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Abstract

We present a new method, GRASS, for improving an initial
annotation of de novo transcriptomes. GRASS makes the
shared-sequence relationships between assembled contigs explicit in
the form of a graph, and applies an algorithm that performs label
propagation to transfer annotations between related contigs and
modifies the graph topology iteratively. We demonstrate that
GRASS increases the completeness and accuracy of the initial
annotation, allows for improved differential analysis, and is very
efficient, typically taking 10s of minutes.

Advances in sequencing technologies have allowed the efficient and
accurate exploration of transcriptomes beyond the scope of genetic model
organisms [1, 2]. The first major step in pipelines involving non-model
organisms is often de novo transcriptome assembly. De novo assembly
allows for the identification of novel transcripts, as well as transcript
quantification and, in turn, differential expression studies across various
conditions and cell types [3, 4]. However, for meaningful interpretation of
these analyses, we must have some notion of what the contigs in our
assembly represent. Often, we have annotated genomes from species related
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to these non-model organisms. This information can be harvested to
accurately annotate the contigs of a de novo assembly and improve our
understanding of down-stream analyses. Traditionally, variants of

BLAST [5] are used to perform this annotation and then complete Gene
Ontology (GO) analysis [6, 7]. Apart from these, other methods are used
for pre-processing the assembly in order to filter out spurious contigs [8].
However, a large proportion of contigs may remain unannotated even after
these steps.

We present a method, GRASS (Graph Regularized Annotation via
Semi-Supervised learning), that employs data from previously annotated
species and transfers transcript and gene labels to the current assembly
(overview in Fig.1). This, in turn, improves annotation quality. The
annotation performed by GRASS is done in conjunction with a graph that
represents contig-level similarity in the de novo assembly. In this sense,
GRASS is different from existing annotation methodologies, since it takes
advantage not only of similarity between the transcripts of related species,
but also considers sequence similarity between contigs within the de novo
assembly. We consider a weighted graph, G, in which the contigs are the
vertices and each pair of contigs is connected by an edge if reads multimap
between them. The weight of each edge is proportional to the fraction of
multimapping fragments between the adjacent contigs. This graph can be
efficiently built using previously generated fragment equivalence classes
(which we derived from the output of Sailfish [9, 10] or Salmon [11]). These
classes represent the relationship between fragments based on the set of
transcripts to which they map or align. This concept has proven very
powerful in transcript-level quantification, and was first introduced, to the
best of our knowledge, by Turro et al. [12]. The efficient construction of
this graph is implemented in RapClust [13], a tool for clustering contigs in
de novo transcriptome assemblies.

We note that, rather than being a complete annotation pipeline,
GRASS is best considered as a method capable of “boosting” an initial set
of annotations by accounting for expression and sequence similarities within
the de novo assembly. Furthermore, GRASS not only boosts annotation
quality, but uses these annotations to improve contig-level clustering, which
can lead to more accurate differential analysis results (see Figure 2). As
such, in GRASS, we begin by labeling nodes of this graph, G, using a
traditional approach, such as a BLAST search. Subsequently, a graph based
semi-supervised learning method for label propagation is used to transfer
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these initial annotations to unannotated nodes in the graph. For this
purpose, we use the adsorption algorithm, which relies on random walks
through the graph and has been used to efficiently propagate information
through a variety of graphs in its various applications [14]. On top of this
label propagation, we build an iterative algorithm to modify the topology
and edge weights in the graph based on the current labeling. This process
is repeated until the topology of the graph converges. The final result of
our approach is a collection of annotations for the contigs in the de novo
assembly and a graph that best represents the relationship between these
contigs based on the available sequence and annotation information (see
Online Methods for details).

We compare our results against a number of other approaches, some of
which are used for integrating information from annotated species with de
novo assemblies. Since there is no obvious and complete mapping between
the contigs and annotations from the related species, we choose to compare
the different methods based on their ability to give contigs from a single
gene the same label and, in turn, cluster them together for down-stream
analyses. The first is RapClust [13], which does not make use of any
annotations to cluster contigs in the de novo assembly. We test Corset [15]
in two ways, with and without the annotated related species. We also show
a comparison against clustering that is based on the label assigned to each
contig after a simple nucleotide BLAST of the de novo assembly against
the reference transcriptome. This is done for both the complete set of
contigs, as well as only the contigs that have more than 10 reads mapping
to them (a criterion used to filter contigs in Corset, RapClust and GRASS).
Note that this information is obtained from the quantification results of
Sailfish, and is automatically incorporated in the mapping ambiguity graph
of GRASS. The last set of results is obtained in a similar way (only on
contigs with 10 or more mapping reads) after a BLAST search (both
nucleotide and protein) against the release of SwissProt database used by
Trinotate, but with the specific test species annotations removed [16]
(http://trinotate.github.io/). For all analyses, reference-based
clustering (obtained by BLASTing the contigs against the true reference
genome) is treated as the truth, and GRASS is run using an « value of 0.8
(Supplementary Fig.1). We test on three main datasets, and show that
GRASS provides a better clustering and labels a greater number of contigs,
while also being substantially faster.

We assess the quality of our clusters based on precision and recall
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Figure 1: GRASS requires two inputs. The first is a partial contig to label
mapping (i.e., a labeling of some subset of contigs with gene names), which
can be obtained using an existing method such as performing a BLAST
search of the contigs against a closely related species. The second input
is a mapping ambiguity graph constructed using the previously generated
equivalence classes [13]. The first step of the iterative algorithm in GRASS
modifies the edge weights and adds new edges based on the current labeling
(linking contigs that share a gene label with high probability), and the second
step updates the labels using a label propagation method [14]. These steps
are repeated until the number of edges in the graph converges.

scores, where a pair of contigs is considered a true positive when they share
a gene label under the true labeling, obtained using the annotated reference
from the specific species. Co-clustered contigs sharing different
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ground-truth labels are considered as false positives, and identically-labeled
contigs that reside in different clusters are considered as false negatives (all
remaining pairs are true negatives). We show that our method performs
much better than the others in terms of recall, while suffering only a minor
loss compared to the next-best method in terms of precision (Fig.2(a,b,c))
(more results in Supplementary Fig.2 and 3). Integrating quantification
results with BLAST and removing low expression contigs from the
clustering improves the accuracy of BLAST-based clustering and
annotation in some cases (Fig.2(b)). However, the extra quantification
information is obtained by running Sailfish on the input RNA-seq data, and
is automatically integrated into the methodology of GRASS. Improved
clustering, in turn, also results in improved differential expression analysis.
We verify this by demonstrating that GRASS, which iteratively integrates
contig-level similarity and label annotations to improve contig clustering,
outperforms RapClust, which clusters contigs using just the fragment
ambiguity graph, and a BLAST-based clustering which uses only the
annotations alone to define clusters. Specifically, we examine the rate at
which differential expression calls made under the GRASS, RapClust and
BLAST clusterings recover genes called as DE under the ground truth
labeling (Fig.2(d)). We show that GRASS obtains a higher sensitivity at a
given FDR than RapClust, and that both of these approaches achieve a
considerably higher sensitivity at a fixed FDR than BLAST
(Supplementary Fig.4). With an FDR of 0.05, GRASS is shown to have a
higher recall rate than the other methods (Fig.2(d)).

In addition to being accurate, GRASS assigns annotations to a greater
number of contigs than the other methods. This is a benefit of the label
propagation step which, in each iteration, makes use of the previous
information to continue labeling connected components in the graph. This
means that some of the previously unannotated contigs, which could not be
annotated on the basis of sequence similarity alone, are labeled by the end
of the iterative process. In this way, GRASS is able to assign annotations
to 1,300, 1,121 and 2,177 extra contigs in human, mouse and rice,
respectively. To assess the quality of this annotation, we check how these
contigs co-cluster according to the newly-assigned labels, compared to their
true annotation (Supplementary Table .1) The larger number of
annotations could be helpful in down-stream analyses for specific genes.

Along with producing more complete and accurate annotations,
GRASS is also much faster than the other tools (Fig.2(e)). The time taken

5


https://doi.org/10.1101/089417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/089417; this version posted November 25, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

(a) Human and macaque (b) Mouse and rat (c) Asian rice and red rice

“uli it L

Method | FDR=0.01 | FDR=0.02 | FDR=0.05 | FDR=0.1 Species | GRASS  Corset  Trinotate (n) Trinotate (p)
GRASS 62.7 66.7 71.3 75.8 Human | 3246 513.28 2356.13 781.56
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Figure 2: (a,b,c) Precision, recall and F1 scores for the three test species
(TS) using a closely related annotated species (AS). Explanation for the key:
1. RapClust run using the processed output from Sailfish on the de novo
assembly of the test species and RNA-seq reads. 2. Corset run using the
de novo assembly of the test species and aligned reads. 3. Corset run using
the de novo assembly of the test species and aligned RNA-seq reads to both
the assembly and annotated genome of the related species. 4. Nucleotide
BLAST between contigs from the de novo assembly of the test species and
the SwissProt database. 5. Protein BLAST between contigs from the de
novo assembly and the SwissProt database. 6. Nucleotide BLAST between
all the contigs in the de novo assembly of the test species and the annotated
genome from the related species. 7. Nucleotide BLAST between just the
expressed contigs in the de novo assembly and the annotated genome from
the related species. (Contigs with <10 reads mapping to them are removed.)
8. GRASS using the output from Sailfish and contigs in the de novo assembly
labeled using the annotated genome from a related species. (d) GRASS is
several times faster than the other tools. (e) GRASS improves the rate of
discovery of differentially expressed genes compared to th other methods.

for GRASS includes the time to run Sailfish (which generates contig-level
abundance estimates), to generate fragment equivalence classes, to
construct the mapping ambiguity graph (using RapClust), to run BLAST
to generate the initial contig labels, and then to propagate the labels and
alter the graph topology using the GRASS algorithm itself. Similarly,
Corset timing includes time to align reads in each sample against the
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reference using Bowtie [17]. GRASS takes a little over half an hour in
human (for details of the experimental setup, refer Experimental Setup in
online methods), with a total of 23.2 million reads across 6 samples and
107, 389 contigs in the de novo assembly. The other species take less than
15 minutes, with a total of 10.5 million reads and 75,727 contigs in mouse
and 8 million reads and 99, 745 contigs in rice. In comparison, the other
tools take several hours to run on these datasets.

GRASS is able to combine information from three main sources: contig
sequence similarity in the de novo assembly, quantification results after
read mapping (used to remove spurious and very-low abundance contigs),
and annotations from a closely related species. It does so much faster than
other tools, and can produce substantially more accurate annotations,
especially as the phylogenetic distance between the assembly and the
reference species used for annotation grows. GRASS simplifies the process
of annotating contigs from de novo assemblies, improves contig-level
clustering, and introduces what we hope will be a powerful new idea in
improving annotation quality and completeness.

Software Availability:

GRASS is written in Python, and is freely-available under an open-source
(BSD) license at https://github.com/COMBINE-1lab/GRASS.
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Online Methods:

Algorithm:

GRASS is an algorithm for improving and annotating de novo assemblies
using data available from related species that have already been annotated.
These annotations are initially mapped to contigs in the de novo assembly
using a pre-existing method and are passed to GRASS as input. We use
BLAST for this purpose in all our tests, but other procedures may be used
for the initial labeling. The other main input to GRASS is the mapping
ambiguity graph constructed on the basis of fragment equivalence classes
(we obtain this via RapClust [13]). An equivalence class is defined as a
collection of reads, all of which map to exactly the same set of contigs.
RapClust constructs a weighted graph using these classes where the vertices
represent the contigs and a pair of contigs is connected if they co-label an
equivalence class. This graph is then updated in GRASS and annotation
information propagated through it.

The initial labeling can be passed to GRASS in two formats. Take A to
be the set of contigs from the de novo assembly, and B the set of annotated
transcripts from the related species. The first is a simple tab-delimited,
two-column format with the contigs from the assembly in the first column
and their respective labels from the related species in the second; essentially
a mapping from A to B. The second format consists of two separate files
where the first file contains results from a nucleotide BLAST of the de novo
assembly of the test species against the database constructed using the
annotated reference from the related species and vice-versa in the second
file. Hence, the first file contains a mapping from A to B and the second
from B to A. In the latter case, the two BLAST files are sorted using the
bit score, with ties being broken by the e-value, and contigs are given their
corresponding consensus label. The contig is not labeled if no consensus
exists, i.e., if the best hit in A—B is not the same as the best hit in B—A.
This labeling and the mapping ambiguity graph are passed to GRASS.
Then, GRASS proceeds executing, iteratively, the steps of its algorithm
include modifying the edge weights in the graph based on the annotation
labels of the contigs and running a learning algorithm on the graph to
annotate unlabeled contigs. These are explained in more detail below.

tth

e G' = (V, E") is the mapping ambiguity graph at the t*™ iteration of

the algorithm
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e F'is the edge set at the t'" iteration
e ¢ € E'is an edge from E* and is an un-ordered pair {u,v} | u,v € V

Edge manipulation: After labeling contigs, edges in the graph are
changed, iteratively, in two ways based on the shared labels and edge
weights from prior iterations of the algorithm:

1. Let t 4+ 1 denote the current iteration of the algorithm, and let
e = {u,v} € E' be an edge in the set E' of edges. The weight of e,
denoted as w (e), can be updated if there are labels common between
two contigs sharing an edge and is calculated as follows:

(1—a)-w () + (-3, (- b)),

Here, « is set to 0.8 for our tests, w (e°) is the original edge weight in
the input graph (i.e., G°) and py, p, are probabilities of each contig
having a label [ from the set of shared labels, L.

2. New edges are added to the graph in cases where two contigs share a
label with high probability, but do not have an edge between them.
The new edge weight is calculated in the same way as above.
However, instead of the original edge weight w (e°) (since no edge
originally existed), we instead use the median of the edge weights
connecting the two vertices to their neighbors in the graph. The edge
is only added if the joint probability of shared labels is greater than
0.9. This threshold is chosen to avoid adding a large number of false
edges, especially in the first iteration when a majority of labels have
an assigned probability of 1.0 (since this is the seed probability with
which these labels are initialized).

Label propagation:. Using results from BLAST, a portion of the
contigs in the mapping ambiguity graph are labeled. The graph-based
semi-supervised learning algorithm, absorption [14] (we use the
implementation from the Junto library [20]), is used to extend these labels
to contigs that have a large number of overlapping mapped reads and,
therefore, an edge between them in the graph. The algorithm works by
taking random walks through the graph carrying label information. This
information is propagated based on three probabilities associated with each
node: p™, the probability of stopping the current random walk and
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emitting a new label, p®"? the probability of completely abandoning the
walk, and p®™, the probability of continuing the random walk with the
current label.

We do not run the algorithm until convergence, since we wish to utilize
information at each iteration to update the graph and change the edges.
However, the number of iterations that label propagation is allowed to run
is gradually increased from 1, based on the ratio of the edge weights in the
original graph and the edge weights of the new added edges. This is done
since we expect the graph to converge towards the truth and therefore
labels from the current node should ideally be propagated to all highly
connected neighbours. At the end of label propagation, each label
associated with a contig has a weight in the range (0, 1], and each contig
may have up to a maximum of 3 labels (a limitation of the implementation
of the absorption algorithm we adopt).

Differential expression:

To test the ability of different methods in detecting differentially expressed
genes, we use contig level quantification obtained via Sailfish. The counts
are aggregated to the gene-level using the R package, tximport [18], with
the “scaledTPM” option. To obtain the “true” gene-level expression, the
contig-to-gene aggregation is done using on the contig-to-gene mapping
obtained from the genome based analysis. A differential expression analysis
is then performed using DESeq2 [19] and genes with an adjusted p-value of
< 0.05 are considered as differentially expressed (DE).

For the other methods analysed, the same contig level counts from
Sailfish are used, to avoid bias, and the same procedure repeated using
tximport and DESeq2, except that the contig-to-gene mapping is based on
the clustering obtained via each method. For the FDR-sensitivity plot, the
false discovery rate is controlled using the adjusted p-value cutoff for each
method, and calculating the proportion of truly DE genes detected at that
p-value (where all genes called DE at an FDR < 0.05 under the genome
based contig-to-gene mapping are considered as truly DE). For the
recall-precision plot, the number of true and false positives detected at each
adjusted p-value are used. Note that this plot is only for genes with
adjusted p-value less than or equal to 0.05 and, therefore, the total number
of genes called differentially expressed (true and false) varies for each
method.
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Data Used:

The first dataset used (SRA accessions SRR493366-SRR493371) is from
human, Homo sapiens, primary lung fibroblast samples, with and without a
small interfering RNA (siRNA) knock down of HOXA1 [21]. Differential
expression testing was done on this dataset as well. The second sample is
from dendritic cells in mice, Mus musculus (SRA accession SRR203276)
[25]. The last dataset is from deep sequencing of Asian rice, Oryza sativa
(SRA accessions SRR037735-SRR037738) [23]. The genomes used to obtain
the “true” clustering for these experiments were hgl9, GRCm38 and
IRGSP-1.0 for human, mouse and Asian rice, respectively. The genomes
and annotations for all the related species were obtained from the Ensembl
databse [24]. Related species used for results in the main paper are
macaque (Macaca mulatta, assembly MMUL_1) for human, rat (Rattus
norvegicus, assembly Rnor_6.0) for mouse, and red rice (Oryza punctata,
assembly AVCL00000000) for Asian rice. Other results in the
supplementary material include those using chimp (Pan troglodytes,
assembly CHIMP2.1.4), organutan (Pongo abelii, assembly PPYG2), gorilla
(Gorilla gorilla gorilla, assembly gorGor3.1), gibbon (Nomascus leucogenys,
assembly Nleul.0), mouse lemur (Microcebus murinus, assembly micMurl),
kangaroo rat (Dipodomys ordii, assembly dipOrdl) and wild rice (Oryza
barthii, assembly ABRL00000000).

Experimental Setup:

All experiments listed in this paper are performed on a 64-bit linux server,
running Ubuntu 14.04, with 256GB of RAM and 4 x 6-core Intel Xeon
E5-4607 v2 CPUs (with hyper-threading) running at 2.60GHz. Commands
used for the experiments are explained in the supplementary material.
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