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ABSTRACT 13 

The degree to which adaptation in recent human evolution shapes genetic variation remains 14 

controversial. This is in part due to the limited evidence in humans for classic “hard selective 15 

sweeps,” wherein a novel beneficial mutation rapidly sweeps through a population to fixation. 16 

However, positive selection may often proceed via “soft sweeps” acting on mutations already 17 

present within a population. Here we examine recent positive selection across six human 18 

populations using a powerful machine learning approach that is sensitive to both hard and soft 19 

sweeps. We found evidence that soft sweeps are widespread and account for the vast majority of 20 

recent human adaptation. Surprisingly, our results also suggest that linked positive selection 21 

affects patterns of variation across much of the genome, and may increase the frequencies of 22 

deleterious mutations. Our results also reveal insights into the role of sexual selection, cancer 23 

risk, and central nervous system development in recent human evolution.  24 

 25 

INTRODUCTION 26 

Spurred by the ongoing revolution in DNA sequencing capacity, human population genetic 27 

datasets have grown exponentially in size over the past five years (Auton et al. 2015; UK10K 28 

Consortium 2015). Such growth enables insight into the evolutionary histories of human 29 

populations with hitherto unrivaled precision. A central question in the study of human evolution 30 

is the extent to which adaptation has driven recent evolution and affected patterns of genetic 31 

diversity (Akey 2009). This can be addressed by scanning genomic data for evidence of selective 32 

sweeps, wherein a beneficial mutation is favored by natural selection and therefore rapidly 33 

increases in frequency within a population. Such selective sweeps leave a characteristic footprint 34 

in variation; they create a valley of diversity around the selected site (Maynard Smith and Haigh 35 
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1974; Kaplan et al. 1989; Stephan et al. 1992), a deficit of both low- and high-frequency derived 36 

alleles at linked sites (Fay and Wu 2000), and an increase in linkage disequilibrium in flanking 37 

regions (Kim and Nielsen 2004). Thus there are multiple population genetic signals to exploit. 38 

Accordingly numerous theoretical and methodological advances (Kaplan et al. 1989; Stephan et 39 

al. 1992; Fu 1997; Kim and Stephan 2002; Nielsen et al. 2005b; Voight et al. 2006) in the study 40 

of selective sweeps have given researchers the ability to uncover the genetic basis of adaptation 41 

on a genome-wide scale. 42 

 There are two complimentary approaches to studying the impact of adaptive evolution on 43 

genetic variation. The first approach aims to infer genome-wide rates of adaptive evolution by 44 

estimating the mean effects of selective sweeps across the genome (Wiehe and Stephan 1993; 45 

Kern et al. 2002; Andolfatto 2007; Jensen et al. 2008; Hernandez et al. 2011; Sattath et al. 2011). 46 

Such approaches may estimate the rates of sweeps or their effects with respect to the genomic 47 

background, but do not focus on the targets of sweeps themselves. An alternative approach is to 48 

focus on finding individual selective sweeps throughout the genome, and in so doing characterize 49 

specific cases of adaptation with hopes of gaining general insight into the adaptive process 50 

(Sabeti et al. 2002; Voight et al. 2006; Williamson et al. 2007). The search for selective sweeps 51 

has shed light into the recent evolutionary histories of natural populations, and has shown a 52 

pervasive impact of adaptive evolution on polymorphism in some species such as Drosophila 53 

melanogaster (Begun et al. 2007; Macpherson et al. 2007; Langley et al. 2012; Lee et al. 2013; 54 

Garud et al. 2015). In humans, the picture remains less clear: while scans for selective sweeps 55 

have discovered numerous compelling candidates for strong positive selection (e.g. Ruwende et 56 

al. 1995; Stephens et al. 1998; Tishkoff et al. 2007; Bryk et al. 2008; Huerta-Sánchez et al. 57 

2014), some recent studies have suggested that the impact of adaptation on patterns of variation 58 
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genome-wide is quite limited (Hernandez et al. 2011; Lohmueller et al. 2011). Conversely, Enard 59 

et al. (2014) argue that the genome-wide reduction in diversity around substitutions is driven in 60 

part by positive selection. 61 

One possible explanation for the difficulty in characterizing the contributions of adaptive 62 

and non-adaptive forces in human populations is that genetic hitchhiking effects may be muted 63 

by human demographic history. Many human populations appear to have experienced 64 

bottlenecks and/or recent growth (Marth et al. 2004; Fagundes et al. 2007; Gravel et al. 2011; 65 

Auton et al. 2015), which cause much of the genome to resemble selective sweeps (Nielsen et al. 66 

2005b). Moreover, positive selection has historically been modeled as the process of a de novo 67 

beneficial mutation rapidly sweeping to fixation, a process now referred to as a hard sweep. 68 

However selection may act on previously segregating neutral or weakly deleterious variants (Orr 69 

and Betancourt 2001; Innan and Kim 2004). Selection on standing variation will produce 70 

qualitatively different skews in linkage disequilibrium and allele frequencies, along with a 71 

shallower valley in diversity (Hermisson and Pennings 2005; Przeworski et al. 2005; Berg and 72 

Coop 2015; Schrider et al. 2015)—such an event is thus referred to as a soft sweep. If selection 73 

typically proceeds through soft sweeps, as may be the case in Drosophila (Garud et al. 2015), 74 

then many sweeps may have been missed by previous scans that were designed to detect 75 

signatures produced under a hard sweep model. 76 

We sought to address the controversy over the impact of adaptation on human genomic 77 

variation by conducting a genome-wide scan for both hard and soft selective sweeps across 78 

human populations. We previously developed S/HIC (Soft/Hard Inference through 79 

Classification), a machine learning method capable of detecting completed sweeps and inferring 80 

their mode of selection with unparalleled accuracy and robustness to non-equilibrium 81 
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demography (Schrider and Kern 2016). Here we apply S/HIC to uncover hard and soft sweeps in 82 

six population samples from the 1000 Genomes Project (Auton et al. 2015), thereby performing 83 

the most comprehensive investigation of completed selective sweeps in humans to date. 84 

Surprisingly, our results suggest that patterns of polymorphism across much of the human 85 

genome may be affected by linked positive selection—primarily soft sweeps. Moreover, we find 86 

evidence that the mode of selection differs substantially across populations, with non-African 87 

populations adapting via hard sweeps to a much greater extent than African populations. Finally, 88 

we investigate the biological targets of selection in recent human evolution, with particular 89 

processes such as immunity, cancer, and sexual reproduction playing outsized roles. 90 

 91 

RESULTS 92 

We set out to detect completed hard and soft selective sweeps in six populations from Phase 3 of 93 

the 1000 Genomes Project: two West-African populations (YRI and GWD from Yoruba and The 94 

Gambia, respectively), one East-African population (LWK from Kenya), one European 95 

population (CEU, from Utah, USA), one East Asian population (JPT from Japan), and one from 96 

the Americas (PEL from Peru). For each population we trained and applied a S/HIC classifier to 97 

identify hard and soft selective sweeps across the genome (Methods), distinguishing them from 98 

neutrally evolving regions as well as those linked to sweeps (Schrider and Kern 2016). Briefly, 99 

S/HIC is a machine learning method that leverages spatial patterns of a variety of statistics across 100 

a large genomic window in order to infer the mode of evolution at the center of the window. We 101 

previously showed that S/HIC is exceptionally robust to the confounding effect of linked 102 

selection (e.g. the "soft shoulder" effect where regions linked to hard sweeps resemble soft 103 

sweeps; Schrider et al. 2015), as well as non-equilibrium demographic histories, making it well 104 
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suited for a survey of positive selection in humans. We also assessed the accuracy of our 105 

classifiers on simulated test data with the same demographic history used to generate training 106 

data, finding that S/HIC achieved good power for each demographic history, with somewhat 107 

higher accuracy for histories inferred from the African than non-African populations 108 

(supplementary fig. S1). 109 

We also performed forward simulations under the GWD and JPT models (Methods) in 110 

order to assess whether purifying selection and its effect on variation at linked unselected sites 111 

(i.e. background selection Charlesworth et al. 1993) could result in false sweep calls. The results 112 

of these simulations suggest that S/HIC’s false positive rate is essentially unaffected by these 113 

forces (supplementary fig. S1). Note that we exposed each classifier to a wide range of mutation 114 

and recombination rates (see Methods) during training (and testing) in order to improve (and 115 

assess) our robustness to variation in these rates across the genome. We also examined values of 116 

Garud et al.’s (2015) H12 and H2/H1 within windows classified by S/HIC as hard, soft, or neutral, 117 

noting that as expected, H12 is higher in sweeps than neutral regions, while H2/H1 is higher for 118 

soft sweeps than hard sweeps (supplementary fig. S2). Below, we begin with a brief overview of 119 

the broad patterns of adaptation we observe across populations, before discussing genomic 120 

features and biological pathways with a strong enrichment of selective sweeps, as well as 121 

compelling novel candidates for recently completed selective sweeps. 122 

 123 

The majority of sweeps in humans resemble selection on standing variation 124 

We found a total of 1,927 distinct selective sweeps merged across all six populations (Methods). 125 

190 (9.9%) of these are present in all populations, 59 (3.1%) are shared among the African 126 

populations, 71 (3.7%) are shared among the non-African populations, and 701 (36.4%) are 127 
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population-specific (supplementary table S1). The remaining 906 (47.0%) sweeps were present 128 

in more than one population but do not fit into any of the categories above. We observe that 129 

across populations, the vast majority (1,776, or 92.2%) of sweeps were classified as soft, and 130 

note that this trend does not change qualitatively as we impose increasingly strict posterior 131 

probability thresholds before assigning a class label to a given window (supplementary table S2; 132 

Methods). These events may represent soft sweeps on standing genetic variants that our classifier 133 

was trained to detect, but we note that a similar signature can be created by a soft sweep resulting 134 

from recurrent origination of the adaptive allele(s), or by a de novo mutation that has been placed 135 

onto multiple haplotypes by allelic gene conversion events (see Discussion). 136 

Although hard sweeps appear to be quite rare globally, the fraction of hard sweeps is 137 

significantly higher in non-African than African populations (table 1). For example, when 138 

comparing PEL to GWD, we observe a significantly higher fraction of hard sweeps in PEL 139 

(4.7% versus 1.6%; p=0.05). For each other African vs. non-African comparison we see an even 140 

greater (and more significant) disparity. Further, we observe a suggestive correlation between the 141 

fraction of sweeps in a population that were classified as soft and the harmonic mean of its 142 

population size within the last 4N generations (Pearson’s ρ=-0.96; Methods). Though taken at 143 

face value this correlation appears to be highly significant, we note that due to the six 144 

populations’ shared evolutionary history a statistical test of this correlation would be invalid. 145 

Comparing our results to those of previous scans we find that 519 of S/HIC’s sweep calls 146 

(26.9%) have previously been identified according to dbPSHP, a database of candidate regions 147 

for recent positive selection across human populations (Li et al. 2013). This accounts for 10.9% 148 

of the loci in the dbPSHP set (ignoring regions not classified by S/HIC). The remaining 1,408 149 

sweeps called by S/HIC (73.1% of calls) represent potentially novel selective sweeps. There are 150 
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several possible explanations for the modest overlap between our set of sweep candidates and 151 

those in dbPSHP. First, the sweep candidates in dbPSHP have been identified by a variety of 152 

methods, some of which are designed to detect selective scenarios other than completed sweeps 153 

(e.g. partial sweeps, spatially varying selection). Second, when comparing results from methods 154 

designed to detect the same type of sweeps, the intersection between studies is often fairly small 155 

(Akey 2009). Although most scans undoubtedly recover a large number of true selective sweeps, 156 

different methods may produce different false positives and false negatives, resulting in 157 

imperfect concordance between scans. 158 

 159 

Selective sweeps preferentially target genes involved in cancer and viral infection 160 

Examining the locations of selective sweeps across the genome, we find that regions classified as 161 

selective sweeps are significantly overrepresented for both coding sequence and untranslated 162 

regions (q<0.05 in several populations for hard sweeps, and each population for putative soft 163 

sweeps; fig. 1A, B; supplementary table S3), relative to data sets with permuted classifications 164 

(see Methods). Enrichment for transcription factor binding sites was less pronounced, and only 165 

significant in soft sweeps for the three African populations along with PEL. The most striking 166 

result we observed was a dramatic enrichment of sweep windows for mutations in the COSMIC 167 

data set of somatic mutations that have been observed in cancer cells (Forbes et al. 2015) and 168 

may therefore play a role in tumor suppression/progression. Averaged across populations, the 169 

number of COSMIC mutations found in soft sweeps represents a 3.7-fold increase relative to that 170 

observed in permuted data sets; this enrichment was significant in each population, and peaked at 171 

4.5-fold in PEL. For hard sweeps, this enrichment was 12-fold on average, reaching as high as 172 

21-fold in CEU, though this was the only population for which the enrichment was statistically 173 
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significant. We also observed a sizeable overrepresentation of genes encoding virus-interacting 174 

proteins (VIPs) curated by (Enard et al. 2016) in soft sweeps, with a 1.9-fold increase relative to 175 

permuted sets (averaged across populations). VIPs show a similar magnitude of enrichment in 176 

hard sweeps for some populations, but does not achieve significance at q<0.05. 177 

 178 

Selective sweeps increase linked deleterious variation 179 

Because S/HIC not only detects selective sweeps, but also attempts to identify regions of the 180 

genome that appear to be linked to recent sweeps, our classifications allow us to examine the 181 

effect of linked selection in a principled way. We found that while a minority of genomic 182 

windows were classified as selective sweeps (7.6% on average across all populations), a large 183 

fraction of windows were classified as linked to a completed selected sweep, either hard or soft 184 

(56.4% on average). These estimates range from 41.5% in JPT to 74.0% in GWD (fig. 2). 185 

 We also asked whether selective sweeps have a detectable impact on linked deleterious 186 

variation. As beneficial alleles increase in frequency in a population, they may carry along with 187 

them linked deleterious polymorphisms as hitchhikers, potentially increasing the frequency of 188 

deleterious variants over what would be expected given mutation-selection-drift equilibrium 189 

(Birky and Walsh 1988; Hartfield and Otto 2011). To this end we asked whether relatively 190 

common candidate deleterious mutations were enriched in regions classified as either hard-191 

linked or soft-linked. Indeed, we observed a fairly subtle but significant overrepresentation of 192 

SNPs with derived allele frequencies of at least 0.01 but predicted to be damaging by SIFT 193 

(Kumar et al. 2009) in both the hard-linked (mean enrichment across populations: 1.3-fold) and 194 

soft-linked (mean enrichment: 1.1-fold) classes for most populations (fig. 1C, D; supplementary 195 

table S3). We find a similar enrichment in these sweep-linked classes of common SNPs in 196 
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regions inferred to be conserved across primates according to phastCons (Siepel et al. 2005). 197 

Phenotype-associated variants from the GWAS catalogue (Welter et al. 2014) were also 198 

significantly overrepresented sweep-linked regions in several populations (Fig 1C, D). 199 

 200 

Sexual reproduction, the central nervous system, and immunity are targets of recent 201 

sweeps 202 

In order to determine if positive selection preferentially acts on particular organismal functions, 203 

we asked which Gene Ontology (GO) terms were enriched in our sweep calls relative to the 204 

permuted data (Methods). In soft sweeps, we found a sizeable and significant enrichment 205 

(q<0.05) of terms related to sperm development, structure, and function. For example, 206 

“spermatogenesis” (4.4-fold enrichment averaged across populations), and “sperm-egg 207 

recognition” (3.9-fold enrichment on average) were enriched in soft sweeps in several 208 

populations. We also observed an overrepresentation of genes involved in the “glutamate 209 

receptor signaling pathway” in our soft sweep sets for each population (4-fold mean enrichment). 210 

Glutamate receptors are the primary excitatory neurotransmitter in the central nervous system, 211 

and important for both proper brain development and function (Luján et al. 2005). Indeed, soft 212 

sweeps are enriched for “central nervous system development” in multiple populations (1.6-fold 213 

mean enrichment). Numerous GO terms related to immune response, especially adaptive 214 

immunity, as well as KEGG pathways related to immunity and cancer progression/tumor 215 

suppression were also significantly enriched among soft sweeps (see supplementary table S4 for 216 

full list). 217 

 218 

Positive selection on interacting gene pairs 219 
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We examined three types of gene interaction networks: protein-protein interactions (PPIs), 220 

transcription factor-target gene interactions, and genetic interactions where one gene modifies 221 

the effect of another (Methods). Interestingly, we observed a dramatic enrichment of sweeps in 222 

genes that encode proteins that physically interact with one another (fig. 3A–B): if a gene 223 

overlapped a window classified as a soft sweep, genes that interact with this gene were on 224 

average 3.3 times more likely to overlap a putative soft sweep than expected by chance 225 

(p<0.0001 for each population; fig. 3B). Despite the smaller number of candidate regions, we 226 

found a significant enrichment for PPIs in hard sweeps, though this was only significant in for 227 

non-African populations (4.0-fold enrichment averaged across populations; p<0.05 in CEU, JPT, 228 

YRI; fig. 3A). For transcription factor-target interactions, we observe no overrepresentation of 229 

soft sweeps, but a significant enrichment of hard sweeps in non-African populations (p<0.05 for 230 

each; 8.5-fold enrichment on average; fig. 3C–D). There were no populations exhibiting an 231 

overrepresentation of pairs of genes with genetic interactions and experiencing sweeps of either 232 

type (fig. 3E–F). 233 

 234 

Examples of novel selective sweep candidates 235 

In this section we describe several sweep candidates that exemplify the set of sweeps, and 236 

functions of putative targets of selection, that we were able to detect. As discussed above, our 237 

sets of sweeps were highly enriched for glutamate receptor-encoding genes. In supplementary 238 

fig. S3, we show a sweep candidate region on chromosome 4 that encompasses the glutamate 239 

receptor gene GRIA2. This sweep was previously detected in non-African populations by 240 

Pickrell et al. (2009), who did not find any evidence of selection in Africa. However, S/HIC 241 

infers that this region has experienced a soft sweep that is found in GWD and YRI, as well as the 242 
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non-African populations. Consistent with this, Europeans, Asians, and African populations show 243 

a reduction in π, a trough in Tajima’s D (Tajima 1989), and a peak in Nielsen et al.’s 244 

SweepFinder composite likelihood ratio (CLR) test statistic, which captures regions that appear 245 

to be at the epicenter of the spatial skew in the SFS expected around sweeps (Nielsen et al. 246 

2005b). Intriguingly, GRIA2 interacts with the GRID2 glutamate receptor gene (Kohda et al. 247 

2003), which itself is classified as a soft sweep in CEU, LWK, PEL, and GWD. The remaining 248 

glutamate receptors overlapping identified sweeps are GRIA4, GRID1, GRIK1, GRIK3, GRM2, 249 

and GRM7. Of these genes, GRIA4 and GRID2 were shown by Liu et al. (2012) to have evolved 250 

a human-specific developmental expression profile. 251 

 Fig. 4 shows a region on chromosome 9 that exhibits strong evidence of a previously 252 

undetected hard sweep in each of our six populations. This region contains several members of 253 

the spermatogenesis associated 31 gene family: SPATA31B1, SPATA31D1, SPATA31D3, and 254 

SPATA31D4. Across populations this region shows dramatic valleys in π and Tajima’s D, as well 255 

as an elevated CLR near the center of the sweep window. These genes are highly testis-specific 256 

according to data from the GTEx project (Lonsdale et al. 2013), and male mice are infertile when 257 

lacking Spata31, another member of these gene family (Wu et al. 2015). fig. 4 also shows that 258 

each of these genes overlaps a cluster of non-repetitive piRNAs (data from piRBase; Zhang et al. 259 

2014). Also near this region is DDX10P2, which GENCODE annotates as a processed 260 

pseudogene (Pei et al. 2012). DDX10P2, which is located at the center of the CLR peak for CEU, 261 

is expressed with a high degree of testis-specificity according to GTEx data, similar to the 262 

neighboring SPATA31 genes. A BLAT search (Kent 2002) revealed that this putative 263 

pseudogene exhibits 99.5% sequence identity to the orthologous sequence in chimpanzees. The 264 
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parent gene of DDX10P2, DDX10, is expressed in many tissues, but shows highest expression in 265 

the testis. 266 

 On chromosome 11 we detected what appear to be several novel soft sweeps present in 267 

and upstream of CADM1 (cell adhesion molecule 1; fig. 5), one of which is present in each 268 

population. This gene is essential for spermatogenesis in mice (Van Der Weyden et al. 2006), 269 

and is also a tumor suppressor that is hypermethelated in various cancers (Kuramochi et al. 2001; 270 

Allinen et al. 2002; Fukuhara et al. 2002), as it works with the adaptive immune system to 271 

suppress metastasis (Faraji et al. 2012). CADM1 is also active in the brain where it is involved in 272 

synaptic adhesion and has been linked to autism (Zhiling et al. 2008; Fujita et al. 2010). CADM1 273 

forms a complex with two other genes: the GABA receptor GABBR2, which has a soft sweep in 274 

YRI, and MUPP1, which has a soft sweep found in each population; this complex appears to 275 

localize to Purkinje cell dendrites (Fujita et al. 2012). Thus, this example encompasses many of 276 

the functions that we find are highly enriched across our sweep sets: adaptation in multiple 277 

interacting genes (one of which is a neurotransmitter), spermatogenesis, and tumor suppression 278 

(via adaptive immunity). 279 

 280 

DISCUSSION 281 

Understanding the history of human adaptation at the genetic level is a central goal of population 282 

genomics and human evolutionary biology. Accordingly, since the completion of the human 283 

genome assembly (Lander et al. 2001) and subsequent proliferation of population genomic data, 284 

numerous genome-wide scans for selection have been conducted using differing methodologies 285 

(Sabeti et al. 2002; Voight et al. 2006; Sabeti et al. 2007; Pickrell et al. 2009; Field et al. 2016). 286 

The majority of these studies searched primarily for partial selective sweeps—the signature of a 287 
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beneficial mutation currently sweeping through a population (see Williamson et al. 2007 for a 288 

notable exception)—and rightly so, as these sweeps can reveal the targets of ongoing adaptation 289 

in human populations. However, because the sojourn of an adaptive mutation to fixation should 290 

be rapid (e.g. on the order of 400 generations, assuming N=104 and a moderately strong selection 291 

coefficient of s = 0.05, and 4000 generations for s=0.005), the success of efforts to detect 292 

ongoing selection implies the presence of a larger number of recently completed sweeps. We 293 

have therefore focused on completed sweeps in order to complement previous studies and to 294 

construct a more comprehensive catalogue of the loci underpinning recent human adaptation. 295 

Using a powerful and robust machine learning method that we have recently introduced (S/HIC; 296 

Schrider and Kern 2016) for finding completed selective sweeps,  we performed a genome-wide 297 

search for the targets of recent positive selection in six human populations. Furthermore, we 298 

sought to determine the mode of positive selection, distinguishing between selection on de novo 299 

mutations and on previously standing variation. 300 

 301 

Soft sweeps dominate human adaptation 302 

Perhaps our most consequential result is the finding that the majority of our candidate sweeps 303 

resemble soft sweeps on standing variation. This result implies that adaptation in humans may 304 

not be mutation-limited (Gillespie 1991; Karasov et al. 2010): rather than waiting for a novel 305 

mutation to arise, human populations may often be able to respond via selection on previously 306 

segregating polymorphisms, thereby more rapidly responding to novel environmental challenges. 307 

This may be surprising given the apparently small effective population size and low nucleotide 308 

diversity levels in humans. However, if the mutational target for the trait to be selected on is 309 
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fairly large, then the probability of a population harboring a mutation affecting that trait may be 310 

appreciable. 311 

While soft sweeps appear to be the dominant mode of selection globally, there is a 312 

significant increase in the proportion of putative hard sweeps in non-African populations relative 313 

to African populations. This is consistent with theoretical expectations, as larger populations 314 

have more standing variation for selection to act on (Hermisson and Pennings 2005). Moreover, 315 

the human migration out of Africa was associated with a severe population bottleneck (Marth et 316 

al. 2004; Fagundes et al. 2007). Soft selective sweeps may be “hardened” by a reduction in 317 

population size, which can result in the stochastic loss of some genetic backgrounds harboring 318 

the adaptive allele so that only a single haplotype reaches fixation (Wilson et al. 2014). Thus, 319 

though one might expect selection on segregating neutral or nearly neutral variation when a 320 

population enters a new environment with novel selective pressures, if the migration event is 321 

accompanied by a bottleneck then the population may experience a somewhat counterintuitive 322 

increase in the proportion of hard sweeps. Moreover, the causal relationship between population 323 

size and mode of adaptation may not be unidirectional. As Orr and Unckless (2014) have shown 324 

in the context of evolutionary rescue, when faced with a changing environment, a population 325 

which does not harbor standing variation that is beneficial may experience a more protracted 326 

decline in size while it waits for an adaptive de novo mutation. 327 

Our genome-wide results amplify results of earlier studies that by design have tried to 328 

infer the mode of adaptation in a smaller number of targeted loci. For instance Peter et al. (Peter 329 

et al. 2012) attempted to infer the mode of adaptation among 7 loci previously identified to be 330 

under selection in human populations. They report that half of the loci that they could 331 

confidently classify supported selection on standing variation. In Drosophila melanogaster, 332 
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when looking among strong outliers of haplotype homozgosity, Garud et al. (2015) found that 333 

patterns of variation in those regions were consistent with recent soft selective sweeps. Our 334 

finding, that the vast majority of sweeps in human populations are soft sweeps, thus underscores 335 

the ubiquity of selection from standing variation in natural populations. Indeed it seems plausible 336 

that adaptation from standing variation might be the rule, rather than the exception. 337 

There are two caveats affecting our ability to discriminate between selection on standing 338 

variation and on de novo mutations. First, while we have trained our classifier to detect soft 339 

sweeps on previously segregating mutations, soft sweeps may also occur via recurrent mutation 340 

to the adaptive allele (Pennings and Hermisson 2006b, a). Though there are some qualitative 341 

differences between these two models of soft sweeps (Berg and Coop 2015; Schrider et al. 342 

2015), these are fairly subtle in comparison to the differences between the other models we 343 

consider. Thus, our classifiers may have sensitivity to both types of sweeps. If this is so, then 344 

some of the soft sweeps that we detect may result from recurrent mutation. Additionally, gene 345 

conversion during a sweep can transfer the adaptive mutation on to new genetic backgrounds 346 

(Jones and Wakeley 2008), thereby “softening” the sweep (Schrider et al. 2015). This implies 347 

that selection on a single de novo mutation could sometimes appear to be a soft sweep in our 348 

classification. In any case, our finding that most sweeps in humans do not appear to be hard 349 

sweeps underscores the importance of using methods that are sensitive to soft sweeps. 350 

 351 

Extensive impact of linked positive selection 352 

Our analysis demonstrates that the impact of linked positive selection on genetic variation is 353 

considerable, with roughly half of the genome classified by S/HIC as being influenced by a 354 

nearby sweep. This result has important implications for efforts to infer demographic histories 355 
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from patterns of genetic polymorphism, as most inference methods hinge on the assumption of 356 

neutrality. Indeed, we have recently shown that linked positive selection has the potential to 357 

severely confound demographic inferences (Schrider et al. 2016). Similarly, Ewing and Jensen 358 

(2016) have found that background selection (Charlesworth et al. 1993) can also bias 359 

demographic estimates. One strategy is to use only those polymorphisms that are distant from 360 

genes and conserved noncoding elements to mitigate these effects (Gazave et al. 2014). One 361 

could further supplement such an approach by using S/HIC to directly ask which intergenic 362 

regions are unaffected by hitchhiking in order to further diminish the bias introduced by linked 363 

selection. We note that the putatively neutrally evolving regions found in this study can be 364 

obtained from our raw classification output (available at https://github.com/kern-365 

lab/shIC/tree/master/humanScanResults). 366 

If linked positive selection affects much of the genome, then that implies that the 367 

frequencies of many neutral or weakly deleterious mutations may be altered by genetic draft 368 

(Gillespie 2000). That is to say, deleterious mutations that happen to reside on chromosomes that 369 

begin to sweep may be able to reach higher frequencies than expected from mutation-selection-370 

drift equilibrium. Consistent with this, we observe a slight but significant excess of potentially 371 

deleterious polymorphisms in windows classified as linked to selective sweeps. Previously, Chun 372 

and Fay (2011) found evidence that the ratio of deleterious to neutral polymorphisms is elevated 373 

in sweep regions, concluding that hitchhiking carries linked deleterious variants to higher 374 

frequencies. Our finding that SNPs from the GWAS catalogue are also enriched regions linked to 375 

selective sweeps lends further support to this hypothesis. Indeed, several compelling examples of 376 

hitchhiking mutations known or suspected of causing disease have been described in the 377 

literature (Helgason et al. 2007; Chun and Fay 2011; Huff et al. 2012). Moreover it seems that 378 
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the phenomenon of deleterious alleles hitchhiking along with strongly beneficial alleles is not 379 

restricted to humans: a recent study also uncovered evidence that selection during domestication 380 

increased the frequency of deleterious polymorphisms in dogs (Marsden et al. 2016). 381 

 382 

Targets of recent human selective sweeps 383 

Our catalogue of sweep candidates allowed us to characterize the biological functions that are 384 

overrepresented in sweeps. Notably, we found a strong excess of spermatogenesis genes within 385 

sweep regions, a phenomenon previously observed by Voight et al. (2006). This signature may 386 

be a result of sexual selection, sexual conflict, and/or sperm competition (Swanson and Vacquier 387 

2002). We also observed a significant enrichment of cancer-related genes among our sweep 388 

candidates. Nielsen et al. (2005a) found a similar enrichment of candidate genes under selection 389 

related to cancer when examining protein divergence between humans and chimpanzees. These 390 

authors found that some of these genes are also involved in spermatogenesis (much like our 391 

CADM1 example), and concluded that genomic conflict between tumor suppression and the 392 

advantage of avoiding apoptosis during spermatogenesis may explain the selection on cancer 393 

genes. An alternative (and non-mutually exclusive) explanation is that the increase in longevity 394 

along the human lineage has created an immense selective pressure to reduce the rate of cancer 395 

progression by orders of magnitude (Nunney and Muir 2015). 396 

We also observed a significant excess of glutamate receptor genes targeted by sweeps, 397 

suggesting that these loci may underlie some of the dramatic neurological changes that have 398 

occurred along the human lineage. Consistent with this, we previously found evidence 399 

suggesting some of these glutamate receptor genes (along with other neurotransmitters) may 400 

have recently gained novel regulatory elements in humans (Schrider and Kern 2015; Meyer et al. 401 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2017. ; https://doi.org/10.1101/090084doi: bioRxiv preprint 

https://doi.org/10.1101/090084
http://creativecommons.org/licenses/by/4.0/


2017). The most striking examples of glutamate receptors experiencing sweeps are GRIA2 and 402 

GRID2, which show strong signatures of selection in multiple populations and physically interact 403 

with one another. The action of positive selection on multiple members of the protein complex 404 

appears to be a general phenomenon (fig. 3). For a more in-depth examination of positive 405 

selection in the PPI network, see Qian et al. (2015), who found that genes in candidate regions 406 

for positive selection were more likely to lie close together in the PPI network. 407 

 408 

Conclusions 409 

Our investigation has revealed several valuable insights into the adaptive process in human 410 

populations. The success of our approach exemplifies the potential of machine learning methods 411 

to elucidate the adaptive process in humans and other species (Fan et al. 2016). To date several 412 

machine learning methods have been devised to detect selective sweeps (Pavlidis et al. 2010; Lin 413 

et al. 2011; Ronen et al. 2013; Pybus et al. 2015; Sheehan and Song 2016), and they tend to 414 

substantially outperform more traditional approaches (see Schrider and Kern 2016). We suspect 415 

that machine learning could be used to make important inroads in answering a variety of 416 

evolutionary questions. 417 

 Finally, Hernandez et al. (2011) argued that hard selective sweeps might be rare in human 418 

populations, and instead suggested that the majority of adaptation might be a consequence of 419 

selection on standing variation or selection on polygenic traits. We here find direct evidence that 420 

indeed this is the case—the vast bulk of human adaptation is occurring as a consequence of soft 421 

sweeps. Our observation thus reconciles Hernandez et al.’s findings with those of Enard et al., 422 

who conclude that the reduction in diversity around amino acid substitutions is caused by 423 

widespread selective sweeps (Enard et al. 2014). Moreover, while our scan leveraged a method 424 
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that performs very well in detecting both hard and soft sweeps, it was not trained to detect cases 425 

of polygenic selection (e.g. Berg and Coop 2014). It is fair to assume that a large majority of 426 

phenotypes are determined by multiple loci, thus polygenic selection should be expected to be 427 

common. If that were the case, then it could very well be that an even larger portion of genetic 428 

variation is influenced by natural selection and its linked effects throughout the genome. 429 

 430 

METHODS 431 

Sequence and annotation data 432 

We downloaded phased genotype data from Phase 3 of the 1000 Genomes Project (Auton et al. 433 

2015). This data set consists of 26 population samples from Africa, East Asia, South Asia, 434 

Europe, and the Americas. We wished to include only populations where the influence of 435 

admixture/migration on genetic variation appeared to be minimal, while still allowing us to 436 

characterize selection across multiple continents. We therefore chose to scan the following 437 

populations for selective sweeps: the GWD (Gambians in Western Divisions in The Gambia) and 438 

YRI (Yoruba in Ibadan, Nigeria) populations from West Africa, LWK (Luhya in Webuye, 439 

Kenya) from East Africa, JPT (Japanese in Tokyo, Japan) from Asia, CEU (Utah residents with 440 

Northern and Western European Ancestry) from Europe, and PEL (Peruvians from Lima, Peru) 441 

from the Americas. Examining Auton et al.’s results from running ADMIXTURE (Alexander et 442 

al. 2009), we see that for most values of K, each of these populations appears to correspond 443 

primarily to a single ancestral population rather than displaying multiple clusters of ancestry (see 444 

Extended Data Figure 5 from Auton et al. 2015). One exception may be the PEL population, but 445 

among the highly admixed American samples it appears to exhibit the smallest amount of 446 

possible mixed ancestry (for most values of K), so we retained this population in order to have 447 
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some representation from the Americas. We opted not to examine any South Asian population, 448 

as for each of these samples ADMIXTURE inferred evidence of ancestry from three or more 449 

ancestral populations. 450 

 We downloaded numerous annotation data sets containing genomic features to test for 451 

enrichment/depletion of selective sweeps and perform other downstream analyses. These 452 

included GENCODE gene model release 19 (Harrow et al. 2012) including pseudogenes (Pei et 453 

al. 2012), virus-interacting proteins from Enard et al. (2016), enhancers gained or along the 454 

human lineage since diverging from Old World monkeys (Cotney et al. 2013), and SIFT’s 455 

(Kumar et al. 2009) predictions of damaging amino acid polymorphisms from dbNSFP version 456 

3.2a (Liu et al. 2016). We obtained Gene Ontology (GO) annotations from ENSEMBL release 457 

75 (Yates et al. 2016). We also downloaded coordinates of previously identified selective sweeps 458 

from dbPSHP (Li et al. 2013). 459 

We used the UCSC Table Browser (Karolchik et al. 2004) to obtain the following data 460 

sets: phenotype-associated SNPs from the GWAS Catalog (accessed Apr 12, 2016; Welter et al. 461 

2014), ClinVar pathogenic SNPs and indels ≤ 20 bp in length (Apr 26, 2016; Landrum et al. 462 

2016), COSMIC somatic mutations in cancer (accessed Feb 25, 2014; Forbes et al. 2015), 463 

phastCons elements conserved across primates (accessed Jun 2, 2013; Siepel et al. 2005), 464 

ENCODE transcription factor binding sites version 3 (accessed Aug 25, 2013; Dunham et al. 465 

2012), tables of genes and SNPs implicated in Mendelian phenotypes from OMIM (accessed 466 

May 2, 2016; Amberger et al. 2015), and KEGG pathway annotations (accessed Apr 27, 2016; 467 

Kanehisa et al. 2015). For each of these data sets we used GRCh37/hg19 coordinates. 468 

In order to examine the prevalence of selective sweeps within interacting gene networks, 469 

we downloaded physical and genetic interactions from BioGRID version 3.4.136 (Chatr-470 
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Aryamontri et al. 2015). Our set of genetic interactions consisted of those annotated as “synthetic 471 

genetic interaction defined by inequality,” “suppressive genetic interaction defined by 472 

inequality,” or “additive genetic interaction defined by inequality.” Physical interactions 473 

included those annotated as “direct interaction,” “association,” or “physical association.” We 474 

extracted transcription factor-target interactions from ORegAnno (accessed Dec 22, 2015; 475 

Griffith et al. 2008), retaining only interacting pairs where the ENSEMBL gene identifier were 476 

provided for both genes in order to avoid ambiguity. 477 

 478 

Building classifiers to detect selective sweeps 479 

To detect sweeps we used S/HIC (https://github.com/kern-lab/shIC), a machine learning 480 

approach we previously described and showed to be remarkably powerful and robust to non-481 

equilibrium demography (Schrider and Kern 2016). Briefly, the S/HIC machine learning 482 

approach leverages spatial patterns (along a genome) of a variety of population genetic summary 483 

statistics to classify genomic windows as being the target of a completed hard sweep (hard), 484 

being closely linked to a hard sweep (hard-linked), a completed soft sweep (soft), linked to a soft 485 

sweep (soft-linked), or evolving neutrally (neutral). While this classification approach allows 486 

inference when considering a large number of features jointly, it necessitates training from a 487 

large number of data instances known to belong to each class. Because the number of genomic 488 

windows known to belong to each our five classes is limited, we must rely on simulation to 489 

generate our training data. To this end we used the program discoal (Kern and Schrider 2016) to 490 

simulate large chromosomal regions, subdivided into 11 sub-windows. Training examples for the 491 

hard class experienced a hard sweep in the center of the central sub-window (i.e. the 6th 492 

window), while examples for the hard-linked class experienced a hard sweep in the center of one 493 
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of the remaining sub-windows (selected randomly). Analogous simulations with soft sweeps 494 

were generated for the soft and soft-linked classes, respectively. Finally, neutrally evolving 495 

examples did not experience any selective sweep. 496 

 We sought to train a classifier for each population under a demographic model that offers 497 

a better approximation to the population size history than the standard neutral model. For this we 498 

used Auton et al.’s (2015) population histories inferred by PSMC (Li and Durbin 2011). The 499 

1000 Genomes Project’s PSMC output did not contain estimates of θ, the population mutation 500 

rate parameter. Thus for each population we conducted a grid search by simulating genomic 501 

windows with the appropriate sample size under each demographic model with varying values of 502 

θ=4NuL (where L is the length of the locus, which we set to 100 kb); the grid of θ values raged 503 

from 10 to 250, examining multiples of 10. For each value of θ, we compared the values of π 504 

(Nei and Li 1979), 𝜃! (Watterson 1975), 𝜃! (Fay and Wu 2000), H2/H1 (Garud et al. 2015), and 505 

ZnS (Kelly 1997) from 1000 simulations to those from 1000 randomly selected genomic loci 506 

(calculated as described below), calculating the mean of each statistic in the real and simulated 507 

datasets. We chose as the final values of θ that for which the sum of the percent deviations of the 508 

simulated from the observed means of each statistic was minimized. This estimate of θ allowed 509 

us to calculate estimated population sizes and times scaled by the number generations for each 510 

time point in the history inferred by PSMC. The harmonic mean of each population’s size was 511 

calculated by taking the estimated population size for each of the last 4N generations. We note 512 

that these models may not accurately capture the demographic histories of the populations we 513 

examined due to the confounding effects of positive (Schrider et al. 2016) and negative (Ewing 514 

and Jensen 2016) selection. However, because of S/HIC’s robustness to demographic 515 

misspecification, we do not expect this to severely impact our analysis (Schrider and Kern 2016). 516 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2017. ; https://doi.org/10.1101/090084doi: bioRxiv preprint 

https://doi.org/10.1101/090084
http://creativecommons.org/licenses/by/4.0/


 For each population we simulated a total of 2000 regions for each of our five classes. For 517 

simulations involving sweeps, we drew the selection coefficient from U(0.005, 0.1), the sweep 518 

completion time from U(0, 2000), the initial selected frequency for soft sweeps from U(1/N, 0.2). 519 

We drew values of θ uniformly from a range spanning exactly one order of magnitude, specified 520 

so that the mean value of θ was equal to that estimated for the population as described above. We 521 

drew recombination rates from an exponential distribution with mean 1×10-8, truncated at triple 522 

the mean due to memory constraints. The simulation program discoal requires some of these 523 

parameters to be scaled by the present-day effective population size; we did this by taking the 524 

mean value of θ and dividing by 4uL, where u was set to 1.2×10-8 (Kong et al. 2012). The full 525 

command lines we used to generate 1.1 Mb regions (to be subdivided into 11 windows each 100 526 

kb in length) for each population are shown in supplementary table S5. We also simulated 1000 527 

test examples for each population in the same manner as for the training data. 528 

 In order to address the potential for purifying and background selection to confound our 529 

classifiers, we simulated additional test sets of 1000 genomic windows 1.1 Mb in length with 530 

varying arrangements of selected sites. In order to mimic patters of purifying/background 531 

selection expected in the human genome as closely as possible, for each of our 1000 replicates 532 

we randomly selected a 1.1 Mb window from the human genome and asked which sites were 533 

found within either a GENCODE exon (Harrow et al. 2012) or within a phastCons (Siepel et al. 534 

2005) conserved element from the UCSC Genome Browser’s 100-way vertebrate alignment 535 

(Kent et al. 2002). Sites in the simulated chromosome corresponding to these functional elements 536 

in the human genome were labeled as “selected” in the simulations.  In “selected” regions, 25% 537 

of all new mutations had no fitness effect, while the remaining 75% had a selection coefficient 538 

drawn from a gamma distribution with mean of −0.0294 and a shape parameter of 0.184 (the 539 
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African model from Boyko et al. 2008). We limit fitness effects of new mutations to 75% in an 540 

effort to mimic coding regions of the genome. We note that this percentage may not be accurate 541 

for noncoding functional regions, though it is likely that some fraction of mutations in these 542 

regions is effectively neutral. All mutations outside of the selected regions were fitness-neutral. 543 

These simulations were performed for both our GWD and JPT demographic models using the 544 

fwdpy11 (https://github.com/molpopgen/fwdpy11) forward population genetic simulator 545 

(Thornton 2014), using the same mutation rates, recombination rates, and history of 546 

instantaneous population size changes as used in our coalescent simulations described in 547 

supplementary table S5. Feature vectors were then generated for each of these simulated test 548 

examples in the same manner as for our coalescent simulations. We also tested each population’s 549 

classifier against test sets generated by discoal with different fixed values of θ (but otherwise 550 

with the same parameterizations shown in supplementary table S5) in order to ensure that our 551 

approach was robust to uncertainty in the estimate of this parameter (supplementary fig. S4). 552 

Our feature vector for each simulated region examined the spatial patters (following 553 

Schrider and Kern 2016) of each of the following statistics: π (Nei and Li 1979), 𝜃! (Watterson 554 

1975), 𝜃! (Fay and Wu 2000), the number of distinct haplotypes, average haplotype 555 

homozygosity, Garud et al.’s (2015) H12 and H2/H1 statistics, ZnS, ω (Kim and Nielsen 2004), and 556 

the maximum frequency of derived mutations (Li 2011). Before calculating these summary 557 

statistics we masked a number of sites within each simulation by randomly selecting a 1.1 Mb 558 

region from our empirical windows sampled throughout the genome and masking the same 559 

regions in the simulated window as were masked in the genomic window (see below). Thus our 560 

simulated windows exhibit the same distribution of regions of missing data as the windows to 561 
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which we applied our classifiers. We then used S/HIC to train extra-trees classifiers (Geurts et al. 562 

2006), one for each population. 563 

 564 

Classifying genomic windows in each population 565 

Having trained our classifiers, we then applied them to genomic data from the corresponding 566 

population. We inferred ancestral states of polymorphisms and masked inaccessible sites 567 

(whether polymorphic or not) in the same manner as described previously (Schrider and Kern 568 

2016). We then used S/HIC to classify the central 100 kb sub-window of 1.1 Mb windows across 569 

the autosomes, while taking the stringent approach of omitting those for which any sub-window 570 

was less than 25% accessible, before sliding 100 kb downstream to examine the next window. 571 

We also removed windows where any of the three central sub-windows had a mean 572 

recombination rate of zero (using data from Kong et al. 2010). Importantly, for each retained 1.1 573 

Mb window, we recorded the locations of all sites deemed inaccessible for use in masking our 574 

training data (see above). In total we classified 13,968 windows, accounting for 48.5% of the 575 

assembled autosomes. For our classifications we simply took the class that S/HIC’s classifier 576 

inferred to be the most likely one, but we also used S/HIC’s posterior class membership 577 

probability estimates in order to experiment with different confidence thresholds (results shown 578 

in supplementary table S2). For a given threshold, we required the sum of a windows’ hard and 579 

soft sweep posterior probabilities to be greater than or equal to the threshold before labeling the 580 

window as a sweep; the mode of the sweep was that corresponding to the greater posterior 581 

probability among the hard and soft sweep classes. 582 

 In order to count the number of distinct sweep candidates found within our set of 583 

populations , we simply merged all 100 kb windows classified as a sweep of either type that were 584 
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located either at the exact same coordinates or adjacent to one another, repeating this until no 585 

more sweep regions could be merged. If all constituent windows were classified as soft, we 586 

counted the sweep as soft; otherwise we counted it as a hard sweep. We used a similar approach 587 

but examining classifications from only one population at a time in order to count the number of 588 

sweeps of each type in that population. If a gene found within a sweep window identified by 589 

S/HIC was not found in an entry of dbPSHP (Li et al. 2013), we referred to it as a novel sweep. 590 

Visualization of sweep candidates was performed using the UCSC Genome Browser (Kent et al. 591 

2002) , along with custom tracks showing values of various population genetic summary 592 

statistics and selection scan scores for the CEU, YRI, and JPT populations from the Human 593 

Positive Selection Browser (Pybus et al. 2013). Our classification results are available at 594 

https://github.com/kern-lab/shIC/tree/master/humanScanResults. 595 

 596 

Permutation tests for enrichment of annotation features in sweeps 597 

To determine whether certain annotation features were enriched within any of our five classes, 598 

we carefully designed a permutation test to account for the subset of the genome that we 599 

examined with S/HIC, as well as the spatial correlation of S/HIC’s classifications (i.e. adjacent 600 

windows are especially likely to receive the same classification). Briefly, the permutation 601 

algorithm begins by examining our classification results for a given population and keeping track 602 

of the length of runs of consecutive windows assigned to each class. The permutation algorithm 603 

then selects a chromosome, and begins at its first classified window (i.e. not removed by data 604 

filtering). A run length and associated class assignment is then randomly drawn without 605 

replacement. This process continues until the end of the chromosome, and then another 606 

chromosome is selected until the end of the final chromosome is reached, at which point the 607 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2017. ; https://doi.org/10.1101/090084doi: bioRxiv preprint 

https://doi.org/10.1101/090084
http://creativecommons.org/licenses/by/4.0/


permutation has been completed. We then repeated this permutation procedure 10,000 times for 608 

each population. Note that this process preserves the run length distribution of our classifications 609 

while permuting them across the set of genomic windows that had enough unmasked data to be 610 

included in our scan. 611 

After constructing our permuted data sets, we conducted one-sided enrichment tests by 612 

counting the number of base pairs in the intersection between the S/HIC class of interest and the 613 

annotation feature of interest, and comparing this number to its distribution among the permuted 614 

data sets. The fraction of permuted data sets where this intersect was greater than or equal to that 615 

observed for the real data is the p-value. Because we tested each of S/HIC’s five classes for 616 

enrichment of a fairly large number of genomic features (supplementary table S3), we corrected 617 

for multiple testing using false discovery rate q-values following Storey (2002). When testing 618 

GO terms and KEGG pathways for enrichment, we considered only the hard and soft sweep 619 

classes, corrected for calculating q-values separately for each class. 620 

 We also asked whether the number of pairs of interacting genes both overlapping 621 

windows classified as sweeps was greater than in our permuted data sets. To ensure that our 622 

results were not inflated by the spatial clustering of interacting genes, we only counted 623 

interacting pairs overlapping sweep windows if they were separated by at least 10 Mb or on 624 

separate chromosomes. In addition, if we observed an interaction between two genes, A and B, 625 

that each overlapped sweeps, and a third sweep candidate gene, C, was found, to avoid 626 

redundancy we counted at most one interaction between A and C and B and C, even if C was 627 

found interact with both other genes. As with GO and KEGG terms, we only searched the hard 628 

and soft classes for enrichments before calculating one-sided q-values as described above. 629 

 630 
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 901 
 902 
 903 
 904 
 905 
 906 
 907 
 908 
Table 1: Number of sweeps of each type detected in each population sample. 909 
 910 

Population # of Hard 
Sweeps 

# of Soft 
Sweeps 

Total # of 
Sweeps 

JPT (Tokyo, Japan) 61 (5.8%) 998 (94.2%) 1,059 
CEU (Utah, United States) 66 (6.5%) 947 (93.5%) 1,013 

PEL (Lima, Peru) 32 (4.7%) 655 (95.3%) 687 
GWD (Western Divisions, the Gambia) 5 (0.6%) 795 (99.4%) 800 

YRI (Ibadan, Nigeria) 13 (1.6%) 797 (98.4%) 810 
LWK (Webuye, Kenya) 3 (0.4%) 805 (99.6%) 808 

 911 
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Figure 1: Enrichment of various 905 
annotation features in regions 906 
classified as sweeps or linked to 907 
sweeps relative. The fold enrichment 908 
is the ratio of the number of base 909 
pairs in the intersection between 910 
windows assigned to a given class 911 
and an annotation feature divided by 912 
the mean of this intersection across 913 
the permuted data sets (Methods). 914 
This was calculated separately for 915 
each population. (A) Enrichment of 916 
elements in windows classified as 917 
hard sweeps. (B) Same as A, but for 918 
soft sweeps. (C) Enrichment of 919 
elements in windows classified as 920 
affected by linked hard sweeps. (D) 921 
Linked soft sweeps. 922 
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923 
Figure 2: The number of windows assigned to each class by S/HIC in each population. 924 
 925 
  926 
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 927 
Figure 3: Enrichment of pairs of interacting genes each falling within a window classified 928 
as a sweep. The fold enrichment is the ratio of the number of pairs of interacting genes 929 
overlapping a window classified as a sweep of a given type divided by the mean of this number 930 
across the permuted data sets (Methods). This was calculated separately for each population. 931 
When no pairs of interacting sweep genes were observed in our true data set or a population, no 932 
bar was drawn. (A) Enrichment of pairs of genes encoding protein products that physically 933 
interact with each other (data from BioGRID) and both overlap hard sweep windows. (B) Same 934 
as A, but for soft sweeps. (C) Enrichment of pairs of genes, one of which is encodes a 935 
transcription factor that affects expression of the other (data from ORegAnno), where both 936 
overlap hard sweep windows. (D) Same as D, but for soft sweeps. (E) Enrichment of pairs of 937 
genes for which a genetic interaction has been observed (data from BioGRID) and both overlap 938 
hard sweep windows. (F) Same as E, but for soft sweeps. 939 
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941 
Figure 4: Hard selective sweep near several SPATA31 spermatogenesis-associated genes. 942 
The S/HIC classification tracks show the raw classifier output for each population (red=hard 943 
sweep, blue=soft sweep, light red=hard-linked, light blue=soft-linked, black=neutral). We also 944 
show the values of various population genetic summary and test statistics (π, Tajima’s D, Kelly’s 945 
ZnS, and the SweepFinder composite likelihood ratio, or CLR). To avoid clutter, we only show 946 
statistics from CEU. 947 
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950 
Figure 5: Soft selective sweeps near CADM1. The same tracks are shown as in Figure 4. 951 
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SUPPLEMENTARY FIGURE AND TABLE LEGENDS 948 

supplementary fig. S1: Heatmaps showing the accuracy of our six classifiers on test data, 949 
one for each population. On the y-axis, we show the location of the sweep relative to the 950 
classified window (i.e. the central sub-window), with the exception of the “Neutral” case where 951 
there is no sweep. The test data were simulated under the same demographic models used for 952 
training. On the x-axis we show the class inferred by S/HIC. A perfect classifier would infer 953 
“Hard” for 100% test instance where a hard sweep is in the focal sub-window (and analogously 954 
for soft sweeps), “Hard-linked” for 100% of cases where a hard sweep occurs elsewhere (and 955 
analogously for soft sweeps not located in the central sub-window), and “Neutral” for 100% of 956 
cases with no sweep. Both GWD and JPT also contain test results on a simulated set of examples 957 
of purifying/background selection. (A) Test results for CEU. (B) GWD. (C) JPT. (D) LWK. (E) 958 
PEL. (F) YRI. 959 
 960 
supplementary fig. S2: Histograms of H12 and H2/H1 within windows classified has hard 961 
sweeps, soft sweeps, or neutral for each population. 962 
 963 
supplementary fig. S3: Soft selective sweep in GRIA2. The same tracks are shown as in figs. 4 964 
and 5. 965 
 966 
supplementary fig. S4: False positive and false negative rates on simulated test data with 967 
varying values of θ. For each population, we used discoal to simulate 100 replicates for each 968 
combination of S/HIC’s five classes and three fixed values of θ. In these simulations all 969 
parameters other than θ had the same values as in supplementary table S5. “Medium” θ refers to 970 
the mean value of θ used for a given population’s training and testing simulations (Methods), 971 
while “Low” and “High” θ refer to one-half and double this value, respectively. Examples of the 972 
Hard-linked, Soft-linked, or Neutral classes that are classified as sweeps represent false 973 
positives, while Hard and Soft examples not classified as sweeps are false negatives. 974 
 975 
supplementary table S1: Number of sweeps found in each subset of populations. 976 
 977 
supplementary table S2: Numbers of hard and soft sweeps found in each population when 978 
imposing various posterior probability thresholds to S/HIC’s classifications. 979 
 980 
supplementary table S3: Enrichment of various sequence annotations in each S/HIC class. 981 
 982 
supplementary table S4: Enrichment of annotation terms in hard and soft sweeps (only 983 
terms with q<0.05 for at least one sweep type in at least one population are shown). 984 
 985 
supplementary table S5: Example command lines used to generate training data for each 986 
population, with a soft sweep occurring in the central sub-window. 987 
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