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One of the biggest challenges in drug development is increasing costs of
bringing new drugs to the market. Many candidate drugs fail during phase II
and III trials due to unexpected side effects and experimental methods remain
cost ineffective for large scale discovery of adverse effects. Alternatively, com-
putational methods are used to characterize drug side effects, but they often
rely on training predictors based on drug and side effect similarity. Moreover,
these methods are typically tailored to the underlying data set and provide little
mechanistic insights on the predicted associations. In this study, we investigate
the role of network topology in explaining observed side effects of drugs. We
find that drug targets are closer in the interactome to the proteins inducing the
known side effects of the drug compared to the proteins associated with the rest
of the side effects. We show that the interactome based proximity can be used
to identify side effects and we highlight a use case in which interactome-based
side effect prediction can give insights on drug side effects observed in the clinic.

Introduction

Drug safety is one of the major driving factors beneath the attrition of drugs,
contributing to more than 20% of the clinical trial failures and thus increasing
costs associated with drug development [1, 2]. Undesired side effects of drugs are
also among the leading causes of mortality in Western countries [3], prompting
a clear need for better understanding of drug side effects.

In silico association of drugs to side effects offers a cost-effective alternative
toward characterizing drug side effects. The first examples of such methods us-
ing chemical structure similarity to cluster drugs and predict their potential side
effects date back to more than a decade ago [4, 5]. Nonetheless, the large-scale
prediction of drug side effects gained immense attention after the availability
of SIDER, a resource containing side effect information mined from drug labels
[6]. Using the data available in SIDER, several studies sought building predic-
tion models incorporating various similarity measures between drugs and side
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effects [7, 8, 9]. For instance, Atias and Sharan combined diffusion in side effect
similarity network and canonical correlation analysis using chemical fingerprint
similarity of drugs to link drugs to side effects [7]. Similarly, Duran-Frigola
and Aloy turned to building decision tree based classifiers using various features
such as chemical structure, small fragments, drug targets, functional associa-
tions, and pathway annotations over-represented among known drug-side effect
associations [8]. They used these classifiers to explain the side effect profiles
of drugs observed in SIDER and found that the side effects can be predicted
reliably for a relatively small portion of the data set. Huang et al., on the
other hand, included the interactors of drug targets in the protein-protein in-
teraction (PPI) network in addition to the structural properties of the drug to
train a support vector machine and suggested that integrating PPI improved
the prediction accuracy substantially [9].

The topology of the human interactome encodes biologically relevant infor-
mation that can be used to discover novel drug-disease [16, 17, 18], and drug-side
effect [19, 20] relationships. Although, some side effects can be explained by the
proteins the drug is intended to target, many side effects likely to originate
from the interactions of the drug with off-targets or the interactions between
these proteins [21]. To understand the role of protein interactions in drug in-
duced arrhythmias, Berger and colleagues identified the neighborhood of disease
associated genes for long-QT syndrome in the PPI network and used this neigh-
borhood to predict drugs likely to have risks for QT-interval prolongation [19].
They calculated a random-walk based score from each protein in the PPI net-
work to known disease genes involved in long-QT syndrome, corresponding to
the reachability of the proteins from the known disease genes. They then used
this score to define a long-QT syndrome specific interactome neighborhood and
to rank the drugs based on the targets falling in this neighborhood. Moreover,
Brouwers et al., investigated whether the side effect similarity between drugs
could be explained by the closeness of the drug targets in a functional PPI net-
work [20]. They observed that only a minor fraction (6%) of drugs whose targets
were direct neighbors in the network shared similar side effects, emphasizing the
need for taking the global topology of the network into account.

In this study, we aim to investigate whether the global topology of the hu-
man interactome can characterize drug side effects. We first define side effect
modules as the drug targets elucidating the side effects and check the network-
based distances between side effect modules and drug targets. We show that
drug targets are closer to the proteins associated with the known side effects
of the drug in the network compared to the proteins associated with the rest
of the side effects. We then use interactome based closeness to systematically
identify side effects of the Federal Drug Administration (FDA) approved drugs
in the DrugBank database. Finally, we demonstrate how the interactome based
closeness can be used to predict side effects of tamoxifen that are not listed in
SIDER.
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Materials and methods

Data sets

The drugs used in our analysis were retrieved from DrugBank v4.3 database
[22]. For all FDA approved drugs, we extracted drug-protein interactions in-
cluding drug target, enzyme, transporter and carrier interactions (hereafter we
simply refer all these proteins as drug targets). Uniprot ids from DrugBank
were mapped to ENTREZ gene ids using Uniprot id mapping file (retrieved
on October 2015). The SMILES strings of drugs were also downloaded from
DrugBank.

We obtained drug side effect information from SIDER v4 [23], a resource
containing side effects extracted from drug labels via text mining and mapped
the drug ids to DrugBank ids using the PubChem mapping provided in Drug-
Bank. We represented the side effects with their preferred terms reported in
SIDER. To avoid including drugs whose side effects are not well characterized,
we only considered drugs with at least five side effects in SIDER.

For validation purposes, in addition to SIDER, we used OFFSIDES [24],
cataloging clinically significant drug side effects from FDA adverse event re-
porting system. We parsed the OFFSIDES flat file and mapped the drug ids to
DrugBank ids using the PubChem mapping provided in DrugBank as we did
for SIDER. Only the side effects with observed medical effect were included in
the analysis.

We used the human interactome curated in a recent study [25], contain-
ing physical interactions between proteins from TRANSFAC[26], IntAct[27],
MINT[28], BioGRID[29], HPRD[30], KEGG[31], BIGG[32], CORUM[33], PhosphoSitePlus[34],
as well as several large scale studies [35, 36, 37]. The coverage and confidence of
this integrated interaction network has been showed to be superior to interac-
tion networks coming from yeast-two-hybrid or functional association data sets
[25, 18]. Following the methodology in these studies, the largest connected com-
ponent of the network, containing 141,150 interactions between 13,329 proteins,
was used in the analysis.

Defining side effect modules

To identify drug targets that contribute to the side effects, we followed the
procedure presented in Kuhn et al. [38]. For each side effect and drug target
we counted the number of drugs with and without the side effect for which the
drug target was a known target versus the number of drugs with and without
the side effect for which the target was not a known target. We used Fisher’s
exact test to calculate the two sided P-value of the observed occurrence of
the target with the side effect as follows: The P-values were then corrected
for multiple hypothesis testing using Benjamini and Hochberg’s method. We
selected the targets that were below 20% false discovery rate to describe the
side effect module. In our analysis, we considered the side effects modules that
had at least five targets in the interactome. We note that although the proposed
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approach is applicable to side effects defined by any number of proteins, we use
the side effects with at least five proteins to ensure that the side effects in the
analysis can be fairly explained by a group of proteins. We provide the side
effect module information and the Jupyter Notebook to replicate the analysis
in this study at github.com/emreg00/proxide.

Characterizing closeness between drug targets and side ef-
fect modules

Given a network G(V,E), we defined the following topological measures to quan-
tify the network based closeness between targets of a drug, T , and proteins in
a side effect module, S.

(i) Shortest: The average pairwise shortest path length between each drug
target and side effect module protein.

dShortest(T, S) =
1

‖T‖ ∗ ‖S‖
∑
s∈S

∑
t∈T

d(t, s)

where d(t, s) is the shortest path length between nodes t (a drug target)
and s (a side effect protein) in the network. To convert the average short-
est path length above to a side effect specific z-score for each drug, we
normalized dShortest(T, S) using the mean (µdShortest(T,S)) and standard de-
viation (σdShortest(T,S)) of dShortest(Ti, S) values calculated for all the drugs
{T1, T2, ..., Tn} in the data set. Accordingly, the closeness between drug T
and side effect S was given by

zShortest(T, S) =
dShortest(T, S)− µdShortest(T,S)

σdShortest(T,S)

We used Dijkstra’s shortest path algorithm implemented in Python net-
workx package to calculate the pairwise shortest path length between pairs
of proteins in the interactome.

(ii) Closest: The average shortest path length to the closest protein in the side
effect module from the drug targets, given by

dClosest(T, S) =
1

‖T‖
∑
t∈T

min
s∈S

d(t, s)

We normalized these values using the mean and standard deviation of the
values calculated for all the drugs as it was done above, yielding

zClosest(T, S) =
dClosest(T, S)− µdClosest(T,S)

σdClosest(T,S)
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(iii) PageRank: The average PageRank score of the drug targets when the
proteins in the side effect module were used to weight the influence of the
nodes in the network. We assigned higher priors to the proteins in the
side effect module, 1, compared to the rest of the nodes that were assigned
0.01 and calculated the probability that a random walker in the network
would end up in a certain node based on the following formula:

PRi+1(u) = (1− d) ∗ PR0(u) + d
∑

v∈Neighbors(u)

PRi(v)

degree(v)

where u was the current node in consideration, v was a node connected to
u, PRi(u) was the PageRank score at iteration i and d is damping factor
that was set to 0.15. The algorithm was repeated till convergence. The
drug - side effect closeness was then defined using

zPageRank(T, S) =
1

‖T‖
∑
t∈T

PRnormalized
iconvergence

(t)

where PRnormalized
iconvergence

(t) is the PageRank score of the target t normalized
using the mean and standard deviation of the PageRank scores of all nodes
for the given side effect. We used PageRank with priors implementation
in GUILD package [15].

(iv) NetScore: The average NetScore score of the drug targets when the pro-
teins in the side effect module were used as the source of information
passed among the nodes. NetScore scored all the nodes in the network by
iteratively propagating the score of the proteins in the side effect module
to the neighboring nodes through shortest paths [15]. Unlike conventional
shortest path based algorithms, considered the alternative shortest paths
in between two nodes, favoring the nodes that were connected with more
paths. We used the implementation of NetScore in GUILD software pack-
age [15] and initialized the proteins with a score of 1 if they belong to the
side effect module and 0.01, otherwise. We limited the number of repeti-
tions the program used to 3 with 2 iterations in each of them. The drug -
side effect closeness was then defined as

zNetScore(T, S) =
1

‖T‖
∑
t∈T

NSnormalized(t)

where NSnormalized(t) is the NetScore score of the target t normalized
using the mean and standard deviation of the NetScore scores of all nodes
for the given side effect.

(v) Proximity: The significance of the observed average shortest path length
to the closest protein in the side effect module from the drug targets.
Interactome based proximity [18] first quantified the average shortest path
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length between the closest protein in the side effect module and the drug
targets (dClosest(T, S) above) and then calculated a z-score corresponding
significance of these distances using

zProximity(T, S) =
dClosest(T, S)− µdClosest(T,S)

σdClosest(T,S)

where µdClosest(T,S) and σdClosest(T,S) are the mean and the standard devi-
ation of the background distribution of expected minimum shortest path
distances between two randomly selected groups of proteins (with the same
size and degrees of the original protein sets). The background distance
distribution was generated using 1,000 randomly selected protein groups
matching drug targets and side effect proteins.

Drug side effect prediction using network-based closeness

To investigate whether the network-based closeness can predict side effects, for
each known and unknown drug and side effect pair, we recorded the five topol-
ogy based closeness scores (zShortest, zClosest, zPageRank, zNetScore, zProximity).
We then verified whether these topology based scores could discriminate known
drug - side effect pairs from the rest by calculating the number of correctly and
incorrectly predicted known and unknown drug - side effect pairs at various
score cutoffs and checking the area under ROC curve (AUROC) and area un-
der precision-recall curve (AUPRC). The known drug-side effect associations in
SIDER and OFFSIDES databases were used as the gold standard positive in-
stances and the remaining associations were assumed to be negative instances.
We employed Python scikit-learn package to calculate AUROC and AUPRC
values and R for the statistical tests.

Results

Side effect modules in the interactome

The available experimental information on the drug targets contributing to the
side effects of drugs is often limited to a handful of drug targets [39, 40], hinder-
ing a large scale analysis of drug targets inducing the side effects. Alternatively,
over-representation analysis of drug targets and side effects can characterize the
targets eliciting side effects [38]. Therefore, we define the side effect modules
as the groups of drug targets significantly associated with the side effects us-
ing the drug target information in DrugBank [22] and SIDER database [23].
Using 1,530 FDA approved drugs and their targets in DrugBank, we identify
1,177 drug target groups associated with the side effects. To confirm that the
proteins defining the side effect modules are biologically relevant, we check the
overlap between the side effect targets by Lounkine et al. [40]. The side effect
modules cover at least one protein associated with the side effect for 164 of 241
side effects that are also in the Lounkine et al. study. Furthermore, 130 out 265
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(a) (b)

Figure 1: Side effect modules in the interactome and their use in drug
adverse effect characterization. (a) Schematic overview of the interactome
based analysis of drug side effect modules. For each of 817 drugs and 537 side
effects, we calculate network based closeness between the drug targets and the
proteins inducing the side effect and validate the predictions using known drug-
side effect associations. (b) Each point represents a side effect consisting of
proteins identified to be significantly associated to the side effect. The x-axis is
the number of proteins in the side effect module and the y-axis is the number of
drugs that shows the side effect. The size of the points scales with the median
degree of the proteins in the side effect module.

of the proteins in the identified side effect modules appear among 224 proteins
given in the Lounkine data set, covering more than half of the experimentally
verified side effect targets.

To understand the interactome based relationship between drug targets and
side effect modules, we focus on 537 side effect modules that have at least 5
proteins in the interactome and 817 drugs both known to exert any of these side
effects and having at least one target in the interactome. We seek whether topo-
logical characteristics of these two groups of nodes, drug targets and side effect
module proteins, can explain observed side effects of drugs (Figure 1a). We first
turn our attention to the side effect module proteins and ask if the number of
proteins in the module or their degree can provide insights on the side effects
drugs show. The average module size is 〈nmodule〉 = 15.8 among 537 side ef-
fects and the largest module, the one of gynaecomastia (enlargement of a man’s
breasts), contains 66 proteins. Interestingly, the average degree of all the pro-
teins contributing to a side effect is higher than the average degree of the remain-
ing proteins in the interactome (〈kside effect〉 = 26.5 vs 〈knon side effect〉 = 21.1). If
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the proteins within each side effect module are considered independently, how-
ever, the average degree of the proteins in the side effect modules is around the
average degree of the interactome (〈kmodule〉 = 20.8 vs 〈k〉 = 21.2), with peliosis
hepatis, an uncommon vascular condition in liver, being the side effect with the
highest average degree (〈kpeliosis hepatis〉 = 123.6).

To investigate whether the size and the average degree of the identified side
effect modules are higher for the “popular” side effects –the side effects that
occur frequently in SIDER–, we look at the number of drugs the side effect is
observed and the number and mean degree of the proteins in the side effect
module (Figure 1b). The significant but low correlation between the number of
drugs showing the side effects and the module size (Spearman’s rank correlation
ρ = 0.16, P = 1.8 × 10−4) suggests that the size of the module is not strongly
associated to the occurrence of the side effects. On the other hand, the degree
of the proteins within the side effect modules is not correlated with the number
of drugs the side effect is observed (Spearman’s rank correlation ρ = 0.03,
P = 0.55).

Network based closeness of drugs and side effects

Next, for each drug and side effect pair in our analysis (817 × 537 pairs), we
calculate the network based closeness of the drug’s targets to the side effect
module in the interactome using five topological measures (see Methods). We
then investigate how well the calculated closeness scores discriminate the ob-
served drug side effects using the known drug side effect associations in SIDER
and OFFSIDES databases (Table 1).

Table 1: Number of drugs, side effects and known drug - side effect associations
included in the analysis according to SIDER and OFFSIDES databases.

SIDER OFFSIDES
Number of drugs 817 269
Number of side effects 537 118
Number of known drug-side effect associations 64,885 2,060
Percentage of known associations 14.8% 6.5%

We find that the drugs tend to be closer to the proteins inducing the side
effects known to be associated with them compared to the proteins in the rest
of the side effect modules (Figure 2). The difference in the closeness values of
known and unknown drug - side effect pairs is significant using both SIDER
and OFFSIDES side effect associations (one-sided Mann–Whitney U test P �
0.05). We observe that NetScore, the method that takes alternative shortest
path between drug targets and side effect module proteins and Proximity, the
method that compares observed shortest path length between drug targets and
the closest side effect module protein to the distances between randomly selected
nodes in the network yield a wider range of closeness scores than the remaining
methods.
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(a) (b)

Figure 2: Network based closeness of known and uknown drug - side
effect pairs. The closeness between drug targets and side effects calculated
using five topological measures (Closest, Shortest, PageRank, NetScore and
Proximity) for each of 817 drugs and 537 side effects. Known drug - side effect
associations are taken from (a) SIDER and (b) OFFSIDES.

We then turn to predicting drug side effects using the network neighborhood
information of the side effect modules and quantify the closeness between drug
targets and side effect modules in the interactome. We use the drug-side effect
associations in SIDER and OFFSIDES as the gold standard data to calculate
the precision, recall, false positive rate at various closeness score cutoffs and
check the area under the ROC curve (AUROC), the area under the precision-
recall curve (AUPRC) and the percentage of the drugs for which the highest
scoring prediction is a known side effect (Table 2). We see that, overall, the
best performing methods are NetScore and Proximity, showing higher prediction
accuracy on both SIDER and OFFSIDES data sets compared to the rest of the
methods.

Table 2: AUROC, AUPRC and percentage of correctly predicted highest ranked
drug - side effect pair for various network based closeness methods using SIDER
and OFFSIDES associations.

AUROC (%) AUPRC (%) Correct at top (%)
SIDER OFFSIDES SIDER OFFSIDES SIDER OFFSIDES

Shortest 59.8 53.9 17.8 7.1 15.9 8.2
Closest 67.9 57.7 27.6 8.5 79.6 28.6
PageRank 69.0 59.6 27.0 8.6 55.8 13.0
NetScore 71.7 61.9 28.8 9.6 52.1 14.5
Proximity 71.1 63.6 32.8 11.4 56.7 11.5
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Despite using only the network topology the AUROCs for NetScore and
Proximity scores on SIDER drug-side effect associations are 71.7% and 71.1%,
respectively, suggesting that closeness of drugs to side effect modules is predic-
tive of the drug’s adverse effects. We also examine the area under precision-recall
curve (AUPRC) and find that NetScore and Proximity achieve AUPRC values of
28.8% and 32.8%, respectively. Furthermore, for 52.1% and 56.7% of the drugs
used in the analysis, the highest scoring side effect identified by NetScore and
Proximity is reported in SIDER, showing that drug-side effect module closeness
can provide insights on the side effects of drugs. On the other hand, when the
drug-side effect associations in OFFSIDES database is used, the AUROC drops
to 61.9% and 63.6% for NetScore and Proximity, still substantially higher than
that would be expected from a classifier producing random predictions (50%).
Moreover, only for around 10% of the drugs, the highest scoring side effect is
in OFFSIDES, an observation we attribute to the lower coverage of known side
effects in OFFSIDES database (6.5%) compared to the SIDER (14.8%, Table
1). Accordingly, due to the higher coverage of drugs and side effects, and better
prediction accuracy, in the rest of the text, we use SIDER drug - side effect
associations as the gold standard.

Assessing the effect of the data incompleteness

The current knowledge on drug-target interactions represent only a partial view
of the possibly many proteins involved in drug’s action [41]. To account for the
potential implications of incompleteness of the drug target data, we analyze the
prediction performance of each method on various subsets of drugs and side-
effects categorized with respect to the number of drug targets (m) and side
effect proteins (n). Figure 3 shows the AUROC and AUPRC values (i) on the
original data set containing 817 drugs with at least one target and 537 side
effect modules of at least five proteins (m ≥ 1, n ≥ 5) and when we repeat the
analysis using (ii) 428 drugs and 537 side effects with at least five targets and
proteins (m ≥ 5, n ≥ 5), (iii) 428 drugs with at least five targets and 322 side
effect modules with at least ten proteins (m ≥ 5, n ≥ 10), and finally, (iv) 176
drugs and 322 side effects with at least ten proteins (m ≥ 10, n ≥ 10).

We find that, as the drugs and side effects associated with more proteins are
used, the closeness based predictions improve. Nonetheless, the improvement
mainly stems from the higher number of drug targets, as the change in the
accuracy is modest when the number of proteins in the side effect modules
increases. On the other hand, the AUROC and AUPRC values increase 3-6%
when the drugs with more number of targets are used.

Case study: Top ranking side effects of Tamoxifen

To highlight how interactome based closeness of drug targets can help iden-
tifying side effects, we use Proximity, the method that show high overall ac-
curacy according to various performance measures (Table 2). Using only the
target information of a given drug, Proximity calculates a network topology
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(a) (b)

Figure 3: The effect of data incompleteness on prediction performance.
The area under (a) the ROC curve (AUROC) and (b) the precision-recall curve
(AUPRC) values when a subset of the drugs and side effects are excluded from
the analysis. In each panel, the drugs having less than m targets in the network
and the side effect modules that have less than n proteins in the network are
excluded from the analysis.

based significance of the closeness of the drug to all side effects, allowing us
to rank the likelihood of all side effects for any drug with drug target infor-
mation. Notably, among the drugs in our data set for which the top ranking
side effect is not reported in SIDER, we see tamoxifen, an estrogen receptor
modulator used for the treatment of breast cancer. Although eight out of ten
highest scoring side effects are reported in SIDER, two side effects with very
strong association scores, “muscular weakness” and “neuropathy peripheral”
are not listed in SIDER (Table 3). We find out that the muscle weakness is
indeed a known side effect according to the drug information in Medlineplus
(nlm.nih.gov/medlineplus/druginfo/meds/a682414.html). Furthermore, while
not indicated in neither SIDER nor Medlineplus, the peripheral neuropathy ap-
pears to be a clinically relevant condition reported by several patients in message
boards (community.breastcancer.org/forum/78/topics/780591, medhelp.org/posts/Breast-
Cancer/tamoxifen-and-neuropathy/show/261680, medhelp.org/posts/Breast-Cancer/Can-
longer-term-tamoxifen-cause-peripheral-neuropathy/show/1384498).

The Proximity score of Tamoxifine to the 14 proteins associated to peripheral
neuropathy is z = −12.1, suggesting that the drug targets are highly proximal
to the side effect proteins in the interactome as a group. This is largely due to
seven enzymes (CYP1A2, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP3A4,
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Table 3: Top 10 side effects predicted for tamoxifen using Proximity.

Rank Side effect in SIDER Proximity score (z)
1 muscular weakness 0 -12.9
2 musculoskeletal discomfort 1 -12.3
3 alopecia 1 -12.1
4 neuropathy peripheral 0 -12.1
5 drug interaction 1 -11.7
6 hepatitis 1 -11.7
7 diarrhoea 1 -11.7
8 myalgia 1 -11.6
9 injury 1 -11.5
10 discomfort 1 -11.3

CYP3A7 ) and two transporters (ABCB1, ABCC2 ) tamoxifen is known to bind
are in the side effect module. Furthermore, protein encoded by KIT gene in
the side effect module, is known to be inhibited via phosphorylation by Protein
kinase C protein family, a family of proteins targeted by tamoxifen, contributing
to the observed proximity to the peripheral neuropathy.

Discussion

Most existing approaches rely on existing drug side effect associations to predict
drug side effects, hindering both the interpretability of predicted associations
and the ability to discover novel side effects. In contrast, in this study, we
investigate the network based closeness of drug targets to the proteins likely
to induce the side effects to explain the observed drug adverse effects. We use
the interactome based closeness to predict side effects associated with a drug,
providing a mechanistic explanation of the predicted association.

We start with defining the proteins inducing side effects and show that the
proteins used to define side effect modules have fair coverage of known side effect
inducing proteins. We find that though the proteins likely to induce the side
effects show a slight tendency to have higher degrees in the interactome, the
effect of degree is not prominent when the side effect modules are considered
individually. We also find that the size and the average degree of the identified
side effect modules are not higher for the side effects that occur frequently in
SIDER. Taken together these findings suggest that the number or degrees of the
proteins in the modules are not a good descriptor of observed side effects.

The AUROC values for drug adverse effect prediction reported in the lit-
erature range between 60-90% depending on the validation scheme, data sets,
predictive models and features (see [42] for a recent review). In particular, com-
pared to the predictor combining canonical correlation analysis using chemical
similarity and network diffusion on side effect similarity network by Atias and
Sharan, Proximity identifies a known side effect as the top scoring side effect
for 56.7% of the drugs in contrast to 34.7% of the drugs reported in the original
study [7]. In another study, Huang et al. reported an AUROC value (70%)
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similar to that of using Proximity for the support vector machine based predic-
tor that combined various features including PPI network neighborhood of drug
targets and drug structural properties [9].

One drawback of network based methods is that they require that at least a
drug target known to interact with a protein in the interactome. Furthermore,
they can only be applied to side effects for which a set of proteins inducing
the side effect can be identified. Yet, we show that interactome based closeness
can systematically detect side effects of 817 FDA approved drugs in DrugBank
without relying on the known drug-disease associations. Moreover, network
based closeness offers an important advantage over widely used similarity based
methods by providing interactome-based insights on the likelihood of a drug to
induce a given side effect.
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