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Abstract 16

Simultaneous electrical stimulation and recording using multi-electrode arrays can 17

provide a valuable technique for studying circuit connectivity and engineering neural 18

interfaces. However, interpreting these measurements is challenging because the spike 19

sorting process (identifying and segregating action potentials arising from different 20

neurons) is greatly complicated by electrical stimulation artifacts across the array, 21

which can exhibit complex and nonlinear waveforms, and overlap temporarily with 22

evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian 23

Process model to estimate the artifact and identify evoked spikes. The effectiveness of 24

our methods is demonstrated in both real and simulated 512-electrode recordings in the 25

peripheral primate retina with single-electrode and several types of multi-electrode 26

stimulation. We establish small error rates in the identification of evoked spikes, with a 27

computational complexity that is compatible with real-time data analysis. This 28

technology may be helpful in the design of future high-resolution sensory prostheses 29

based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural 30

stimulation at a much larger scale than currently possible. 31

Author Summary 32

Simultaneous electrical stimulation and recording using multi-electrode arrays can 33

provide a valuable technique for studying circuit connectivity and engineering neural 34

interfaces. However, interpreting these recordings is challenging because the spike 35

sorting process (identifying and segregating action potentials arising from different 36

neurons) is largely stymied by electrical stimulation artifacts across the array, which are 37

typically larger than the signals of interest. We develop a novel computational 38

framework to estimate and subtract away this contaminating artifact, enabling the 39

large-scale analysis of responses of possibly hundreds of cells to tailored stimulation. 40

Importantly, we suggest that this technology may also be helpful for the development of 41

future high-resolution neural prosthetic devices (e.g., retinal prostheses). 42
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1 Introduction 43

Simultaneous electrical stimulation and recording with multi-electrode arrays (MEAs) 44

serves at least two important purposes for investigating neural circuits and for neural 45

engineering. First, it enables the probing of neural circuits, leading to improved 46

understanding of circuit anatomy and function [1–6]. Second, it can be used to assess 47

and optimize the performance of brain-machine interfaces, such as retinal 48

prostheses [7, 8], by exploring the patterns of stimulation required to achieve particular 49

patterns of neural activity. However, identifying neural activity in the presence of 50

artifacts introduced by electrical stimulation is a major challenge, and automation is 51

required to efficiently analyze recordings from large-scale MEAs. Furthermore, 52

closed-loop experiments require the ability to assess neural responses to stimulation in 53

real time to actively update the stimulus and probe the circuit, so the automated 54

approach for identifying neural activity must be fast [9, 10]. 55

Spike sorting methods [11–13] allow identification of neurons from their 56

spatio-temporal electrical footprints recorded on the MEA. However, these methods fail 57

when used on data corrupted by stimulation artifacts. Although technological advances 58

in stimulation circuitry have enabled recording with significantly reduced 59

artifacts [14–18], identification of neural responses from artifact-corrupted recordings 60

still presents a challenging task — even for human experts — since these artifacts can 61

be much larger than spikes [19], overlap temporally with spikes, and occupy a similar 62

temporal frequency band as spikes. 63

Although a number of approaches have been previously proposed to tackle this 64

problem [20–23], there are two shortcomings we address here. First, previous 65

approaches are based on restrictive assumptions on the frequency of spikes and their 66

latency distribution (e.g, stimulation-elicited spikes have to occur at least 2ms following 67

stimulus onset). Consequently, it becomes necessary to discard non-negligible portions 68

of the recordings [19,24], leading to biased results that may miss the low-latency 69

regimes where the most interesting neuronal dynamics occur [25,26]. Second, all of 70

these methods have a local nature, i.e., they are based on electrode-wise estimates of the 71

artifact that don’t exploit the shared spatio-temporal information present in MEAs. In 72

general this leads to suboptimal performance. Therefore, a scalable computational 73

infrastructure for spike sorting with stimulation artifacts in large-scale setups is 74

necessary. 75

This paper presents a method to identify single-unit spike events in electrical 76

stimulation and recording experiments using large-scale MEAs. We develop a modern, 77

large-scale, principled framework for the analysis of neural voltage recordings that have 78

been corrupted by stimulation artifacts. First, we model this highly structured artifact 79

using a structured Gaussian Process (GP) to represent the observed variability across 80

stimulation amplitudes and in the spatial and temporal dimensions measured on the 81

MEA. Next, we introduce a spike detection algorithm that leverages the structure 82

imposed in the GP to achieve a fast and scalable implementation. Importantly, our 83

algorithm exploits many characteristics that make this problem tractable, allowing it to 84

separate the contributions of artifact and neural activity to the observed data. For 85

example, the artifact is smooth in certain dimensions, with spatial footprints that are 86

different than those of spikes. Also, artifact variability is different than that of spikes: 87

while the artifact does not substantially change if the same stimulus is repeated, 88

responses of neurons in many stimulation regimes are stochastic, enhancing 89

identifiability. 90

The effectiveness of our method is demonstrated by comparison on simulated data 91

and against human-curated inferred spikes extracted from real data recorded in primate 92

retina. Although some features of our method are context-dependent, we discuss 93
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Fig 1. Overlapping electrical images of 24 neurons (different colors) over the MEA,
aligned to onset of spiking at t = 0.5ms. Each trace represents the time course of voltage
at a certain electrode. For each neuron, traces are only shown in the electrodes with
a strong enough signal. Only a subset of neurons visible on the MEA are shown, for
better visibility.

extensions to other scenarios, stressing the generality of our approach. 94

2 Materials and Methods 95

In this section we develop a method for identifying neural activity in response to 96

electrical stimulation. We assume access to voltage recordings Y (e, t, j, i) in a MEA 97

with e = 1, . . . , E electrodes (here, E = 512), during t = 1, . . . T timepoints (e.g., 98

T = 40, corresponding to 2 milliseconds for a 20Khz sampling rate) after the 99

presentation of j = 1, . . . , J different stimuli, each of them being a current pulse of 100

increasing amplitudes aj (in other words, the aj are magnification factors applied to an 101

unitary pulse). For each of these stimuli nj trials or repetitions are available; i indexes 102

trials. Each recorded data segment is modeled as a sum of the true signal of interest s 103

(neural spiking activity on that electrode), plus two types of noise. 104

The first noise source, A, is the large artifact that results from the electrical 105

stimulation at a given electrode. This artifact has a well defined structure but its exact 106

form in any given stimulus condition is not known a priori and must be estimated from 107

the data and separated from occurrences of spikes. Although in typical experimental 108

setups one will be concerned with data coming from many different stimulating 109

electrodes, for clarity we start with the case of just a single stimulating electrode; we 110

will generalize this below. 111

The second source of noise, ε, is additive spherical Gaussian observation noise; that 112

is, ε ∼ N (0, σ2Id′), with d′ = T × E ×
∑J
j=1 nj . This assumption is rather restrictive 113

and we assume it here for computational ease, but refer the reader to the discussion for 114

a more general formulation that takes into account correlated noise. 115

Additionally, we assume that electrical images (EI) [27,28] — the spatio-temporal 116

collection of action potential shapes on every electrode e — are available for all the N 117

neurons under study. In detail, each of these EIs are estimates of the voltage deflections 118

produced by a spike over the array in a time window of length T ′. They are represented 119

as matrices with dimensions E × T ′ and can be obtained in the absence of electrical 120

stimulation, using standard large-scale spike sorting methods (e.g. [12]). Fig 1 shows 121

examples of many EIs, or templates, obtained during a visual stimulation experiment. 122

Finally, we assume the observed traces are the linear sum of neural activity, artifact, 123

and other noise sources; that is: 124

Y = A+ s+ ε. (1)

Similar linear decompositions have been recently utilized to tackle related neuroscience 125

problems [12,29]. 126

Figure 2 illustrates the difficulty of this problem: even if 1) for low-amplitude stimuli 127

the artifact may not heavily corrupt the recorded traces and 2) the availability of 128

several trials can enhance identifiability — as traces with spikes and no spikes naturally 129
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Fig 2. Visual inspection of traces reveals the difficulty of the problem. First
column: templates of spiking neurons. Second to fourth columns: responses of one (A)
or two (B) cells to electrical stimulation at increasing stimulation amplitudes as recorded
in the stimulating electrode (first rows) or a neighboring, non-stimulating electrode
(third rows). If the stimulation artifact is known (gray traces) it can be subtracted
from raw traces to produce a baseline (second and fourth rows) amenable for template
matching: traces with spike(s) (colored) match, on each electrode, either a translation of
a template (A and B) or the sum of different translations of two or more templates (B).
As reflected by the activation curves (fifth column) for strong enough stimuli spiking
occurs with probability close to one, consistent with the absence of black traces in the
rightmost columns.
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cluster into different groups — in the general case we will be concerned also with high 130

amplitudes of stimulation. In these regimes, spikes could significantly overlap 131

temporarily with the artifact, and occur with high probability and almost 132

deterministically, i.e., with low latency variability. For example, in the rightmost 133

columns of Figure 2, spike identification is not straightforward since all the traces look 134

alike, and the shape of a typical trace does not necessarily suggest the presence of 135

neural activity. There, inference of neural activity is only possible given a reasonable 136

estimate of the artifact: for instance, under the assumption that the artifact is a smooth 137

function of the stimulus strength, one can make a good initial guess of the artifact by 138

considering the artifact at a lower stimulation amplitude, where spike identification is 139

relatively easier. 140

Therefore, a solution to this problem will rely on a method for an appropriate 141

separation of neural activity and artifact, which in turn requires the use of sensible 142

models that properly capture the structure of the latter; that is, how it varies along the 143

different relevant dimensions. In the following we develop such a method, and divide its 144

exposition in five parts. We start by describing in 2.1 how to model neural activity. 145

Second, in 2.2 we describe the structure of the stimulation artifacts. Third, in 2.3 we 146

propose a GP model to represent this structure. Fourth, in 2.4 we introduce a scalable 147

algorithm that produces an estimate of A and s given recordings Y . Finally, in 2.5 we 148

provide a simplified version of our method and extend it to address multi-electrode 149

stimulation scenarios. 150

2.1 Modeling neural activity 151

We assume that s is the linear superposition of the activities sn of the N neurons 152

involved, i.e. s =
∑N
n=1 s

n. Furthermore, each of these activities is expressed in terms 153

of the binary vectors bn that indicate spike occurrence and timing: specifically, if snj,i is 154

the neural activity of neuron n at trial i of the j-th stimulation amplitude, we write 155

snj,i = Mnbnj,i, where Mn is a matrix that contains on each row a copy of the EI of 156

neuron n (vectorizing over different electrodes) aligned to spiking occurring at different 157

times. Notice that this binary representation immediately entails that: 1) on each trial 158

each neuron fires at most once (this will be the case if we choose analysis time windows 159

that are shorter than the refractory period) and 2) that spikes can only occur over a 160

discrete set of times (a strict subset of the entire recording window), which here 161

corresponds to all the time samples between 0.25 ms and 1.5 ms. We refer the reader 162

to [30] for details on how to relax this simplifying assumption. 163

2.2 Stimulation Artifacts 164

Electrical stimulation experiments where neural responses are inhibited (e.g., using the 165

neurotoxin TTX) provide qualitative insights about the structure of the stimulation 166

artifact A(e, t, j, i) (Fig 3); that is, how it varies as a function of all the relevant 167

covariates: space (represented by electrode, e), time t, amplitude of stimulus aj , and 168

stimulus repetition i. Repeating the same stimulation leads to the same artifact, up to 169

small random fluctuations, and so by averaging several trials these fluctuations can be 170

reduced, and we can conceive the artifact as a stack of movies A(e, t, j), one for each 171

amplitude of stimulation aj . 172

We treat the stimulating and non-stimulating electrodes separately because of their 173

observed different qualitative properties. 174
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Fig 3. Properties of the electrical stimulation artifact revealed by TTX
experiments. (A) local, electrode-wise properties of the stimulation artifacts. Overall,
magnitude of the artifact increases with stimulation strength (different shades of blue).
However, unlike non-stimulating electrodes, where artifacts have a typical shape of a
bump around 0.5 ms (fourth column), the case of the stimulating electrode is more
complex: besides the apparent increase in artifact strength, the shape itself is not
a simple function of stimulating electrode (first and second rows). Also, for a given
stimulating electrode the shape of the artifact is a complex function of the stimulation
strength, changing smoothly only within certain stimulation ranges: here, responses
to the entire stimulation range are divided into three ranges (first, second, and third
column) and although traces within each range look alike, traces from different ranges
cannot be guessed from other ranges. (B) stimulation artifacts in a neighborhood of the
stimulating electrode, at two different stimulus strengths (left and right). Each trace
represents the time course of voltage at a certain electrode. Notice that stimulating
electrode (blue) and non-stimulating electrodes (light blue) are plotted in different scales.

2.2.1 Stimulating electrode 175

Modeling the artifact in the stimulating electrode requires special care because it is this 176

electrode that typically will capture the strongest neural signal in attempts to directly 177

activate a soma (e.g. Fig 3). The artifact is more complex in the stimulating 178

electrode [16] and has the following properties here: 1) its magnitude is much greater 179

than that of the non-stimulating electrodes; 2) its effect persists at least 2 ms after the 180

onset of the stimulus; and 3) it is a piece-wise smooth, continuous function of the 181

stimulus strength (Fig 3A). Discontinuities occur at a pre-defined set of stimulus 182

amplitudes, the “breakpoints" (known beforehand), resulting from gain settings in the 183

stimulation hardware that must change in order to apply stimuli of different magnitude 184

ranges [16]. Notice that these discontinuities are a rather technical and 185

context-dependent feature that may not necessarily apply to all stimulation systems, 186

unlike the rest of the properties described here. 187
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2.2.2 Non-stimulating electrodes 188

The artifact here is much more regular and of lower magnitude, and has the following 189

properties (see Fig 3): 1) its magnitude peaks around .4ms following the stimulus onset, 190

and then rapidly stabilizes; 2) the artifact magnitude typically decays with distance 191

from the stimulating electrode; 3) the magnitude of the artifact increases with 192

increasing stimulus strength. 193

Based on these observations, we develop a general framework for artifact modeling 194

based on Gaussian processes. 195

2.3 A structured Gaussian process model for stimulation arti- 196

facts 197

From the above discussion we conclude that the artifact is highly non-linear (on each 198

coordinate), non-stationary (i.e., the variability depends on the value of each 199

coordinate), but structured. The Gaussian process (GP) framework [31] provides 200

powerful and computationally scalable methods for modeling non-linear functions given 201

noisy measurements, and leads to a straightforward implementation of all the usual 202

operations that are relevant for our purposes (e.g. extrapolation and filtering) in terms 203

of some tractable conditional Gaussian distributions. 204

To better understand the rationale guiding the choice of GPs, consider first a simple 205

Bayesian regression model for the artifact as a noisy linear combination of B basis 206

functions Φb(e, t, j) (e.g. polynomials); that is, A(e, t, j) =
∑B
b=1 wbΦb(e, t, j) + ε, with 207

a regularizing prior p(w) on the weights. If p(w) and ε are modeled as Gaussian, and if 208

we consider the collection of A(e, t, j) values (over all electrodes e, timesteps t, and 209

stimulus amplitude indices j) as one large vector A, then this translates into an 210

assumption that the vector A is drawn from a high-dimensional Gaussian distribution. 211

The prior mean µ and covariance K of A can easily be computed in terms of Φ and 212

p(w). Importantly, this simple model provides us with tools to estimate the posterior 213

distribution of A given partial noisy observations (for example, we could estimate the 214

posterior of A at a certain electrode if we are given its values on the rest of the array). 215

Since A in this model is a stochastic process (indexed by e, t, and j) with a Gaussian 216

distribution, we say that A is modeled as a Gaussian process, and write A ∼ GP(µ,K). 217

The main problem with the approach sketched above is that one has to solve some 218

challenging model selection problems: what basis functions Φi should we choose, how 219

large should M be, what parameters should we use for the prior p(w), and so on. We 220

can avoid these issues by instead directly specifying the covariance K and mean µ 221

(instead of specifying K and µ indirectly, through p(w), Φ, etc.). 222

The parameter µ informs us about the mean behavior of the samples from the GP 223

(here, the average values of the artifact). Briefly, we estimate µ̂ by taking the mean of 224

the recordings at the lowest stimulation amplitude and then subtract off that value from 225

all the traces, so that µ can be assumed to be zero in the following. We refer the reader 226

to S1 Text and S1 Fig for details, and stress that all the figures shown in the main text 227

are made after applying this mean-subtraction pre-processing operation. 228

Next we need to specify K. This “kernel" can be thought of as a square matrix of 229

size dim(A)× dim(A), where dim(A) is as large as T × E × J ∼ 106 in our context. 230

This number is large enough so all elementary operations (e.g. kernel inversion) are 231

prohibitively slow unless further structure is imposed on K — indeed, we need to avoid 232

even storing K in memory, and estimating such a high-dimensional object is impossible 233

without some kind of strong regularization. Thus, instead of specifying every single 234

entry of K we need to exploit a simpler, lower-dimensional model that is flexible enough 235

to enforce the qualitative structure on A that we described in the preceding section. 236
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Specifically, we impose a separable Kronecker product structure on K, leading to 237

tractable and scalable inferences [32, 33]. This Kronecker product is defined for any two 238

matrices as (A⊗B)((i1,i2),(j1,j2)) = A(i1,j1)B(i2,j2). The key point is that this Kronecker 239

structure allows us to break the huge matrix K into smaller, more tractable pieces 240

whose properties can be easily specified and matched to the observed data. The result is 241

a much lower-dimensional representation of K that serves to strongly regularize our 242

estimate of this very high-dimensional object. In S2 Text we review the main operations 243

from [34] that enable computational speed-ups due to this Kronecker product 244

representation 245

We state separate Kronecker decompositions for the non-stimulating and stimulating 246

electrodes. For the non-stimulating electrode we assume the following decomposition: 247

K = ρKt ⊗Ke ⊗Ks + φ2IT×E×J , (2)

where Kt, Ke, and Ks are the kernels that account for variations in the time, space, and 248

stimulus magnitude dimensions of the data, respectively. One way to think about the 249

Kronecker product Kt ⊗Ke ⊗Ks is as follows: to draw a sample from a GP with mean 250

zero and covariance Kt ⊗Ke ⊗Ks, start with an array z(t, e, s) filled with independent 251

standard normal random variables, then apply independent linear filters in each 252

direction t, e, and s so that the marginal covariances in each direction correspond to Kt, 253

Ke, and Ks, respectively. The dimensionless quantity ρ is used to control the overall 254

magnitude of variability and the scaled identity matrix φ2Idim(A) is included to allow 255

for slight unstructured deviations from the Kronecker structure. Notice that we 256

distinguish between this extra prior variance φ2 and the observation noise variance σ2, 257

associated with the error term ε of Eq 1. 258

Likewise, for the stimulating electrode we consider the kernel: 259

K′ =

R∑
r=1

ρrKr
t ⊗Kr

s + φ′2IT×J . (3)

Here, the sum goes over the stimulation ranges defined by consecutive breakpoints; 260

and for each of those ranges, the kernel Kr
s has non-zero off-diagonal entries only for the 261

stimulation values within the r-th range between breakpoints. In this way, we ensure 262

artifact information is not shared for stimulus amplitudes across breakpoints. Finally, ρ′ 263

and φ′ play a similar role as in Eq 2. 264

Now that this structured kernel has been stated it remains to specify parametric 265

families for the elementary kernels Kt,Ke,Ks,Kr
t ,K

r
s . We construct these from the 266

Matérn family, using extra parameters to account for the behaviors described in 2.2. 267

2.3.1 A non-stationary family of kernels 268

We consider the Matérn(3/2) kernel, the continuous version of an autoregressive process 269

of order 2. Its (stationary) covariance is given by 270

Kλ(x1, x2) = Kλ(δ = |x1 − x2|) =
(

1 +
√

3δλ
)

exp
(
−
√

3δλ
)
. (4)

The parameter λ > 0 represents the (inverse) length-scale and determines how fast 271

correlations decay with distance. We use this kernel as a device for representing 272

smoothness; that is, the property that information is shared across a certain dimension 273

(e.g. time). This property is key to induce reasonable extrapolation and filtering 274

estimators, as required by our method (see 2.4). Naturally, given our rationale for 275

choosing this kernel, similar results should be expected if the Matérn(3/2) was replaced 276

by a similar, stationary smoothing kernel. 277
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We induce non-stationarities by considering the family of unnormalized gamma 278

densities dα,β(·): 279

dα,β(x) = exp(−xβ)xα. (5)

By an appropriate choice of the pair (α, β) > 0 we aim to expressively represent 280

non-stationary ‘bumps’ in variability. The functions dα,β(·) are then used to create a 281

family of non-stationary kernels through the process Zα,β ≡ Zα,β(x) = dα,β(x)Y (x) 282

where Y ∼ GP (0,Kλ). Thus Y here is a smooth stationary process and d serves to 283

modulate the amplitude of Y . Zα,β is a bona fide GP [35] with the following covariance 284

matrix (Dα,β is a diagonal matrix with entries dα,β(·)): 285

K(λ, α, β) = Dα,βKλDα,β . (6)

For the non-stimulating electrodes, we choose all three kernels Kt,Ke,Ks as 286

K(λ, α, β) in Eq 6, with separate parameters λ, α, β for each. For the time kernels we 287

use time and t as the relevant covariate (δ in Eq 4 and x in Eq 5). The case of the 288

spatial kernel is more involved: although we want to impose spatial smoothness, we also 289

need to express the non-stationarities that depend on the distance between any 290

electrode and the stimulating electrode. We do so by making δ represent the distance 291

between recording electrodes, and x represent the distance between stimulating and 292

recording electrodes. Finally, for the stimulus kernel we take stimulus strength aj as the 293

covariate but we only model smoothness through the Matérn kernel and not localization 294

(i.e. α, β = 0). 295

Finally, for the stimulating electrode we use the same method for constructing the 296

kernels Kr
t ,K

r
s on each range between breakpoints. We provide a notational summary 297

in table 1. 298

2.4 Algorithm 299

Now we introduce an algorithm for the joint estimation of A and s, based on the GP 300

model for A. Roughly, the algorithm is divided in two stages: first, the hyperparameters 301

that govern the structure of A have to be found. This is described in 2.4.1. Second, 302

given the inferred hyperparameters we perform the actual inference of A, s given these 303

hyperparameters. This is described in 2.4.2 and 2.4.3. We base our approach on 304

posterior inference for p(A, s|Y, θ, σ2) ∝ p(Y |s,A, σ2)p(A|θ), where the first factor in 305

the right hand side is the likelihood of the observed data Y given s, A, and the noise 306

variance σ2, and the second stands for the noise-free artifact prior; A ∼ GP (0,Kθ). A 307

summary of all the involved operations is shown in pseudo-code in algorithm 1. 308

2.4.1 Initialization: hyperparameter estimation 309

From Eqs (2,3, 4) and 6 the GP model for the artifact is completely specified by the 310

hyperparameters θ = (ρ, α, λ, β) and φ2, φ′2 . The standard approach for estimating θ is 311

to optimize the marginal likelihood of the observed data Y [31]. However, in this setting 312

computing this marginal likelihood entails summing over all possible spiking patterns s 313

while simultaneously integrating over the high-dimensional vector A; exactly computing 314

this large joint sum and integral is computationally intractable. Instead we introduce a 315

simpler approximation that is computationally relatively cheap and quite effective in 316

practice. We simply optimize the (gaussian) likelihood of Ã, 317

max
θ

log p(Ã|θ, φ2) = min
θ

1

2
Ãt
(
K(θ,φ2)

)−1
Ã+

1

2
log
∣∣∣K(θ,φ2)

∣∣∣ , (7)

where Ã is a computationally cheap proxy for the true A. The notation K(θ,φ2) makes 318

explicit the parametric dependence of the kernels in Eqs 2 and 3, i.e., 319
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Notation Meaning

Y,A, s traces, artifact and neural activity, respectively.
Â, ŝ inferred artifact and neural activity.
t, j, i, e time sample, stimulus index, trial index, electrode index.
T, J, nj , E number of time samples per recording, number of stimuli,

amount of trials per stimulus, number of electrodes in array.
bnj,i Binary timing vector of spike of neuron n, at trial i of j-th stimulus.
snj,i Action potential (if any) of neuron n at trial i of j-th stimulus.
Mn matrix containing action potentials of neuron n,

aligned to spiking onset at different times as rows.
Kλ Matérn(3/2) kernel with inverse length-scale parameter λ.
K,K ′ Non-stimulating and stimulating electrodes kernels.
Kt,Ke,Ks time, electrode (space) and stimulus kernels (non-stimulating electrodes).
Kr
t ,K

r
s time and stimulus kernels (stimulating electrode) at the r − th

range between breakpoints.
R number of intervals between breakpoints.
Kj,j sub-matrix of kernel matrix with fixed j-th stimulus.
ρ, ρr dimensionless factors for stimulating and non-stimulating electrode kernels.
α, β parameters of gamma ‘envelope’ dα,β(x) = xαexp(−xβ).
θ vector of kernel hyperparameters: θ = (ρ, α, λ, β) and

Kθ = Kt,Ke,Ks (non-stimulating electrodes).
φ2 noise variance of the artifact.
σ2 noise variance of recorded traces.
K(θ,φ2),K(θ,φ′2) Makes explicit the dependence of K,K ′ on parameters

K(θ,φ2) = K,K(θ,φ′2) = K ′

Table 1. Summary of relevant notation.

K(θ,φ2) = Kθ + φ2IT×E×J with Kθ = ρKt⊗Ke⊗Ks for the non-stimulating electrodes 320

(or K(θ,φ′2) = Kθ + φ′2IT×E and Kθ =
∑R
r=1 ρ

rKr
t ⊗Kr

s for the stimulating electrode). 321

Due to the Kronecker structure of these matrices, once Ã is obtained the terms in Eq. 7 322

can be computed quite tractably, with computational complexity O(d3), with 323

d = max{E, T, J} (max{T, J} in the stimulating-electrode case), instead of O(dim(A)3), 324

with dim(A) = E · T · J , in the case of a general non-structured K. Thus the Kronecker 325

assumption here leads to computational efficiency gains of several orders of magnitude. 326

See e.g. [33] for a detailed exposition of efficient algorithmic implementations of all the 327

operations that involve the Kronecker product that we have adopted here; some 328

potential further accelerations are mentioned in the discussion section below. 329

Now we need to define Ã. The stimulating electrode case is a bit more 330

straightforward: we have found that setting Ã to the mean or median of Y across trials 331

and then solving Eq. 7 leads to reasonable hyperparameter settings. The reason is that 332

can neglect the effect of neural activity on traces, as the artifact A is much bigger than 333

the effect of spiking activity s on this electrode, and . We estimate distinct kernels 334

K ′t,K
′
s for each stimulating electrode (since from Fig 3A we see that there is a good 335

deal of heterogeneity across electrodes), and each of the ranges between breakpoints. 336

Fig 4B shows an example of some kernels estimated following this approach. 337

For non-stimulating electrodes, the artifact A is more comparable in size to the 338

spiking contributions s, and this simple average-over-trials approach was much less 339

successful, explained also by possible corruptions on ‘bad’, broken electrodes which could 340

lead to equally bad hyperparameters estimates. On the other hand, for non-stimulating 341

electrodes the artifact shape is much more reproducible across electrodes, so some 342
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Algorithm 1 Spike detection and Artifact cancellation with electrical stimulation

Input: Traces Y = (Yj)j=1,...,J , in response to J stimuli.
Output: Estimates of artifact Â and neural activity ŝn for each neuron.

EIs of N neurons (e.g. obtained in a visual stimulation experiment).
Initialization
1: Estimate φ2 (artifact noise) and θ. . Hyperparameter estimation, Eq (7)
2: Also, estimate σ2 (neural noise) from traces.
Artifact/neural activity inference via coordinate ascent and extrapolation
3: for j = 1, . . . J do
4: Estimate A0

j from A[j−1] (A0
1 ≡ 0). . Extrapolation, Eq (11)

5: while some ŝnj,i change from one iteration to the next do . Coordinate ascent
6: • Estimate ŝnj,i (for each i, n) greedily. . Matching pursuit, Eq (9)
7: until no spike addition increases the likelihood.
8: • Estimate Âj from residuals Yj −

∑N
n=1 s

n
j . . Artifact filtering, Eq (10).

9: end while
10: end for

averaging over electrodes should be effective. We found that a sensible and more robust 343

estimate can be obtained by assuming that the effect of the artifact is a function of the 344

position relative to the stimulating electrode. Under that assumption we can estimate 345

the artifact by translating, for each of the stimulating electrodes, all the recorded traces 346

as if they had occurred in response to stimulation at the center electrode, and then 347

taking a big average for each electrode. In other words, we estimate 348

Ã(e, t, j) =
1

E

E∑
es=1

1

nj

nj∑
i=1

Y es(ē, t, j, i), (8)

where Y es are the traces in response to stimulation on electrode es and ē is the index of 349

electrode e after a translation of electrodes so that es is the center electrode. This 350

centered estimate leads to stable values of θ, since combining information across many 351

stimulating electrodes serves to average-out stimulating-electrode-specific neural activity 352

and other outliers. 353

Some implementation details are worth mentioning. First, we do not combine 354

information of all the E stimulating electrodes, but rather take a large-enough random 355

sample to ensure the stability of the estimate. We found that using ∼ 15 electrodes is 356

sufficient. Second, as the effect of the artifact is very localized in space, we do not 357

utilize all the electrodes, but consider only the ones that are close enough to the center 358

(here, the 25% closest). This leads to computational speed-ups without sacrificing 359

estimate quality; indeed, using the entire array may lead to sub-optimal performance, 360

since distant electrodes essentially contribute noise to this calculation. Third, we do not 361

estimate φ2 by jointly maximizing Eq 7 with respect to (θ, φ). Instead, to avoid 362

numerical instabilities we estimate φ2 directly as the background noise of the fictitious 363

artifact. This can be easily done before solving the optimization problem, by considering 364

the portions of A with the lowest artifact magnitude, e.g. the last few time steps at the 365

lowest amplitude of stimulation at electrodes distant from the stimulating electrode. Fig 366

4A shows an example of kernels Kt, Ke, and Ks estimated following this approach. 367

2.4.2 Coordinate Ascent 368

Once the hyperparameters θ are known we focus on the posterior inference for A, s 369

given θ and observed data Y . The non-convexity of the set over which the binary 370
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Fig 4. Examples of learned GP kernels. A Left : inferred kernels Kt,Ke,Ks in
the top, center, and bottom rows, respectively. Center : corresponding stationary auto-
covariances from the Matérn(3/2) kernels (Eq 4). Right : corresponding unnormalized
‘gamma-like’ envelopes dα,β (Eq 5). The inferred quantities are in agreement with what
is observed in Fig 3B: first, the shape of temporal term dα,β reflects that the artifact
starts small, then the variance amplitude peaks at ∼ .5 ms, and then decreases rapidly.
Likewise, the corresponding spatial dα,β indicates that the artifact variability induced
by the stimulation is negligible for electrodes greater than 700 microns away from the
stimulating electrode. B Same as A), but for the stimulating electrode. Only temporal
kernels are shown, for two inter-breakpoint ranges (first and second rows, respectively).

vectors bn are defined makes this problem difficult: many local optima exist in practice 371
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and, as a result, for global optimization there may not be a better alternative than to 372

look at a huge number of possible cases. We circumvent this cumbersome global 373

optimization by taking a greedy approach, with two main characteristics: first, joint 374

optimization over A and s is addressed with alternating ascent (over A with s held 375

fixed, and then over s with A held fixed). Alternating ascent is a common approach for 376

related methods in neuroscience (e.g. [12, 29]), where the recordings are modeled as an 377

additive sum of spiking, noise, and other terms. Second, data is divided in batches 378

corresponding to the same stimulus amplitude, and the analysis for the (j + 1)-th batch 379

starts only after definite estimates ŝ[j] and Â[j] have already been produced ([j] denotes 380

the set {1, . . . , j}). Moreover, this latter estimate of the artifact is used to initialize the 381

estimate for Aj+1 (intuitively, we borrow strength from lower stimulation amplitudes to 382

counteract the more challenging effects of artifacts at higher amplitudes). We address 383

each step of the algorithm in turn below. For simplicity, we describe the details only for 384

the non-stimulating electrodes. Treatment of the stimulating electrode is almost the 385

same but demands a slightly more careful handling that we defer to 2.4.4. 386

Given the batch Yj and an initial artifact estimate A0
j (see 2.4.3) we alternate 387

between neural activity estimation ŝj given a current artifact estimate, and artifact 388

estimation Âj given the current estimate of neural activity. This alternating 389

optimization stops when changes in every ŝnj are sufficiently small, or nonexistent. 390

Matching pursuit for neural activity inference. Given the current artifact 391

estimate Âj we maximize the conditional distribution for neural activity 392

p(sj |Yj , Âj , σ2) =
∏nj
i=1 p(sj,i|Yj,i, Âj , σ2), which corresponds to the following sparse 393

regression problem (the set S embodies our constraints on spike occurrence and timing): 394

min
bnj,i∈S,n=1,...,N

nj∑
i=1

∥∥∥∥∥(Yj,i − Âj)−
n∑
n=1

Mnbnj,i

∥∥∥∥∥
2

. (9)

We seek to find the allocation of spikes that will lead the best match with the 395

residuals (Yj,i − Âj). We follow a standard template-matching-pursuit greedy approach 396

(e.g. [12]) to locally optimize Eq 9: specifically, for each trial we iteratively search for 397

the best choice of neuron/time, then subtract the corresponding neural activity until the 398

proposed updates no longer lead to increases in the likelihood. 399

Filtering for artifact inference. Given the current estimate of neural activity ŝj 400

we maximize the posterior distribution of the artifact, that is, maxAj p(Aj |Yj , ŝj , θ, σ2), 401

which here leads to the posterior mean estimator (again, the overline indicates mean 402

across the nj trials): 403

Âj = E(Aj |Yj , ŝj , θ, σ2, φ2) = Kθ
j,j

(
K

(θ,σ
2

nj
+φ2)

j,j

)−1
(Ȳj − ¯̂sj). (10)

This operation can be understood as the application of a linear filter. Indeed, by 404

appealing to the eigendecomposition of K(θ,σ2/nj+φ
2)

j,j we see this operator shrinks the 405

m-th eigencomponent of the artifact by a factor of κm/(κm + σ2/nj + φ2) (κm is the 406

m-th eigenvalue of K(θ,σ2/nj+φ
2)

j,j ), exerting its greatest influence where κm is small. 407

Notice that in the extreme case that σ2/nj + φ2 is very small compared to the κm then 408

Âj ≈ (Ȳj − ¯̂sj), i.e., the filtered artifact converges to the simple mean of 409

spike-subtracted traces. 410

Convergence. Remarkably, in practice often only a few (e.g. 3) iterations of 411

coordinate ascent (neural activity inference and artifact inference) are required to 412

converge to a stable solution (snj ){n=1,...N}. The required number of iterations can vary 413

slightly, depending e.g. on the number of neurons or the signal-to-noise; i.e., EI strength 414

versus noise variance. 415
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2.4.3 Iteration over batches and artifact extrapolation 416

The procedure described in 2.4.2 is repeated in a loop that iterates through the batches 417

corresponding to different stimulus strengths, from the lowest to the highest. Also, 418

when doing j → j + 1 an initial estimate for the artifact A0
j+1 is generated by 419

extrapolating from the current, faithful, estimate of the artifact up to the j-th batch. 420

This extrapolation is easily implemented as the mean of the noise-free posterior 421

distribution in this GP setup, that is: 422

A0
j+1 = E(Aj+1|Â[j]θ, φ

2) = Kθ
(j+1,[j])

(
K

(θ,φ2)
([j],[j])

)−1
Â[j]. (11)

Importantly, in practice this initial estimate ends up being extremely useful, as in the 423

absence of a good initial estimate, coordinate ascent often leads to poor optima. The 424

very accurate initializations from extrapolation estimates help to avoid these poor local 425

optima (see Fig 8). 426

We note that both for the extrapolation and filtering stages we still profit from the 427

scalability properties that arise from the Kronecker decomposition. Indeed, the two 428

required operations — inversion of the kernel and the product between that inverse and 429

the vectorized artifact — reduce to elementary operations that only involve the kernels 430

Ke,Kt,Ks [33]. 431

2.4.4 Integrating the stimulating and non-stimulating electrodes 432

Notice that the same algorithm can be implemented for the stimulating electrode, or for 433

all electrodes simultaneously, by considering equivalent extrapolation, filtering, and 434

matched pursuit operations. The only caveat is that extrapolation across stimulation 435

amplitude breakpoints does not make sense for the stimulating electrode, and therefore, 436

information from the stimulating electrode must not be taken into account at the first 437

amplitude following a breakpoint, at least for the first matching pursuit-artifact filtering 438

iteration. 439

2.4.5 Further computational remarks 440

Note the different computational complexities of artifact related operations (filtering, 441

extrapolation) and neural activity inference: while the former depends (cubically) only 442

on T,E, J , the latter depends (linearly) on the number of trials nj , the number of 443

neurons, and the number of electrodes on which each neuron’s EI is significantly 444

nonzero. In the data analyzed here, we found that the fixed computational cost of 445

artifact inference is typically bigger than the per-trial cost of neural activity inference. 446

Therefore, if spike sorting is required for big volumes of data (nj � 1) it is a sensible 447

choice to avoid unnecessary artifact-related operations: as artifact estimates are stable 448

after a moderate number of trials (e.g. nj = 50), one could estimate the artifact with 449

that number, subtract that artifact from traces and perform matching pursuit for the 450

remaining trials. That would also be helpful to avoid unnecessary multiple iterations of 451

the artifact inference - spike inference loop. 452

2.5 Simplifications and extensions 453

2.5.1 A simplified method 454

We now describe a way to reduce some of the computations associated with algorithm 1. 455

This simplified method is based on two observations: first, as discussed above, if many 456

repetitions are available, the sample mean of spike subtracted traces over trials should 457

already provide an accurate artifact estimator, making filtering (Eq 10) superfluous. 458
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(Alternatively, one could also consider the more robust median over trials; in the 459

experiments analyzed here we did not find any substantial improvement with the 460

median estimator.) Second, as artifact changes smoothly across stimulus amplitudes, it 461

is reasonable to use the artifact estimated at condition j as an initialization for the 462

artifact estimate at the (j + 1)th amplitude. Naturally, if two amplitudes are too far 463

apart this estimator breaks down, but if not, it circumvents the need to appeal to Eq 11. 464

Thus, we propose a simplified method in which Eq 10 is replaced by the 465

spike-subtracted mean voltage (i.e. skip the filtering step in line 9 of algorithm 1), and 466

Eq 11 is replaced by simple ‘naive’ extrapolation (i.e. avoid kernel-based extrapolation 467

in line 5 of algorithm 1 and just initialize A0
j+1 = Â[j]). We can derive this simplified 468

estimator as a limiting special case within our GP framework: first, avoiding the 469

filtering operator is achieved by neglecting the noise variances σ2 and φ2, as this 470

essentially means that our observations are noise-free; hence, there is no need for 471

smoothing. Also, our naive extrapolation proposal can be obtained using an artifact 472

covariance kernel based on Brownian motion in j [36]. 473

Finally, notice that the simplified method does not require a costly initialization (i.e, 474

we can skip the maximization of Eq 7 in line 2 of algorithm 1). 475

2.5.2 Beyond single-electrode stimulation 476

So far we have focused our attention on single electrode stimulation. A natural question 477

is whether or not our method can be extended to analyze responses to simultaneous 478

stimulation at several electrodes, which is of particular importance for the use of 479

patterned stimulation as a means of achieving selective activation of neurons [28,37]. 480

One simple approach is to simply restrict attention to experimental designs in which the 481

relative amplitudes of the stimuli delivered on each electrode are held fixed, while we 482

vary the overall amplitude. This reduces to a one-dimensional problem (since we are 483

varying just a single overall amplitude scalar). We can apply the approach described 484

above with no modifications to this case, just replacing “stimulus amplitude" in the 485

single-electrode setting with “overall amplitude scale" in the multiple-electrode case. 486

In this work we consider three types of multiple electrode stimulation: Bipolar 487

stimulation, Local Return stimulation and Arbitrary stimulation patterns. Bipolar 488

stimuli were applied on two neighboring electrodes, and consisted of simultaneous pulses 489

with opposite amplitudes. The purpose was to modulate the direction of the applied 490

electric field [38]. The local return stimulus had the same central electrode current, with 491

simultaneous current waveforms of opposite sign and one sixth amplitude on the six 492

immediately surrounding return electrodes. The purpose of the local return stimulus 493

configuration was to restrict the current spread of the stimulation pulse by using local 494

grounding. More generally, arbitrary stimulation patterns (up to four electrodes) were 495

similarly designed to shape the resulting electric field, and consisted of simultaneous 496

pulses of varied amplitudes. 497

3 Results 498

We start by showing, in Figure 5, an example of the estimation of the artifact A and 499

spiking activity s from single observed trials Y . Here, looking at individual responses to 500

stimulation provides little information about the presence of spikes, even if the EIs are 501

known. Thus, the estimation process relies heavily on the use of shared information 502

across dimensions: in this example, a good estimate of the artifact was obtained by 503

using information from stimulation at lower amplitudes, and from several trials. 504
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Difference

Trial 1

Trial 2

Trial 1

Trial 2

Fig 5. Example of neural activity and artifact inference in a neighborhood
of the stimulating electrode. Left: Two recordings in response to a 2.01 µA stimulus.
Center: estimated artifact (as the stimulus doesn’t change, it is the same for both trials).
Right: Difference between raw traces and estimated artifact, with inferred spikes in
color. In the first trial (above) one spiking neuron was detected, while in trial 2 (below)
three spiking neurons were detected. The algorithm separates the artifact A and spiking
activity s effectively here.

3.1 Algorithm validation 505

We validated the algorithm by measuring its performance both on a large dataset with 506

available human-curated spike sorting and with ground-truth simulated data (we avoid 507

the term ground-truth in the real data to acknowledge the possibility that the human 508

makes mistakes). 509

3.1.1 Comparison to human annotation 510

The efficacy of the algorithm was first demonstrated by comparison to human-curated 511

results from the peripheral primate retina. The algorithm was applied to 4,045 sets of 512

traces in response to increasing stimuli. We refer to each of these sets as an amplitude 513

series. These amplitude series came from the four stimulation categories described in 514

section 2: single-electrode, bipolar, local return, and arbitrary. 515

We first assessed the agreement between algorithm and human annotation on a 516

trial-by-trial basis, by comparing the presence or absence of spikes, and their latencies. 517

Results of this trial-by-trial analysis for the kernel-based estimator are shown in Fig 6A. 518

Overall, the results are satisfactory, with an error rate of 0.45%. Errors were the result 519

of either false positives (misidentified spikes over the cases of no spiking) or false 520

negatives (failures in detecting truly existing spikes), whose rates were 0.43% (FPR, 521

false positives over total positives) and 1.08% (FNR, false negatives over total negatives), 522

respectively. For reference, we considered the baseline given by the simple estimator 523

introduced in [20]: there, the artifact is estimated as the simple mean of traces. False 524

negative rates were an order of magnitude larger for the reference estimator, 49% (see S2 525

Fig for details). In 4.2 we further discuss why this reference method fails in this data. 526

We observed comparable error rates for the simplified and kernel-based estimator 527

(again, see S2 Fig for details). To further investigate differences in performance, we 528

considered three ‘perturbations’ to real data (restricting our attention to 529

single-electrode stimulation, for simplicity): sub-sampling of trials (by limiting the 530

maximum number of trials per stimulus to 20, 10, 5, and 2), sub-sampling of amplitudes 531

(considering only every other or every other other stimulus amplitude in the sequence), 532

and noise injection, by adding uncorrelated Gaussian noise with standard deviation 533
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Fig 6. Population results from thirteen retinal preparations reveal the effi-
cacy of the algorithm A. Trial-by-trial wise performance of estimators broken down by
the the four types of stimulation considered (total number of trials 1,713,233, see Table 1
S1 text for details). B. Trial-by-trial wise performance of estimators to perturbations of
real data (only single-electrode): five trials per stimulus for trial subsampling, every other
stimulus for amplitude subsampling and σ = 20 for noise injection. C,D. Amplitude-
series wise performance of estimators. C: false omission rate (FOR = FN/(FN+TP)),
false discovery rate (FDR = FP/(FP+TP)), and error rate based on the 4,045 available
amplitude series (see Table 2 S1 Text for details); D: comparison of activation thresholds
(human vs. kernel-based algorithm). E. Performance measures (trial-by-trial) broken
down by distance between neuron and stimulating electrode. F. Trial-by-trial error as
a function of EI peak strength across all electrodes (only kernel-based). A Spearman
correlation test revealed a significant negative correlation. G. Error as a function of
number of iterations in the algorithm. H. For the true positives, histogram of the
differences of latencies between human and algorithm. I. Computational cost comparison
of the three methods for the analysis of single-electrode scans, with 20 to 25 (left) or 50
(right) trials per stimulus.

σ = 5, 10, or 20µ V (this noise adds to the actual noise in recordings that here we 534
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estimated below σ = 6µV, by using traces in response to low amplitude stimuli far from 535

the stimulation site). Representative results are shown in Fig 6B (but see S3 Fig for full 536

comparisons), and indicate that indeed the kernel-based estimator delivers superior 537

performance in these more challenging scenarios. Thus unless otherwise noted below we 538

focus on results of the full kernel-based estimator, not the simplified estimator; see 3.1.2 539

and 4.1 for more comparisons between both estimators, and for a broader discussion. 540

We also quantified accuracy at the level of the entire amplitude series, instead of 541

individual trials: given an amplitude series we conclude that neural activation is present 542

if the sigmoidal activation function fit (specifically, the CDF of a normal distribution) 543

to the empirical activation curves —the proportion of trials where spikes occurred as a 544

function of stimulation amplitude — exceeds 50% within the ranges of stimulation. In 545

the positive cases, we define the stimulation threshold as the current needed to elicit 546

spiking with 0.5 probability. This number provides an informative univariate summary 547

of the activation curve itself. The obtained results are again satisfactory (Fig 6C). Also, 548

in the case of correctly detected events we compared the activation thresholds (Fig 6D) 549

and found little discrepancy between human and algorithm (with the exception of a 550

single point, which can be better considered as an additional false positive, as the 551

algorithm predicts activation at much smaller amplitude of stimulus; data not shown). 552

We investigated various covariates that could modulate performance: distance 553

between targeted neuron and stimulating electrode (Fig 6E), strength of the neural 554

signals (Fig 6F) and maximum permitted number of iterations of the coordinate ascent 555

step (Fig 6G). Regarding the first, we divided data by somatic stimulation (stimulating 556

electrode is the closest to the soma), peri-somatic stimulation (stimulating electrode 557

neighbors the closest to the soma) and distant stimulation (neither somatic nor 558

peri-somatic). As expected, accuracies were the lowest when the neural soma was close 559

to the stimulating electrode (somatic stimulation), presumably a consequence of 560

artifacts of larger magnitude in that case. Regarding the second, we found that error 561

significantly decreases with strength of the EI, indicating that our algorithm benefits 562

from strong neural signals. With respect to the third, we observe some benefit from 563

increasing the maximum number of iterations, and that accuracies stabilize after a 564

certain value (e.g. three), indicating that either the algorithm converged or that further 565

coordinate iterations did not lead to improvements. 566

Finally, we report two other relevant metrics: first, differences between real and 567

inferred latencies (Fig 6H, only for correctly identified spikes) revealed that in the vast 568

majority of cases (>95%) spike times inferred by human vs. algorithm differed by less 569

than 0.1 ms. Second, we assessed computational expenses by measuring the algorithm’s 570

running time for the analysis of a single-electrode scan; i.e, the totality of the 512 571

amplitude series, one for each stimulating electrode (Fig 6I). The analysis was done in 572

parallel, with twenty threads analyzing single amplitude series (details in S1 Text). We 573

conclude that we can analyze a complete experiment in ten to thirty minutes and that 574

the parallel implementation is compatible with the time scales required by closed-loop 575

pipelines. We further comment on this in 4.3. Comparisons in Fig 6I also illustrate that 576

our methods are 2x-3x slower than the (much less accurate) reference estimator, but 577

that differences between kernel-based and the simplified estimator are rather moderate. 578

This suggests that filtering and extrapolation are inexpensive in comparison to the time 579

spent in the matching pursuit stage of the algorithm, and that the cost of finding the 580

hyper-parameters (only once) is negligible at the scale of the analysis of several 581

hundreds of amplitude series. 582

We refer the reader to S1 Text for details on population statistics of the analyzed 583

data, exclusion criteria, and computational implementation. 584
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Fig 7. Filtering (Eq 10) leads to a better, less spike-corrupted artifact es-
timate in our simulations. A effect of filtering on traces for two non-stimulating
electrodes, at a fixed amplitude of stimulation (2.2µA). A1,A3 raw traces, A2,A4 filtered
traces. Notice the two main features of the filter: first, it principally affects traces
containing spikes, a consequence of the localized nature of the kernel in Eq 2. Second, it
helps eliminate high-frequency noise. B through simulations, we showed that filtering
leads to improved results in challenging situations. Two filters — only smoothing and
localization + smoothing — were compared to the omission of filtering. In all cases, to
rule out that performance changes were due to the extrapolation estimator, extrapolation
was done with the naive estimator. B1 results in a less challenging situation. B2 results
in the heavily subsampled (nj = 1) case. B3 results in the high-noise variance (σ2 = 10)
case.

3.1.2 Simulations 585

Synthetic datasets were generated by adding artifacts measured in TTX recordings (not 586

contaminated by neural activity s), real templates, and white noise, in an attempt to 587

faithfully match basic statistics of neural activity in response to electrical stimuli, i.e., 588

the frequency of spiking and latency distribution as a function of distance between 589

stimulating electrode and neurons (see S5 Fig). These simulations (only on 590

single-electrode stimulation) were aimed to further investigate the differences between 591

the naive and kernel-based estimators, by determining when — and to which extent — 592

filtering (Eq 10) and extrapolation (Eq 11) were beneficial to enhance performance. To 593

address this question, we evaluated separately the effects of the omission and/or 594

simplification of the filtering operation (Eq 10), and of the replacement of the 595

kernel-based extrapolation (Eq 11) by the naive extrapolation estimator that guesses 596

the artifact at the j-th amplitude of stimulation simply as the artifact at the j − 1 597
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Fig 8. Kernel-based extrapolation (Eq 11) leads to more accurate initial
estimates of the artifact. A comparison between kernel-based extrapolation and
the naive estimator, the artifact at the previous amplitude of stimulation. For a non-
stimulating (first row) and the stimulating (second row) electrode, left: artifacts at
different stimulus strengths (shades of blue), center: differences with extrapolation
estimator (Eq 11), right: differences with the naive estimator. B comparison between
the true artifact (black), the naive estimator (blue) and the kernel-based estimator (light
blue) for a fixed amplitude of stimulus (3.1µA) on a neighborhood of the stimulating
electrode (not shown). C Through simulations we showed that extrapolation leads to
improved results in a challenging situation. Kernel-based extrapolation was compared
to naive extrapolation. C1 results in a less challenging situation. C2-C3 results in the
case where the artifact is multiplied by a factor of 3 and 5, respectively.

amplitude of stimulation. 598

As the number of trials nj goes to infinity, or as the noise level σ goes to zero, the 599

influence of the likelihood grows compared to the GP prior, and the filtering operator 600

converges to the identity (see Eq 10). However, applied on individual traces, where the 601

influence of this operator is maximal, filtering removes high frequency noise components 602

and variations occurring where the localization kernels do not concentrate their mass 603

(Fig 4A), which usually correspond to spikes. Therefore, in this case filtering should 604

lead to less spike-contaminated artifact estimates. Fig 7B confirms this intuition with 605

results from simulated data: in cases of high σ2 and small nj the filtering estimator led 606

to improved results. Moreover, a simplified filter that only consisted of smoothing 607

kernels (i.e. for all the spatial, temporal and amplitude-wise kernels the localization 608

terms dα,β in Eq 5 were set equal to 1, leading to the Matérn kernel in Eq 4) led to 609

more modest improvements, suggesting that the localization terms (Eq 5) — and not 610

only the smoothing kernels — act as sensible and helpful modeling choices. 611

Likewise, we expect that kernel-based extrapolation leads to improved performance if 612

the artifact magnitude is large compared to the size of the EIs: in this case, differences 613
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Fig 9. Analysis of responses of neurons in a neighborhood of the stimulating
electrode. A Spatial configuration: stimulating electrode (blue/yellow annulus) and
four neurons on its vicinity. Soma of green neuron and axon of pink neuron overlap with
stimulating electrode. B Activation curves (solid lines) along with human-curated and
algorithm inferred spike probabilities (gray and colored circles, respectively) of all the
four cells. Stimulation elicited activation of green and pink neurons; however, the two
other neurons remained inactive. C Raster plots for the activated cells, with responses
sorted by stimulation strength in the y axis. Human and algorithm inferred latencies
are in good agreement (gray and colored circles, respectively). Here, direct somatic
activation of the green neuron leads to lower-latency and lower-threshold activation than
of the pink neuron, which is activated through its axon.

between the naive estimator and the actual artifact would be large enough that many 614

spikes would be misidentified or missed. However, since kernel-based extrapolation 615

produces better artifact estimates (see Fig 8A-B), the occurrence of those failures 616

should be diminished. Indeed, Fig 8C shows that better results are attained when the 617

size of the artifact is multiplied by a constant factor (or equivalently, neglecting the 618

noise term σ2, when the size of the EIs is divided by a constant factor). Moreover, the 619

differential results obtained when including the filtering stage suggest that the two 620

effects are non-redundant: filtering and extrapolation both lead to improvements and 621

the improvements due to each operation are not replaced by the other. 622

3.2 Applications: high resolution neural prosthesis 623

A prominent application of our method relates to the development of high-resolution 624

neural prostheses (particularly, epi-retinal prosthesis), whose success will rely on the 625

ability to elicit arbitrary patterns of neural activity through the selective activation of 626

individual neurons in real-time [28,39,40]. For achieving such selective activation in a 627

closed-loop setup, we need to know how different stimulating electrodes activate nearby 628
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Fig 10. Electrical receptive field of a neuron. A spatial representation of the
soma (black circle) and axon (black line) over the array. Electrodes where stimulation
was attempted are represented by circles, with colors indicating the activation threshold
in the case of a successful activation of the neuron within the stimulation range. B
For those cases, activation curves (solid lines) are shown along with with human and
algorithm inferred spike frequencies (gray and colored circles, respectively). Large circles
indicate the activation thresholds represented in A. In this case, much of the activity is
elicited through axonal stimulation, as there is a single electrode close to the soma that
can activate the neuron. Human and algorithm are in good agreement.

neurons, information that is easily summarized by the activation curves, with the 629

activation thresholds themselves as proxies. Unfortunately, obtaining this information in 630

real time — as required for prosthetic devices — is currently not feasible since 631

estimation of thresholds requires the analysis of individual responses to stimuli. In 4.3 632

we discuss in detail how, within our framework, to overcome the stringent time 633

limitations required for such purposes. 634

Figures 9, 10, 11, and 12 show pictorial representations of different features of the 635

results obtained with the algorithm, and their comparison with human annotation. 636

Axonal reconstructions from all of the neurons in the figures were achieved through a 637

polynomial fit to the neuron’s spatial EI, with soma size depending on the EI strength 638

(see [28] for details). Each of these figures provides particular insights to inform and 639

guide the large-scale closed-loop control of the neural population. Importantly, 640

generation of these maps took only minutes on a personal computer, compared to many 641

human hours, indicating feasibility for clinical applications and substantial value for 642

analysis of laboratory experiments [28,40]. 643

Figure 9 focuses on the stimulating electrode’s point of view: given stimulation in 644

one electrode, it is of interest to understand which neurons will get activated within the 645

stimulation range, and how selective that activation can be made. This information is 646

provided by the activation curves, i.e, their steepness and their associated stimulation 647

thresholds. Additionally, latencies can be informative about the spatial arrangement of 648

the system under study, and the mode of neural activation: in this example, one cell is 649
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Fig 11. Analysis of differential responses to single (A) and two-electrode
(B) stimulation. Gray and colored dots indicate human and algorithm inferences,
respectively. In both cases activation of the two neurons is achieved. However, shape
of activation curves is modulated by the presence of a current with the same strength
and opposite polarity in a neighboring electrode (yellow/blue annulus in B): indeed, in
this case bipolar stimulation leads to an enhanced ability to activate the pink neuron
without activating the green neuron. The algorithm is faithfully able to recover the
relevant activation thresholds.

activated through direct stimulation of the soma, and the other, more distant cell is 650

activated through the indirect and antidromic propagation of current through the 651

axon [41]. This is confirmed by the observed latency pattern. 652

Figure 10 depicts the converse view, focusing on the neuron. Here we aim to 653

determine the cell’s electrical receptive field [37,42] to single-electrode stimulation; that 654

is, the set of electrodes that are able to elicit activation, and in the positive cases, the 655

corresponding stimulation thresholds. These fields are crucial for tailoring stimuli that 656

selectively activate sub-populations of neurons. 657

Figure 11 shows how the algorithm enables the analysis of responses to bipolar 658

stimulation. This strategy has been suggested to enhance selectivity [43], by 659

differentially shifting the stimulation thresholds of the cells so the range of currents that 660

lead to activation of a single cell is widened. More generally, multi-electrode spatial 661

stimulation patterns have the potential to enhance selectivity by producing an electric 662

field optimized for activating one cell more strongly than others [28], and Fig 11 is a 663

depiction of how our algorithm permits an accurate assessment of this potential 664

enhancement. 665

Finally, Fig 12 shows a large-scale summary of the responses to single-electrode 666

stimulation. There, a population of ON and OFF parasol cells was stimulated at many 667
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Fig 12. Large-scale analysis of the stimulation of a population of parasol cells.
For each neuron, one or more stimulating electrodes in a neighborhood of neural soma
were chosen for stimulation. A Receptive fields colored by the lowest achieved stimulation
threshold (black if activation was not achieved). B Inferred somas (big black circles) of
the neurons labeled A-E in A), showing which electrodes were chosen for stimulation
(small circles) and whether activation was achieved (colors). C Activation curves (solid
lines) of the neurons in B for the successful activation cases. Gray and colored dots
represent human and algorithm results, respectively, and large circle indicates stimulation
thresholds.

different electrodes close to their somas, and each of those cells was then labeled by the 668

lowest achieved activation threshold. These maps provide a proxy of the ability to 669

activate cells with single-electrode stimulation, and of the different degrees of difficulty 670

in achieving activation. Since in many cases only as few as 20% of the neurons can be 671

activated [44], the information about which cells were activated can provide a useful 672

guide for the on-line development of more complex multiple electrode stimulation 673

patterns that activate the remaining cells. 674
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4 Discussion 675

Now we discuss the main features of the algorithm in light of the results and sketch some 676

extensions to enable the analysis of data in contexts that go beyond those analyzed here. 677

4.1 Simplified vs. full kernel-based estimators 678

Figures 6B, 7B, 8C, and S3 Fig illustrate some cases where the full kernel-based 679

estimator outperforms the simplified artifact estimator. These cases correspond to 680

heavy sub-sampling or small signal-to-noise ratios, where the data do not adequately 681

constrain simple estimators of the artifact and the full Bayesian approach can exploit 682

the structure in the problem to obtain significant improvements. In closed-loop 683

experiments (discussed below in 4.3) experimental time is limited, and the ability to 684

analyze fewer trials without loss of accuracy opens up the possibility for new 685

experimental designs that may not have been otherwise feasible. That said, it is useful 686

to note that simplified estimators are available and accurate in regimes of high SNR and 687

where many trials are available. 688

4.2 Comparison to other methods 689

We showed that our method strongly outperforms the simple proposal by [20]. Although 690

this competing method was successful on its intended application, here it breaks down 691

since neural activity tends to appear rather deterministically (i.e., spikes occur with 692

very high probability and have low variability in time across trials) for stimuli of high 693

amplitude. This phenomenon is documented in S5, and can be also observed in Figure 2 694

(see traces in responses to the strongest stimulus). As a consequence, the mean-of-traces 695

estimator of the artifact also contains the neural activity that is being sought, leading to 696

a dramatic failure in detecting spikes, explaining the high false negative rate. 697

Two other prominent artifact cancellation methods exist, but neither applies directly 698

to our context. The method of [22] considers high-frequency stimulation (5khz). In that 699

context, since action potentials follow a much larger time course than of this very short 700

latency artifact, it is relatively easy to cancel the artifact and recover neural activity by 701

linearly interpolating the recordings whenever stimulation occurs. However, here, as 702

seen in Fig 2, the artifact’s time course can be larger than of spikes (especially at the 703

stimulating electrode). Additionally, the method of [21] has guarantees of success only 704

for latencies greater than 2ms after the onset of stimulus, much larger than the ones 705

addressed here (as small as 0.3 ms). Their 2ms threshold comes from the observation 706

that it is at that time when spikes and artifacts become spectrally separable. However, 707

in our case, at smaller latencies the artifact has a highly transient nature and there is 708

much diversity of artifact shapes (Fig 3) for different electrodes and pulse amplitudes. 709

This immediately excludes the possibility of considering an algorithm based on the 710

spectral differentiation between the spikes and the artifacts in the low-latency context 711

we care about. 712

4.3 Online data analysis, closed-loop experiments 713

The present findings open a real possibility for the development of closed-loop 714

experiments to achieve selective activation of neurons, [10, 45] featuring online data 715

analysis at a much larger scale scale than was previously possible. 716

We briefly discuss a hypothetical pipeline for a closed loop-experiment, involving 717

four steps: i) visual stimulation and subsequent spike sorting to identify neurons and 718

their EIs; ii) single-electrode stimulation scans to map the excitability of those neurons 719

with respect to each of the electrodes in the MEA; iii) additional multi-electrode 720
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stimulation to further explore ways to activate cells (optional); and iv) computation of 721

optimal stimulation patterns to match a desired spike train. 722

Step (iii) might be helpful to enhance combinatorial richness (i.e. the number of ways 723

in which ways neurons can be stimulated) if the available stimulus space resulting from 724

single-electrode stimulation does not lead to a complete selective activation of neurons 725

(in the retina, this will often be the case [44]). There is a caveat, though: allowing for 726

arbitrary stimulation patterns is not possible without further assumptions, since the 727

number of possible amplitude series, i.e., sequences of multi-dimensional stimuli with 728

increasing amplitude, increases exponentially with the number of stimulating electrodes. 729

We propose two solutions: 1) focus on patterns for which there is a clear underlying 730

biophysical interpretation in terms of interactions between the neural tissue and the 731

applied electrical field (e.g., the bipolar and local return stimulation patterns explored 732

here) so that the number of patterns remains bounded, and 2) relax the amplitude series 733

assumption; i.e. allows modes of data collection where recordings are not in response to 734

a sequence of stimulus with increasing strength. This would be possible if artifacts 735

obeyed linear superposition (i.e. the artifact to arbitrary stimulation breaks down into 736

the linear sum of the individual artifacts), since then we would simply need to save the 737

artifacts to single electrode stimulation, and subtract them as required from traces to 738

arbitrary stimuli. In S6 we provide some elementary evidence that supports this linear 739

superposition hypothesis in the simplest, two-electrode stimulation case. However, we 740

stress that further research is required to establish artifact linearity more generally. 741

4.4 Limitations 742

Here we comment on the current limitations of our method while suggesting some 743

possible extensions. 744

4.4.1 Beyond the retina: dealing with unavailability of electrical images 745

We stress the generalizability of our method to neural systems beyond the retina, as we 746

expect that the qualitative characteristics of this artifact, being a general consequence 747

of the electrical interactions between the neural tissue and the MEA [16], are replicable 748

up to different scales that can be accounted for by appropriate changes in the 749

hyperparameters. 750

In this work we have assumed that the EIs of the spiking neurons are available. At 751

least in the retina, this will normally be the case, as spontaneous firing is ubiquitous 752

among retinal ganglion cells [46]. Thus we can use this spontaneous activity to infer the 753

EIs or other cell properties (e.g. cell type) ‘in the dark’ [47]. If this is not the case, we 754

propose stimulation at low amplitudes so that the elicited cell activity is variable and 755

therefore an initial crude estimate of the artifact can be initialized by the simple mean 756

or median over many repetitions of the same stimulus. Then, after artifact subtraction 757

EIs could be estimated with standard spike sorting approaches. 758

More generally, this additional EI estimation step could be stated in terms of an 759

outer loop that iterates between EI estimation, given current artifact estimates, and 760

neural activity and artifact estimation given the current EI estimate — that is, our 761

algorithm. Furthermore, we notice the EI estimation step is essentially spike sorting; 762

therefore, there is room for the use of state-of-the-art [48,49] methods to achieve 763

efficient implementations. This outer loop would be especially helpful to enable the 764

online update of the EI in order to counteract the effect of tissue drift, or to correct 765

possible biases in estimates of the EI provided by visual stimulation [50,51], which could 766

lead to problematic changes in EI shape over the course of an experiment. We 767

acknowledge, however, that the implementation of this loop could significantly increase 768

the computational complexity of our algorithm, and deem as an open problem how to 769
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achieve a reduction in computational complexity so that online data analysis would still 770

be feasible. 771

4.4.2 Small spikes: accounting for correlated noise 772

We assumed that the noise process (ε) was uncorrelated in time and across electrodes, 773

and had a constant variance. This is certainly an overly crude assumption: noise in 774

recordings does exhibit strong spatiotemporal dependencies [12,52], and methods for 775

properly estimating these structured covariances have been proposed [12,53]. To relax 776

this assumption we can consider an extra, pre-whitening stage in the algorithm, where 777

traces are pre-multiplied by a suitable whitening matrix. This matrix can be estimated 778

by using stimulation-free data (e.g. while obtaining the EIs) as in [12]. The use of a 779

more accurate noise model might be helpful as a means to decrease the signal-to-noise 780

ratio under which the algorithm can operate: here, we discarded neurons whose EI peak 781

strength was smaller than 30 µ V (across all electrodes), as the guarantees for accurate 782

spike identification were lost in that case. If this threshold of 30 can be decreased then 783

cells with typically smaller spikes (e.g. retinal midget cells) could be better identified. 784

4.4.3 Saturation 785

Amplifier saturation is a common problem in electrical stimulation systems [14,16,19], 786

and arises when the actual voltage (comprising artifacts and neural activities) exceeds 787

the saturation limit of the stimulation hardware. Although in this work we have 788

considered stimulation regimes that did not lead to saturation, we emphasize that our 789

method would be helpful to deal with saturated traces as well: indeed, in opposition to 790

naive approaches that would lead to no other choice than throwing away entire 791

saturated recordings, our model-based approach enables a more efficient treatment of 792

saturation-corrupted data. We can understand this problem as an example of inference 793

in the context of partially missing observations, for which methods are already available 794

in the GP framework [32]. 795

Finally, notice the above rationale applies not only to saturation, but also to any 796

type of data corruption that could render the recordings at certain electrodes useless. 797

4.4.4 Automatic detection of failures and post-processing 798

Since errors cannot be fully avoided, in order to enhance confidence in neural activity 799

estimates provided by the algorithm in the absence of rapid human analysis, we propose 800

to consider diagnostic measures to flag suspicious situations that could be indicative of 801

an algorithmic failure. We consider two measures that arise from a careful analysis of 802

the underlying causes of discrepancies between algorithm and human annotation. 803

The first comes from the activation curves: at least in the retina, it has been widely 804

documented that these should be smoothly increasing functions of the stimulus 805

strength [25, 39]. Therefore, deviations from this expected behavior — e.g., non-smooth 806

activation curves characterized by sudden increases or drops in spiking probability — 807

are indicative of potential problems. For example, the outlier in Fig 6D and many of the 808

false positives in 6C are the result of an incorrectly inferred sudden increase of spiking 809

from one stimulus amplitude to the next (not shown). Moreover, often this sudden 810

increase is ultimately caused by a wrong extrapolation estimate, either with the 811

kernel-based or naive extrapolation estimators. Thus, the application of this simple 812

post-processing criterion (detection of sudden increases in spiking probability) would 813

mark this cell for revised analysis. 814

The second relates to the residuals, or the difference between observed data and the 815

sum of artifact and neural activity. Cases where those residuals are relatively large 816
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could indicate a failure in detecting spikes, perhaps due to a mismatch between a 817

mis-specified EI and observed data. Indeed, we observed many cases where results were 818

wrong because recordings contained activity that did not match any of the available 819

templates (not shown). In such cases it is hard even for a human to make a judgment, 820

as he or she has to carefully decide whether the observed activity corresponds to an 821

available inaccurate EI or rather, to a truly spiking neuron that was not identified 822

during the EI creation stage. We have reported these as errors, but we highlight they 823

were propagated from the previous spike sorting stage. Therefore, methods to quantify 824

the per-neuron credibility of the templates, such as those developed in [54], are of 825

crucial importance here to complement the above residual criterion. 826

In either case, the diagnostic measures can be implemented as an automatic 827

procedure based on goodness-of-fit statistics (e.g. the deviance [55]), or even simpler 828

quantities (e.g. an abrupt increase in firing probability between two consecutive values). 829

Moreover, we have showed in related work [56] that these automatic diagnostics can be 830

implemented in a further post-processing stage, where the artifact is locally re-sampled 831

or interpolated from the Gaussian model if a possible error has been diagnosed. 832

4.4.5 Larger and denser arrays, different time scales 833

In this work, the computationally limiting factor is E, the number of electrodes, as this 834

dominates the (cubic) computational time of the GP inference steps. Recent advances 835

in the scalable GP literature [57–59] should be useful for extending our methods to even 836

larger arrays as needed; we plan to pursue these extensions in future work. 837

Finally, we also note that an extension to denser arrays (e.g. [60]) is immediately 838

available within our framework: indeed, preliminary results with denser arrays (30µm 839

spacing between electrodes, not shown) revealed that due to the increased proximity 840

between the stimulating electrode and its neighboring electrodes, those electrodes also 841

possessed large artifacts and were subject to the effect of breakpoints. Then, we can 842

proceed exactly as we did in 2.5.2 for local return, by considering different models for 843

the stimulating electrode and its neighbors. 844

5 Conclusion 845

We have developed a method to automate spike sorting in electrical stimulation 846

experiments using large MEAs, where artifacts are a concern. We believe our 847

developments will be useful to enable closed-loop neural stimulation at a much larger 848

scale than was previously possible, and to enhance the ability to actively control neural 849

activity. Also, our algorithm has the potential to constitute an important computational 850

substrate for the development of future neural prostheses, particularly epi-retinal 851

prostheses. We have made available, in the first author’s website, MATLAB code that 852

contains an example applying the algorithm to process one of the datasets analyzed in 853

this paper. 854
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S1 Text 1065

Experimental procedures 1066

All electrophysiology data were recorded from primate retinas isolated and mounted on 1067

an array of extracellular electrodes as described in previously published literature [39]. 1068

Eyes were obtained from terminally anesthetized macaque monkeys (Macaca species, 1069

either sex) used for experiments in other labs, in accordance with IACUC guidelines for 1070

the care and use of animals. After enucleation, the eyes were hemisected and the 1071

vitreous humor was removed. The hemisected eye cups containing the retinas were 1072

stored in oxygenated bicarbonate-buffered Ames solution (Sigma) at room temperature 1073

during transport (up to 2 hours) back to the lab. Patches of intact retina 3mm in 1074

diameter were isolated and placed retinal ganglion cell-side down on a 512-electrode 1075

MEA. Throughout the experiments, retinas were superfused with oxygenated 1076

bicarbonate-buffered Ames solution at 35◦C. 1077

In all experiments the raw voltage signals from each electrode were amplified, 1078

filtered, and multiplexed with custom circuitry [16,61]. Electrodes had diameters of 1079

10-15 µm and were separated by 60 µm. Data were acquired at 20 kHz on all electrodes 1080

and bandpass filtered between 43 and 5000 Hz. Charge-balanced, triphasic current 1081

pulses with relative amplitudes of 2:-3:1 and phase widths of 50 µs were applied to each 1082

electrode, and reported current amplitudes correspond to the charge of the second, 1083

cathodal, phase. A platinum ground wire circling the perfusion chamber served as a 1084

distant ground in all one-electrode stimulation experiments. In some experiments, a 1 1085

mM tetrodotoxin (TTX) solution in Ames solution was perfused into the retina to 1086

inhibit all action potentials in order to directly measure the stimulus artifact in a retinal 1087

preparation. 1088

Obtaining the EIs 1089

Retinal ganglion cells (RGCs) were identified in the absence of electrical stimulation 1090

using previously described spike sorting techniques [27] and classified into types based 1091

on how they respond to a visual white noise stimulus projected onto the retina [62,63]. 1092

For each RGC, thousands of voltage waveforms were averaged on all electrodes, 1093

resulting in a spatiotemporal voltage signature specific to that RGC. These signatures 1094

are used as templates in our sorting algorithm. 1095

Estimation of mean 1096

Regarding the mean parameter of the artifact kernels, µ, we follow the standard in the 1097

applied statistics community: µ is a centering parameter and all the non-random 1098

aspects of data should be captured by it. In our case this component is given by what 1099

we call the switching artifact, a waveform A0 = A0(e, t) that is present regardless of the 1100

amplitude of stimulation. We estimate µ̂ by taking the mean of recordings at the lowest 1101

amplitude of stimulation (see S1 Fig for details on the characteristics of the switching 1102

artifact, and to see the effect of this mean-subtraction stage on recordings). 1103
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Dataset details 1104

Real data 1105

Population statistics, data selection 1106

In total, we analyzed 4,045 amplitude series coming from thirteen retinal preparations, 1107

giving rise to 1,713,223 trials. These amplitude series are the ones for which reliable 1108

human curated data was available. The human analysis of these datasets was required 1109

by various previous research projects (see for example [28,41,44], where the human 1110

analysis procedure is explained). In Table 1 we specify details of the thirteen retinal 1111

preparations for which human annotation (HA) was available. In some preparations (e.g. 1112

2012-09-24) there is human annotated data from multiple stimulation modalities. Also, 1113

in Table 2 we specify the population statistics of activation, both in terms of spikes and 1114

activation in amplitude series. 1115

For each preparation and stimulus modality, there were characteristic numbers of 1116

stimulation patterns and neurons being analyzed. Usually, given a stimulating electrode, 1117

human annotation was available for only one, or at most a few neurons (e.g. two or 1118

three). However, we considered the totality of EIs of neurons that had strong enough 1119

signals (overall EI peak strength greater than 30 µV and 8µV at at least one 1120

stimulating electrode) but restricted performance computations to the subsets of 1121

neurons for which human annotation was available. 1122

Bundle detection 1123

Importantly, we restricted our analysis to the stimulation amplitudes that did not lead 1124

to gross contamination of recordings due to the activation of entire axonal bundles in 1125

the retina (for a recent account of this pervasive phenomenon see [44]), as this would 1126

lead to a situation that is not accounted for by our model. For each amplitude series 1127

with available human annotation, we determined the maximum amplitude of 1128

stimulation that did not lead to activation of a bundle by looking for ‘hot’ electrodes, 1129

distant from the stimulating one, exhibiting high temporal variance in the artifact (here, 1130

for simplicity the artifact was estimated by the simple average over traces). Then, we 1131

did not consider any amplitude of stimulation beyond the onset of axonal bundle 1132

activation, the first amplitude where we identified such hot electrodes. We found that a 1133

robust method for estimating this threshold (equivalently, the presence of hot 1134

electrodes) was based on a Kolmogorov-Smirnov goodness-of-fit test on the empirical 1135

distribution of the (log) temporal variances of the artifact on distant electrodes, with 1136

the Gaussianity null hypothesis. The appearance of hot electrodes created a new mode 1137

in the distribution, leading to a violation of the normality assumption. We found that 1138

by setting the cut-off p-value for this test as 10−12 we achieved the best match with 1139

axonal bundle activation onsets estimated by human experts (not shown). 1140

Refractory period 1141

We considered time windows of 2ms (T = 40, at a 20khz sampling rate), which is 1142

smaller than the usual refractory periods of retinal ganglion cells [64, 65], and which in 1143

practice did not lead to multiple neural events for the same neuron on the same trial. 1144

Also, spikes were sought in the interval [0.35, 1.35] ms following the onset of the 150 µs 1145

triphasic stimulus. This interval encompasses the range were most of the artifact 1146

variation occurs; that is, where non trivial artifact cancellation methods are required. 1147
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Parallel analysis 1148

For the analysis in Fig 6I we reported times and their variability — the experiment was 1149

repeated ten times — for the analysis of the eight single-electrode scans for which for 1150

which some human-curated data was available (see Table 1 S1 Text for details on those 1151

retinal preparations). These experiments were done on an Intel Xeon E5-2695V2 1152

12C/24T 2.4Ghz 8.0GT/s 30mb CPU, with 20 threads running in parallel. 1153

Preparation
ID

Type #Neurons in
preparation

#Neurons
with HA

#Trials #Amplitude
series
with HA

# Trials
per stimu-
lus

2012-09-24-3 S.E. 559 36 400, 805 333 51

2014-09-10-0 S.E. 378 5 40, 802 33 48

2014-11-05-3 S.E. 322 19 37, 940 72 21

2014-11-05-8 S.E. 277 19 37, 644 71 21

2014-11-24-2 S.E. 439 11 36, 078 94 21

2015-04-09-2 S.E. 252 6 31, 775 49 25

2015-04-14-0 S.E. 623 20 86, 655 138 25
2015-05-27-0 S.E. 332 8 30, 368 38 25
Total S.E. 3,182 124 702, 067 828 n.a.

2012-09-24-3 B. 559 34 187, 612 248 30

2012-09-27-4 B. 482 17 170, 787 184 50

2014-11-24-2 B. 439 9 32, 395 70 30

2015-03-09-0 B. 409 6 67, 332 58 42

2015-04-09-2 B. 252 7 83, 143 79 42

2015-05-27-0 B. 332 8 65, 023 42 50

Total B. 2,473 81 606, 292 681 n.a.

2014-11-24-2 L.R. 439 14 43, 822 104 21

2015-04-09-2 L.R. 252 4 15, 624 27 25

2015-04-09-3 L.R. 569 2 9, 575 15 25

2015-04-14-0 L.R. 623 25 60, 597 98 25

2015-09-23-2 L.R. 686 28 28, 574 56 25

Total L.R. 2,569 73 158, 192 300 n.a.

2015-05-27-0 A. 332 4 246, 672 2, 236 10

Total A. 332 4 246, 672 2, 236 n.a.

Grand Total All 4443 282 1, 713, 223 4, 045 n.a.

Table 1. Details of the retinal preparations analyzed for each type of stimulation: Single
Electrode (S.E.), Bipolar(B.), Local Return (L.R.) and Arbitrary (A). stimulation

Simulated data 1154

Simulated data was created by artificially adding neural activity to TTX recordings, in 1155

an attempt to faithful mimic the phenomena observed in the real case [26,39]. 1156

Specifically, we considered 83 neurons (the largest subset of the ones targeted in the 1157

single-electrode real data analysis so that their EIs did not heavily overlap) and 1158
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Trial based Amplitude series based

Type of stim-
ulation

#Trials #Trials with
spikes

#Amplitude
series

#Amplitude series
with activation

Single Elec-
trode

702,067 15,830 828 36

Bipolar 606,292 26,535 681 100
Local Return 158,192 3,564 300 11
Arbitrary 246,672 16,219 2,236 293

All 1,713,223 62,148 4,045 440

Table 2. Population frequency of activation events, for the trial-by-trial and amplitude-
series based analysis.

recordings to 380 stimulating electrodes (one at a time) in a TTX experiment with 1159

nj = 6 trials to J = 35 different stimuli between 0.1 and 3.5µA. Then, given a single 1160

stimulating electrode we sampled activation curves for all the neurons whose EI at the 1161

stimulating electrode was strong enough, indicating proximity. Activation curves were 1162

parametrized by their thresholds, chosen uniformly in the stimulation range, and their 1163

steepness, also sampled uniformly. Spikes of those neurons were then sampled from 1164

these activation curves with latencies chosen so they would match the human spike 1165

sorting results (summarized in S4 Fig) in the following two aspects: 1) they had same 1166

median latency as a function of the distance between the neuron and stimulating 1167

electrodes (spiking of nearby neurons has shorter latency) and 2) they had same 1168

variance in spike latency as a function of spike probability (in the steady spiking 1169

regimes, where the probability of firing is high, latencies are much less variable). Also, 1170

to obtain better estimates of false positive rates, we fed the algorithm with ‘dummy’ 1171

neurons (three per amplitude series, with EIs chosen at random from the available set of 1172

remaining neurons) with no spiking at all. 1173

All the reported results involving simulations are based on 5000 samples of 1174

amplitude series following the above procedure. 1175
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S2 Text 1176

Here we review the main algebraic properties, summarized in [34], that we implement to
achieve fast kernel computations. In all of the below, Kd, (d = 1, . . . , D) are square
invertible matrices with dimensions nd.

Property 0. Associativity. The Kronecker product is associative.

(K1 ⊗K2)⊗K3 = K1 ⊗ (K2 ⊗K3) .

Property 1. Inversion of the Kronecker product. The inverse of a Kronecker product
equals the product of their inverses:

(K1 ⊗K2)
−1

= K−11 ⊗K−12 .

Property 2. Kronecker product eigen-decomposition. If

K1 = Q1Λ1Q
>
1 ,K2 = Q2Λ2Q

>
2 ,

then
K1 ⊗K2 = QΛQ>

where
Q = Q1 ⊗Q2,Λ = Λ1 ⊗ Λ2.

In other words, the eigen-decomposition of a Kronecker product corresponds to the
product of their eigen-decompositions.

Property 3. Trace of a Kronecker product. The trace of a Kronecker product is the
product of the individual traces:

tr(K1 ⊗K2) = tr(K1)tr(K2).

Property 4. Log determinant of the Kronecker product. The log determinant of the
Kronecker product is a weighted sum of the individual log determinants, and the
weights are the dimensions:

log |K1 ⊗K2| = n1 log |K1|+ n2 log |K2|.

Property 5. Matrix product between a Kronecker product and a vector. Let v be a
N =

∏D
d=1 nd dimensional vector, with each nd of comparable magnitude. Then

D⊗
d=1

Kdv,

can be computed efficiently in O(DN (D+1)/D) space and time. For implementation 1177

details see algorithm 2 in [33], and our code. 1178
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S1 Fig 1179

A B

C

D

Fig 1. A Raw artifact traces at the smallest amplitude of stimulation (0.1 µA),
considered an estimate of µ, the switching artifact. B Raw artifact traces at 0.99 µA of
stimulus. C Difference. Notice that the main text refers to this already mean-subtracted
artifact. D) Left : Raw artifact at all different stimuli for a non-stimulating electrode
(inset, switching artifact). Right : Differences.
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S2 Fig 1180
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Fig 2. Population Results (log scale) including the mean-of-traces estimator proposed
in [20] and our simplified estimator. These results complement figure 6A, by reporting
differences by type of estimator, and also by reporting total errors.
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Fig 3. Comparison of simplified and kernel-based estimator in the analysis
of perturbations to real data. These results complement figure 6B, by reporting
false positive and negative rates at different conditions for trial subsampling (top),
amplitude subsampling (middle) and noise injection (bottom). Only for single electrode
stimulation. Notice that for trial sub-sampling and noise injection, results may vary
from one experiment to another.
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S4 Fig 1182

Spiking as a function of EI strength

Fig 4. Distribution of EI strength on the stimulating electrode among spike events, both
for somatic and axonal (distant) stimulation. For somatic stimulation inset corresponds
to a zoom to smallest voltages. For EI peak strengths smaller than 10µV spike is not
observed (based on manual analysis).
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Population-based estimates of latency

Fig 5. Population based estimates of the mean (top) and standard deviation (bottom)
of spike latency, as a function of probability of spiking (left) and stimulus amplitude
(right). This supports the observation that when activation is reached (high probability
of spike) variability of latencies reaches its minimum.
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Fig 6. The linear superposition of artifacts provides a reasonable phenomeno-
logical model for two electrode stimulation. Observations are based on a single
retinal preparation (TTX). A) example of observed linearity: A1-A2 ) artifacts for single
electrode stimulation at two different stimulating electrodes with same strength (3.1 µ A)
and opposite polarities. A3 ) corresponding two-electrode stimulation. A4 ) sum of A1 )
and A2 ). A5 ) difference between A3 ) and A4 ). A6 ) for reference, the EI of a typical
neuron in shown in the same scale. B) population-based generalization of the finding in
A) from thousands of stimulating electrode pairs, collapsing stimulating amplitudes and
electrodes. B1-B2 ) scatterplots of the maximum strength (over electrodes and time) of
two-electrode stimulation artifacts at different stimulus strengths (strength of the color)
before and after subtracting the sum of single electrode artifacts. Points in the gray-scale
are the ones shown in A). B3 histogram of log peak EI of neurons in the array. In the
light of B3, B1,B2 show in the vast majority of artifacts of magnitude comparable with
than of EI ( 99% of points above the diagonal and outside the log-strength 2.5 µV boxes
in B1,B2 ) subtracting the linear sum of individual artifacts is a sensible choice as it
decreases its strength.
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