 -0.2 -0.3 0.39 -0.4 0 -0.5 -0.1 -0.2 0.15 0.03 0.04 -0 -0.1 -0.2 0.43 0.26 -0.4 0.63 0.14 0.42
Mural_All_Zeisel_Science_2015 0.32 0.04 0.15 0.41 0.61 0.15 0.6 0.47 0.61 0.63 0.71 0.78 1 0.82 0.71 -0.6 -0.6 0.13 -0.1 -0.2 0.56 -0.2 0.14 -0.4 0.09 0.02 0.1 0.05 -0.1 0.2 -0.1 -0.3 0.39 0.18 -0.3 0.61 0.25 0.45
Mural_Pericyte_Zhang_JNeuro_2014 0.41 0.16 0.24 0.37 0.72 0.24 0.61 0.61 0.43 0.69 0.57 0.72 0.82 1 0.6 -0.6 -0.6 0.15 -0.2 -0.1 0.4 -0.3 0.04 -0.5 -0.1 -0.1 0.26 0.11 -0 0.09 -0.2 -0.3 0.32 0.17 -0.5 0.68 0.24 0.47
Mural_Vascular_Daneman_PLOS_2010 0.37 0.15 0.25 0.44 0.5 -0.1 0.27 0.14 0.48 0.42 0.56 0.47 0.71 0.6 1 -0.4 -0.4 0.03 -0 -0.1 0.55 -0.2 0.07 -0.2 0.19 0.03 -0.1 0.09 -0.3 0.02 -0.3 -0.4 0.06 -0.2 -0.3 0.4 0.23 0.36
Neuron_All_Cahoy_JNeuro_2008 -0.6 -0.5 -0.4 -0.5 -0.6 -0.2 -0.5 -0.4 -0.2 -0.6 -0.6 -0.6 -0.6 -0.6 -0.4 1 0.9 0.43 0.49 0.39 -0.1 0.85 0.57 0.65 0.31 0.67 0.23 0.29 -0.4 0.21 -0.2 -0.2 -0.7 -0.5 0.66 -0.6 0.22 -0.1
Neuron_All_Darmanis_PNAS_2015 -0.7 -0.5 -0.5 -0.6 -0.8 -0.2 -0.6 -0.6 -0.2 -0.5 -0.5 -0.6 -0.6 -0.6 -0.4 0.9 1 0.23 0.42 0.21 -0.2 0.76 0.44 0.66 0.39 0.48 -0 0.04 -0.3 -0 -0.1 -0 -0.6 -0.5 0.74 -0.7 0.01 -0.3
Neuron_All_Zhang_JNeuro_2014 -0.3 -0.5 -0.3 -0.3 0.09 0.02 0.16 0.37 0.14 -0.3 -0.3 0.04 0.13 0.15 0.03 0.43 0.23 1 0.47 0.45 0.26 0.59 0.81 0.06 0.26 0.69 0.6 0.53 -0.4 0.43 -0.5 -0.6 -0.4 -0.4 0.13 0.16 0.56 0.6
Neuron_CorticoSpinal_Doyle_Cell_2008 -0.2 -0.3 -0.2 -0.1 -0.1 -0.4 -0.3 -0.3 0.08 -0.3 -0.2 -0.2 -0.1 -0.2 -0 0.49 0.42 0.47 1 0.42 0.37 0.64 0.56 0.14 0.15 0.49 0.14 0.21 -0.3 0.21 -0.2 -0.3 -0.3 -0.3 0.38 -0.2 0.33 0.02
Neuron_CorticoStriatal_Doyle_Cell_2008 -0.2 -0.2 -0.1 -0.2 0.02 -0 -0.1 0.05 -0.2 -0.5 -0.4 -0.3 -0.2 -0.1 -0.1 0.39 0.21 0.45 0.42 1 0.24 0.48 0.34 0.02 -0.1 0.41 0.33 0.43 -0.2 0.35 -0.2 -0.2 -0.4 -0.2 0.18 -0 0.34 0.01
Neuron_CorticoThalamic_Doyle_Cell_2008 0.13 -0.1 0.06 0.22 0.41 -0.1 0.26 0.15 0.36 0.22 0.37 0.39 0.56 0.4 0.55 -0.1 -0.2 0.26 0.37 0.24 1 0.09 0.31 -0.2 0.03 0.22 0.02 0.21 -0.3 0.37 -0.3 -0.4 0.05 -0.1 -0.1 0.34 0.36 0.27
Neuron_Glutamate_Sugino_NatNeuro_2006 -0.6 -0.6 -0.5 -0.4 -0.5 -0.1 -0.3 -0.2 -0.1 -0.5 -0.5 -0.4 -0.2 -0.3 -0.2 0.85 0.76 0.59 0.64 0.48 0.09 1 0.76 0.52 0.39 0.81 0.28 0.36 -0.4 0.39 -0.2 -0.3 -0.6 -0.5 0.65 -0.4 0.44 0.06
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 -0.5 -0.7 -0.5 -0.4 -0.2 -0 0.03 0.15 0.3 -0.2 -0.3 0 0.14 0.04 0.07 0.57 0.44 0.81 0.56 0.34 0.31 0.76 1 0.32 0.46 0.82 0.46 0.41 -0.5 0.38 -0.6 -0.6 -0.4 -0.5 0.36 0 0.57 0.47
Neuron_GABA_Sugino_NatNeuro_2006 -0.5 -0.4 -0.4 -0.3 -0.7 0 -0.3 -0.4 -0.1 -0.3 -0.3 -0.5 -0.4 -0.5 -0.2 0.65 0.66 0.06 0.14 0.02 -0.2 0.52 0.32 1 0.46 0.6 -0 0.13 -0.2 0.16 0.06 -0 -0.4 -0.3 0.69 -0.6 0.07 -0.3
Neuron_Interneuron_CORT_Doyle_Cell_2008 -0.4 -0.5 -0.4 -0.3 -0.4 0.15 0.04 -0.1 0.3 -0.2 -0.1 -0.1 0.09 -0.1 0.19 0.31 0.39 0.26 0.15 -0.1 0.03 0.39 0.46 0.46 1 0.5 0.1 0.17 -0.3 0.15 -0.2 -0.2 -0.1 -0.3 0.28 -0.1 0.2 0.17
Neuron_Interneuron_Zeisel_Science_2015 -0.4 -0.6 -0.4 -0.3 -0.2 0 #### 0.02 0.1 -0.3 -0.3 -0.2 0.02 -0.1 0.03 0.67 0.48 0.69 0.49 0.41 0.22 0.81 0.82 0.6 0.5 1 0.51 0.61 -0.5 0.51 -0.3 -0.5 -0.5 -0.5 0.47 -0.1 0.64 0.3
Neuron_Neuron_CCK_Doyle_Cell_2008 -0.1 -0.3 -0.1 -0.3 0.2 0.31 0.41 0.57 0.05 -0.1 -0.3 0.15 0.1 0.26 -0.1 0.23 -0 0.6 0.14 0.33 0.02 0.28 0.46 -0 0.1 0.51 1 0.67 0.02 0.38 -0.2 -0.2 -0.1 0 -0.2 0.24 0.55 0.59
Neuron_Neuron_PNOC_Doyle_Cell_2008 -0.1 -0.3 -0 -0.2 0.2 0.18 0.29 0.35 -0 -0.2 -0.2 0.03 0.05 0.11 0.09 0.29 0.04 0.53 0.21 0.43 0.21 0.36 0.41 0.13 0.17 0.61 0.67 1 -0.1 0.36 -0.3 -0.3 -0.3 -0.2 -0 0.26 0.7 0.48
Oligodendrocyte_All_Cahoy_JNeuro_2008 0.1 0.22 0.12 0.06 0.02 0.24 0.24 0.17 -0.2 0.09 0.04 0.04 -0.1 -0 -0.3 -0.4 -0.3 -0.4 -0.3 -0.2 -0.3 -0.4 -0.5 -0.2 -0.3 -0.5 0.02 -0.1 1 -0.1 0.8 0.9 0.69 0.92 -0.3 0.05 -0.3 -0.1
Oligodendrocyte_All_Doyle_Cell_2008 -0.2 -0.4 -0.2 -0.1 0.03 0.29 0.39 0.37 -0.1 -0.2 -0.2 -0 0.2 0.09 0.02 0.21 -0 0.43 0.21 0.35 0.37 0.39 0.38 0.16 0.15 0.51 0.38 0.36 -0.1 1 0.02 -0.2 0.02 0.03 0.06 0.12 0.42 0.25
Oligodendrocyte_All_Zeisel_Science_2015 0.13 0.32 0.2 0.28 -0.2 0.1 0.03 -0.2 -0.3 0.02 0.11 -0.1 -0.1 -0.2 -0.3 -0.2 -0.1 -0.5 -0.2 -0.2 -0.3 -0.2 -0.6 0.06 -0.2 -0.3 -0.2 -0.3 0.8 0.02 1 0.85 0.58 0.79 0.01 -0.2 -0.4 -0.4
Oligodendrocyte_Mature_Darmanis_PNAS_2015 -0 0.2 0.03 -0 -0.2 0.12 -0 -0.2 -0.3 -0 -0 -0.2 -0.3 -0.3 -0.4 -0.2 -0 -0.6 -0.3 -0.2 -0.4 -0.3 -0.6 -0 -0.2 -0.5 -0.2 -0.3 0.9 -0.2 0.85 1 0.54 0.79 -0.1 -0.2 -0.5 -0.4
Oligodendrocyte_Mature_Doyle_Cell_2008 0.26 0.24 0.17 0.32 0.29 0.26 0.51 0.37 0.11 0.39 0.45 0.43 0.39 0.32 0.06 -0.7 -0.6 -0.4 -0.3 -0.4 0.05 -0.6 -0.4 -0.4 -0.1 -0.5 -0.1 -0.3 0.69 0.02 0.58 0.54 1 0.84 -0.5 0.37 -0.2 0.06
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 0.19 0.25 0.16 0.23 0.18 0.26 0.37 0.29 -0.1 0.24 0.22 0.26 0.18 0.17 -0.2 -0.5 -0.5 -0.4 -0.3 -0.2 -0.1 -0.5 -0.5 -0.3 -0.3 -0.5 0 -0.2 0.92 0.03 0.79 0.79 0.84 1 -0.4 0.19 -0.3 -0.1
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 -0.5 -0.4 -0.4 -0.3 -0.6 -0.2 -0.5 -0.6 -0.1 -0.3 -0.2 -0.4 -0.3 -0.5 -0.3 0.66 0.74 0.13 0.38 0.18 -0.1 0.65 0.36 0.69 0.28 0.47 -0.2 -0 -0.3 0.06 0.01 -0.1 -0.5 -0.4 1 -0.5 0.1 -0.4
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 0.41 0.17 0.3 0.28 0.77 0.26 0.69 0.69 0.31 0.41 0.47 0.63 0.61 0.68 0.4 -0.6 -0.7 0.16 -0.2 -0 0.34 -0.4 0 -0.6 -0.1 -0.1 0.24 0.26 0.05 0.12 -0.2 -0.2 0.37 0.19 -0.5 1 0.37 0.44
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 -0.1 -0.3 -0 -0.1 0.26 0.03 0.29 0.35 0.1 -0 -0.1 0.14 0.25 0.24 0.23 0.22 0.01 0.56 0.33 0.34 0.36 0.44 0.57 0.07 0.2 0.64 0.55 0.7 -0.3 0.42 -0.4 -0.5 -0.2 -0.3 0.1 0.37 1 0.52
RBC_All_GeneCardSearch_Hemoglobin_ErythrocyteSpecific 0.12 -0.2 0.01 0 0.44 0.13 0.48 0.67 0.37 0.14 0.05 0.42 0.45 0.47 0.36 -0.1 -0.3 0.6 0.02 0.01 0.27 0.06 0.47 -0.3 0.17 0.3 0.59 0.48 -0.1 0.25 -0.4 -0.4 0.06 -0.1 -0.4 0.44 0.52 1
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Astrocyte_All_Cahoy_JNeuro_2008 1.0 0.9 1.0 0.9 0.8 -0.1 0.2 0.2 0.0 0.2 0.4 0.1 0.3 0.2 0.1 -0.6 -0.8 -0.1 -0.1 -0.1 0.1 -0.6 -0.6 -0.5 -0.2 -0.5 -0.5 -0.3 0.0 -0.2 0.2 -0.1 0.1 0.2 -0.5 0.5 -0.2 -0.1
Astrocyte_All_Darmanis_PNAS_2015 0.9 1.0 0.9 0.9 0.7 -0.1 0.2 0.1 0.0 0.2 0.4 0.1 0.2 0.1 0.1 -0.7 -0.8 -0.2 -0.1 -0.2 0.0 -0.6 -0.7 -0.5 -0.2 -0.6 -0.6 -0.4 0.1 -0.2 0.3 0.0 0.1 0.2 -0.5 0.4 -0.3 -0.2
Astrocyte_All_Doyle_Cell_2008 1.0 0.9 1.0 0.9 0.7 -0.1 0.2 0.2 0.0 0.2 0.4 0.1 0.3 0.1 0.1 -0.6 -0.8 -0.1 -0.1 -0.1 0.1 -0.6 -0.6 -0.6 -0.3 -0.5 -0.5 -0.3 0.1 -0.1 0.2 0.0 0.1 0.2 -0.5 0.4 -0.1 -0.1
Astrocyte_All_Zeisel_Science_2015 0.9 0.9 0.9 1.0 0.6 -0.2 0.1 0.0 0.1 0.3 0.6 0.2 0.3 0.3 0.2 -0.6 -0.7 0.0 0.1 -0.1 0.3 -0.4 -0.5 -0.5 -0.3 -0.4 -0.6 -0.4 0.1 -0.1 0.3 -0.1 0.2 0.3 -0.4 0.4 -0.1 -0.2
Astrocyte_All_Zhang_JNeuro_2014 0.8 0.7 0.7 0.6 1.0 0.1 0.4 0.4 0.2 0.4 0.5 0.3 0.4 0.3 0.2 -0.6 -0.7 -0.1 0.0 0.1 0.2 -0.5 -0.4 -0.6 -0.2 -0.5 -0.3 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 0.1 -0.5 0.7 0.0 0.3
Microglia_All_Darmanis_PNAS_2015 -0.1 -0.1 -0.1 -0.2 0.1 1.0 0.8 0.6 0.3 0.2 0.1 0.3 0.0 -0.1 0.0 -0.2 -0.1 -0.4 -0.1 0.1 -0.2 -0.2 -0.2 0.0 0.1 -0.3 0.3 0.3 0.2 0.1 -0.1 0.2 0.0 0.1 -0.4 0.1 -0.2 0.0
Microglia_All_Zeisel_Science_2015 0.2 0.2 0.2 0.1 0.4 0.8 1.0 0.7 0.5 0.5 0.5 0.6 0.4 0.2 0.1 -0.5 -0.5 -0.3 -0.1 0.1 0.0 -0.4 -0.2 -0.4 -0.1 -0.4 0.1 0.1 0.3 0.0 0.0 0.1 0.1 0.2 -0.4 0.4 -0.1 0.2
Microglia_All_Zhang_JNeuro_2014 0.2 0.1 0.2 0.0 0.4 0.6 0.7 1.0 0.2 0.3 0.2 0.3 0.1 0.2 -0.1 -0.3 -0.3 -0.2 -0.2 0.0 -0.2 -0.3 -0.2 -0.4 -0.1 -0.4 0.1 0.0 0.1 0.0 -0.1 0.0 0.0 0.1 -0.3 0.2 -0.1 0.4
Endothelial_All_Daneman_PLOS_2010 0.0 0.0 0.0 0.1 0.2 0.3 0.5 0.2 1.0 0.7 0.7 0.6 0.7 0.4 0.3 -0.2 -0.2 0.0 0.2 0.3 0.5 0.0 0.2 -0.3 -0.2 0.1 0.1 0.3 0.0 0.0 -0.1 -0.2 0.0 0.0 -0.1 0.3 0.3 0.2
Endothelial_All_Darmanis_PNAS_2015 0.2 0.2 0.2 0.3 0.4 0.2 0.5 0.3 0.7 1.0 0.8 0.8 0.7 0.7 0.4 -0.4 -0.4 -0.1 0.1 0.1 0.5 -0.1 0.0 -0.4 -0.4 -0.2 -0.1 0.0 0.1 0.1 0.1 -0.1 0.2 0.2 -0.1 0.4 0.1 0.1
Endothelial_All_Zeisel_Science_2015 0.4 0.4 0.4 0.6 0.5 0.1 0.5 0.2 0.7 0.8 1.0 0.8 0.8 0.6 0.5 -0.6 -0.6 -0.1 0.1 0.1 0.5 -0.3 -0.2 -0.5 -0.4 -0.2 -0.3 -0.2 0.2 0.0 0.2 0.0 0.2 0.3 -0.2 0.5 0.1 0.1
Endothelial_All_Zhang_JNeuro_2014 0.1 0.1 0.1 0.2 0.3 0.3 0.6 0.3 0.6 0.8 0.8 1.0 0.7 0.6 0.3 -0.4 -0.5 -0.1 0.0 -0.1 0.3 -0.3 0.0 -0.5 -0.3 -0.2 -0.1 0.0 0.2 0.1 0.1 0.0 0.2 0.2 -0.1 0.5 0.1 0.2
Mural_All_Zeisel_Science_2015 0.3 0.2 0.3 0.3 0.4 0.0 0.4 0.1 0.7 0.7 0.8 0.7 1.0 0.6 0.5 -0.3 -0.3 0.1 0.0 0.2 0.5 -0.1 0.1 -0.5 -0.4 0.0 -0.1 -0.1 -0.1 0.0 -0.1 -0.3 0.0 0.1 -0.1 0.4 0.2 0.2
Mural_Pericyte_Zhang_JNeuro_2014 0.2 0.1 0.1 0.3 0.3 -0.1 0.2 0.2 0.4 0.7 0.6 0.6 0.6 1.0 0.3 -0.2 -0.3 0.1 0.1 -0.1 0.3 0.0 0.1 -0.3 -0.3 0.0 -0.1 -0.2 0.0 0.1 0.1 -0.1 0.3 0.2 0.0 0.3 0.1 0.2
Mural_Vascular_Daneman_PLOS_2010 0.1 0.1 0.1 0.2 0.2 0.0 0.1 -0.1 0.3 0.4 0.5 0.3 0.5 0.3 1.0 -0.3 -0.2 -0.3 -0.2 0.2 0.1 -0.2 -0.2 -0.1 -0.2 -0.1 -0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 -0.1
Neuron_All_Cahoy_JNeuro_2008 -0.6 -0.7 -0.6 -0.6 -0.6 -0.2 -0.5 -0.3 -0.2 -0.4 -0.6 -0.4 -0.3 -0.2 -0.3 1.0 0.9 0.6 0.2 0.2 0.1 0.8 0.7 0.6 0.2 0.8 0.4 0.3 -0.5 0.2 -0.4 -0.3 -0.2 -0.5 0.6 -0.3 0.5 0.1
Neuron_All_Darmanis_PNAS_2015 -0.8 -0.8 -0.8 -0.7 -0.7 -0.1 -0.5 -0.3 -0.2 -0.4 -0.6 -0.5 -0.3 -0.3 -0.2 0.9 1.0 0.3 0.1 0.1 -0.1 0.7 0.6 0.7 0.3 0.7 0.3 0.3 -0.3 0.0 -0.4 -0.2 -0.3 -0.4 0.6 -0.4 0.2 0.1
Neuron_All_Zhang_JNeuro_2014 -0.1 -0.2 -0.1 0.0 -0.1 -0.4 -0.3 -0.2 0.0 -0.1 -0.1 -0.1 0.1 0.1 -0.3 0.6 0.3 1.0 0.3 0.1 0.4 0.5 0.6 -0.1 -0.1 0.6 0.1 0.0 -0.3 0.3 -0.2 -0.4 -0.1 -0.1 0.5 0.1 0.6 0.3
Neuron_CorticoSpinal_Doyle_Cell_2008 -0.1 -0.1 -0.1 0.1 0.0 -0.1 -0.1 -0.2 0.2 0.1 0.1 0.0 0.0 0.1 -0.2 0.2 0.1 0.3 1.0 0.0 0.4 0.3 0.4 0.0 0.0 0.3 0.1 0.0 -0.1 0.2 0.1 -0.1 0.0 0.0 0.2 0.1 0.3 0.1
Neuron_CorticoStriatal_Doyle_Cell_2008 -0.1 -0.2 -0.1 -0.1 0.1 0.1 0.1 0.0 0.3 0.1 0.1 -0.1 0.2 -0.1 0.2 0.2 0.1 0.1 0.0 1.0 0.3 0.4 0.2 0.1 0.0 0.3 0.2 0.4 -0.5 0.0 -0.5 -0.5 -0.4 -0.5 0.1 0.1 0.5 0.0
Neuron_CorticoThalamic_Doyle_Cell_2008 0.1 0.0 0.1 0.3 0.2 -0.2 0.0 -0.2 0.5 0.5 0.5 0.3 0.5 0.3 0.1 0.1 -0.1 0.4 0.4 0.3 1.0 0.3 0.4 -0.2 -0.3 0.3 -0.2 0.1 -0.2 0.2 -0.1 -0.3 -0.1 -0.1 0.1 0.3 0.5 0.1
Neuron_Glutamate_Sugino_NatNeuro_2006 -0.6 -0.6 -0.6 -0.4 -0.5 -0.2 -0.4 -0.3 0.0 -0.1 -0.3 -0.3 -0.1 0.0 -0.2 0.8 0.7 0.5 0.3 0.4 0.3 1.0 0.8 0.4 0.1 0.8 0.4 0.3 -0.4 0.3 -0.2 -0.3 -0.1 -0.3 0.6 -0.3 0.6 0.0
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 -0.6 -0.7 -0.6 -0.5 -0.4 -0.2 -0.2 -0.2 0.2 0.0 -0.2 0.0 0.1 0.1 -0.2 0.7 0.6 0.6 0.4 0.2 0.4 0.8 1.0 0.2 0.1 0.8 0.4 0.3 -0.4 0.2 -0.4 -0.4 -0.2 -0.3 0.6 -0.1 0.5 0.4
Neuron_GABA_Sugino_NatNeuro_2006 -0.5 -0.5 -0.6 -0.5 -0.6 0.0 -0.4 -0.4 -0.3 -0.4 -0.5 -0.5 -0.5 -0.3 -0.1 0.6 0.7 -0.1 0.0 0.1 -0.2 0.4 0.2 1.0 0.2 0.5 0.2 0.3 -0.1 0.0 0.0 0.1 -0.1 -0.2 0.2 -0.5 -0.1 -0.3
Neuron_Interneuron_CORT_Doyle_Cell_2008 -0.2 -0.2 -0.3 -0.3 -0.2 0.1 -0.1 -0.1 -0.2 -0.4 -0.4 -0.3 -0.4 -0.3 -0.2 0.2 0.3 -0.1 0.0 0.0 -0.3 0.1 0.1 0.2 1.0 0.1 0.3 0.1 0.1 -0.1 0.1 0.2 0.0 0.1 0.0 -0.3 -0.2 0.2
Neuron_Interneuron_Zeisel_Science_2015 -0.5 -0.6 -0.5 -0.4 -0.5 -0.3 -0.4 -0.4 0.1 -0.2 -0.2 -0.2 0.0 0.0 -0.1 0.8 0.7 0.6 0.3 0.3 0.3 0.8 0.8 0.5 0.1 1.0 0.4 0.4 -0.5 0.2 -0.2 -0.4 -0.2 -0.4 0.6 -0.2 0.5 0.1
Neuron_Neuron_CCK_Doyle_Cell_2008 -0.5 -0.6 -0.5 -0.6 -0.3 0.3 0.1 0.1 0.1 -0.1 -0.3 -0.1 -0.1 -0.1 -0.2 0.4 0.3 0.1 0.1 0.2 -0.2 0.4 0.4 0.2 0.3 0.4 1.0 0.5 -0.2 0.1 -0.2 0.0 -0.1 -0.3 0.1 -0.3 0.2 0.2
Neuron_Neuron_PNOC_Doyle_Cell_2008 -0.3 -0.4 -0.3 -0.4 -0.1 0.3 0.1 0.0 0.3 0.0 -0.2 0.0 -0.1 -0.2 0.0 0.3 0.3 0.0 0.0 0.4 0.1 0.3 0.3 0.3 0.1 0.4 0.5 1.0 -0.1 0.0 -0.3 0.0 -0.1 -0.3 0.1 0.0 0.3 0.1
Oligodendrocyte_All_Cahoy_JNeuro_2008 0.0 0.1 0.1 0.1 -0.1 0.2 0.3 0.1 0.0 0.1 0.2 0.2 -0.1 0.0 0.0 -0.5 -0.3 -0.3 -0.1 -0.5 -0.2 -0.4 -0.4 -0.1 0.1 -0.5 -0.2 -0.1 1.0 0.1 0.8 0.9 0.7 0.9 -0.2 0.0 -0.4 -0.1
Oligodendrocyte_All_Doyle_Cell_2008 -0.2 -0.2 -0.1 -0.1 -0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.0 0.3 0.2 0.0 0.2 0.3 0.2 0.0 -0.1 0.2 0.1 0.0 0.1 1.0 0.1 0.1 0.2 0.1 0.1 -0.1 0.4 -0.1
Oligodendrocyte_All_Zeisel_Science_2015 0.2 0.3 0.2 0.3 -0.1 -0.1 0.0 -0.1 -0.1 0.1 0.2 0.1 -0.1 0.1 0.1 -0.4 -0.4 -0.2 0.1 -0.5 -0.1 -0.2 -0.4 0.0 0.1 -0.2 -0.2 -0.3 0.8 0.1 1.0 0.8 0.7 0.9 -0.1 -0.1 -0.3 -0.3
Oligodendrocyte_Mature_Darmanis_PNAS_2015 -0.1 0.0 0.0 -0.1 -0.2 0.2 0.1 0.0 -0.2 -0.1 0.0 0.0 -0.3 -0.1 0.0 -0.3 -0.2 -0.4 -0.1 -0.5 -0.3 -0.3 -0.4 0.1 0.2 -0.4 0.0 0.0 0.9 0.1 0.8 1.0 0.7 0.8 -0.2 -0.2 -0.4 -0.2
Oligodendrocyte_Mature_Doyle_Cell_2008 0.1 0.1 0.1 0.2 -0.1 0.0 0.1 0.0 0.0 0.2 0.2 0.2 0.0 0.3 0.0 -0.2 -0.3 -0.1 0.0 -0.4 -0.1 -0.1 -0.2 -0.1 0.0 -0.2 -0.1 -0.1 0.7 0.2 0.7 0.7 1.0 0.7 -0.1 0.0 -0.1 -0.1
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.1 0.0 0.2 0.3 0.2 0.1 0.2 0.1 -0.5 -0.4 -0.1 0.0 -0.5 -0.1 -0.3 -0.3 -0.2 0.1 -0.4 -0.3 -0.3 0.9 0.1 0.9 0.8 0.7 1.0 -0.2 0.1 -0.3 0.0
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 -0.5 -0.5 -0.5 -0.4 -0.5 -0.4 -0.4 -0.3 -0.1 -0.1 -0.2 -0.1 -0.1 0.0 0.0 0.6 0.6 0.5 0.2 0.1 0.1 0.6 0.6 0.2 0.0 0.6 0.1 0.1 -0.2 0.1 -0.1 -0.2 -0.1 -0.2 1.0 -0.2 0.4 0.1
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 0.5 0.4 0.4 0.4 0.7 0.1 0.4 0.2 0.3 0.4 0.5 0.5 0.4 0.3 0.1 -0.3 -0.4 0.1 0.1 0.1 0.3 -0.3 -0.1 -0.5 -0.3 -0.2 -0.3 0.0 0.0 -0.1 -0.1 -0.2 0.0 0.1 -0.2 1.0 0.2 0.3
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 -0.2 -0.3 -0.1 -0.1 0.0 -0.2 -0.1 -0.1 0.3 0.1 0.1 0.1 0.2 0.1 0.0 0.5 0.2 0.6 0.3 0.5 0.5 0.6 0.5 -0.1 -0.2 0.5 0.2 0.3 -0.4 0.4 -0.3 -0.4 -0.1 -0.3 0.4 0.2 1.0 0.1
RBC_All_GeneCardSearch_Hemoglobin_ErythrocyteSpecific -0.1 -0.2 -0.1 -0.2 0.3 0.0 0.2 0.4 0.2 0.1 0.1 0.2 0.2 0.2 -0.1 0.1 0.1 0.3 0.1 0.0 0.1 0.0 0.4 -0.3 0.2 0.1 0.2 0.1 -0.1 -0.1 -0.3 -0.2 -0.1 0.0 0.1 0.3 0.1 1.0
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Running	Head:	PREDICTING	CELL	TYPE	BALANCE	
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H. 1646	

 1647	

Suppl. Figure 11. There is a convergence of cell content predictions derived from cell type specific 1648	
transcripts identified by different publications.  A-B. Predictions of the relative cell content of our 1649	
human cortical samples (“cell type indices”) for any particular cell type were strongly correlated, even 1650	
when the predictions were based on cell type specific transcripts identified by experiments using very 1651	
different methodology. The examples given above include predictions based on cell type specific 1652	
transcripts originally identified in mouse (x-axis) vs. human (y-axis) tissue.  C. In contrast, there was a 1653	
strong negative correlation between the predictions for dissimilar cell types, such as neurons and 1654	
astrocytes. D. The similarity of different cell type indices in the Pritzker cortical dataset can be visualized 1655	
using a correlation matrix. Within this matrix, correlations can range from a strong negative correlation 1656	
of -1 (blue) to a strong positive correlation of 1 (red), therefore a large block of pink/red correlations is 1657	
indicative of cell type indices that tend to be enriched in the same samples. The axis labels for cell type 1658	
indices representing the same category of cell are color-coded: general neuronal categories are dark 1659	
purple, pyramidal neurons are red, inhibitory interneurons are dark blue, astrocytes are light purple, 1660	
endothelial cells are orange, mural cells are yellow, microglia are green, mature oligodendrocytes are 1661	
pink, and the remaining indices remain white to represent lack of coherent categorization. The number of 1662	
probes included in each index is present in the far left column (also color-coded, with green indicating 1663	
few probes and red indicating many probes). E-H. The cell type index correlation matrices for the 1664	
replication cortical datasets: E. Narayan et al. (GSE21138),  F. Lanz et al. (GSE53987), G. Barnes et al. 1665	
(GSE21935) H. CMC RNA-Seq 1666	

 1667	
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Microglia_All_Darmanis_PNAS_2015 1.0 0.9 0.9 0.2 0.2 0.3 0.1 0.3 0.4 0.5 0.4 0.4 0.2 0.2 -0.1 -0.2 -0.1 0.1 0.0 0.0 -0.1 0.5 0.5 0.5 0.5 0.1 0.1 0.0 0.1
Microglia_All_Zeisel_Science_2015 0.9 1.0 0.9 0.4 0.3 0.6 0.3 0.6 0.6 0.8 0.7 0.6 0.5 0.4 0.0 -0.2 0.0 0.2 0.2 0.1 0.1 0.5 0.6 0.4 0.5 0.2 0.2 0.2 0.2
Microglia_All_Zhang_JNeuro_2014 0.9 0.9 1.0 0.4 0.3 0.4 0.3 0.5 0.6 0.7 0.6 0.6 0.4 0.3 -0.2 -0.3 0.0 0.0 0.1 0.0 0.0 0.5 0.5 0.3 0.6 0.0 0.0 0.1 0.3
Astrocyte_All_Cahoy_JNeuro_2008 0.2 0.4 0.4 1.0 0.8 0.8 0.8 0.6 0.5 0.7 0.6 0.6 0.6 0.6 0.1 -0.1 0.2 0.2 0.3 0.3 0.2 0.2 0.4 0.1 0.4 0.1 0.3 0.5 0.2
Astrocyte_All_Darmanis_PNAS_2015 0.2 0.3 0.3 0.8 1.0 0.7 0.5 0.4 0.4 0.5 0.5 0.4 0.4 0.4 -0.2 -0.3 -0.2 0.1 0.0 0.0 -0.1 0.3 0.4 0.2 0.3 -0.1 0.2 0.2 0.1
Astrocyte_All_Zeisel_Science_2015 0.3 0.6 0.4 0.8 0.7 1.0 0.7 0.7 0.5 0.8 0.8 0.7 0.6 0.8 0.3 0.1 0.3 0.5 0.6 0.5 0.5 0.3 0.7 0.2 0.5 0.4 0.3 0.7 0.2
Astrocyte_All_Zhang_JNeuro_2014 0.1 0.3 0.3 0.8 0.5 0.7 1.0 0.6 0.5 0.6 0.6 0.7 0.7 0.7 0.2 0.1 0.4 0.3 0.4 0.4 0.4 0.0 0.3 -0.2 0.2 0.2 0.3 0.6 0.2
Endothelial_All_Daneman_PLOS_2010 0.3 0.6 0.5 0.6 0.4 0.7 0.6 1.0 0.8 0.9 0.9 0.8 0.7 0.7 0.1 0.0 0.2 0.3 0.4 0.4 0.3 0.2 0.5 0.0 0.3 0.3 0.2 0.6 0.3
Endothelial_All_Darmanis_PNAS_2015 0.4 0.6 0.6 0.5 0.4 0.5 0.5 0.8 1.0 0.8 0.8 0.7 0.8 0.6 -0.2 -0.3 -0.1 0.0 0.0 0.1 0.0 0.3 0.4 0.1 0.3 0.1 0.3 0.3 0.3
Endothelial_All_Zeisel_Science_2015 0.5 0.8 0.7 0.7 0.5 0.8 0.6 0.9 0.8 1.0 0.9 0.8 0.7 0.7 0.1 -0.1 0.2 0.4 0.4 0.4 0.3 0.4 0.7 0.2 0.5 0.3 0.3 0.6 0.2
Endothelial_All_Zhang_JNeuro_2014 0.4 0.7 0.6 0.6 0.5 0.8 0.6 0.9 0.8 0.9 1.0 0.8 0.7 0.7 0.1 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.7 0.2 0.5 0.3 0.1 0.6 0.3
Mural_All_Zeisel_Science_2015 0.4 0.6 0.6 0.6 0.4 0.7 0.7 0.8 0.7 0.8 0.8 1.0 0.8 0.8 0.2 0.0 0.3 0.3 0.4 0.4 0.4 0.2 0.5 0.0 0.4 0.3 0.3 0.6 0.3
Mural_Pericyte_Zhang_JNeuro_2014 0.2 0.5 0.4 0.6 0.4 0.6 0.7 0.7 0.8 0.7 0.7 0.8 1.0 0.7 0.1 -0.1 0.2 0.2 0.3 0.3 0.3 0.1 0.3 -0.1 0.3 0.2 0.3 0.5 0.3
Mural_Vascular_Daneman_PLOS_2010 0.2 0.4 0.3 0.6 0.4 0.8 0.7 0.7 0.6 0.7 0.7 0.8 0.7 1.0 0.5 0.3 0.5 0.6 0.7 0.6 0.6 0.0 0.5 -0.1 0.1 0.6 0.3 0.8 0.2
Neuron_All_Cahoy_JNeuro_2008 -0.1 0.0 -0.2 0.1 -0.2 0.3 0.2 0.1 -0.2 0.1 0.1 0.2 0.1 0.5 1.0 1.0 0.8 0.9 0.9 0.9 0.9 -0.3 0.3 -0.2 -0.2 0.9 0.0 0.7 -0.1
Neuron_All_Darmanis_PNAS_2015 -0.2 -0.2 -0.3 -0.1 -0.3 0.1 0.1 0.0 -0.3 -0.1 0.0 0.0 -0.1 0.3 1.0 1.0 0.8 0.8 0.8 0.8 0.8 -0.3 0.2 -0.2 -0.3 0.8 -0.1 0.5 -0.1
Neuron_All_Zhang_JNeuro_2014 -0.1 0.0 0.0 0.2 -0.2 0.3 0.4 0.2 -0.1 0.2 0.2 0.3 0.2 0.5 0.8 0.8 1.0 0.6 0.9 0.8 0.9 -0.1 0.3 -0.2 0.1 0.7 -0.1 0.7 0.2
Neuron_GABA_Sugino_NatNeuro_2006 0.1 0.2 0.0 0.2 0.1 0.5 0.3 0.3 0.0 0.4 0.4 0.3 0.2 0.6 0.9 0.8 0.6 1.0 0.9 0.9 0.8 -0.1 0.6 0.0 -0.1 0.9 0.1 0.8 -0.1
Neuron_Interneuron_Zeisel_Science_2015 0.0 0.2 0.1 0.3 0.0 0.6 0.4 0.4 0.0 0.4 0.4 0.4 0.3 0.7 0.9 0.8 0.9 0.9 1.0 1.0 1.0 -0.1 0.5 -0.1 0.0 0.9 0.0 0.9 0.1
Neuron_Glutamate_Sugino_NatNeuro_2006 0.0 0.1 0.0 0.3 0.0 0.5 0.4 0.4 0.1 0.4 0.4 0.4 0.3 0.6 0.9 0.8 0.8 0.9 1.0 1.0 1.0 -0.2 0.5 -0.2 0.0 0.9 0.0 0.8 0.1
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 -0.1 0.1 0.0 0.2 -0.1 0.5 0.4 0.3 0.0 0.3 0.4 0.4 0.3 0.6 0.9 0.8 0.9 0.8 1.0 1.0 1.0 -0.2 0.3 -0.3 -0.1 0.8 0.0 0.8 0.1
Oligodendrocyte_All_Cahoy_JNeuro_2008 0.5 0.5 0.5 0.2 0.3 0.3 0.0 0.2 0.3 0.4 0.4 0.2 0.1 0.0 -0.3 -0.3 -0.1 -0.1 -0.1 -0.2 -0.2 1.0 0.7 0.9 0.9 -0.1 0.0 0.0 0.2
Oligodendrocyte_All_Zeisel_Science_2015 0.5 0.6 0.5 0.4 0.4 0.7 0.3 0.5 0.4 0.7 0.7 0.5 0.3 0.5 0.3 0.2 0.3 0.6 0.5 0.5 0.3 0.7 1.0 0.7 0.7 0.5 0.1 0.5 0.1
Oligodendrocyte_Mature_Darmanis_PNAS_2015 0.5 0.4 0.3 0.1 0.2 0.2 -0.2 0.0 0.1 0.2 0.2 0.0 -0.1 -0.1 -0.2 -0.2 -0.2 0.0 -0.1 -0.2 -0.3 0.9 0.7 1.0 0.8 0.0 0.0 -0.1 0.1
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 0.5 0.5 0.6 0.4 0.3 0.5 0.2 0.3 0.3 0.5 0.5 0.4 0.3 0.1 -0.2 -0.3 0.1 -0.1 0.0 0.0 -0.1 0.9 0.7 0.8 1.0 0.0 0.0 0.1 0.3
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 0.1 0.2 0.0 0.1 -0.1 0.4 0.2 0.3 0.1 0.3 0.3 0.3 0.2 0.6 0.9 0.8 0.7 0.9 0.9 0.9 0.8 -0.1 0.5 0.0 0.0 1.0 0.1 0.7 -0.1
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 0.1 0.2 0.0 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.1 0.3 0.3 0.3 0.0 -0.1 -0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 1.0 0.3 -0.1
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 0.0 0.2 0.1 0.5 0.2 0.7 0.6 0.6 0.3 0.6 0.6 0.6 0.5 0.8 0.7 0.5 0.7 0.8 0.9 0.8 0.8 0.0 0.5 -0.1 0.1 0.7 0.3 1.0 0.1
RBC_All_GeneCardSearch_Hemoglobin_ErythrocyteSpecific 0.1 0.2 0.3 0.2 0.1 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.2 -0.1 -0.1 0.2 -0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.3 -0.1 -0.1 0.1 1.0
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 1668	

Suppl. Figure 12. The convergence of cell content predictions derived from cell type specific transcripts 1669	
within the Allen Brain Atlas dataset. Within the Allen Brain Atlas dataset, the main source of variation 1670	
within the data (PC1) was negatively related to all cell types, with an especially strong relationship with 1671	
mural cells (R2=0.847), oligodendrocytes (R2=0.808), and endothelial cells (R2=0.775), suggesting that 1672	
perhaps the main source of variation in the dataset (PC1) represented general tissue cell density instead 1673	
of cell type balance per se. This causes the cell type indices for almost all cell types to be positively 1674	
correlated (see below), and therefore this correlation matrix has a slightly different format than Suppl. 1675	
Figure 11and Suppl. Figure 16. The cell types are still coded as in the previous figures, but the 1676	
correlation coefficients (R) in the matrix are no longer color coded with blue indicating a negative 1677	
correlation and red indicating a positive correlation. Instead, the green to red gradient indicates 1678	
increasing percentile from most negative to most positive. The tightest correlations are red, with two 1679	
obvious clusters: one cluster representing neurons and another representing glia and support cells. This 1680	
differs from the Pritzker dorsolateral prefrontal cortex data, in which oligodendrocytes were found in 1681	
their own cluster, perhaps due to a greater variation in the agonal conditions of the subjects (providing 1682	
an impetus for the correlated upregulation of astrocytes and neurovasculature) or perhaps due to the 1683	
spatial segregation of these cell types within the layered cortex (with an enrichment of vasculature and 1684	
astrocytes at the surface of the cortex and an enrichment of white matter under the cortex). Also notable 1685	
is the more coherent signature for progenitor cells within the Allen Brain Atlas dataset, perhaps due to 1686	
the inclusion of tissue from neurogenic regions. 1687	

 1688	
 1689	
 1690	

 1691	
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 1692	

Suppl. Figure 13. Consensus clustering indicates the cell type indices clearly cluster into three large 1693	
umbrella categories: neurons, oligodendrocytes, and support cells. The cell type indices were developed 1694	
using cell type specific genes identified by different publications, species, and methodologies, and are 1695	
categorically color-coded in a manner similar to Suppl. Figure 11. Each column represents the 1696	
numerical category (cluster) assigned to a cell type index in a k-means clustering algorithm with k 1697	
number of clusters – for example, in the column “k=3”, the algorithm sorted each of the cell type indices 1698	
into 3 clusters based on similarity (defined by Euclidean distance). These 3 clusters are easily identifiable 1699	
as neurons, oligodendrocytes, and support cells. Increasing the number of clusters (k) did not improve the 1700	
ability of the algorithm to detect more specific neuronal subcategories (interneurons, projection neurons) 1701	
or support cell subcategories (astrocytes, endothelial cells, mural cells, microglia), and the immature 1702	
oligodendrocyte indices from different publications showed a notable lack of convergence. The consensus 1703	
clustering was run using 50 bootstraps with a proportion of 0.8 item subsampling and 1.0 feature 1704	
subsampling. 1705	

 1706	

 1707	
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 1708	

 1709	

Suppl. Figure 14. There was minimal overlap between the transcripts included within different cell 1710	
type indices that did not fall under the same primary cell type category.  The cell type indices were 1711	
developed using cell type specific genes identified by different publications, species, and methodologies, 1712	
and are categorically color-coded in a manner similar to Suppl. Figure 16. Percentage overlap between 1713	
indices is color-coded using a gradient from green (0% overlap) to red (100% overlap), with the 1714	
denominator in the percentage overlap equation defined as the cell type index specified by the row. 1715	
Notably, only cell type indices derived from (15) shows overlap of >20% with cell type indices not found 1716	
within the same primary cell type category. This may be due to (15) using different methodology (TRAP: 1717	
Translating Ribosome Affinity Purification) to define cell type specific transcripts than the other 1718	
publications. 1719	

 1720	

 1721	
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 1722	

Suppl. Figure 15. Removing probes that represent genes indentified as having cell type specific 1723	
expression in multiple publications (preparation for the analysis in Suppl. Figure 16). A summary of 1724	
the full number of probes included in each cell type index before and after removal of the probes that 1725	
overlapped with any other index (color-labeled with pink representing a large number of probes and blue 1726	
representing fewer probes).The percentage of probes retained in the index after full overlap removal is 1727	
also provided, with green indicating a small percentage of probes retained, and red indicating a large 1728	
percentage.   1729	

Cell$Type$Index:

#$of$Probes$
(before$
overlap$
removal)

#$of$Probes$
(after$
overlap$
removal)

%$
remaining:

Astrocyte_All_Cahoy_JNeuro_2008 43 15 0.35
Astrocyte_All_Darmanis_PNAS_2015 13 7 0.54
Astrocyte_All_Doyle_Cell_2008 11 3 0.27
Astrocyte_All_Zeisel_Science_2015 145 112 0.77
Astrocyte_All_Zhang_JNeuro_2014 31 11 0.35
Endothelial_All_Daneman_PLOS_2010 23 4 0.17
Endothelial_All_Darmanis_PNAS_2015 18 15 0.83
Endothelial_All_Zeisel_Science_2015 237 183 0.77
Endothelial_All_Zhang_JNeuro_2014 35 7 0.20
Microglia_All_Darmanis_PNAS_2015 19 9 0.47
Microglia_All_Zeisel_Science_2015 291 224 0.77
Microglia_All_Zhang_JNeuro_2014 24 5 0.21
Mural_All_Zeisel_Science_2015 92 78 0.85
Mural_Pericyte_Zhang_JNeuro_2014 32 18 0.56
Mural_Vascular_Daneman_PLOS_2010 34 15 0.44
Neuron_All_Cahoy_JNeuro_2008 52 24 0.46
Neuron_All_Darmanis_PNAS_2015 15 8 0.53
Neuron_All_Zhang_JNeuro_2014 23 13 0.57
Neuron_CorticoSpinal_Doyle_Cell_2008 18 4 0.22
Neuron_CorticoStriatal_Doyle_Cell_2008 12 0 0.00
Neuron_CorticoThalamic_Doyle_Cell_2008 14 6 0.43
Neuron_GABA_Sugino_NatNeuro_2006 19 9 0.47
Neuron_Glutamate_Sugino_NatNeuro_2006 42 33 0.79
Neuron_Interneuron_CORT_Doyle_Cell_2008 14 6 0.43
Neuron_Interneuron_Zeisel_Science_2015 199 163 0.82
Neuron_Neuron_CCK_Doyle_Cell_2008 10 2 0.20
Neuron_Neuron_PNOC_Doyle_Cell_2008 18 5 0.28
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 154 121 0.79
Oligodendrocyte_All_Cahoy_JNeuro_2008 29 7 0.24
Oligodendrocyte_All_Doyle_Cell_2008 18 11 0.61
Oligodendrocyte_All_Zeisel_Science_2015 255 204 0.80
Oligodendrocyte_Mature_Darmanis_PNAS_2015 15 9 0.60
Oligodendrocyte_Mature_Doyle_Cell_2008 14 3 0.21
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 28 11 0.39
Oligodendrocyte_NewlyRFormed_Zhang_JNeuro_2014 24 15 0.63
Oligodendrocyte_ProgenitorTCell_Darmanis_PNAS_2015 15 10 0.67
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 1730	

Suppl. Figure 16. The convergence of cell content predictions derived from cell type specific transcripts 1731	
originating from different publications remains after removing overlapping transcripts.  This figure 1732	
follows the format of Suppl. Figure 11(Pritzker cortical dataset), but uses cell type indices calculated 1733	
following removal of any probes identified as present in more than one index (see Suppl. Figure 15).The 1734	
similarity of different cell type indices can be visualized using a correlation matrix. Within this matrix, 1735	
correlations can range from a strong negative correlation of -1 (blue) to a strong positive correlation of 1 1736	
(red), therefore a large block of pink/red correlations is indicative of cell type indices that tend to be 1737	
enriched in the same samples. The labels for cell type indices representing the same category of cell are 1738	
color-coded as in Suppl. Figure 11. 1739	

 1740	

  1741	
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 1742	

 1743	

Suppl. Figure 17. For later analyses, individual cell type indices were averaged by primary category, 1744	
with any transcripts that overlapped between categories removed. The percent overlap between 1745	
transcripts defined as specific to different categories of cell type is illustrated below, color-coded with a 1746	
gradient from blue (indicating 0% overlap) to red (indicating 100% overlap). The denominator in the 1747	
percentage overlap equation was defined as the cell type category specified by the row. The column on 1748	
the far left provides the number of probes included in each cell type category. 1749	

 1750	

 1751	

 1752	

7.5 Additional figures and results:  Cell Type Indices Predict Other Genes Known to Be Cell Type 1753	

Enriched 1754	

To identify other transcripts important to cell type specific functions in the human cortex, we ran 1755	

a linear model on the signal from each gene probeset in the Pritzker prefontal cortex microarray dataset 1756	

that included each of the ten consolidated primary cell type indices as well as six co-variates traditionally 1757	

included in the analysis of human brain gene expression data (pH, Agonal Factor, PMI, Age, Gender, 1758	

Diagnosis; Equation 5). On average, this model explained 35% of the variation in the data (R2). Shown in 1759	

Suppl. Figure 18 are the most significant 10 gene probe sets positively associated with each cell type 1760	

while controlling for the other cell types and co-variates within the model. Additional gene probe sets and 1761	

statistical details can be found in Suppl. Table 15.   1762	

 1763	
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 1764	

Suppl. Figure 18. The top 10 transcripts associated with each cell type index include those previously-1765	
identified as cell type enriched in the literature. Transcripts are identified by official gene symbol. 1766	
Yellow labels identify transcripts included in the original cell type index, orange transcripts were 1767	
previously-identified as cell type enriched in the literature but were not included in the original list of cell 1768	
type specific transcripts used to create the index.  Additional transcripts and statistical details can be 1769	
found in Suppl. Table 15. Please note that not all of the genes listed in the top ten list associated wit the 1770	
Red Blood Cell index would survive a traditional threshold for false detction threshold (q<0.05). 1771	

 

Many of the top gene probesets that we found to be related to each of the cell type indices are 1772	

already known to be associated with that cell type in previous publications, validating our methodology. 1773	

Importantly, this is true even when the genes were not included in the original list of cell type specific 1774	

genes used to generate the index. For example, we found that HLA-E (Major Histocompatibility 1775	

Complex, Class I, E) and EPAS1 (endothelial PAS domain protein 1) were both strongly associated with 1776	

our endothelial index, and both are known to be involved in endothelial cell activation (HLA-E, in 1777	

response to immune challenge: (95); EPAS1, in response to lack of oxygen: (96)).  NOTCH2 (Notch 2), 1778	

one of the top astrocyte-related genes, promotes astrocytic cell lineage (97), and APOE (Apolipoprotein 1779	

E) is primarily secreted by astrocytes in the central nervous system (98). One of the top interneuron 1780	

genes, LHX6 (LIM Homeobox 6), is specifically enriched in parvalbumin-containing interneurons in the 1781	

human cortex (2). Another top interneuron gene, ERBB4 (Erb-B2 Receptor Tyrosine Kinase 4), controls 1782	

the development of GABA circuitry in the cortex (99). The top neuron-related genes include several 1783	

genes related to synaptic function (SYT1 (Synaptotagmin I), SYNGR3 (Synaptogyrin 3), NRXN1 1784	

(Neurexin 1); http://www.genecards.org/).  The top projection neuron-related gene, PDE2A 1785	
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(Phosphodiesterase 2A, CGMP-Stimulated), is preferentially expressed in cortical pyramidal neurons 1786	

(100), and KIF21B (Kinesin Family Member 21B) is a kinesin that has been found in the dendrites of 1787	

pyramidal neurons (101). We also rediscovered probesets representing genes that were listed as 1788	

alternative orthologs to those included in our original cell type specific gene lists (oligodendrocytes: 1789	

EVI2A vs.CTD-2370N5.3, microglia: LAIR1 vs. LAIR2, mural cells: COL18A1 vs. COL15A1, ACTA2 1790	

vs. ACTG1). Altogether, these results suggest that our cell type indices were associated with the 1791	

variability of transcripts in the cortex that represented particular cell types and could re-identify known 1792	

cell type specific markers.  1793	

As a follow-up analysis, we also outputted a table of the top genes associated with each cell type 1794	

within the Allen Brain Atlas dataset (as assessed using the model in Equation 6). We found that the 1795	

results similarly included a mixture of well-known cell type markers and novel findings (Suppl. Figure 1796	

19, Suppl. Table 6). 1797	

Equation 6: A model of gene expression for the Allen Brain Atlas dataset, colored to illustrate 1798	
subcomponents. The base model (intercept) is presented in green, the cell type indices for the most 1799	
prevalent cell types are colored red, and the remaining cell type indices are in purple. 1800	

Gene Expression (Probeset Signal) =  1801	
β0 + β1*(Astrocyte)+β2*(Oligodendrocyte)+β3*(Microglia)+β4*(Interneuron)+β5*(ProjectionNeuron) 1802	
+β6*(Endothelial)+β7*(Neuron_All)+β8*(Oligodendrocyte_Immature)+β9*(Mural)+β10*(RBC)+ e 1803	

 1804	

 1805	
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 1806	

Suppl. Figure 19. The top 25 probes associated with each primary cell type index in the Allen Brain 1807	
Atlas dataset. Depicted are the top probes identified in association with each of the primary cell types as 1808	
determined by a linear model that included indices for all 10 primary cell types. This model was run 1809	
using samples from all 160 brain regions. Similar to the results for the Pritzker dorsolateral prefrontal 1810	
cortex data, the genes identified in the Allen Brain Atlas data as having strong relationships with 1811	
particular cell types include a mixture of well-known cell type markers and more novel findings.   1812	

 1813	

 1814	

7.6 Additional figures and results:  Inferred Cell Type Composition Explains a Large Percentage of 1815	

the Sample-Sample Variability in Microarray Data from Macro-Dissected Human Cortical 1816	

Tissue 1817	

 1818	
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 1819	

 1820	
 1821	
Suppl. Figure 20. Replication: Cell content predictions explain a large percentage of the variability in 1822	
microarray and RNA-Seq data derived from the human cortex. The results shown above are from the 1823	
four other human cortical datasets discussed in the paper. Within the cross-regional Allen Brain Atlas 1824	
dataset, we also found that the top principal components of variation were overwhelmingly explained by 1825	
predicted cell type balance, with a model that included all 10 cell type indices accounting for a larger 1826	
percentage of the variation in the top 4 principal components (PC1: F(10, 830)=1051, R2=0.927, p<2.2e-1827	
16; PC2: F(10, 830)=96.98, R2=0.539, p<2.2e-16; PC3: F(10, 830)=133.2, R2= 0.616, p<2.2e-16; PC4: 1828	
F(10, 830)=121.3, R2= 0.594, p<2.2e-16), although the specific relationships sometimes differed from 1829	
what was seen in the prefrontal cortex. 1830	

 1831	

  1832	

GSE21935:
Barnes	et	al.,	2011

GSE53987:
Lanz et	al.,	2015

GSE21138:	
Narayan	et	al.	2008
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p−value = 6.68e−24
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r−squared = 0.017 
p−value = 0.00144
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r−squared = 0.25 
p−value = 2.65e−40
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r−squared = 0.35 
p−value = 7.6e−59
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r−squared = 0.0024 
p−value = 0.231
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r−squared = 0.00058 
p−value = 0.554
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r−squared = 0.41 
p−value = 6.48e−71
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r−squared = 0.54 
p−value = 5.77e−104
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r−squared = 0.08 
p−value = 1.44e−12
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r−squared = 0.01 
p−value = 0.0124
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r−squared = 0.23 
p−value = 8.52e−36
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r−squared = 0.034 
p−value = 4.69e−06
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 1833	

Suppl. Figure 21. Cell content predictions explain a large percentage of the variability in microarray 1834	
data from non-cell type specific genes. The results shown here look almost identical to those shown in 1835	
Figure 5 , except that the principal components analysis in this case was run while excluding all cell type 1836	
specific genes from the dataset. 1837	

 1838	

 1839	

 1840	

Supplementary,Figure,3.

A. B.

C. D.
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 1841	

Suppl. Figure 22. Predicted cell content accounts for a larger percentage of the variability in the signal 1842	
from individual probesets than the most commonly examined subject variables.  Shown below are 1843	
histograms illustrating the R-squared (A & B) and adjusted R-squared (C & D) for all 11979 probesets in 1844	
the Pritzker dorsolateral prefrontal cortex dataset as fit using two linear models: (A & C) A model that 1845	
includes diagnosis (MDD, BP, Schiz) and five subject variables commonly used as co-variates in the 1846	
analysis of brain microarray data (Brain pH, agonal factor, age, gender, post-mortem interval),  (B & D) 1847	
A model that includes the consolidated indices for all 10 primary cell types. 1848	

 1849	

 1850	

  1851	

A.

B.

C.

D.
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 1852	

7.7 Additional figures and results:  Discriminating Between Changes in Cell Type Balance and Cell-1853	

Type Specific Function 1854	

 1855	

 1856	

Suppl. Figure 23. The predicted decrease in neuronal cell content in relationship to age is unlikely to 1857	
be fully explained by synaptic atrophy. Within the list of neuron-specific genes, 240 functional clusters 1858	
were identified using DAVID (using the full HT-U133A chip as background). A) The genes in 19 out of 1859	
the top 20 functional clusters showed decreased expression with age on average, as determined within a 1860	
linear model that controlled for known confounds. Depicted is the average effect of age +/-SE for each 1861	
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cluster (asterisks: p<0.05). Blue represents down-regulation, red is up-regulation. Overall, 76% of all 1862	
240 functional clusters showed a negative relationship with age on average (Suppl. Table 5).  B.) We 1863	
blindly chose 29 functional clusters that were clearly related to dendritic/axonal functions and 41 1864	
functional clusters that seemed distinctly unrelated to dendritic/axonal functions. Transcripts from both 1865	
classifications showed an average decrease in expression with age (p= 9.197e-05, p=0.008756, 1866	
respectively), but the decrease was larger for transcripts associated with dendritic/axonal-related 1867	
functions (p= 0.02339). Depicted is the average effect of age +/-SE for each classification of cluster. 1868	

 1869	

7.8 The Top Diagnosis-Related Genes Identified by Models that Include Cell Content Predictions 1870	

Pinpoint Known Risk Candidates 1871	

 Although the inclusion of predicted cell type balance in our model occasionally improved our 1872	

ability to detect previously-identified relationships with diagnosis, most relationships still went 1873	

undetected in the Pritzker dataset and none of the diagnosis relationships survived standard p-value 1874	

corrections for multiple comparisons when included in a full microarray analysis. This could be due to a 1875	

variety of factors, including microarray platform and probe sensitivity as well as the possibility that other 1876	

cell types in the dataset are showing effects in a competing direction. Therefore, we decided to ask a 1877	

complementary question: Of the top diagnosis relationships that we see in our dataset, how many have 1878	

been previously observed in the literature? If including predicted cell type balance in our models 1879	

improves the signal to noise ratio of our analyses, then we would expect that the top diagnosis-related 1880	

genes in our dataset would be more likely to overlap with previous findings. In an attempt to perform this 1881	

comparison in an unbiased and efficient manner, we limited our search to PubMed, using as search terms 1882	

only the respective human gene symbol and diagnosis (“Schizophrenia”, “Bipolar”, or “Depression”). For 1883	

the genes related to MDD in our dataset, we also expanded the search to include two highly-correlated 1884	

traits that are more quantifiable and likely to have a genetic basis: “Anxiety” and “Suicide”. Then we 1885	

narrowed our results only to studies using human subjects.   1886	

Before controlling for cell type, we found that only one of the top 10 genes related to diagnosis 1887	

(FOS: (102,103)) or the presence or absence of psychiatric illness (ALDH1A1: (104)) had been 1888	

previously noted in the human literature. In contrast, when we used a model that included the five most 1889	

prevalent cortical cell types (Model#4), we found that five of the top 10 genes associated with 1890	
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Schizophrenia had been previously identified in the literature (ARHGEF2: (105), DOC2A: (106), FBX09: 1891	

(74), GRM1: (107,108); CEBPA: (89)), and three of the top 10 genes associated with Bipolar Disorder 1892	

(ALDH1A1: (104), SNAP25: (109), NRN1:(110);  Suppl. Figure 24, Suppl. Table 9). This was a 1893	

significant enrichment in overlap with the literature when compared to the rate of overlap with the 1894	

literature for 100 randomly-selected genes in the dataset subjected to the same protocol (Schizophrenia: 1895	

5/10 vs. 7/100, p=0.0012; Bipolar: 3/10 vs. 8/100, p=0.0610). Likewise, if we replaced diagnosis with a 1896	

term representing the general presence or absence of a psychiatric illness, we found that four of the top 10 1897	

genes had been previously identified in the literature (ALDH1A1: (104); HBS1L: (4); HIVEP2: (111), 1898	

FBX09: (74), Suppl. Figure 25, Suppl. Table 9), and 9/10 of the top genes were actually significant with 1899	

an FDR<0.05 when using permutation based methods (using the R function lmp{lmPerm}, 1900	

iterations=9999). The top 10 genes associated with psychiatric illness in models selected using 1901	

forward/backward stepwise model selection (criterion=BIC) similarly included five that had been 1902	

previously identified in the literature (PRSS16: (112), GRM1: (107,108); ALDH1A1: (104); SNAP25: 1903	

(109); HIVEP2: (111), a significant improvement in overlap with the literature than what can be seen in 1904	

100 randomly-selected genes in the dataset subjected to the same protocol (Fisher’s exact test: 5/10 1905	

vs.15/100, p=0.0168).  1906	

Together, we conclude that including cell content predictions in the analysis of macro-dissected 1907	

microarray data can sometimes improve the sensitivity of the assay for detecting altered gene expression 1908	

in relationship to psychiatric disease, especially if the dataset is confounded with dissection variation.  1909	

 1910	

 1911	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2017. ; https://doi.org/10.1101/089391doi: bioRxiv preprint 

https://doi.org/10.1101/089391


Running	Head:	PREDICTING	CELL	TYPE	BALANCE	

	 101	

 1912	

 1913	

Suppl. Figure 24. When analyzing the full dataset, the top genes associated with diagnosis in models 1914	
that include cell content predictions include genes previously identified in the literature. Depicted are 1915	
the top 10 genes associated with diagnosis using three different models of increasing complexity, along 1916	
with their b’s (magnitude and direction of effect within the model – blue indicates downregulation, pink is 1917	
upregulation), nominal p-values, and p-values that have been corrected for false detection rate using the 1918	
Benjamini-Hochberg method.  Gene symbols that are bolded and highlighted yellow have been previously 1919	
detected in the human literature in association with their respective diagnosis in papers identified using 1920	
the PubMed search terms “Schizophrenia” (Row 1) and “Bipolar” (Row 2). None of the top genes 1921	
associated with major depressive disorder in any of the three models were found to be associated with 1922	
“Depression”, “Anxiety”, or “Suicide” on PubMed (Row 3).  1923	

 1924	

  1925	

Top$Genes$Associated$with$Schizophrenia:
Eq.3:&Diagnosis$+$Confounds: Eq.6: $Diagnosis$+$$5$Prevalent$Cell$Types$&$Confounds Eq.1:&Diagnosis$+$$All$Cell$Types$&$Confounds
Probe Gene$Symbol Beta Pval FDR Probe Gene$Symbol Beta Pval FDR Probe Gene$Symbol Beta Pval FDR
11330_at CTRC *0.13 1.00E*04 4.75E*01 9181_at ARHGEF2 *0.12 3.96E*05 2.66E*01 3397_at ID1 *0.54 3.68E*05 2.22E*01
1758_at DMP1 *0.06 1.37E*04 4.75E*01 8448_at DOC2A 0.18 4.55E*05 2.66E*01 8448_at DOC2A 0.17 6.26E*05 2.22E*01
10086_at HHLA1 *0.40 1.70E*04 4.75E*01 3397_at ID1 *0.53 6.69E*05 2.66E*01 9181_at ARHGEF2 *0.12 6.78E*05 2.22E*01
23760_at PITPNB *0.13 1.96E*04 4.75E*01 23760_at PITPNB *0.12 8.87E*05 2.66E*01 23760_at PITPNB *0.13 7.41E*05 2.22E*01
55760_at DHX32 *0.16 2.61E*04 4.75E*01 26268_at FBXO9 *0.16 2.53E*04 4.48E*01 5376_at PMP22 *0.24 1.67E*04 3.64E*01
3397_at ID1 *0.51 2.73E*04 4.75E*01 11330_at CTRC *0.10 3.12E*04 4.48E*01 1414_at CRYBB1 *0.10 2.34E*04 3.64E*01
1414_at CRYBB1 *0.12 3.04E*04 4.75E*01 81491_at GPR63 0.12 4.28E*04 4.48E*01 4878_at NPPA *0.14 2.65E*04 3.64E*01
7644_at ZNF91 *0.29 3.26E*04 4.75E*01 2911_at GRM1 0.07 4.71E*04 4.48E*01 11330_at CTRC *0.10 2.68E*04 3.64E*01
26071_at FAM127B 0.15 3.84E*04 4.75E*01 55760_at DHX32 *0.13 4.79E*04 4.48E*01 23187_at PHLDB1 *0.17 4.41E*04 3.64E*01
4878_at NPPA *0.17 3.98E*04 4.75E*01 1050_at CEBPA 0.15 5.70E*04 4.48E*01 2263_at FGFR2 *0.16 4.49E*04 3.64E*01

Top$Genes$Associated$with$Bipolar$Disorder:
Eq.3:&Diagnosis$+$Confounds: Eq.6: $Diagnosis$+$$5$Prevalent$Cell$Types$&$Confounds Eq.1:&Diagnosis$+$$All$Cell$Types$&$Confounds
Probe Gene$Symbol Beta Pval FDR Probe Gene$Symbol Beta Pval FDR Probe Gene$Symbol Beta Pval FDR
4725_at NDUFS5 *0.15 7.77E*04 1.00E+00 216_at ALDH1A1 *0.37 7.57E*05 9.06E*01 216_at ALDH1A1 *0.40 3.05E*05 2.21E*01
51042_at ZNF593 0.16 1.20E*03 1.00E+00 6616_at SNAP25 *0.20 3.59E*04 1.00E+00 6616_at SNAP25 *0.17 3.69E*05 2.21E*01
79705_at LRRK1 0.10 1.64E*03 1.00E+00 10146_at G3BP1 0.14 7.61E*04 1.00E+00 8534_at CHST1 0.22 4.33E*04 9.98E*01
10146_at G3BP1 0.13 1.71E*03 1.00E+00 4725_at NDUFS5 *0.15 8.07E*04 1.00E+00 29896_at TRA2A *0.15 5.78E*04 9.98E*01
26664_at OR7C1 *0.08 1.85E*03 1.00E+00 51042_at ZNF593 0.16 1.05E*03 1.00E+00 10146_at G3BP1 0.14 6.58E*04 9.98E*01
4677_at NARS *0.08 1.89E*03 1.00E+00 4677_at NARS *0.08 1.07E*03 1.00E+00 90806_at ANGEL2 *0.09 7.27E*04 9.98E*01
2353_at FOS *0.63 2.00E*03 1.00E+00 8534_at CHST1 0.21 1.09E*03 1.00E+00 4677_at NARS *0.08 1.24E*03 9.98E*01
23760_at PITPNB *0.10 2.22E*03 1.00E+00 23760_at PITPNB *0.10 1.11E*03 1.00E+00 79705_at LRRK1 0.10 1.33E*03 9.98E*01
9815_at GIT2 *0.05 2.44E*03 1.00E+00 81567_at TXNDC5 0.14 1.33E*03 1.00E+00 23510_at KCTD2 0.10 1.34E*03 9.98E*01
7404_at UTY 0.04 2.87E*03 1.00E+00 51299_at NRN1 *0.13 1.42E*03 1.00E+00 81567_at TXNDC5 0.13 1.41E*03 9.98E*01

Top$Genes$Associated$with$MDD:
Eq.3:&Diagnosis$+$Confounds: Eq.6: $Diagnosis$+$$5$Prevalent$Cell$Types$&$Confounds Eq.1:&Diagnosis$+$$All$Cell$Types$&$Confounds
Probe Gene$Symbol Beta Pval FDR Probe Gene$Symbol Beta Pval FDR Probe Gene$Symbol Beta Pval FDR
23476_at BRD4 0.12 7.10E*05 4.29E*01 5961_at PRPH2 0.21 6.96E*05 8.34E*01 23476_at BRD4 0.12 4.06E*05 4.86E*01
5961_at PRPH2 0.21 7.16E*05 4.29E*01 23476_at BRD4 0.11 2.12E*04 9.99E*01 5961_at PRPH2 0.20 1.20E*04 5.49E*01
9862_at MED24 0.15 2.08E*04 7.94E*01 8314_at BAP1 0.11 2.77E*04 9.99E*01 2535_at FZD2 0.08 1.37E*04 5.49E*01
10253_at SPRY2 *0.21 3.20E*04 7.94E*01 10279_at PRSS16 0.10 5.10E*04 9.99E*01 8314_at BAP1 0.11 4.30E*04 9.99E*01
10279_at PRSS16 0.11 3.31E*04 7.94E*01 379_at ARL4D *0.13 7.57E*04 9.99E*01 9985_at REC8 0.13 5.80E*04 9.99E*01
23493_at HEY2 *0.15 6.04E*04 9.16E*01 9862_at MED24 0.14 7.86E*04 9.99E*01 379_at ARL4D *0.13 9.74E*04 9.99E*01
9148_at NEURL 0.11 6.40E*04 9.16E*01 79570_at NKAIN1 0.11 7.97E*04 9.99E*01 9862_at MED24 0.13 1.06E*03 9.99E*01
79570_at NKAIN1 0.11 1.15E*03 9.16E*01 9985_at REC8 0.12 8.57E*04 9.99E*01 10279_at PRSS16 0.09 1.29E*03 9.99E*01
23163_at GGA3 0.09 1.59E*03 9.16E*01 2535_at FZD2 0.08 9.54E*04 9.99E*01 10767_at HBS1L *0.18 1.33E*03 9.99E*01
139538_at VENTXP1 *0.03 1.60E*03 9.16E*01 3781_at KCNN2 *0.14 1.19E*03 9.99E*01 79570_at NKAIN1 0.10 1.40E*03 9.99E*01
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 1926	

Suppl. Figure 25. When analyzing the full dataset, the top genes associated with psychiatric illness in 1927	
models that include cell content predictions include genes previously identified in the literature. 1928	
Depicted are the top 10 genes associated with psychiatric illness using three different models of 1929	
increasing complexity, or associated with psychiatric illness or suicide in models chosen using stepwise 1930	
regression. Notably, the results from stepwise regression for the diagnosis term are not included in this 1931	
figure because the term was only included in the model for eight genes total (DHX32, ID1, CSRP1, 1932	
AKR1B10, TBPL1, HIST1H4F, SETD3, GAL). Included are the b’s (magnitude and direction of effect 1933	
within the model – blue indicates downregulation, pink is upregulation), nominal p-values, and p-values 1934	
that have been corrected for false detection rate using the Benjamini-Hochberg method.  Note that the p-1935	
values associated with stepwise regression are likely to be optimistic due to overfitting. Gene symbols 1936	
that are bolded and highlighted yellow have been previously detected in the human literature in 1937	
association with their respective diagnosis in papers identified using the PubMed search terms 1938	
“Schizophrenia”, “Bipolar”, “Depression”, “Anxiety”, or “Suicide”. 1939	

 1940	

 1941	

 1942	

  1943	

Top$Genes$Associated$with$Psychiatric$Illness:
Eq.3:&Psychiatric$+$Confounds: Eq.6: $Psychiatric$+$$5$Prevalent$Cell$Types$&$Confounds Eq.1:&Psychiatric$+$$All$Cell$Types$&$Confounds
Probe Gene$Symbol Beta Pval FDR Probe Gene$Symbol Beta Pval FDR Probe Gene$Symbol Beta Pval FDR
7461_at CLIP2 0.16 2.18E104 8.71E101 379_at ARL4D 10.12 1.26E104 6.37E101 379_at ARL4D 10.12 9.91E105 5.12E101
26071_at FAM127B 0.11 2.29E104 8.71E101 216_at ALDH1A1 10.24 3.02E104 6.37E101 79778_at MICALL2 0.08 2.07E104 5.12E101
9862_at MED24 0.11 3.91E104 8.71E101 7461_at CLIP2 0.14 4.06E104 6.37E101 3097_at HIVEP2 10.11 2.41E104 5.12E101
22864_at R3HDM2 10.16 4.43E104 8.71E101 10767_at HBS1L 10.16 4.21E104 6.37E101 6616_at SNAP25 10.10 3.72E104 5.12E101
55700_at MAP7D1 0.11 4.61E104 8.71E101 79778_at MICALL2 0.09 4.57E104 6.37E101 29896_at TRA2A 10.11 3.79E104 5.12E101
216_at ALDH1A1 10.30 5.34E104 8.71E101 23760_at PITPNB 10.08 4.69E104 6.37E101 7461_at CLIP2 0.14 3.79E104 5.12E101
23760_at PITPNB 10.08 6.38E104 8.71E101 3300_at DNAJB2 0.12 4.80E104 6.37E101 2535_at FZD2 0.06 4.06E104 5.12E101
2176_at FANCC 10.08 7.08E104 8.71E101 5537_at PPP6C 10.07 5.75E104 6.37E101 216_at ALDH1A1 10.22 4.33E104 5.12E101
64427_at TTC31 0.08 8.57E104 8.71E101 3097_at HIVEP2 10.12 5.91E104 6.37E101 6604_at SMARCD3 0.12 4.46E104 5.12E101
7832_at BTG2 10.16 8.87E104 8.71E101 26268_at FBXO9 10.10 7.58E104 6.37E101 8534_at CHST1 0.16 4.47E104 5.12E101

Stepwise&Regression:

Top$Genes$Associated$with$Psychiatric$Illness: Top$Genes$Associated$with$Suicide:
Probe Gene$Symbol Beta Pval Probe Gene$Symbol Beta Pval
9862_at MED24 0.13 1.83E105 8526_at DGKE 0.035 1.81E105
7461_at CLIP2 0.17 4.74E105 64718_at UNKL 0.106 2.40E105
10279_at PRSS16 0.10 8.86E105 65998_at C11orf95 0.17 6.56E105
2911_at GRM1 0.05 1.11E104 84617_at TUBB6 0.162 9.41E105
216_at ALDH1A1 10.23 1.28E104 4752_at NEK3 10.08 1.72E104
379_at ARL4D 10.11 1.37E104 9640_at ZNF592 0.158 2.27E104
6616_at SNAP25 10.11 1.39E104 25940_at FAM98A 10.11 3.00E104
8534_at CHST1 0.16 1.45E104 80176_at SPSB1 0.087 3.01E104
3097_at HIVEP2 10.12 1.53E104 1051_at CEBPB 0.249 4.04E104
64427_at TTC31 0.08 1.67E104 50515_at CHST11 0.069 4.18E104
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 1944	

 1945	

 1946	

Suppl. Figure 26. When analyzing the full dataset using a model that includes Psychiatric Illness*Cell 1947	
Type interaction terms, the top genes associated with psychiatric illness include genes previously 1948	
identified in the literature. Depicted are the top 10 genes associated with psychiatric illness and its 1949	
interaction with the five most prevalent cell types in the cortex using the model in Equation 6: 1950	

Equation 7: 1951	

  Gene Expression = β0 +β1*(Astrocyte Index)+ 1952	
+β2*(Microglia Index)+ β3*(Neuron_Interneuron Index)+ β4*(Neuron_Projection Neuron 1953	
Index)+ β5*(Oligodendrocyte Index) + β6*(Brain pH) + β7*(Agonal Factor) + β8*(PMI) + 1954	
β9*(Age) + β10*(Gender)+ β11*(Psychiatric Illness) + β12*(Psychiatric Illness)*(Astrocyte 1955	
Index) +β13*(Psychiatric Illness)*(Microglia Index)+ β14*(Psychiatric 1956	
Illness)*(Neuron_Interneuron Index)+ β15*(Psychiatric Illness)*(Neuron_Projection Neuron 1957	
Index)+ β17*(Psychiatric Illness)*(Oligodendrocyte Index)+e 1958	

 1959	
Included are the b’s (magnitude and direction of effect within the model – blue indicates downregulation, 1960	
pink is upregulation), nominal p-values, and p-values that have been corrected for false detection rate 1961	
using the Benjamini-Hochberg method.  The number of top genes that were found to be previously-1962	

Eq.8%Interaction%Terms:%Psych%*%Prevalent%Cell%Types:

Psychiatric:
Probe Gene0Symbol Beta Pval FDR
379_at ARL4D ,0.12 1.54E,04 6.53E,01
3097_at HIVEP2 ,0.13 2.43E,04 6.53E,01
216_at ALDH1A1 ,0.24 2.68E,04 6.53E,01
10767_at HBS1L ,0.16 2.91E,04 6.53E,01
4677_at NARS ,0.06 3.83E,04 6.53E,01
7461_at CLIP2 0.14 4.48E,04 6.53E,01
3300_at DNAJB2 0.125 4.76E,04 6.53E,01
23760_at PITPNB ,0.08 5.01E,04 6.53E,01
79778_at MICALL2 0.086 5.34E,04 6.53E,01
5537_at PPP6C ,0.07 6.47E,04 6.53E,01

Psychiatric*Astrocyte Psychiatric*Microglia Psychiatric*Interneuron
Probe Gene0Symbol Beta Pval FDR Probe Gene0Symbol Beta Pval FDR Probe Gene0Symbol Beta Pval FDR
28958_at CCDC56 ,0.46 1.75E,05 1.87E,01 55308_at DDX19A 0.324 5.07E,05 3.26E,01 3638_at INSIG1 ,1.57 3.76E,05 1.91E,01
23305_at ACSL6 0.617 3.12E,05 1.87E,01 6351_at CCL4 ,0.58 5.44E,05 3.26E,01 56937_at PMEPA1 ,0.95 7.23E,05 1.91E,01
9929_at JOSD1 0.438 8.44E,05 3.37E,01 23305_at ACSL6 ,0.51 4.48E,04 9.96E,01 50835_at TAS2R9 ,0.4 8.67E,05 1.91E,01
55751_at TMEM184C 0.312 1.64E,04 4.92E,01 79953_at TMEM90B ,0.39 4.57E,04 9.96E,01 39_at ACAT2 ,1.77 1.06E,04 1.91E,01
64794_at DDX31 ,0.37 3.55E,04 6.65E,01 116496_at FAM129A 0.264 5.55E,04 9.96E,01 3606_at IL18 ,0.31 1.06E,04 1.91E,01
58525_at WIZ ,0.23 3.69E,04 6.65E,01 26539_at OR10H1 ,0.82 6.99E,04 9.96E,01 10473_at HMGN4 0.846 1.24E,04 1.91E,01
8492_at PRSS12 ,0.3 3.89E,04 6.65E,01 9278_at ZBTB22 ,0.32 9.99E,04 9.96E,01 50489_at CD207 0.655 1.34E,04 1.91E,01
3709_at ITPR2 0.22 4.46E,04 6.68E,01 11326_at VSIG4 0.491 1.05E,03 9.96E,01 79053_at ALG8 1.179 1.37E,04 1.91E,01
81890_at QTRT1 ,0.48 5.21E,04 6.93E,01 1415_at CRYBB2 ,0.34 1.07E,03 9.96E,01 4693_at NDP 1.462 1.43E,04 1.91E,01
9514_at GAL3ST1 0.339 6.30E,04 7.55E,01 2615_at LRRC32 ,0.45 1.31E,03 9.96E,01 253943_at YTHDF3 1.522 1.94E,04 2.32E,01

Psychiatric*Projection0Neuron Psychiatric*Oligodendrocyte
Probe Gene0Symbol Beta Pval FDR Probe Gene0Symbol Beta Pval FDR
10473_at HMGN4 ,0.56 2.29E,04 9.96E,01 11184_at MAP4K1 ,0.39 2.21E,04 1.00E+00
56606_at SLC2A9 ,0.54 3.31E,04 9.96E,01 5936_at RBM4 0.621 4.58E,04 1.00E+00
652_at BMP4 0.585 3.57E,04 9.96E,01 10432_at RBM14 0.513 6.94E,04 1.00E+00
3586_at IL10 0.255 4.63E,04 9.96E,01 51073_at MRPL4 ,0.39 1.02E,03 1.00E+00
4649_at MYO9A 1.102 5.58E,04 9.96E,01 8552_at INE1 ,0.34 1.51E,03 1.00E+00
23288_at IQCE 0.347 5.82E,04 9.96E,01 22934_at RPIA 0.355 1.56E,03 1.00E+00
23385_at NCSTN ,0.55 6.35E,04 9.96E,01 10351_at ABCA8 1.005 1.63E,03 1.00E+00
9582_at APOBEC3B 0.174 8.10E,04 9.96E,01 10428_at CFDP1 0.487 1.74E,03 1.00E+00
50807_at ASAP1 ,0.76 1.01E,03 9.96E,01 23180_at RFTN1 0.723 1.86E,03 1.00E+00
80146_at UXS1 ,0.67 1.25E,03 9.96E,01 58488_at PCTP 0.289 1.95E,03 1.00E+00
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identified in literature does not significantly surpass what was observed in a group of 100 randomly 1963	
selected genes from our dataset (14/60 vs. 15/100). 1964	
  1965	
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8. Supplementary Tables 1966	

Suppl. Table 1. Master Database of Cortical Cell Type Specific Gene Expression. The attached excel 1967	
document contains a single spreadsheet listing the genes defined as having cell type specific expression in 1968	
our manuscript, including the species, age of the subjects, and brain region from which the cells were 1969	
purified, the platform used to measure transcript, the statistical criteria and comparison cell types used to 1970	
define “cell type specific expression”, the gene symbol or orthologous gene symbol in mouse/human 1971	
(depending on the species used in the original experiment), and citation. If a gene was identified as 1972	
having cell type specific expression in multiple experiments, there is an entry for each experiment – thus 1973	
the full 3383 rows included in the spreadsheet do not represent 3383 individual cell type specific genes. A 1974	
web-version of this spreadsheet kept interactively up-to-date can be found at 1975	
https://sites.google.com/a/umich.edu/megan-hastings-hagenauer/home/cell-type-analysis. 1976	

Suppl. Table 2. Microarray data spanning 160 human brain regions downloaded from the Allen Brain 1977	
Atlas. Included in this excel file are three worksheets. The first includes all of the sample information, 1978	
including the subject identifier and brain region. The second includes all of the probe information. 1979	
Finally, the third includes the relative expression for each probe for each sample (z-score), including the 1980	
official gene symbol, Entrez gene ID, and gene name. Additional information about the human 1981	
microarray dataset can be found on the Allen Brain Atlas website. 1982	

Suppl. Table 3. The average cell type indices for all 160 brain regions included in the Allen Brain Atlas 1983	
dataset. This excel file contains two worksheets. The first includes the average cell type index for 10 1984	
primary cell types for all 160 brain regions included in the Allen Brain Atlas. More detail about those 1985	
brain regions can be found in the first worksheet (Columns_Sample Info) in Suppl. Table 2. The second 1986	
spreadsheet contains the standard error (SE) for the averages in the first worksheet. 1987	

Suppl. Table 4. Output for the analyses of cell type vs. subject variables for all datasets. The first 1988	
spreadsheet provides the output from the meta-analysis for each cell type vs. subject variable 1989	
combination (“b”= the estimated effect, provided in the  units for the variable – e.g., the effect of one 1990	
year of age, or the effect of one hour of PMI; “SE”= standard error,”p-value”= nominal p-value,  1991	
“BH_adj_P-value (q-value)”= the p-value corrected for multiple comparisons). The second spreadsheet 1992	
includes the T-statistics for all cell type vs. subject variable combinations for all datasets.  1993	

Suppl. Table 5. Functions associated with genes identified as having neuron-specific expression. The 1994	
first column of the excel spreadsheet is a list of general physiological functions that were identified by 1995	
DAVID as associated with our list of neuron-specific genes (relative to the full list of probesets included 1996	
in the microarray). We used the functional cluster option in DAVID because it prevents multiple functions 1997	
that share a large subset of overlapping genes from dominating the results. We named each cluster by the 1998	
top two functions included in it. The second column of the spreadsheet indicates whether an experimenter 1999	
blindly categorized the functional cluster as being clearly related or unrelated to synaptic function. The 2000	
“Mean Fold Enrichment” column indicates how well on average each of the functions within that cluster 2001	
were associated with our list of neuron-specific genes. The next three columns (Top p-value, Top 2002	
Bonferronni-corrected p-value, and top BH (Benjamini-Hochberg)-corrected p-value) indicate the 2003	
statistical strength of the association between the top function within that cluster and our list of neuron-2004	
specific genes. The number of genes from each functional cluster included in our results is listed in 2005	
column G.  The next few columns indicate the strength of the relationship between the functional cluster 2006	
and age. Columns H-J indicate the mean, standard deviation, and standard error, for the betas for Age 2007	
for each gene included in the cluster. The betas indicate the strength and direction of the association with 2008	
Age as determined within a larger linear model controlling for known confounds (pH, PMI, gender, 2009	
agonal factor). Columns K-M indicate whether, on average, the age-related betas for the genes in that 2010	
cluster are statistically different from 0 as determined by a Welch’s t-test (t-stat, df, p-value). The final 2011	
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column indicates what percentage of the genes included in the cluster have a negative relationship (b) 2012	
with age. 2013	

Suppl. Table 6.  A .gmt file created using our database of cell type specific genes for use with Gene Set 2014	
Enrichment Analysis (GSEA). This file should be in the correct format for usage with either GSEA 2015	
(http://software.broadinstitute.org/gsea/index.jsp) or fGSEA.  2016	

Suppl. Table 7. Performing Gene Set Enrichment Analysis using a .gmt that includes traditional 2017	
functional gene sets and cell type specific gene lists indicates that cell type specific gene sets are 2018	
enriched for effects related to a wide variety of subject variables.  Gene set enrichment analysis was 2019	
performed using the results from a differential expression analysis performed on the Pritzker dataset 2020	
using a model that included diagnosis, pH, agonal factor, age, PMI, and sex. The gene set enrichment 2021	
results for each variable is included as its own worksheet in the file. 2022	

Suppl. Table 8. Previously-identified relationships between gene expression and psychiatric illness in 2023	
the human cortex in either particular cell types or macro-dissected cortex. We used this database of 2024	
previously-identified effects to determine whether controlling for cell type while performing differential 2025	
expression analyses increased our ability to observe previously-documented effects.  2026	

Suppl. Table 9. The relationship between diagnosis and all probesets in the Pritzker Dorsolateral 2027	
Prefrontal Cortex dataset as assessed using models of increasing complexity. For all probesets in the 2028	
dataset, the spreadsheets for Model #2 and Model#4 include the b for all variables in the model (“Beta”: 2029	
magnitude and direction of the association, with positive associations labeled pink and negative 2030	
associations labeled blue), the p-value (“Pval_nominal”) and the p-value adjusted for multiple 2031	
comparisons using the Benjamini-Hochberg method (“BH_Adj”), both labeled with green indicating 2032	
more significant relationships and red indicating less significant relationships. There are also summary 2033	
spreadsheets that include just the results for Bipolar Disorder and Schizophrenia for Models#1-5. In 2034	
these spreadsheets, the formatting is a little different: T-statistics are provided, the b is called “LogFC”, 2035	
the BH_Adj p-value is called“adj.P.Val”. 2036	

Suppl. Table 10. The relationship between diagnosis and all genes in the CMC RNA-Seq dataset as 2037	
assessed using models of increasing complexity. There are two summary spreadsheets that include the 2038	
results for Bipolar Disorder and Schizophrenia for Models#1-5. For all genes in the dataset, each 2039	
spreadsheet includes the b (“LogFC”: magnitude and direction of the association), the T-statistic, the p-2040	
value (“Pval_nominal”) and the p-value adjusted for multiple comparisons using the Benjamini-2041	
Hochberg method (“adj.P.Val”) for the effect of diagnosis in each model (#M1-M5). 2042	

Suppl. Table 11. The relationship between diagnosis and all probesets in the Barnes et al. microarray 2043	
dataset as assessed using models of increasing complexity. There is a summary spreadsheet that 2044	
includes the results for Schizophrenia for Models#1-5. For all probesets in the dataset, each spreadsheet 2045	
includes the b (“LogFC”: magnitude and direction of the association), the T-statistic, the p-value 2046	
(“Pval_nominal”) and the p-value adjusted for multiple comparisons using the Benjamini-Hochberg 2047	
method (“adj.P.Val”) for the effect of diagnosis in each model (#M1-M5). 2048	

Suppl. Table 12. The relationship between diagnosis and all probesets in the Lanz et al. microarray 2049	
dataset as assessed using models of increasing complexity. There are two summary spreadsheets that 2050	
include the results for Bipolar Disorder and Schizophrenia for Models#1-5. For all probesets in the 2051	
dataset, each spreadsheet includes the b (“LogFC”: magnitude and direction of the association), the T-2052	
statistic, the p-value (“Pval_nominal”) and the p-value adjusted for multiple comparisons using the 2053	
Benjamini-Hochberg method (“adj.P.Val”) for the effect of diagnosis in each model (#M1-M5). 2054	
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Suppl. Table 13. The relationship between diagnosis and all probesets in the Narayan et al. microarray 2055	
dataset as assessed using models of increasing complexity. There is a summary spreadsheet that 2056	
includes the results for Schizophrenia for Models#1-5. For all probesets in the dataset, each spreadsheet 2057	
includes the b (“LogFC”: magnitude and direction of the association), the T-statistic, the p-value 2058	
(“Pval_nominal”) and the p-value adjusted for multiple comparisons using the Benjamini-Hochberg 2059	
method (“adj.P.Val”) for the effect of diagnosis in each model (#M1-M5). 2060	

Suppl. Table 14. Sample demographics for the Pritzker Consortium Dorsolateral Prefrontal Cortex 2061	
Affymetrix microarray data.  2062	

Suppl. Table 15. The relationship between each cell type index and all probes in the Pritzker 2063	
Dorsolateral Prefrontal Cortex dataset. The attached excel document (.xlsx) contains multiple 2064	
spreadsheets. The first spreadsheet (“Methods”) contains a brief summary of the methods used to 2065	
evaluate the relationship between the cell type indices and expression of each probe in the dataset (also 2066	
discussed in the body of the manuscript). The second spreadsheet (“GeneByCellType_DF”) contains the 2067	
statistical output associated with all cell type index terms in the linear model for all probes in the dataset, 2068	
including the b (“Beta”: magnitude and direction of the association, with positive associations labeled 2069	
pink and negative associations labeled blue), the p-value from the original model (“Pval”) and the p-2070	
value adjusted for multiple comparisons using the Benjamini-Hochberg method (“AdjP”), both labeled 2071	
with green indicating more significant relationships and red indicating less significant relationships. All 2072	
other spreadsheets contain the top 100 probes positively associated with each cell type index, including 2073	
each of the statistical outputs presented in the full “GeneByCellType_DF” summary spreadsheet, as well 2074	
as a column “CellTypeSpecific” which indicates whether the probe was included in one of the original 2075	
cell type indices (1=included, 0=not included). 2076	

Suppl. Table 16. The relationship between each cell type index and all probes in the Allen Brain Atlas 2077	
dataset. Depicted are the b (magnitude and direction) and p-values for the relationship between the 2078	
expression for each probe and each primary cell type across samples from all 160 brain regions as 2079	
determined in a large linear model that includes all 10 primary cell types. Please note that the p-values in 2080	
this spreadsheet have not been corrected for multiple comparisons. Additional information about the 2081	
probes can be found in Suppl. Table 2. 2082	

	2083	
	2084	
	2085	

 2086	
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