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Abstract 

 

Functionally distinct regions of the brain are thought to possess a characteristic connectional 

fingerprint – a profile of incoming and outgoing connections that defines the function of that 

area. This observation has motivated efforts to subdivide cortical and subcortical areas using 

their patterns of connectivity. However, it remains unclear whether these connectomically-

defined subregions of the brain can be distinguished at the molecular level. Here, we combine 

high-resolution diffusion-weighted magnetic resonance imaging with comprehensive 

transcriptomic data to show that connectomically-defined subregions of the striatum carry 

distinct transcriptional signatures. Using data-driven clustering of diffusion tractography, 

seeded from the striatum, in 100 healthy individuals, we identify a tripartite organization of the 

caudate and putamen that comprises ventral, dorsal, and caudal subregions. We then use 

microarray data of gene expression levels in 19 343 genes, taken from 98 tissue samples 

distributed throughout the striatum, to accurately discriminate the three connectomically-

defined subregions with 80-90% classification accuracy using linear support vector machines. 

This classification accuracy was robust at the group and individual level. Genes contributing 

strongly to the classification were enriched for gene ontology categories including dopamine 

signaling, glutamate secretion, response to amphetamine, and metabolic pathways, and were 

implicated in risk for disorders such as schizophrenia, autism, and Parkinson’s disease. Our 

findings highlight a close link between regional variations in transcriptional activity and inter-

regional connectivity in the brain, and suggest that there may be a strong genomic signature of 

connectomically-defined subregions of the brain. 
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1 Introduction 
 

The functional specialization of specific brain regions is governed, in part, by the anatomical 

connectivity of that area with the rest of the brain (Passingham et al., 2002). The idea that 

distinct functional areas of the brain may possess a unique “connectional fingerprint” has 

motivated a large body of work that attempts to parcellate the brain into functional zones based 

on regional variations in connection profiles (Behrens and Johansen-Berg, 2005, Eickhoff et 

al., 2015). Connectivity-based parcellation has been used to examine the subregional 

architecture of cortical areas such as the medial frontal cortex (Johansen-Berg et al., 2004), 

lateral premotor cortex (Tomassini et al., 2007), and Broca’s area (Anwander et al., 2006), as 

well as subcortical areas such as the subthalamic nucleus (Lambert et al., 2012), insula 

(Alcauter et al., 2015), thalamus (Behrens et al., 2003), and striatum (Bohanna et al., 2011), as 

well as the entire brain (Fan et al., 2016). While these connectivity-based parcellations have 

been successful in defining functionally relevant subregions of the brain (e.g., Fan et al., 2016, 

Gordon et al., 2016), it remains unclear whether connectomically-defined subregions show 

variation at the molecular level. Addressing this question is critical for understanding the 

relationship between micro-scale and macro-scale brain organization. 

 

 The recent availability of large-scale transcriptomic data, incorporating measures of the 

expression of thousands of genes measured throughout the brain (Shen et al., 2012, Hawrylycz 

et al., 2012, Oldham et al., 2008), has afforded an unprecedented opportunity to investigate the 

relationship between gene expression and brain connectivity. Preliminary work has shown that 

regional variation in gene expression across the brain can be used to delineate major divisions 

of the cortex, such as the visual, motor, frontal, and sensory cortices, in both the mouse 

(Hawrylycz et al., 2010) and human brains (Hawrylycz et al., 2012, Oldham et al., 2008). 

Furthermore, a close link has been demonstrated between transcription levels and inter-regional 

structural and functional connectivity (French and Pavlidis, 2011, Fulcher and Fornito, 2016, 

Kaufman et al., 2006, Krienen et al., 2016, Wolf et al., 2011), suggesting that regional 

variations in extrinsic connectivity are closely tied to gene expression patterning. 

 

 The striatum has been a popular target for connectivity-based parcellation (Draganski et 

al., 2008, Bohanna et al., 2011, Lehéricy et al., 2004, Leh et al., 2007, Tziortzi et al., 2014). A 

large body of evidence indicates that the striatum can be delineated into distinct functional 
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zones along a rostroventral to dorsocaudal gradient. According to one prominent, tripartite 

model of striatal organization (Parent and Hazrati, 1993, 1995, Haber, 2003), ventral areas of 

the striatum play an important role in emotional function and are preferentially connected to 

limbic areas such as the orbitofrontal cortex, amygdala and hippocampus; dorsal areas support 

higher-order associative processing and connect predominantly with dorsolateral and 

prefrontal regions; and caudal areas mediate sensorimotor processes, displaying strong 

connectivity with motor and sensory cortices. These subdivisions have been differentially 

implicated in different disorders, including obsessive-compulsive disorder (Harrison et al., 

2009), addiction (Everitt and Robbins, 2013), Parkinson’s disease (DeLong and Wichmann, 

2007), psychosis (Fornito et al., 2013, Dandash et al., 2014), and problem gambling (Koehler 

et al., 2013). These subdivisions also differ in terms of their chemoarchitecture. In situ 

hybridization of human tissue samples (Gurevich, 1999), immunochemistry in rats (Levey et 

al., 1993), and microarray analysis in mice (Olsen et al., 2008) all suggest that dopamine 

receptors are differentially expressed across different striatal subregions. For example, while 

D2 receptors are more strongly expressed in the caudate and putamen compared to the nucleus 

accumbens (Levey et al., 1993, Olsen et al., 2008), the opposite pattern is observed for D3 

receptors (Gurevich, 1999). Furthermore, D2 receptor concentrations within the caudate and 

putamen decline along a rostrocaudal gradient, being lower in caudal regions (Levey et al., 

1993). These findings indicate that the density of distinct classes of dopamine receptors varies 

across different subregions of the striatum. However, previous work has had to trade off spatial 

coverage of the striatum against complete coverage of the genome. In other words, 

investigators typically examine the expression of specific subsets of genes across large swathes 

of the striatum (e.g., Levey et al., 1993, Gurevich, 1999), or measure expression levels in tens 

of thousands of genes at only a few spatial locations (e.g., Olsen et al., 2008). 

 

The recently published Allen Human Brain Atlas (AHBA; Hawrylycz et al., 2012), 

which uses microarray probes to assay expression levels across almost the entire genome, 

measured in 3702 tissue samples distributed throughout the brain, opens new opportunities to 

comprehensively characterize molecular function in the striatum. In this study, we used these 

data to characterize the transcriptional signature of connectomically-defined subregions of the 

human striatum. We first reconstructed the connectivity of each of over 2000 voxels in the left 

and right striatum with 86 cortical and subcortical brain regions covering the whole brain, and 

used data-driven clustering to identify connectomically-defined striatal subregions. We then 

used linear support vector machines to determine whether we could accurately classify which 
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connectomic subregion each of 98 striatal tissue samples contained in the AHBA was drawn 

from, based on the transcriptional profile of that sample. This approach allowed us to 

comprehensively evaluate transcriptional distinctions between different striatal subregions. In 

particular, it allowed us to evaluate whether variations in dopaminergic function are indeed a 

major molecular correlate of striatal organization, or whether other neurotransmitter or 

physiological systems also play a role. 

 

2 Materials and Methods 
 

We combined high-quality DWI data from the HCP with multivariate clustering techniques to 

produce an objective, data-driven parcellation of the striatum. We then used high throughput 

gene expression data from the AHBA to investigate whether connectomically-defined striatal 

subregions display distinct patterns of gene expression. Figure 1 provides an overview of the 

steps involved in these analyses. 

 

2.1 Data 

 

DWI data from 100 unrelated healthy participants (54 males, 46 females, age range of 22-35 

years) were downloaded from the HCP database (Van Essen et al., 2013). We used the 

minimally preprocessed DWI and structural data, the full details of which can be found 

elsewhere (Glasser et al., 2013). In brief, the HCP data were acquired using a customized 

Siemens 3T Skyra MRI machine. The DWI data (1.25 mm isotropic voxels, TR = 5520 ms, TE 

= 89.5 ms, flip angle = 78 degrees, echo spacing = 0.78 ms) were obtained using a multi-shell 

protocol that allowed for concurrent acquisition of interspersed diffusion weighted gradients 

(b = 1 000, 2000, and 3000 s/mm2). Acquisition of reverse phase encoding b = 0 pairs allowed 

for the estimation of the underlying magnetic field inhomogeneities that caused geometric 

distortions in the EPI images, and their subsequent correction (Andersson et al., 2003). 

Additional field inhomogeneities caused by head motion were also corrected during this step. 

T1-weighted structural data were additionally collected for each participant (0.7 mm isotropic 

voxels, TR = 2400 ms, TE = 2.14 ms, flip angle = 8 degrees). Gradient nonlinearities in the 

DWI data produced by the customized head coil used in the HCP were corrected before the 

DWI data were registered to native T1 volume space. Diffusion gradients were rotated 

accordingly. Diffusion tractography (see below) was performed in each participant’s T1 space. 
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2.2 Generation of seed and target areas for tractography 

 

Initial attempts to parcellate the striatum based on diffusion data have examined structural 

connectivity in relation to cortical lobes, which may mask finer-grained distinctions between 

different striatal areas (Draganski et al., 2008). These studies also defined subregion boundaries 

by selecting the connection with the highest probability for each voxel (a winner-take-all 

approach), regardless of the relative strength of other connections (Lehéricy et al., 2004, 

Bohanna et al., 2011, Tziortzi et al., 2014). Given the detailed connectivity profiles apparent 

within striatal voxels (Fig. 1A), focusing only on the maximal probability connection may 

overlook the potential for striatal subregions to have complex and diverse connectivity profiles. 

Our aim was to incorporate these multifaceted connectivity profiles into the parcellation 

analysis. 

 

 We took the caudate, putamen, and nucleus accumbens, as defined in the Desikan-

Killiany atlas (Desikan et al., 2006) provided by the HCP, in each hemisphere and combined 

them to form a pair of seeds defined at 2mm3 voxel resolution for tractography (i.e., a left and 

a right hemisphere striatum mask). There were several targets used for this study: (i) 68 cortical 

areas (34 per hemisphere); (ii) left and right hippocampus and amygdala; and finally (iii) seven 

subregions of the thalamus defined according to cortico-thalamic structural connectivity 

(Behrens et al., 2003). Target sets (i) and (ii) were both defined according to the Desikan-

Killiany parcellation. The segmented thalamus mask was chosen because different striatal 

subregions connect topographically to distinct thalamic nuclei (Giménez-Amaya et al., 1995). 

 

2.3 Probabilistic tractography 

 

Analysis of the DWI data was performed using the Functional Magnetic Resonance Imaging 

of the Brain (FMRIB) Software Library (FSL). Specifically, tractography was performed using 

FMRIB’s diffusion toolbox (FDT) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Behrens et al., 2003). 

The fibre orientation density function was modelled for the DWI data on a voxel-wise basis 

using a ball & stick model developed for use with multi-shell datasets (Jbabdi et al., 2012). 

Streamline tracking was performed from each voxel in a given seed mask using a probabilistic 

algorithm. The advantage of utilizing multi-shell acquisitions is that they increase the 

sensitivity of detecting crossing streamlines (Sotiropoulos et al., 2013). Also, FSL’s 
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tractography method can simultaneously handle surfaces and volumes as regions of interests, 

which allows for more accurate determination of streamline termination points compared to 

just using volumes. 

 

 For each participant, FDT’s bedpostx function was used to estimate streamline 

orientation and uncertainty at each voxel in the DWI data by estimating a distribution of 

diffusion parameters using Markov Chain Monte Carlo sampling, with 3 fibers modelled per 

voxel, Rician noise assumed (Sotiropoulos et al., 2013), and taking into account the gradient 

nonlinearities generated by the customized scanner used by the HCP. FDT’s probtrackx2 

calculated the probability of connectivity between each seed voxel with each target using 5000 

streamlines per voxel, a 0.2 curvature threshold, and loopcheck termination (a step designed to 

terminate streamlines that loop back on themselves). Included with the HCP data are 

transformation matrices which provide a spatial mapping from a participant’s T1-

weighted/diffusion space to MNI space. These matrices enabled us to perform tractography in 

each participant’s diffusion space with ROIs defined in MNI space and then store the results 

in MNI space. Tractography was run from each of the 1923 seed voxels in the left striatum and 

the 1905 seed voxels in the right striatum to the 86 bilateral cortical and subcortical targets 

outlined above. The results were represented as separate 1923 × 86 and 1905 × 86 connectivity 

matrices, where each element was the count of streamlines that intersected a given seed voxel 

and target. Streamline counts for each voxel-target pair were averaged across subjects 

separately for the left and right hemispheres. 

 

2.4 Connectivity-based parcellation of the striatum 

 

We parcellated the striatum masks by grouping seed voxels with similar profiles of extrinsic 

whole-brain connectivity (Fig. 1A) using k-means clustering (Hastie et al., 2009). Each seed 

voxel was represented in terms of its connectivity profile as an 86-feature vector, where each 

feature was a count of the number of reconstructed streamlines that intersected each of the 86 

tractography targets. Note that we use the term “target” here to refer to a non-striatal region 

used as a target for tractography - not to imply that the region was the target of an efferent 

projection from the striatum (since afferent and efferent projections cannot be resolved with 

diffusion MRI). ROI volume varied across the 86 connectivity targets used for our tractography 

and larger targets are more likely to intersect streamlines than smaller targets. To correct for 

this target volume bias, streamline counts were normalized for each connectivity target using 
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the sigmoidal function, S(x) = [1 + exp(−(x − µ)/σ)]−1, where µ is the mean and σ is the standard 

deviation of streamline counts across all seed voxels for a given target. Values were then scaled 

linearly to the unit interval to yield values between 0 (low relative connectivity to the target) 

and 1 (high relative connectivity to the target). Alternative normalization methods, such as z-

score, yielded qualitatively similar results. Using the kmeans function in Matlab 2014b, the 

dissimilarity between the normalized connectivity profiles for a given striatal voxel was 

quantified using the squared Euclidean distance metric. In turn, distances are used in the k-

means clustering algorithm to form groups of similar connectivity profiles. 

 

 Given that our primary aim was to examine the gene transcriptional signatures of striatal 

subregions, and given the limited anatomical coverage of tissue samples in the AHBA (see 

sections 2.5 and 2.5.1 below), we began our analysis by partitioning the striatal seed voxels 

into three homogeneous clusters (k = 3). However, due to evidence for finer connectivity-based 

parcellations of the striatum (e.g., Draganski et al., 2008, Baliki et al., 2013, Piray et al., 2015) 

we also investigated higher levels of k (k = 4, 5, 6) to examine the rostrocaudal gradient of 

striatal organization in more detail. For a given k, the k-means clustering algorithm yields a 

labelling of each seed voxel in the left and right striatum masks that represents that voxel’s 

allocation to one of the k clusters. 

 

2.4.1 Individual differences in striatal organization 

 

Our group-level delineation of striatal subregions was based on connectivity data averaged 

across a sample of 100 individuals. To examine whether this group-level representation is an 

accurate summary of striatal organization at the level of individuals, we reproduced the k = 3 

clustering solution for each participant separately (using the same method outlined in Section 

2.4) and quantified the similarity between these individual-level parcellations and the group-

level parcellation. To ensure our results were not biased, we also quantified the similarity 

between the individual-level parcellations and group-level parcellations generated using the N-

1 remaining participants. Finally, to assess inter-individual variability in striatal demarcations, 

we performed pairwise comparisons between the individual-level parcellations.  The similarity 

between parcellations was quantified using the normalized variation of information (VI) 

(Meilă, 2007, Rubinov & Sporns, 2011), which is an information theoretic measure of the 

overlap between two clustering solutions. Values of the normalized VI range between zero and 
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one, where zero corresponds to identical clustering solutions and one corresponds to maximally 

different clustering solutions. 

 
2.4.2 Extrinsic connectivity of striatal subregions 
 

Voxels within each striatal subdivision identified using k-means clustering should exhibit a 

homogenous profile of extrinsic connectivity with the rest of the brain that is distinct from the 

other subdivisions. In order to characterize the distinctive pattern of extrinsic connectivity for 

each identified striatal cluster, we quantified the relative strength of connectivity between each 

striatal cluster in the k = 3 solution and the connectivity targets using t-tests. We first calculated 

z-scores of the connectivity data described in section 2.4.1 across all the individual participants 

to ensure mean connectivity of zero for each target, which allowed us to conduct single sample 

t-tests on the connectivity between each cluster and each target. Second, to ensure identical 

clustering across participants, we applied the k = 3 solution generated at the group level to each 

participant’s connectivity data and averaged across voxels within each cluster for each target. 

This yielded a 3 × 86 (cluster × target) connectivity matrix for each participant representing 

the mean connectivity between each cluster and each target for a given hemisphere. Third, we 

performed one-sample t-tests for each cluster to identify the connections that had mean 

connectivity significantly greater than zero across all participants. This resulted in significant 

cluster to target connections for each striatal subdivision in both hemispheres. For 

visualization, we summed the significant t-values for a given target from each hemisphere to 

generate a single t-value for each cluster and target. This analysis resulted in three maps that 

revealed the predominant connectivity targets for each striatal cluster, collapsed across 

hemispheres. 

 

2.5 Gene expression 

 

To investigate whether the connectomically-defined striatal subregions were associated with 

distinct transcriptional profiles, we analyzed microarray data from the AHBA, the full details 

of which can be found elsewhere (Hawrylycz et al., 2012). In brief, the AHBA includes 

normalized genome-wide microarray data (58 692 probes) for 3702 tissue samples taken from 

the cortex and subcortex of six post-mortem adult brains (approximately 400-500 tissue 

samples per brain). Each has an associated stereotaxic coordinate in MNI space. We focused 

our genetic analysis on the left hemisphere because four of the six brains in the AHBA database 
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contained no samples in the right hemisphere, and the two remaining brains did not contain a 

sufficient number of samples to allow for a subregional analysis of the right hemisphere. 

 

 There was a large amount of redundancy in the microarray data provided by the AHBA. 

To ensure each microarray probe assayed a unique gene, probes that did not carry an entrez 

identification number were removed, and in cases where certain genes were assayed by 

multiple probes, a single probe was selected by performing principal component analysis 

(PCA) on the duplicate probes and retaining the probe with the highest loading on the first 

principal component (PC). Since we are interested in the transcriptomic profiles of the striatum, 

we next filtered the 3702 tissue samples by matching the MNI coordinates supplied by the 

AHBA with the left hemisphere striatum mask from the connectivity analysis. This was done 

in two steps. First, we converted our binary striatal mask (see section 2.2) to a 3-D shape and 

retained only those tissue samples that were located within this shape using Matlab’s 

alphaShape and inShape commands, respectively. Second, we found the shortest Euclidean 

distance between the MNI coordinates of each striatal tissue samples and the MNI coordinates 

of each of the voxels in our parcellation. Thus, a final 98 × 19 343 tissue sample × gene 

expression probe data matrix was obtained. 

 

2.5.1 Genomic classification of striatal subdivisions 

 

We used the AHBA data to examine whether transcription data could be used to accurately 

classify 98 striatal tissue samples into one of three connectomically-defined striatal clusters. 

The 98 tissue samples were matched to a striatal cluster label based on the MNI coordinates 

provided by the AHBA. We then used a support vector machine classifier (SVM) with a linear 

kernel to classify the tissue samples for each of the striatal clusters (Hastie et al., 2009). SVM 

classifiers can only resolve classification problems with more than two groups by performing 

multiple separate two-class classifiers. Our primary goal here is to determine whether gene 

expression can distinguish any given striatal subregion from the others, so each SVM was 

specified as a one vs. all others problem (Hastie et al., 2009). In other words, we tested whether 

cluster 1 could be distinguished from clusters 2 and 3, whether cluster 2 could be distinguished 

from clusters 1 and 3, and whether cluster 3 could be distinguished from clusters 1 and 2.  This 

procedure was repeated for each of the three clusters. Ten-fold cross-validation with 50 repeats 

was used to obtain out-of-sample estimates of classification performance, measured as the 

overall classification accuracy (proportion of correctly classified tissue samples). To ensure 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 11, 2016. ; https://doi.org/10.1101/089458doi: bioRxiv preprint 

https://doi.org/10.1101/089458
http://creativecommons.org/licenses/by-nc-nd/4.0/


robust estimates of classification accuracy, new random stratified subsets of tissue samples 

were used as testing data for each repetition. 

 

 Using the full AHBA dataset in the SVM classifier would result in 19 343 features (gene 

expression measures), with only 98 observations (striatal tissue samples). In order to minimize 

the potential for overfitting the data (Hastie et al., 2009) and find an interpretable representation 

of the transcription data, we reduced this feature space using PCA. In contrast to mass 

univariate testing of subregional gene expression differences, using PCA allows us to 

characterize the multivariate genomic profiles for each striatal subregion, providing an estimate 

of multivariate discriminability. We retained the 10 leading PCs, which explained 67% of the 

variance in the data (additional PCs each accounted for <2% of the variance in the data and did 

not yield classification accuracies higher than an empirical null distribution). We ran the SVM 

separately for each PC, and separately tested for an improvement in classification accuracy by 

cumulatively adding each PC until all ten were used as features in the classifier. The statistical 

significance of the obtained classification accuracies was quantified using permutation testing 

by repeating the above classification procedures 5 000 times, each time independently shuffling 

the striatal subregion allocation of the tissue samples to generate an empirical null distribution 

for each cluster separately. Calculating separate null distributions is necessary because SVM 

classification was performed on separate striatal clusters, each with a differing number of tissue 

samples assaying transcription levels. 

 

 Due to limited coverage of the striatum in the AHBA, genomic classification of striatal 

clusters was only possible for the k = 3 solution obtained from the k-means clustering of the 

connectivity data. Moving to k = 4 would result in only 11 samples being included in some 

regions, which was not sufficient for robust genomic classification. Similarly, our genomic 

analyses were restricted to the left hemisphere due to insufficient coverage of the right striatum 

in the AHBA (e.g., for the k = 3 solution in the right hemisphere, the smallest cluster contained 

only a single sample). 

  

 As a result of uneven tissue sample coverage across the striatum and variation in the size 

of each striatal cluster, the AHBA tissue samples were distributed unevenly across the clusters. 

To ensure that the SVM classifier was not biased by this class imbalance, we weighted the 

misclassification cost of each of the tissue samples according to the inverse probability of being 

located within that striatal cluster. Specifically, we assigned all tissue samples belonging to the 
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striatal cluster, i, a weight, Wi = 1/pi, where pi is the proportion of tissue samples in cluster i 

(Liu et al., 2008). 

 

2.5.2 Gene ontology enrichment analysis 

 

The PCA of the microarray data yields a set of PC coefficients that measure the weighting of 

each gene’s expression levels onto a given PC. To see if gene probes with a higher loading 

onto certain PCs were associated with particular biological processes, we performed an 

enrichment analysis of GO categories (Ashburner et al., 2000) using Gene Score Resampling 

(GSR) implemented in the ErmineJ software package (Lee et al., 2005). We performed GSR 

separately for each PC, using the absolute PC coefficients as gene scores, yielding a p-value 

for each GO category. We used 107 iterations with full resampling for each iteration, considered 

gene set sizes between the range of 5-100, and took the mean scores in a GO group as a 

summary statistic. Significance levels were adjusted for multiple comparison testing using the 

Benjamini-Hochberg False Discovery Rate (FDR) correction (Benjamini and Hochberg, 1995). 

GSR has the potential to yield long lists of significant GO categories. In order to reduce the 

number of significant GO categories and facilitate interpretation, where necessary, REVIGO 

was used to remove redundant GO terms from the results (Supek et al., 2011). REVIGO works 

by selecting a representative GO term from related categories in the GO hierarchy (e.g., by 

parent, child, or sibling connections) using the SimRel algorithm (Schlicker et al., 2006). 

 

2.5.3 Inter-individual variability of AHBA tissue samples 

 

To maximize the number of tissue samples spanning the striatal subdivisions, we pooled 

transcription data across all six brains in the AHBA. However, since these six subjects are from 

different age groups, genders, and ethnicities, we also conducted a second analysis designed to 

investigate the effect of this individual variability on the results obtained using the pooled data. 

Specifically, we performed individual-level classification analyses using a “leave one brain 

out” approach. Instead of using a random stratified subset of tissue samples, we trained the 

SVM classifiers on tissue samples from five of the six brains and tested on tissue samples from 

the remaining brain. We repeated this process until each brain had been left out and classified. 

To prevent the testing data influencing the training data in any way, the PCA was run for each 

iteration on the training data and the test set was transformed into this PC space. 
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2.5.4 Disease association analysis 

 

In addition to looking for biological processes enriched in transcriptional PCs, we also explored 

whether the PCs were associated with particular diseases using the Autworks database 

(http://autworks.stanford.edu/) (Nelson et al., 2012). Autworks comprises evidence-based 

disease-gene annotations across the whole human genome for thousands of diseases. Hence, 

each disease has an associated gene set. Autworks accepts user-defined gene sets and computes 

the probability that a user-defined gene set overlaps with each of the inbuilt disease gene sets. 

We took sets of genes that had the strongest correlations (top 10% as in Hawrylycz et al., 2015) 

with each PC to determine whether any of our PCs were over-represented in gene sets involved 

in disease. Taking the top 10% of genes keeps the size of the gene sets constant across PCs. 

This is important because PCs with longer gene sets can show enrichment of more categories, 

simply because a larger number of genes has been analyzed. Nonetheless, to evaluate the 

robustness of our results, we cross-validated our findings by selecting genes that correlated 

significantly with each PC using a permutation test. With this approach, genes that were 

significant at p<0.05, (permutation test, FDR corrected) were retained as gene sets. This 

method is a statistically principled framework for selecting PC-related genes, but can vary in 

the number of genes included across gene sets. Thus, larger gene sets are more likely to be 

implicated in a broader range of diseases. Comparing results from the two methods allows 

identification of the most robust associations with disease. 

 

2.5.5 Validation against other striatal parcellations 

 

A connectivity-based parcellation based on k-means clustering is but one of many potential 

methods for defining striatal subregions. To determine whether other approaches to 

parcellation yield similar transcriptional signatures, we repeated our analysis using two 

alternative, publicly available striatal atlases. The first delineates the caudate, putamen and 

ventral striatum (including nucleus accumbens) based on anatomical boundaries, as defined in 

the Desikan-Killiany atlas (Desikan et al., 2006. see section 2.2). The second was derived using 

an alternative connectivity-based parcellation strategy, in which striatal voxels were clustered 

based on the highest connection probability (winner-takes-all approach) to a small set of 

cortical targets (defined at the lobar level) rather than on multivariate connectivity profiles 

(Tziortzi et al., 2014). The former atlas is freely used in the Freesurfer software package and 
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the latter is provided with FSL. 

 

2.6 Results 

 
2.6.1 Connectomic parcellation of the striatum 

 

Our primary aim was to use connectional fingerprints to identify striatal subregions in a data- 

driven way, and then to examine how subregional functional differences are expressed at the 

molecular level. We clustered individual striatal voxels according to their patterns of extrinsic 

connectivity with the rest of the brain. When extracting three clusters (i.e., k = 3), the results 

identify clear, anatomically contiguous subregions that encompass the ventral, dorsal, and 

caudal portions of the striatum in both hemispheres (Fig. 2A). The caudal cluster (blue in Fig. 

2A) encompasses the lateral putamen, extending caudally, and the tail of the caudate. The 

dorsal cluster (green in Fig. 2A) contains most of the head and dorsomedial sections of the 

caudate and the medial putamen. Finally, the ventral cluster (red in Fig. 2A) consists primarily 

of the nucleus accumbens as well as ventral portions of the putamen. For the remainder of this 

paper we refer to the three striatal clusters using this ‘caudal’, ‘dorsal’, ‘ventral’ naming 

scheme. 

 

We also parcellated the striatum at higher levels of k to examine finer distinctions in 

the rostrocaudal gradient. The results are shown in Figure 2B. For each additional level of k, 

the caudal, dorsal and ventral subregions subdivide along a mediolateral and rostrocaudal 

gradient, consistent with prior findings (Reep and Corwin, 1999, Draganski et al., 2008). Note 

that there is no sudden change in boundary locations, consistent with hierarchical anatomical 

organization. 

 

 

2.6.2 Individual differences in striatal organization 

 

The data-driven grouping of striatal voxels was generated at the group level (Fig. 2A) and may 

not be representative of striatal organization at the individual level. Thus, we generated a k = 3 

solution for each participant separately and quantified the pairwise discrepancy between 

participants, as well as the discrepancy between each participant and two group-level 
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parcellations (i.e., generated with and without the participant’s own connectivity data) using 

the variation of information (VI, see methods). Comparing each participant’s k = 3 solution to 

the group-level k = 3 solution revealed an average VI of 0.11 ± 0.02 (mean ± SD) for both the 

left hemisphere and the right hemisphere regardless of whether the group-level solution was 

generated including the subject’s connectivity data or not. Additionally, comparing 

participants’ k = 3 solutions in a pairwise manner revealed an average VI of 0.13 ± 0.02 for 

both the left and the right hemispheres. The low mean VI and small standard deviation indicates 

that there is a large amount of overlap between the k = 3 solution generated at the group level 

and k = 3 solutions generated at the individual level, and that the parcellation is quite robust 

across the individual participant solutions. In turn, this suggests that the group level solution 

was a good representation of striatal organization at the individual level for both hemispheres. 

 

2.6.3 Extrinsic connectivity of the caudal, dorsal and ventral striatal subregions 

 

Having identified three distinct striatal subdivisions on the basis of extrinsic connectivity, we 

wanted to understand the specific connectivity profile of each cluster in the k = 3 solution. We 

mapped the anatomical distribution of the t-values indexing group connectivity with each target 

(see section 2.4.2). Targets characteristic of each striatal cluster (p<0.05, FDR corrected), are 

shown in Figure 2E-G. Note that these figures represent statistical maps generated for each 

cluster separately and do not illustrate connectivity targets that are more connected to one 

cluster compared to another. Furthermore, the absence of a statistically significant connection 

between cluster and target within these maps indicates that the connectivity for all participants, 

represented as z-scores and averaged across voxels within each cluster for each target, was not 

significantly different from zero in this sample; not that an anatomical connection between 

these areas was absent. 

 

The caudal striatal cluster (Fig. 2E) had widespread significant connectivity with 70 

and 67 targets in the left and right hemisphere, respectively. Connectivity was strongest with 

the sensory and motor cortices, as well as superior frontal and parietal regions. The caudal 

cluster also showed significant connectivity to the thalamus and hippocampus. By contrast, the 

dorsal striatal cluster (Fig. 2F) showed a more focal profile of connectivity, with significant 

projections to the middle frontal gyri and the frontal poles. Finally, the ventral striatal cluster 

(Fig. 2G) showed an expansive connectivity profile with significant projections to 57 and 54 
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targets for the left and right hemisphere respectively. Connections were mainly to limbic 

regions such as the orbitofrontal, temporal, anterior cingulate areas, as well as the amygdala 

and hippocampus. Taken together, this pattern of extrinsic connectivity is consistent with the 

functional roles ascribed to these areas by the tripartite model (Parent and Hazrati, 1993, 1995), 

in which cortical and subcortical regions associated with sensorimotor, associative, and 

affective processing connect predominantly with caudal, dorsal and ventral subregions of the 

striatum, respectively (Draganski et al., 2008). 

 

2.7 Transcriptional signatures of the tripartite striatum 

 

Next, we examined whether connectomically-defined subregions of the striatum show distinct 

transcriptional profiles. Seventeen tissue samples from the AHBA were located within the 

caudal striatal cluster, 51 were within the dorsal striatal cluster, and 30 were within the ventral 

striatal cluster. The limited number of tissue samples available in the AHBA dataset precluded 

analysis of connectivity-based parcellations where k > 3. 

 

2.7.1 Transcriptomic prediction of striatal organization 

 

To determine whether gene transcription profiles can accurately differentiate connectomically-

defined subregions of the striatum, we first trained an SVM classifier on principal components 

(PCs) of microarray data drawn from the 98 striatal samples in the AHBA (Fig. 1B). Each PC 

represents an orthogonal dimension of linear covariance across all genes. Thus, PCs that 

contribute to classification do so based on the correlated expression of genes acting in concert. 

PCs were used as predictive features in three one vs. all SVMs, one per striatal cluster. The 

out-of-sample classification accuracies for each striatal cluster are presented in Figure 3. For 

each striatal cluster, we repeated the one vs. all classifier ten times, each time using a different 

PC as a training feature (Fig. 3A). Additionally, we repeated this process using cumulative 

PCs, up to a total of 10 PCs (Fig. 3B). 

 

For all three striatal clusters, classification accuracy was below chance levels for PC 1, 

which accounted for 19% of the variance in gene expression across the striatum. This result 

suggests that the dominant profile of transcriptional variance across the striatum is not 

predictive of the functional subregions of the tripartite striatum; in other words, it represents 

transcriptional variability that is common to all three divisions (Fig. 3C). Using PC 2, 
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classification accuracy for the dorsal and ventral striatal clusters increased to approximately 

85%, which was significantly greater than chance according to permutation tests (p<0.05), 

suggesting that PC 2, which accounts 11% of the variance in striatal gene expression, is able 

to clearly separate the dorsal and ventral striatal subregions (Fig. 3D). Classification accuracy 

for the caudal cluster increases to approximately 90% (p<0.05) when using PC 5, and again to 

approximately 80% (p<0.05) when using PC 9, suggesting that a different pattern of gene 

expression is responsible for separating the caudal cluster from the dorsal and ventral clusters 

(Fig. 3E–F). Figure 3B reveals that the accuracy of classifying dorsal and ventral subregions 

does not improve when using more than two PCs. Also, accuracy is hindered when using the 

first 5 PCs compared to using PC 5 on its own, suggesting that, in this particular application, 

multi-feature classifiers are less accurate than univariate ones. 

 

2.7.2 Transcriptional signatures of striatal subregions 

 

Having established that transcription profiles can be used to robustly classify subregions of the 

striatum defined by structural connectivity, we wanted to determine whether particular 

functional groups of genes were driving these results. We focused our analysis on 

understanding the patterns of gene expression that distinguished the tripartite striatal 

subregions: PCs 2, 5 and 9, as well as the PC that explained the most variance in the data, PC 

1. For each PC, we performed enrichment analysis on the magnitude of the weighting of each 

individual gene to that PC, allowing us to identify whether genes that weight highly onto these 

discriminative PCs were associated with any particular GO biological process categories. PCs 

1, 2, 5, and 9 were significantly associated with 190, 13, 8, and 47 biological processes in GO, 

respectively (p<0.05, FDR-corrected). 

 

Of the 190 and 47 significant GO categories for PCs 1 and 9, respectively, 115 (60%) 

and 28 (60%) were nested below the metabolic processes category in the GO hierarchy. Thus, 

to facilitate interpretation, we reduced the list of significant GO categories for PCs 1 and 9 by 

taking the top 10 indispensable GO categories as identified using REVIGO (see Methods). GO 

categories enriched in genes that load strongly onto each PC (1, 2, 5, and 9), including the 

reduced set for PCs 1 and 9, are displayed in Table 1. PC 1 includes contributions from genes 

involved in basic cellular functions, including antigen processing, protein localization and 

tRNA function, and metabolic processes. PC 2 has major contributions from catecholamine-

related processes, including genes regulating dopamine receptor signaling and response to 
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amphetamine. PC 5 has contributions from genes involved in synaptic signaling and glutamate 

secretion and PC 9 includes contributions from genes involved in oxidative metabolism. 

 

2.7.3 Individual variability and genomic predictions of striatal organization 

 

Our initial genomic analysis collapsed tissue samples from six different brains of diverse age, 

gender, and ethnicity. To examine the robustness of our findings to individual variability in 

donor brains, we conducted a separate set of individual-level classification analyses using a 

“leave one brain out” approach (see Methods). Tissue samples from each brain were removed 

and used as testing data and the remaining five brains were used to train the classifier. Five 

cumulative PCs in the group-level analysis was the earliest point at which all three SVMs 

performed greater than chance (Fig. 3B), suggesting that the variance in gene expression 

measures summarized by the first five PCs is enough to distinguish the caudal, dorsal, and 

ventral subregions. We therefore used the first five PCs as SVM features in our individual-

level analyses. Note that classification accuracy did not vary substantially when using more 

than the first five PCs. Classification accuracy is displayed for each brain alongside tissue 

sample cluster coverage and donor demographics in Table 2. Using permutation testing, all six 

brains showed classification accuracies that were greater than would be expected by chance 

(p<0.05, FDR corrected). High accuracy is driven predominantly by the dorsal and ventral 

clusters, which may be due to the caudal cluster being less distinctive in its transcriptional 

signature compared to the others or because there are relatively fewer tissue samples in the 

caudal cluster when the data from different brains are not pooled. Nonetheless, this analysis 

supports the robustness of our approach to individual variability in transcriptional activity, and 

suggests that the ability to predict striatal subdivisions using patterns of gene expression is not 

driven by age, gender or ethnicity. 

 

2.7.4 Subregional genomic signatures and disease 

 

Having identified which functional groups of genes contribute to separating the three striatal 

subregions, we next investigated the overlap between the sets of genes that correlate with PCs 

and genes implicated in risk for different diseases. We focused our analysis on PCs 2, 5, and 

9. For each PC, we took the top 10% of genes with the strongest absolute correlations to PCs, 

as a gene set (n = 1 934 genes). Next, we used Autworks to generate a list of diseases that 

overlapped significantly with each PC’s gene set. The top 10% of genes correlating with PCs 
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2, 5, and 9 overlapped significantly with genes associated with 6, 12, and 1 different diseases, 

respectively (p<0.05, FDR-corrected). These results are listed in Table 3. Genes correlated with 

PC 9 overlapped with general disease annotations relating to metabolic brain disorders and 

mitochondrial disease. Genes correlated with PC 2 were over-represented in psychotic 

disorders, including schizophrenia and affective psychosis, consistent with the strong 

involvement of catecholamine (particularly dopaminergic) genes (Table 1). It is also consistent 

with the accurate classification of the dorsal and ventral subregions by PC2, given that the 

former is heavily implicated in psychosis (Fornito et al., 2013, Howes et al., 2009). Genes 

correlated with PC 5 overlapped with genes implicated in schizophrenia, epilepsy and other 

developmental disorders such as autism and intellectual disability, consistent with these genes 

playing a role in general synaptic function and glutamate transmission (Table 1). 

To test the robustness of our findings, we re-ran the analysis selecting genes that were 

significantly correlated to each PC (p<0.05, FDR-corrected), rather than simply using the top 

10%. Similar overall findings were obtained, but with some additional disease associations for 

some PCs, likely because the number of genes assigned to each PC was free to vary in this 

analysis (see Supplementary Table 1). For example, genes significantly correlated with PC 2 

were also associated with X-linked mental retardation. Interestingly, the list of genes 

significantly correlating with PC 5 also included movement disorders and Parkinson’s disease. 

Given that PC 5 distinguished the caudal from dorsal and ventral striatum, this finding is 

consistent with evidence that pathology of the caudal striatum may be more prominent in 

Parkinson’s disease (Kish et al., 1988). 

 

2.7.5 Validation against other striatal parcellations 

 

Having analyzed the transcriptional signatures of striatal subregions defined using k-means 

clustering of connectomic data, we next investigated whether we could obtain comparable 

classification accuracy when tissue samples were assigned to striatal subregions defined using 

different criteria. We considered two alternative striatal parcellations: one that used anatomical 

boundaries (Desikan et al., 2006) and one that defined a tripartite division using an alternative 

connectomic strategy, which used winner-takes-all assignment of striatal voxels based on their 

connectivity to cortical lobes (Tziortzi et al., 2014) (see section 2.5.5).  

 

The anatomical parcellation was based on the same initial striatal mask as our own 

parcellation, so the spatial coverage of the AHBA that the anatomical atlas provides is identical 
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to ours, as are the principal components of genetic variance. The only difference is the 

subregion label assigned to each tissue sample, with the anatomical parcellation assigning 26 

tissue samples to the caudate, 57 to the putamen and 15 to the nucleus accumbens. 

Classification accuracy for the caudate and ventral striatum showed greater than chance 

classification accuracy, but only the caudate was significantly different from chance at p<0.05 

(permutation test, FDR-corrected; Fig S1A). Accuracy for the caudate subregion was driven 

by PC 2, which is the same PC that separated the dorsal and ventral subregions in our 

parcellation. Accuracy for the putamen was never significantly greater than chance (according 

to a permutation test) for any of the top 10 PCs. 

 

The alternative connectomic parcellation, developed by Tziortzi et al. (2014), is derived 

from the Harvard-Oxford atlas, which is based on a smaller mask of the striatum than the 

Desikan-Killiany atlas. As a result, only 63 of the original 98 tissue samples could be assigned 

to a striatal subregion in the Tziortzi parcellation; 23 in the caudal subregion, 30 in the dorsal 

subregion, and 10 in the ventral subregion. To ensure direct comparability to the analyses using 

the other parcellations, we assigned the remaining 35 tissue samples to the nearest subregion 

of the Tziortzi parcellation using the same Euclidean distance method outline in section 2.5. 

This resulted in 32 samples being located in the caudal subregion, 36 in the dorsal subregion, 

and 30 in the ventral subregion. Classification accuracy for the dorsal and ventral subregions 

reached similarly high levels of classification accuracy compared our own parcellation (Fig 

S1B), but only accuracy for the dorsal subregion was significantly different from chance 

(p<0.05, FDR-corrected) on PC 2. Accuracy for the caudal subregion was never significantly 

greater than chance for any of the top 10 PCs. Thus, unlike in our parcellation, neither of the 

two alternative striatal parcellations examined here were able to classify all three subregions 

with accuracy significantly greater than chance. 

 

3 Discussion 
 

We sought to determine whether connectomically-defined regions of the brain carry distinctive 

transcriptional signatures. We focused in particular on the human striatum, a region that has a 

well-characterized functional and chemical organization and which has been implicated in a 

diverse range of human behaviors and disorders. We demonstrated that the human striatum can 

be delineated into distinct subregions, based on extrinsic connectivity to the rest of the brain, 
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and that these subregions can be distinguished with high accuracy based on their gene 

expression profile. In support of previous literature (Levey et al., 1993, Gurevich, 1999), our 

results show that dopamine receptor signaling and response to amphetamine transcripts are 

among the dominant sources of genetic variation separating the dorsal and ventral subregions 

of the striatum, while transcripts associated with glutamate secretion and metabolic processes 

separate the caudal subregion. These subregional genetic signatures were also linked to several 

disorders that are thought to be associated with the striatum, such as schizophrenia, bipolar, 

and autism. The multi-modal methodology developed in this study provides a framework for 

future work combining brain connectivity and gene expression data to provide a more complete 

understanding of brain organization, both in terms of macroscopic axonal organization and 

molecular architecture. 

 

3.1 Connectomic parcellation of the striatum 

 

We used unbiased, data-driven clustering analysis of extrinsic connectivity to replicate the 

tripartite partition of the striatum (Parent and Hazrati, 1995, 1993, Parent, 1990). We found 

that striatal subregions showed expected patterns of whole-brain connectivity: the caudal 

cluster was strongly connected with sensorimotor cortex, the dorsal cluster with prefrontal 

areas, and the ventral cluster with limbic regions. Our method extends previous attempts at 

parcellating the striatum based on structural connectivity in two key ways. First, we used a 

large number of connectivity targets compared to previous attempts that only used a small 

number of cortical lobe targets (Tziortzi et al., 2014, Bohanna et al., 2011), reducing the 

heterogeneity within targets and enhancing variability of the connectivity profiles of individual 

striatal voxels. Second, rather than threshold and binarise connectivity profiles (e.g., Draganski 

et al., 2008) or just take the target with the highest probability (e.g., Tziortzi et al., 2014), we 

clustered the connectivity profiles across all targets. By taking account of a broader array of 

data, our approach subjected the tripartite hypothesis to a stringent test. 

 

At higher levels of granularity, we found evidence for a rostrocaudal gradient, 

consistent with past diffusion MRI (Draganski et al., 2008) research in humans. This gradient 

is likely to support functionally specialized circuits within the broader ventral-affective, dorsal-

associative and caudal-sensorimotor partitions. There were no abrupt changes in regional 

boundaries as a function of increasing k, indicating that these finer-grained divisions were 

nested within the ventral, dorsal and caudal clusters, consistent with a hierarchical organization 
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of extrinsic connectivity in the striatum.  

 

An important difference between our parcellation and those of previous attempts (e.g., 

Tziortzi et al., 2014, Bohanna et al., 2011) is that, in addition to the rostrocaudal and 

dorsoventral divisions, we also found that subregions split along a medial-lateral axis. A 

common view is that the distinction between the medial and lateral parts of the striatum, which 

corresponds to the anatomical distinction between the caudate and putamen in humans, 

functionally subserves goal-directed and habitual behavior, respectively (Haruno and Kawato, 

2006, Jog, 1999, Balleine et al., 2007). However, single-neuron electrophysiology in rats has 

shown that goal-driven and habitual behaviors are encoded for across the medial and lateral 

compartments of the caudate-putamen (Stalnaker et al., 2010), suggesting that the gross 

medial-lateral distinction may be too simplistic to capture differences in function. Indeed, non-

human primate research suggests that the ability to carry out habitual motor sequences is 

impaired when activity in the lateral section of the putamen is chemically suppressed, whereas 

suppressing the medial section of the putamen results in impaired acquisition of novel motor 

sequences (Miyachi et al., 1997). The medial-lateral gradients within the caudate and putamen 

observed here are also consistent with the existence of a dorsocentral region of the striatum, 

previously identified in rodent tract-tracing studies (Reep and Corwin, 1999, Reep et al., 1987). 

This region is a major site of corticostriatal projections from the agranular cortex (Reep et al., 

1987), which is thought to be a homologue to primate area 8, a frontal region linked to 

executive processing (Reep and Corwin, 1999). Similar medial-lateral gradients have been 

observed in human DWI (Draganski et al., 2008) and resting-state functional MRI (Jung et al., 

2014) data. 

 

3.2 The transcriptional signature of the tripartite striatum 

 

Our findings indicate that variation in transcriptional measures taken from 19 343 genes in 98 

samples spanning the extent of the striatum can accurately predict connectomically-defined 

subregions of the tripartite striatum. Accurate prediction was retained at the level of individual 

brains, despite differences in demographics that can influence gene expression, such as 

ethnicity (Jorde and Wooding, 2004), demonstrating a strong link between connectomically-

defined subregions of the striatum and gene expression that is conserved across individuals. 

Classification accuracy was higher for our connectivity-based parcellation, which incorporated 

multivariate voxel connectivity profiles, compared to parcellations based on anatomical 
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boundaries (Desikan et al., 2006) or coarser winner-takes-all approaches (Tziortzi et al., 2014). 

These results suggest that connectomic parcellations can be used to recover meaningful 

functional subdivisions of the brain, and that incorporating rich, multivariate profiles of inter-

regional connectivity may enhance the biological validity of these divisions.  

 

We examined enrichment of principal components of transcriptional variance across 

subregion of the striatum. The first principal component of transcription data (PC 1), which 

captured the dominant trend of the transcriptional variation of all genes across striatal tissue 

samples, did not differentiate the ventral, dorsal and caudal divisions. Enrichment analysis 

revealed processes that are fundamental to cellular function and signaling, such as protein 

transport, localization and ubiquitination, antigen processing, tRNA processing and metabolic 

processes that are integral for supplying the energy required for neuronal activity (Attwell and 

Laughlin, 2001). The first principal component is thus dominated by genes related to essential 

processes related to cellular function in general, rather than specific properties that may 

differentiate distinct striatal subdivisions. 

 

The second PC significantly discriminated between dorsal and ventral subregions of 

the striatum. We found that PC 2 showed enrichment for biological processes such as dopamine 

receptor signaling and response to amphetamines, monoamines, and catecholamines. These 

categories included genes coding for dopamine receptors in the D1, D2, and D3 families as 

well as cannabinoid receptors. The dorsal and ventral subregions are known to differ in terms 

of dopamine receptor density (Gurevich, 1999, Levey et al., 1993) and have been heavily 

implicated in the dopaminergic dysfunction that is characteristic of schizophrenia (Dandash, 

Pantelis, & Fornito, 2016; Fornito et al., 2013, Howes et al., 2009). For example, dopamine D2 

receptors, which are expressed more in the dorsal striatum relative to ventral (Levey et al., 

1993, Olsen et al., 2008), are the primary target for most antipsychotics used to treat the 

positive symptoms of schizophrenia (Seeman and Lee, 1975). Conversely, dopamine D3 

receptors, which more strongly expressed in the ventral subregion of the striatum (Gurevich, 

1999), may be linked to the negative symptoms of schizophrenia (Simpson et al., 2014). 

Endogenous signaling at cannabinoid receptors can modulate glutamatergic and dopaminergic 

signaling in the striatum (Robbe et al., 2003), and through this mechanism, the 

endocannabinoid system has been implicated in risk for disorders associated with striatal 

dysfunction, such as Parkinson’s disease, Huntington’s disease, drug addiction and 

schizophrenia (van der Stelt and Di Marzo, 2003). It is thus not surprising that genes loading 
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onto PC2 were also associated with risk for schizophrenia. 

 

The enrichment of the ‘response to amphetamines’ GO category may reflect the 

segregation of dopaminergic projections from the midbrain within the striatum. Mesolimbic 

projections from the ventral tegmental area terminate predominantly in the ventral striatum 

whereas nigrostriatal projections from the substantia nigra terminate predominantly in the 

dorsal striatum (Haber et al., 2000). Research into acute amphetamine exposure in non-users 

has demonstrated a greater reduction in dopamine D2 receptor availability in the ventral 

striatum compared to the dorsal striatum (Martinez et al., 2003), suggesting that the mesolimbic 

pathway is more responsive to amphetamines compared to the nigrostriatal pathway. 

 

PCs 5 and 9 accurately classified the caudal subregion of the striatum. Our enrichment 

analyses revealed that the top GO category for PC 5 was ‘glutamate secretion’. A notable 

characteristic of our parcellation is that the caudate and the putamen are both divided into 

medial and lateral segments (Fig. 2A), with the lateral segments of each appearing in the caudal 

subregion and the medial segments appearing in the dorsal subregion. Consistent with this 

characteristic, autoradiography in non-human primates has shown that class-II metabotropic 

glutamate receptors, genes for which are annotated to the ‘glutamate secretion’ category (e.g., 

GRM2), are characterized by an increasing ventrolateral-to-dorsomedial concentration 

gradient in both the caudate and the putamen (Beveridge et al., 2011). This suggests that our 

connectivity-based tripartite parcellation captures functional differences (i.e., sensorimotor vs. 

associative processing) within the caudate and putamen that may be subserved by differences 

in glutamate concentrations. 

 

3.3 Limitations and conclusions 

 

The potential for crossing fibers to pass through a single voxel can cause problems for diffusion 

tractography algorithms. We reconstructed fiber tracts using a ball-and-stick crossing fiber 

model (Behrens et al., 2007), coupled with high-resolution, multi-shell diffusion data which 

enhances our sensitivity to accurately reconstruct complex fiber trajectories (Sotiropoulos et 

al., 2013). Nonetheless, diffusion tractography is known to suffer from problems of sensitivity 

and specificity which can hinder accurate tract reconstruction (Thomas et al., 2014). The 

limited resolution of diffusion data also means that we are unable to identify small 

substructures. For example, the nucleus accumbens is known to comprise and core and shell 
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region, but it is not possible to resolve this level of detail with current imaging technologies. 

Our findings thus represent a parcellation of the macroscale structure of the striatum. 

 

The AHBA offers an unprecedented spatial coverage of gene expression across the 

entire brain, providing new opportunities to study regional variations in transcriptional activity. 

The scale and challenge of acquiring these data necessarily means that they are limited in some 

respects. For example, data are only available from six donor brains, and we had to pool data 

across these brains to obtain sufficient spatial coverage of the entire striatum. However, our 

leave-one-brain-out analysis confirmed that our findings are robust to inter-individual 

variability in the donor brains. Our analysis also only focused on tissue samples taken from the 

left hemisphere because only left hemisphere samples were available in four of the six donor 

brains. Prior analysis of these data has shown that hemispheric differences in gene expression 

are relatively minor (Hawrylycz et al., 2012), but an interesting open question is whether the 

transcriptional signatures identified here are symmetrically represented across hemispheres. 

 

Despite combining data across the six donor brains in the AHBA, low tissue sample 

density within the striatum still precluded genetic analysis of striatal parcellations with more 

than three subregions. This limitation is pertinent given suggestions that hard segmentation 

parcellation methods oversimplify the anatomical organization of brain regions (see Lambert 

et al., 2012, Alkemade and Forstmann, 2014, Lambert et al., 2015, for a discussion) and that 

mapping connectivity gradients may be a more accurate model of anatomical organization 

(e.g., Draganski et al., 2008). Denser spatial sampling of gene expression in the striatum would 

allow for more fine grained investigation of the striatum and other brain regions, but at the 

spatial resolution currently available a relatively coarse tripartite parcellation was necessary to 

examine differences in gene transcription. An alternative approach would be to perform 

clustering on the gene expression data rather than the diffusion data. However, with relatively 

few samples in the tail of caudate, obtaining a robust genetic signature for this region is 

problematic without denser spatial sampling of gene transcription. Our approach took 

advantage of the complete spatial coverage of the striatum by diffusion MRI, while also 

offering a means to identify distinct transcriptional signatures of each subregion. Sufficient 

tissue sample coverage at an individual level would also remove the need to pool the AHBA 

data, thus removing the caveat of inter-individual variability, although our leave-one-brain-out 

analysis suggests that our results are robust to such variability. 
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In summary, we showed that variation in gene expression spanning the whole human 

genome could accurately distinguish between connectomically-defined striatal subregions. 

These results were driven by genes related to dopamine and glutamate signaling and neuronal 

communication, and were also implicated in risk for a range of different brain disorders 

associated with striatal dysfunction. Our methodology offers a general framework for the cross-

validation of connectomic parcellations with genetic data. 
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Figure 1: A schematic illustration of the two key analyses of the study. (A) An outline of the 
steps involved in connectomic parcellation of the striatum. Probabilistic tractography was 
performed from each striatal voxel to 86 cortical and subcortical targets for 100 participants. 
Connectivity data was averaged across the 100 participants and normalised. Striatal voxels 
were then grouped together based on similar connectivity profiles using k-means clustering. 
Results of k-means clustering are represented by the colourbar on the left. Blue corresponds to 
voxels in cluster 1, green to cluster 2, and red to cluster 3. This colour scheme is carried forward 
to brain space on the right. For visualisation, targets (columns) have been reordered by 
hierarchical clustering to place targets with similar connectivity to striatal voxels close 
together, and voxels (rows) have been ordered according to the k-means (k = 3 shown here) 
clustering (left colourbar) as well as reordered within clusters according to a hierarchical 
clustering to place voxels with similar connectivity close to one another. (B) An outline of the 
steps involved in genomic cross-validation of the connectomic parcellation using transcription 
data from the AHBA. A total of 98 tissue samples within the striatum were extracted from the 
6 brains in the AHBA. Tissue samples are colour coded according to which connectomically-
defined striatal subregion they belong to (left colourbar and circles in striatum mask). 
Transcription data for 19 343 gene probes were retained. For visualisation, transcription data 
was normalised before being reorganised according to the same steps outlined above. Principal 
component analysis (PCA) reduced the dimensionality of the microarray data before 
performing support vector machine classification (SVM) analyses at the group and individual 
levels. Finally, gene enrichment and disease association analyses were performed on select PCs 
shown to discriminate striatal subregions. 
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Figure 2: Parcellation of the human striatum based on whole-brain structural connectivity. 
Subregions of the tripartite striatum show distinct cortical connectivity profiles that are 
consistent with their functional roles. (A) Using k-means clustering, with k = 3, to demarcate 
the striatum based on connectivity with 86 cortical and subcortical targets covering the whole 
brain, yields a ‘caudal’ cluster (blue), a ‘dorsal’ cluster (green), and a ‘ventral’ cluster (red). 
(B-D) At higher levels of k, striatal clusters subdivide along mediolateral and rostrocaudal 
gradients. (E–G) Connectivity data for all participants were z-scored and averaged across 
voxels within each cluster for each target in each hemisphere separately. Single sample t-tests 
were performed to determine significant cluster to target connectivity for each hemisphere. 
Significant absolute t-values (p<0.05 FDR corrected) were averaged across the left and right 
hemispheres and plotted on the surface of the brain to visualise the specific patterns of 
connectivity characteristic of each striatal cluster. (E) The caudal striatum shows strong 
connectivity with sensorimotor areas of the cortex. (F) The dorsal striatum shows connectivity 
to frontal regions. (G) The ventral striatum shows strong connectivity to limbic areas. 
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Figure 3: The three connectomically-defined clusters of the striatum have distinct 
transcriptional profiles. Support vector machine (SVM) classifiers were learnt on principal 
components (PCs) of transcription data from 98 discrete tissue samples taken from the Allen 
Human Brain Atlas. SVMs predicted the allocation of tissue samples to each connectomically-
defined striatal subregion in a one vs. all framework. Classification accuracy, the proportion of 
samples in each subregion that are correctly classified, for each striatal subregion is plotted for 
(A) individual PCs, and (B) as a function of the cumulative number of leading PCs. Accuracy 
is at approximately chance level for all three striatal clusters when using the first PC. Chance 
(dashed horizontal lines) was calculated as the mean of the three empirical null distributions 
collapsed across clusters. (A) Accuracy in- creases sharply when using PC 2 for the dorsal 
(long-dash line) and ventral (short-dash line) striatal subregions. Accuracy for the caudal 
subregion (solid line) increases sharply when using PC 5 and again using PC 9. (B) Accuracy 
is not improved by adding more PCs beyond the first two for the dorsal and ventral subregions. 
For the caudal subregion, the accuracy of any classifier using a combination of PCs is never as 
high as the accuracy achieved when just using PC 5 or PC 9. (C-F) Violin plots showing the 
distribution of PC scores for selected PCs in each of the three striatal subregions. The caudal, 
dorsal, and ventral striatal subregions contain 17, 51, and 30 tissue samples, respectively. The 
mean (solid horizontal lines) plus and minus the standard deviation (dashed horizontal lines) 
of each distribution is also annotated. 
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Table 1: Gene Ontology (GO) biological processes enriched in principle components of transcription data that accurately 
discriminate between connectomically-defined subregions of the striatum: PC 1 accounts for the largest portion of 
transcriptional variance but does not classify subregions, PC 2 distinguishes dorsal and ventral subregions, PCs 5 and 9 
distinguish the caudal subregion. Significant GO categories are displayed for each PC. GO identification numbers, category 
names, as well as the number of genes annotated to each category are displayed alongside p-values from GSR analysis. See text 
for details. 
 

Principal 
Component 

GO 
Category 

Description No. of 
genes 

FDR-corrected 
p-value 

1     
 GO:0000080 mitotic G1 phase 5 0.04 
 GO:0042590 antigen processing and presentation of exogenous 

peptide antigen via MHC class I 
75 4×10−10 

 GO:0070972 protein localization to endoplasmic reticulum 90 1×10−5 
 GO:0097034 mitochondrial respiratory chain complex IV 

biogenesis 
5 0.02 

 GO:2000058 regulation of protein ubiquitination involved in 
ubiquitin- dependent protein catabolic process 

83 1.95×10−10 

 GO:0044033 multi-organism metabolic process 59 p<1×10−12 
 GO:0006488 dolichol-linked oligosaccharide biosynthetic process 32 p<1×10−12 
 GO:0022904 respiratory electron transport chain 96 5×10−10 
 GO:0006733 oxidoreduction coenzyme metabolic process 98 0.01 
 GO:0008033 tRNA processing 76 7×10−10 
2     
 GO:0007191 adenylate  cyclase-activating  dopamine  receptor 

pathway 
10 p<1×10−12 

 GO:0071377 cellular response to glucagon stimulus 34 p<1×10−12 
 GO:1904062 regulation of cation transmembrane transport 92 p<1×10−12 
 GO:0071868 cellular response to monoamine stimulus 14 0.01 
 GO:0071870 cellular response to catecholamine stimulus 14 0.01 
 GO:0001975 response to amphetamine 29 0.02 
 GO:0071867 response to monoamine 17 0.04 
 GO:0071869 response to catecholamine 17 0.04 
 GO:0007212 dopamine receptor signaling pathway 25 0.03 
 GO:0007270 neuron-neuron synaptic transmission 55 0.04 
 GO:0051952 regulation of amine transport 53 0.04 
 GO:0046068 cGMP metabolic process 17 0.05 
 GO:0007613 memory 80 0.05 
5     
 GO:0014047 glutamate secretion 18 5×10−9 
 GO:0016079 synaptic vesicle exocytosis 27 2×10−9 
 GO:0097479 synaptic vesicle localization 63 0.01 
 GO:0048489 synaptic vesicle transport 61 0.01 
 GO:0097480 establishment of synaptic vesicle localization 61 0.01 
 GO:0006835 dicarboxylic acid transport 50 0.01 
 GO:0007269 neurotransmitter secretion 73 0.04 
 GO:0046717 acid secretion 48 0.03 
9     
 GO:0009649 entrainment of circadian clock 11 0.02 
 GO:0043241 protein complex disassembly 85 3×10−10 
 GO:0044033 multi-organism metabolic process 59 3×10−10 
  Table 1 – Continued on next page   
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  Table 1 – Continued from previous page   

Principal 
Component 

GO 
Category 

Description No. of 
genes 

FDR-corrected 
p-value 

 GO:0000184 nuclear-transcribed  mRNA  catabolic  process,  
nonsense- mediated decay 

81 5×10−9 

 GO:0050931 pigment cell differentiation                                                          28 0.04 
 GO:0022904 respiratory electron transport chain                                              96 4×10−10 
 GO:0015986 ATP synthesis coupled proton transport 17 5×10−10 
 GO:0006414 translational elongation 65 1×10−9 
 GO:0006818 hydrogen transport 76 1×10−3 
 GO:0042274 ribosomal small subunit biogenesis 19 0.02 
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 Table 2:  Individual-level genom
ic prediction of connecom

ically-defined striatal subdivisions.  The Sam
ple C

lassification heading displays 
how

 m
any tissue sam

ples w
ere accurately classified relative to the total num

ber of tissue sam
ples w

ithin each striatal subregion for a given brain. 
O

verall classification accuracy is calculated as the proportion of correctly classified tissue sam
ples for each donor brain across all three 

subregions. A
ll accuracy results w

ere significant at p<
0.05, FD

R
 corrected. 
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Table 3: Disease associations for principle components (PCs) of transcription data collected 
from 98 tissue samples spanning the striatum. Each PC represents variation in transcription 
data that distinguishes between connectomically-defined subregions of the striatum. For 
each PC, gene expression data was correlated with PC scores and the top 10% were used 
with Autworks to determine disease associations. All results were significant at p<0.05 
(permutation test, FDR-corrected). 
 

Principle component Associated diseases 
2 Schizophrenia and Disorders with Psychotic Features 
 Schizophrenia 
 Mental Disorders 
 Nervous System Diseases 
 Bipolar Disorder 
 Affective Disorders, Psychotic 
5 Mental Disorders Diagnosed in Childhood 
 Mental Disorders Epilepsy, Generalized Epilepsy 
 Epilepsy, Absence 
 Schizophrenia 
 Schizophrenia and Disorders with Psychotic Features 
 Neurobehavioral Manifestations 
 Child Development Disorders, Pervasive 
 Intellectual Disability Autistic Disorder 

Neurodegenerative Diseases 
9 Mitochondrial Diseases 
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Supplementary Figure 1: Replication of support vector machine (SVM) classifiers using (A) an 
anatomical parcellation as well as (B) an alternative tripartite parcellation to separate tissue 
samples taken from the Allen Human Brain Atlas (AHBA). SVMs predicted the allocation of 
AHBA tissue sample to each striatal subregion in a one vs. all framework. Classification 
accuracy, the proportion of samples in each subregion that are correctly classified, for each 
striatal subregion is plotted for individual PCs. In both parcellations, classification accuracy 
greater than chance is never achieved for the dorsal subregion or the putamen. Note that PCs 
are not comparable between parcellations as they likely represent different sources of variance 
(see main text). 
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Table S1: Disease associations for principle components (PCs) of transcription data collected 
from 98 tissue samples spanning the striatum. Each PC represents variation in transcription 
data that distinguishes between connectomically-defined subregions of the striatum. For each 
PC, gene expression data was correlated with PC scores and the correlations significant under 
permutation tests (see main text) were used with Autworks to determine disease associations. 
All results were significant at p<0.05 (permutation test, FDR-corrected). 
 

Principle component Associated diseases 
2 Schizophrenia and Disorders with Psychotic Features 
 Schizophrenia 
 Mental Disorders 
 Nervous System Diseases 
 Bipolar Disorder 
 Affective Disorders, Psychotic 
 X-linked Mental Retardation 
5 Mental Disorders Diagnosed in Childhood 
 Mental Disorders 
 Epilepsy, Generalized 
 Epilepsy 
 Epilepsy, Absence 
 Schizophrenia 
 Schizophrenia and Disorders with Psychotic Features 
 Neurobehavioral Manifestations 
 Child Development Disorders, Pervasive 
 Intellectual Disability 
 Autistic Disorder 
 Neurodegenerative Diseases 

Parkinson Disease, Secondary 
 Movement Disorders 
 Seizures 
 Gait Disorders, Neurologic 
 Mood Disorders 
9 Mitochondrial Diseases 
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