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Finite-sites multiple mutations interference gives rise to wavelet-like oscillations of
multilocus linkage disequilibrium
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Within-host adaptation of pathogens such as human immunodeficiency virus (HIV) often occurs
at more than two loci. Multiple beneficial mutations may arise simultaneously on different genetic
backgrounds and interfere, affecting each other’s fixation trajectories. Here, we explore how these
adaptive dynamics are mirrored in multilocus linkage disequilibrium (MLD), a measure of multi-
way associations between alleles. In the parameter regime corresponding to HIV, we show that
deterministic early infection models induce MLD to oscillate over time in a wavelet-like fashion. We
find that the frequency of these oscillations is proportional to the rate of adaptation. This signature
is robust to drift, but can be eroded by high variation in fitness effects of beneficial mutations. Our
findings suggest that MLD oscillations could be used as a signature of interference among multiple
equally advantageous mutations and may aid the interpretation of MLD in data.

INTRODUCTION

Many microorganisms, viruses, and cancer cells repli-
cate asexually with large population sizes and under
strong selection [1-7]. This gives rise to pronounced ge-
netic interference [2, 6, 8, 9], where beneficial mutations
can emerge on different haplotypes and compete, leading
to mutual growth impairment [10-16]. Since interference
determines how asexual organisms adapt, it is of particu-
lar relevance to understanding infectious disease agents.

Most recent theoretical treatments of interference rest
upon the assumption that there exists an infinite supply
of new, beneficial mutations arising from an infinite num-
ber of loci [2, 16-19]. Indeed, recent studies in yeast and
other microorganisms suggest that beneficial mutation
supply is not what limits the rate of adaptation [1-6].
However, the infinite-sites assumption might be inappro-
priate for understanding many asexual populations evolv-
ing over short time scales under strong selective pressure.
In fact, most short-term adaptation of pathogens to new
host environments occurs at a limited number of either
known [7], or detectable loci [20]. Key examples are drug
resistance mutations or escape mutations in viruses [21],
such as HIV [8, 22]. Furthermore, the selective pressures
exerted on pathogens by a finite number of immune re-
sponses during early infection typically far exceed what
other stresses might shape their adaptation [20, 22-25].

Past research on finite-sites interference typically in-
volved only a few, predominantly two loci [12, 26-31].
Traditionally, pair-wise linkage disequilibrium (LD) has
been a successful summary statistic for such interference
[31, 32]. For example, if two mutations are physically
linked by the same background, this will result in pro-
nounced positive LD. If they disproportionately often
appear on different backgrounds, as is the case in in-
terference scenarios, this will be reflected in negative LD
[12, 15, 26, 33]. To our knowledge, no analogue to this
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LD behavior has been found for adaptation in multiple
(> 2) sites.

Here, we aim to extend these insights on the relation-
ship between interference and LD to a context with mul-
tiple, but not infinite sites. First, we explore ways to
generalize LD to multiple loci. Multi-locus linkage dise-
quibrium (MLD) [34-37], has the advantage that it ac-
counts for deviations from random association at more
than two loci. MLD may thus appropriately reflect and
characterize finite-sites interference. To compute MLD,
we develop a recursive programming method applicable
to up to seven loci. Second, we investigate the behav-
ior of MLD under a finite-sites model of multiple mu-
tations interference (MMI) [16] —a simplified model of
interference— with parameter values calibrated to match
HIV early infection dynamics. We focus on MMI due
to its well-established theoretical framework [16] and its
ability to appropriately describe more complex forms of
interference [4].

We show that the evolution of MLD over time is in-
terpretable and largely robust to drift. In deterministic
scenarios, MMI causes MLD to oscillate, with a frequency
proportional to the speed of evolution. Drift causes these
features to become less pronounced, but still detectable.
MLD oscillations can be further eroded by variation in
fitness effects. We conclude that the wavelet-like oscil-
latory behavior of MLD results from, and is a robust
signature of, finite-sites MMI.

RESULTS

Partition based definition makes MLD
computationally tractable

To analyze how MLD is affected by multilocus inter-
ference during evolutionary dynamics, we first require
a method to compute MLD. MLD, as formulated by
Geiringer and Bennet, generalizes the notion of linkage
disequilibrium from two to multiple loci using the princi-
ple that, due to the decay of allelic associations in haplo-
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types as a result of recombination, MLD between neutral
genes should decrease exponentially over time [34, 35].

Consider L loci with alleles i1, i2, ..., 7;, and allele fre-
quencies pi,, Piy,---,Di,- Let pii,. ., denote the fre-
quency of haplotype i = 145 .. .4y, in the population. As
introduced by Bennett [35], functions of allele and hap-
lotype (i.e. gamete) frequencies, which satisfy the afore-
mentioned decay condition are

Dy, iy =Piyiy — PiyPis (1)
Diivis =Pivizis — DirPisPis) (2)
= Piy Diyiy — DisDiyis — iz Digay
Dy igigia =Pivigisis — PirDisDisPis) (3)

= Piy Digigis — Pia Divisia
= PisDivinis — Pis Divinis
—D; .. D —D; . D —D; ;D

1112413104 11131214 111471213

— DiyPis Digiy — DiyPiz Digiy — Diy iy Digig
— PisPiz Diyiy — PinPis Diyiy — PigPia Diyiy
— —DiyPiyPisPigPis) — - - - (4)

In equations (1-4), the terms (pi,..ip — Piy - --Pi, ) are
called Dausset’s disequilibrium [38]. MLD, defined by
D, . i, , measures how much of Dausset’s disequilibrium
cannot be attributed to lower-order associations of alle-
les. What remains is the unexplained over- or under-
representation of the L*" order haplotype 4, ...iy only,
or the L'" order MLD [34, 35]. Equations (1-4) are valid
for multiple alleles at any locus j, but we will restrict our
analysis to bi-allelic loci, i; € {0,1}.

Equations (1-4) for MLD can be expressed in a more
concise fashion by means of partition theory, as shown by
Gorelick and Laubichler [39, 40]. We add a superscript L
to indicate the LD of L' order, given L loci, and write:

Do

|A|

Df =i — |11 Dl::' , (5)

A€EE |u=1

where E is the set partition of the set {1,...,4,..., L},
except for the trivial cell {{1,...,L}}. The set partition
= of a set S is a family of sets A, called cells, which con-
tains all non-empty disjoint subsets of S, whose union
is S. For example, the set partition Z of {1,2,3} is
{11,231, ({12}, {3} {{1.3}{2}}, {{2.3},{1}} and
{{1},{2},{3}}. The cell A = {{1,3},{2}}, has size
|A| = 2, and elements a1 = {1,3} and ag = {2}. i,
denotes a sub-haplotype: given for instance a, = {1, 3},
then i,, = i173. The disequilibrium of a single locus, D ,
is defined as the allelic frequency p;; at that locus j [39].

Definition (5) allows disequilibria of higher order to be
recursively defined in terms of disequilibria of lower or-
ders. Recursive programming enabled us to computerize
the algebra for higher order linkage disequilibria [41, 42]
(see Supporting Information, section 1, (SL1)). We ob-
tained algebraic expressions for MLD, which depend only
on haplotype and allele frequencies, for up to seven loci.
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An alternative approach to MLD, due to Slatkin [43],
defines it as the covariance between multiple alleles at
multiple sites. The conclusions presented here apply to
both definitions of MLD, although our analyses focus on
the Geiringer-Bennet approach (see SI.2).

Oscillations under the deterministic finite-sites
approximation

We begin by describing the behavior of MLD under a
simplified model of finite-sites interference, the determin-
istic finite-sites MMI (DFMMI) model, a deterministic
analogue to MMI [16] in a finite-sites context. We retain
MMI’s core assumption that all mutations will confer the
same selective advantage, s, but remove stochasticity. In-
tuitively, selection moves the distribution of fitnesses of
haplotypes steadily forward in the manner of a travelling
wave [16, 44-46]; rapid growth of rare, fitter-than-average
haplotypes expands the front of the distribution, while
gradual loss of less-fit haplotypes contracts the distribu-
tion’s tail [8, 10, 16]. Due to our interest in rapid adap-
tation of pathogens, simulation parameters were chosen
to correspond to estimates from early HIV infection (see
SI.3).

Our DFMMI simulations begin with a wildtype an-
cestor having a limited number L of possible beneficial
mutations, which accumulate at a fixed rate; a rise in
frequency of haplotypes with k mutations (k-mutants) is
followed by a rise in frequency of k£ + 1-mutants every
time period Tinter (see SI.3 for derivation), a constant in-
dependent of k. Within each k-mutant wave, we assume
that the relative haplotype frequencies are equal. This
assumption eliminates haplotype frequency imbalances
stemming from genetic drift, allowing us to examine the
dynamics of MLD in the absence of such complications.
Moreover, it ensures that all possible 2% haplotypes ex-
ist at some point in the evolutionary trajectory of the
simulation — a full escape graph [47).

In each simulation, we allow a population to evolve for
roughly 300 generations, calculating the L!* order MLD
relative to the ancestral haplotype at fixed time inter-
vals (see Figure 1). Unless otherwise noted, we subse-
quently refer to MLD relative to the ancestral haplotype,
ie. D&...oLa where i; = 0; denotes no mutation in the
5t allele.

In these DFMMI dynamics, the highest (L") order
MLD is initially zero. As single-mutant haplotypes ap-
pear and spread, the ancestral haplotype is outcompeted
(Figs. 1A and B) and becomes under-represented relative
to the expectation from random allelic associations. The
MLD decreases during this process (Fig. 1C). During the
remainder of the dynamics, the dominant k-mutants are
replaced by successive k + 1 mutants (see Figs. 1B and
2A). The highest order MLD correspondingly oscillates
from negative to positive. We found that the number of
oscillations in the highest order MLD, no, increases with
the number of loci L simulated (Figs. 3A and C), and
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FIG. 1. Origin of oscillations in multilocus linkage dis-
equilibrium (MLD). A) The space of all possible haplo-
types, starting from the wildtype (no mutations: all zeros).
B) As evolution pushes the fitness distribution to higher Ham-
ming distances, it generates a signature of over-representation
of haplotypes with equal Hamming distance. This is reflected
by the sequential rise and fall of k-mutant waves. C) Pairwise
and three-locus Geiringer-Bennett linkage disequilibria, mea-
sured with the wildtype 000 as reference, over the course of
the simulation (all the pairwise disequilibria overlap). When
taken as a reference haplotype, all haplotypes with the same
number of adaptive mutations produce an MLD of equal sign.
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follows the simple relationship:

L—-1
no = ~5—. (6)

MLD oscillations reflect DFMMI dynamics

The observed oscillations in the highest order MLD can
be explained by the temporary dominance of k-mutant
haplotypes in the population. In fact, the oscillations in
highest order MLD reflect the acquisition of beneficial
mutations. In the following, we refer to the highest order
MLD simply as MLD.

As shown in Figure 1B, at any point during the dy-
namics, the population will consist mainly of haplotypes
containing k£ mutants; i.e. k-mutant haplotypes will be
over-represented. Therefore, the MLD relative to all k-
mutant haplotypes will be positive. As mutation and se-
lection push the population to higher fitness levels, k4 1-
mutants spread. Then, the MLD relative to k+ 1-mutant
haplotypes will increase until it becomes positive.

A useful property of MLD in bi-allelic systems allows
us to relate the MLD relative to a k mutant haplotype
to the MLD relative to the ancestral haplotype: Vj: j €

{1,...,L};
D, 0. -Df, 1;

i1%2.. i1%2..

ir (7)

Equation (7) (see SI1.2 for proof) can be interpreted as
follows: if a reference haplotype is over-represented rela-
tive to our expectation, each haplotype with the opposite
allele to the reference at a given locus must be equally
under-represented.

Therefore, at any point during the dynamics, MLD
relative to haplotypes containing a single beneficial allele
(that is, single mutants) will be of equal magnitude, but
opposite sign to MLD relative to the ancestral haplotype.
Further, MLD relative to double-mutant haplotypes will
be of equal magnitude, but opposite sign to MLD relative
to single-mutant haplotypes; this also implies that MLD
relative to double mutant haplotypes is equal to MLD rel-
ative to the ancestral haplotype. We conclude that when
single or odd-k mutant haplotypes are over-represented
(i.e. positive MLD), the MLD relative to the ancestral
haplotype will be negative. In the same way, when dou-
ble or even-k mutant haplotypes are over-represented, the
MLD relative to the ancestral haplotype will be positive
(see also SI.4, and Fig. S1).

Therefore, as the ‘traveling wave’ accrues subsequent
beneficial mutations and the set of haplotypes that are
over-represented (i.e., those haplotypes with positive
MLD) shifts, the sign of the MLD relative to the an-
cestral haplotype also shifts. This explains both the ob-
served oscillation in MLD and the relationship between
the number of possible beneficial alleles and the number
of observed oscillations (Eq (6)); there are L — 1 soft
sweeps as additional beneficial mutations appear, and
each sweep is reflected in a MLD half-oscillation.
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FIG. 2. Haplotype dynamics of DFMMI and FSMMI
simulations. A) Haplotype frequencies over the course of
a DFMMI simulation with L = 4 loci. Beneficial mutations
arise every Tinter = 100 days (see SI.3) and begin to sweep
at a rate € = 0.095 (see SI.3, eqn. (S11)). Colors indicate
haplotypes with an equal number of mutations k. B) Haplo-
type frequencies over the course of a simulation of the FSMMI
model with L = 4 selected loci, selection coefficients per muta-
tion s = 0.1, population size N = 10® and beneficial mutation
rate up = 107* per locus per generation.

The DFMMI model generates oscillations in MLD in
another, rapidly evolving regime (when Tipter is very
small, see SL5)). However, this particular MLD pat-
tern is expected to be rare, and can be neglected when
applying appropriate checks in data.

Speed of evolution and MLD dynamics

As half-oscillations in MLD reflect partial sweeps of
sequential layers of k-mutant haplotypes, we expect the
frequencies of the MLD wavelets to correlate with the
rate of evolution of the system. Let us assume that ben-
eficial mutations accumulate at a stable rate, that is, that
the population’s fitness wave proceeds at a well-defined
constant speed v through fitness space. Then, the time
for the fitness wave to accumulate one beneficial mutation
corresponds to the time it takes for half an oscillation of
the highest order MLD, T'/2, where T is the MLD oscil-
lation period. Thus, the speed of evolution of the fitness
wave v must be related to the oscillation frequency of the
MLD as follows:

:W = 2sf, (8)

where f is the frequency of the oscillations.

Retention of MLD oscillation properties under drift

Next, we tested whether MLD oscillations appear and
can be detected and analyzed in the presence of drift,
using a Wright-Fisher model with selection. To this end,
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we adapted the MMI model [16]: like MMI, our WF-
model only considers drift-prone, beneficial mutations,
each with the same effect, but our model considers bene-
ficial mutations at finitely many loci. This model, previ-
ously employed in other studies [48, 49], is termed finite-
sites MMT (FSMMI) model (see SI.6, and Fig. S2 for an
example simulation).

As in the DFMMI model, our FSMMI framework and
parameters are chosen to capture some features of early
HIV within-host evolution, when HIV undergoes very
rapid adaptation to the host environment [48, 49]. Specif-
ically, we focus on regimes in which the population size
is around N = 10°, the beneficial mutation rate per lo-
cus per generation is p, = 107% [33, 48-51], and each
beneficial mutation carries the same selective advantage
s between 0.01 —0.3 [22, 51, 52]. The simulations are run
with a population size N and selection acts on all loci
from the start.

Unlike the DFMMI model described above, in FS-
MMI simulations beneficial mutations establish stochas-
tically, breaking the symmetry in k-mutant haplotype
frequencies. Thus, a full escape graph is not guaran-
teed. Despite this added stochasticity, beneficial muta-
tions are still typically accrued in a sequential fashion (see
Fig. 2), with subsequent k-mutants rising and falling in
frequency. This is a prerequisite for MLD oscillations.

In fact, both wavelet-based statistical tests and Fisher
tests for hidden periodicities indicate that oscillations in
the highest order MLD persist under FSMMI (see SI.7,
Figs. S3 and S4). However, as expected, the oscillations
tend to be less precise than in the DFMMI case (Fig. 3A
vs 3D) and no full oscillations are not always realized.
This dampening of signal is likely due to portions of the
haplotype space remaining unexplored in stochastic sim-
ulations.

We further investigated whether the frequencies of
these MLD signals may be estimated. To this end, we
computed the wavelet power spectrum [53-55], of the
simulated dynamics (Fig. 3B,3E) and used it to infer the
frequency at which MLD oscillates (see Materials and
Methods). Asshown in Fig. 3C for a DFMMI benchmark,
even in stochastic simulations (Fig. 3F), wavelet analysis
can confidently reconstruct the frequency of MLD oscil-
lations.

We proceeded to examine whether the MLD oscilla-
tions under FSMMI also retain other features displayed
under DFMMI, such as equation (8). To this end, we
compared the rate of evolution estimated using the MLD
oscillation frequency, 0, to the rate of evolution expected
under infinite-sites MMI theory, vy [16] (see Fig. 4,
SI.8). vmmr serves as benchmark because there does not
exist a clear ground truth for the speed of evolution under
finite-sites.

Figure 4A shows that the rate of evolution inferred
by MLD dynamics from our simulated FSMMI model, ©
from (8) with N = 10 is close to vymr, the predicted
rate of evolution in infinite-sites MMI theory, [16].

When N varies from 102 to 10%, the mismatch between
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FIG. 3. MMI-induced MLD oscillations are still detectable under drift. A) Oscillation of the fifth order MLD in a
symmetric full escape graph. The dark blue line is the median of a set of 200 runs, and the upper and lower bounds of the light
blue area represent the 2.5 and 97.5 percentiles of all measured LDs. The MLD was calculated every 10 days using a sample size
of 20 haplotypes. The red trajectory represents the measured LD from one particular repeat. B) The wavelet power spectrum
in the time-period domain of the fifth order MLD values obtained with the sampling points of the red line in A) [53, 54]. The
horizontal grey line is the true oscillation period of the red time series in A). The white contour lines indicate regions where
the power spectrum values are significantly (< 5%) non-random. The black lines indicate local power spectrum maxima. The
half-transparent region demarcates a low-confidence wavelet power region. C) The time-averaged wavelet power spectrum. The
red and blue dots indicate whether the null-hypothesis that the the time-averaged wavelet power may have been generated by
white noise is rejected at below 0.05 or 0.1 significance levels, respectively. The maximum spectral density is attained close to
the simulated period of 7' = 200 days (horizontal thick grey line) of the oscillations. D) The analogous situation to A) for 100
simulation runs of the FSMMI model with selection, run with parameters L = 4, N = 10°, pp = 107 and s = 0.1. Samples
are taken every 5 generations or 10 days. E) Wavelet power spectrum of one randomly chosen MLD trajectory (red line in D)).
F) Analogous to C), but without the horizontal line indicating expected value.

v and vy first decreases, and then begins to increase
again (see SI Fig. S5, left column). As expected, when
population size values fall to 10® or lower, the interference
effects fade [16], and the d-to-vypyr differences increase
markedly. For populations sizes around 108, ¢ becomes
smaller than vy, but remains within confidence inter-
vals for almost all studied cases.

We performed an analogous test using Crow-Kimura-
Felsentein (CKF) theory, vekr [56] (see SI Fig. S6, left
column). Apart from a systematic positive bias of ¥ rel-
ative to vokr, the above patterns are largely retained.

Retention of MLD oscillation properties under drift
and dissimilar fitness effects

Despite its usefulness for mathematical analysis, the
assumption that all loci have identical fitness effects is
unlikely to be perfectly satisfied in biological systems.
To address this issue, we devised two further models,
narrow FSMMI and broad FSMMI (see Materials and
Methods). In the narrow FSMMI model, the selective
coefficients s; of a mutated locus j are drawn from a
Gamma distribution with average 5. The broad FSMMI
model adopts a distribution of fitness effects (DFE) which
falls off in an over-exponential manner [57]. Again, the
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FIG. 4. Estimates of speed of evolution based on MLD-oscillations versus MMI theory [16]. A) Estimates of the
speed of evolution © obtained by wavelet analysis for FSMMI model simulations run for L = 3,4,5 and 6 loci, and selection
coefficients s € {0.01,0.05,0.1,0.3} with population size N = 10°. v is estimated with equation (8) (s is known), where for f
we use the MLD-based oscillation frequency estimate (Fig.3). The inter-sampling period was At = 2 days. Colored open circles
and filled circles correspond to medians and nonparametric confidence intervals (95%), respectively, from those simulations
among 100 runs that displayed significant (< 0.05 level for wavelet-based test) oscillations. B) Analogous figure for narrow
FSMMI model. Here, to compute the speed of evolution v from the inferred oscillation frequency f we use the average § of the
Gamma distribution from which the selection coefficients were sampled (§ values equal to s values in FSMMI). C) Analgous to

B), but for the broad FSMMI model.

average s; is predefined.

We observed that narrow FSMMI simulations pro-
duced detectable oscillations nearly as often as FSMMI
(see SIT7, Figs. ST). Significant signals of MLD oscilla-
tion were also often detected under broad FSMMI (see
SIT7, Figs. S8). However, due to exacerbated symme-
try breaking of the escape graph, these were substan-
tially less frequent than in the simulations under narrow
FSMMI. Further analysis is concentrated on simulations
with non-random MLD time series behavior.

Figure 4B shows that the narrow FSMMI model leads
to MLD-based estimates similar to the those from the
FSMMI model. whereas broad-FSMMI estimates (4C)
deviate more strongly from theory. Confidence intervals
around estimates broaden as selective coefficients tend
to become more dissimilar. Varying N affects narrow
and broad FSMMI estimates similarly as it does FSMMI
estimates (see SI Fig. S5). A similar picture emerges
when using CKF-theory as benchmark (see SI Fig. S6).

To further corroborate these results, we also compared
0 values with estimates from alternative methods of infer-
ence of the speed of evolution (see ST9). The performance
of MLD-based estimates relative to other, reasonable es-
timates of the speed of evolution (9,,) is generally very
similar to their performance relative to predictions from
MMI theory (see SI, Fig. S9, and S10 for a systematically

biased estimator).

Lastly, as the assumptions of infinite-site MMI the-
ory are not met in our FSMMI simulations, we assessed
vMMI'S appropriateness as a benchmark. To do this, we
compared vymr against v,,. The match between MMI
theory and empirical estimates is generally good (see SI,
Fig. S11), suggesting that the infinite-sites assumption in
MMI theory does not adversely affect its predictive util-
ity for finite-sites systems within the parameter ranges
here studied. This justifies the use of MMI theory as a
benchmark for wavelet-based estimates.

DISCUSSION

We have developed new computational tools to calcu-
late multilocus linkage disequilibrium (MLD), a statistic
that quantifies the nonrandomness of allelic associations
across loci, accounting for contributions to haplotype
structure stemming from subgroups of loci. We show
that, in simulated deterministic haplotype dynamics with
(i) rapid accrual of a finite number of strongly beneficial
mutations with similar fitness effects and (ii) tight link-
age between loci (i.e. a MMI regime), MLD dynamics
display a wavelet-like temporal pattern. We find that
these oscillations can be explained by successive sweeps
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by haplotypes containing increasing numbers of benefi-
cial mutations in combination with specific mathematical
properties of MLD expressed in Eq. 7. We demonstrate
that the frequency of these oscillations is proportional to
the rate of evolution. Finally, we show these oscillations
are robust to evolutionary stochasticity and some degree
of variation in the fitness effects of mutations. However,
these properties are gradually lost as the fitness effects
become more dissimilar. Thus, MLD dynamics may con-
tain information relevant to the study of the short-term
evolution of microorganisms under very strong selection,
including human pathogens such as HIV, in which a finite
number of loci experience strong selection.

Moreover, the detection of MLD oscillations depends
on accurate haplotype frequency estimates, not obtained
in most within-host evolution studies, and in HIV in
particular. However, the continuous improvement of se-
quencing technologies is likely to allow for deep and dense
sampling in the future, producing appropriate datasets.

While the MLD behavior we describe exhibits im-
portant evolutionary phenomena, the wavelet-based ap-
proach we present for inferring the speed of evolution will
likely be inefficient in natural populations. Rather than
providing a new estimation method, this study aims to
elucidate how evolutionary dynamics are simultaneously
manifest in both haplotype frequency dynamics and mul-
tilocus linkage disequilibria. This is a necessary first step
before the MLD perspective on evolutionary dynamics
can offer broader applicability.

Further, our method currently ignores the role of epis-
tasis. In escape mutations of HIV, the pathogen which in-
spired this work, we are unaware of evidence for epistatic
interactions. However, other intragenic mutations are
likely to give rise to epistasis [58-61]. If epistasis dom-
inates over selection (sign epistasis), the evolutionary
dynamics are likely to halt at a local or global fitness
peak (i.e. not the full escape haplotype) [62]. Then,
at mutation-selection balance, an MLD signal should be
maintained that is constant and not oscillatory. Exten-
sions of this work may thus help to differentiate epistasis-
dominated from weak- or no-epistasis scenarios.

We also assume that loci under selection are readily
detectable. This is true in the case of epitopes targeted
by cytotoxic T lymphocytes in HIV-infected patients (see
[25]), but may not be true elsewhere. We did not inves-
tigate the scenario where only L’ are tracked, but where
L > L’ are under selection. Unknown loci may exacer-
bate escape graphs’ asymmetries, thereby further damp-
ening any MLD signal. Further work is needed to fully
ascertain the impact of these effects.

Another benefit of our approach to interference is that
it draws from an underexplored perspective on evolution
that considers the role of linkage disequilibria, and its
important statistical inference machinery. In fact, very
little use has been made of MLD in the context of pop-
ulation genetics, in particular the study of interference
[32]. This may be due to different definitions of link-
age disequilibrium at multiple loci [34, 35, 43, 63, 64].
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The crucial advantage of the Geiringer-Bennet MLD is
that its maximum likelihood estimate always exists [65],
a very useful property for estimation.

The other central benefit is MLD’s capacity to charac-
terize a population as evolving under MMI. Most simply,
the presence of MLD oscillations of the type described
here suggests that the population under study is evolv-
ing under an MMI regime. MMI occurs in populations
with specific characteristics; namely (i) a large supply
of beneficial mutations [16] (ii) beneficial mutations that
confer similar, strong selective advantages [16], and (iii)
low enough recombination rates that beneficial mutations
are likely to compete rather than recombine onto a single
haplotype. Therefore, observed MLD oscillations provide
valuable information with respect to these critical popu-
lation genetic parameters.

MATERIALS AND METHODS

Oscillation estimation by means of signal processing
techniques

To identify oscillations of MLD in the simulation data,
we developed a detection scheme based on wavelet anal-
ysis. For each run, we calculated the highest order link-
age disequilibrium at each of M, sample points from
the sampled data, that is, My MLD-values {x, }, where
n € {0,..., M;—1}. Sample data x,, are assumed to have
been obtained at constant inter-sampling periods dt, and
can be expressed as a vector x with entries z,,.

We analyzed the wavelet power spectrum of x (R-
package WaveletComp, [66]). An oscillating LD measure
of L loci will maximally generate L — 1 half-oscillations,
starting with a negative half-oscillation. Even if damped,
such wavelet-like oscillations should leave traces in the
frequency spectrum that are close to the frequency of a
full period, T

The wavelet transform of the data x is given by:

M1 1 n—r1
Wina) = 3" an -y ( ) .
2 e 7w
where
Pi) = heinte s (10)

is the Morlet wavelet. 7 is called the translation time,
whereas a is termed scaling factor. The superscript =
denotes the complex conjugate. The nondimensional fre-
quency wg is set to 6, such that the scale a becomes
almost identical to the Fourier period.

To compute all values of W (7, a) and its derivates, we
used the package WaveletComp [66]. The wavelet trans-
form is computed over a standard set of values of 7 and
a. 7 is varied from 0 to M, — 1; that is, by multiples of
the time increment dt. The scaling factors a determine
the coverage in the period domain. They are set to vary
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as Gupin - 20°Y with 7 = 0,...,J and where a,;, = 2 is the

minimum scaling factor used, dj = 1/20 is the number

of steps per analyzed octave and the maximum period

analyzed, amin - 27°Y, is 21082(Ms) (which determines J).
The wavelet power spectrum is defined by:

P(r.a) = é |W(ra) 2. (1)

The value of P(7,a) at a coordinate pair (7, a) serves as a
measure of confidence that the time series x is oscillating
at a frequency corresponding to a at translation time 7.

To measure the frequency f of an MLD time series,
we first identify the value pair (Tmax, @w, max) for which
P(7,a) was maximal. A p-value for the null-hypothesis
that there is no periodicity in x is provided by Wawvelet-
Comp, using a statistical test based on the work of
Cazelles et al. [53-55].

To reduce computational burden, the time series {z,,}
was trimmed for analysis. Simulation runs were all per-
formed over the simulation time of 2000 generations.
However, since L-mutants frequently fix well before 2000
generations have elapsed, most late x,, values are zero.
To speed up computations, we identified the last non-zero
x,, value for each series, x, and replaced the series {x,,}
by {zg,...,2,,0,...,0}, concatenating 20 zero values to
the end of the series. This modified series was then used
for further analysis.

When stochastic simulations were run, MLD could be
zero for the entire time course at low population sizes
and very different selection coefficients. In these cases,
the oscillation frequencies were set to correspond to zero.
For Fisher’s hidden periodicities test the p-values for the
null that no periodicities exist in the all-zero signal were
set to unity.

Distribution of fitness effects employed in finite-sites
MMI models

In this study, three different distributions of fitness ef-
fects were used to run Wright-Fisher simulations with a
finite number of loci to examine the robustness of (8).
The first set of simulations were run with the simplest
possible assumption: all loci confer the same selective
advantages.
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The second set of simulations were run with selection
coefficients drawn from a Gamma distribution:

1 s
pa(s) = (12)

where I' is the Gamma function, & is the shape parameter
and 0 is the scale parameter. For our simulations, we used
the values k = 400, and § = {7.5-107%,2.5-107%,1.25 -
1074,2.5-107°}. The average s under that distribution
is 8 = kf. The variance is always set to 10% of s.

The third set of simulations were run by drawing the
selection coefficients from an exponential-like distribu-
tion of fitness effects with parameters that favour MMI
conditions [49, 57]. Specifically, the distribution of fitness
effects used was:

1 67(§)ﬁ

) .

where (3 is a steepness parameter that indicates whether
the distribution follows an over or under-exponential de-
cline as s increases, and o roughly corresponds to the
inverse of the rate parameter in an exponential distri-
bution. The average selection coefficient sampled, s,
is given by oI'(2/8)/T(1/8). When f is one, p.(s) is
exponentially distributed. In this study, we used pa-
rameters for average values of s that are § = 1.4 and
o =1{0.432,0.144,0.072,0.0144}.

ACKNOWLEDGMENTS

The authors thank Fabio Zanini, Roland Regoes, Fred-
eric Bertels, Massimo Maiolo and the Feldman lab mem-
bers for stimulating discussions. This work was sup-
ported by by the Swiss National Science Foundation
(grant number P2EZP3_.162257 to VG). AH was sup-
ported in part by The Stanford Center for Computa-
tional, Evolutionary and Human Genomics (CEHG) doc-
toral fellowship at Stanford. MWF was supported in part
by CEHG, and by the Morrison Institute for Population
and Resource Studies.

[1] Miralles R, Gerrish PJ, Moya A, Elena SF. Clonal in-
terference and the evolution of RNA viruses. Science.
1999;285(5434):1745.

[2] Neher RA. Genetic Draft, Selective Interference,
and Population Genetics of Rapid Adaptation. An-
nual Review of Ecology, Evolution, and Systematics.
2013;44(1):195-215.  Available from: http://dx.doi.
org/10.1146/annurev-ecolsys-110512-135920.

[3] Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDon-
ald P, Bennett AF, Long AD, et al. The molecu-
lar diversity of adaptive convergence. Science. 2012
Jan;335(6067):457-461.

[4] Desai MM, Fisher DS, Murray AW. The speed of evolu-
tion and maintenance of variation in asexual populations.
Curr Biol. 2007;17(5):385-394.

[5] Lang GI, Botstein D, Desai MM. Genetic variation and
the fate of beneficial mutations in asexual populations.


https://doi.org/10.1101/090571
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/090571; this version posted October 26, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Genetics. 2011;188(3):647-661.

[6] Kao KC, Sherlock G. Molecular characterization of
clonal interference during adaptive evolution in asex-
ual populations of Saccharomyces cerevisiae. Nat Gen.
2008;40(12):1499-1504.

[7] Wichman HA, Badgett MR, Scott LA, Boulianne CM,
Bull JJ. Different trajectories of parallel evolution during
viral adaptation. Science. 1999 Jul;285(5426):422—4.

[8] Rouzine IM, Weinberger LS. The quantitative theory of
within-host viral evolution. Journal of Statistical Me-
chanics: Theory and Experiment. 2013;2013(01):P01009.

[9] de Visser JAG, Rozen DE. Clonal interference and
the periodic selection of new beneficial mutations in Es-
cherichia coli. Genetics. 2006;172(4):2093-2100.

[10] Fisher R. The genetical theory of natural selection. Ox-
ford: Clarendon; 1930.

[11] Muller HJ. Some genetic aspects of sex.
1932;66(703):118-138.

[12] Hill W, Robertson A, et al. The effect of linkage on limits
to artificial selection. Genet Res. 1966;8(3):269-294.

[13] Otto SP, Barton NH. The evolution of recombina-
tion: removing the limits to natural selection. Genetics.
1997;147(2):879-906.

[14] Maynard Smith J. What use is sex?
1971;30(2):319-335.

[15] Felsenstein J. The evolutionary advantage of recombina-
tion. Genetics. 1974;78(2):737-756.

[16] Desai MM, Fisher DS. Beneficial mutation selection bal-
ance and the effect of linkage on positive selection. Ge-
netics. 2007 Jul;176(3):1759-1798.

[17] Good BH, Rouzine IM, Balick DJ, Hallatschek O, De-
sai MM. Distribution of fixed beneficial mutations and
the rate of adaptation in asexual populations. Proc Natl
Acad Sci USA. 2012;109(13):4950-4955.

[18] Hegreness M, Shoresh N, Hartl D, Kishony R. An
equivalence principle for the incorporation of favor-
able mutations in asexual populations. Science.
2006;311(5767):1615-1617.

[19] Kosheleva K, Desai MM.
draft in rapidly adapting populations.
Nov;195(3):1007-25.

[20] Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH,
Giorgi EE, Li H, et al. Genetic identity, biological pheno-
type, and evolutionary pathways of transmitted/founder
viruses in acute and early HIV-1 infection. J Exp Med.
2009;206(6):1273-1289.

[21] Cobey S, Koelle K. Capturing escape in infectious disease
dynamics. Trends Ecol Evol. 2008 Oct;23(10):572-7.

[22] Asquith B, Edwards CT, Lipsitch M, McLean AR. Inef-

ficient cytotoxic T lymphocyte—mediated killing of HIV-

1-infected cells in vivo. PLoS Biol. 2006;4(4):e90.

Turnbull EL, Wong ML, Wang S, Wei X, Jones NA, Con-

rod KE, et al. Kinetics of expansion of epitope-specific

T cell responses during primary HIV-1 infection. The

Journal of Immunology. 2009;182(11):7131-7145.

Goonetilleke N, Liu MKP, Salazar-Gonzalez JF, Ferrari

G, Giorgi E, Ganusov VV, et al. The first T cell re-

sponse to transmitted/founder virus contributes to the

control of acute viremia in HIV-1 infection. J Exp Med.
2009;206(6):1253-1272.

[25] Henn Mea. Whole genome deep sequencing of HIV-1 re-
veals the impact of early minor variants upon immune
recognition during acute infection. PLoS Pathogens.
2012;8(3):€1002529.

Am Nat.

J Theor Biol.

The dynamics of genetic
Genetics. 2013

23

24

9

[26] Felsenstein J. The effect of linkage on directional selec-
tion. Genetics. 1965 Aug;52(2):349-63.

[27] Hill W, Robertson A. Linkage disequilibrium in fi-
nite populations. Theoretical and Applied Genetics.
1968;38(6):226—231.

[28] Gerrish PJ, Lenski RE. The fate of competing ben-
eficial mutations in an asexual population. Genetica.
1998;102:127-144.

[29] Barton NH. Linkage and the limits to natural selection.
Genetics. 1995;140(2):821-841.

[30] Kim Y, Stephan W. Selective sweeps in the presence of
interference among partially linked loci. Genetics. 2003
May;164(1):389-98.

[31] Barton N. Genetic linkage and natural selection. Philos
Trans R Soc Lond B Biol Sci. 2010;365(1552):2559-2569.

[32] Slatkin M. Linkage disequilibrium—understanding the
evolutionary past and mapping the medical future. Nat
Rev Genet. 2008;9(6):477-485.

[33] Garcia V, Regoes RR. The effect of interfer-
ence on the CD8+4 T cell escape rates in HIV.
Frontiers in Immunology. 2015;5(661). Available
from: http://www.frontiersin.org/hiv_and_aids/
10.3389/fimmu.2014.00661/abstract.

[34] Geiringer H. On the probability theory of linkage in
Mendelian heredity. The Annals of Mathematical Statis-
tics. 1944;15(1):25-57.

[35] Bennett J. On the theory of random mating. Annals of
Eugenics. 1952;17(1):311-317.

[36] Hill WG. Disequilibrium among several linked neutral
genes in finite population I. Mean changes in disequilib-
rium. Theor Pop Biol. 1974;5(3):366-392.

[37] Hill WG. Disequilibrium among several linked neutral
genes in finite population: II. Variances and covariances
of disequilibria. Theor Pop Biol. 1974;6(2):184-198.

[38] Dausset J, Legrand L, Lepage V, Contu L, Marcelli-Barge
A, Wildloecher I, et al. A haplotype study of HLA com-
plex with special reference to the HLA-DR series and to
Bf. C2 and glyoxalase I polymorphisms. Tissue Antigens.
1978 Oct;12(4):297-307.

[39] Gorelick R, Laubichler MD. Decomposing multilocus
linkage disequilibrium. Genetics. 2004;166(3):1581-1583.

[40] Andrews GE. The Theory of Partitions, volume 2
of Encyclopedia of Mathematics and its Applications.
Addison-Wesley Boston,(MA); 1976.

[41] R Development Core Team. R: A Language and En-
vironment for Statistical Computing. Vienna, Austria;
2012. ISBN 3-900051-07-0. Available from: http:
//wwu .R-project.org/.

[42] Hankin RKS. Additive integer partitions in R. Journal
of Statistical Software, Code Snippets. 2006 May;16.

[43] Slatkin M. On treating the chromosome as the unit of
selection. Genetics. 1972;72(1):157-168.

[44] Tsimring LS, Levine H, Kessler DA. RNA virus evo-
lution via a fitness-space model. Phys Rev Lett.
1996;76/(23):4440-4443.

[45] Rouzine I, Coffin J. Linkage disequilibrium test implies a
large effective population number for HIV in vivo. Proc
Natl Acad Sci USA. 1999;96(19):10758-10763.

[46] Rouzine IM, Wakeley J, Coffin JM. The solitary
wave of asexual evolution. Proc Natl Acad Sci USA.
2003;100(2):587-592.

[47] Leviyang S. The Coalescence of Intrahost HIV Lin-
eages Under Symmetric CTL Attack. Bull Math Biol.
2012;74(8):1818-1856.


https://doi.org/10.1101/090571
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/090571; this version posted October 26, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

[48] Garcia V, Feldman MW, Regoes RR. Investigating the
Consequences of Interference between Multiple CD8+ T
Cell Escape Mutations in Early HIV Infection. PLoS
Comput Biol. 2016 Feb;12(2):€1004721.

[49] Garcia V, Feldman MW. Within-Epitope Interactions
Can Bias CTL Escape Estimation in Early HIV Infection.
Front Immunol. 2017;8:423.

[50] Ganusov VV, Neher RA, Perelson AS. Mathematical
modeling of escape of HIV from cytotoxic T lymphocyte
responses. Journal of Statistical Mechanics: Theory and
Experiment. 2013;2013(01):P01010.

[61] Kessinger TA, Perelson AS, Neher RA. Inferring HIV
escape rates from multi-locus genotype data. Frontiers
in Immunology. 2013;1:0.

[52] Asquith B, McLean AR. In vivo CD8+ T cell con-
trol of immunodeficiency virus infection in humans
and macaques. Proc Natl Acad Sci USA. 2007
Apr;104(15):6365-6370.

[63] Cazelles B, Chavez M, Magny GCd, Guégan JF, Hales
S. Time-dependent spectral analysis of epidemiologi-
cal time-series with wavelets. J R Soc Interface. 2007
Aug;4(15):625-36.

[64] Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO,
Jenouvrier S, et al. Wavelet analysis of ecological time
series. Oecologia. 2008 May;156(2):287-304.

[65] Cazelles B, Cazelles K, Chavez M. Wavelet analysis in
ecology and epidemiology: impact of statistical tests. J
R Soc Interface. 2014 Feb;11(91):20130585.

[66] Park SC, Simon D, Krug J. The speed of evolution
in large asexual populations. J Stat Phys. 2010;138(1-
3):381-410.

10

[67] Fogle CA, Nagle JL, Desai MM. Clonal interference, mul-
tiple mutations and adaptation in large asexual popula-
tions. Genetics. 2008;180(4):2163-2173.

[58] Hinkley T, Martins J, Chappey C, Haddad M, Stawiski
E, Whitcomb JM, et al. A systems analysis of mutational
effects in HIV-1 protease and reverse transcriptase. Nat
Genet. 2011 May;43(5):487-9.

[69] Otwinowski J, Plotkin JB. Inferring fitness landscapes
by regression produces biased estimates of epistasis. Proc
Natl Acad Sci USA. 2014 Jun;111(22):E2301-9.

[60] Bonhoeffer S, Chappey C, Parkin NT, Whitcomb JM,
Petropoulos CJ. Evidence for positive epistasis in HIV-
1. Science. 2004 Nov;306(5701):1547-50.

[61] Wang K, Mittler JE, Samudrala R. Comment on ”Ev-
idence for positive epistasis in HIV-1”. Science. 2006
May;312(5775):848; author reply 848.

[62] de Visser JAGM, Krug J. Empirical fitness landscapes
and the predictability of evolution. Nat Rev Genet. 2014
Jul;15(7):480-90.

[63] Mueller JC. Linkage disequilibrium for different scales
and applications. Brief Bioinform. 2004;5(4):355-364.

[64] Nothnagel M, Fiirst R, Rohde K. Entropy as a mea-
sure for linkage disequilibrium over multilocus haplotype
blocks. Hum Hered. 2003;54(4):186-198.

[65] Weir BS, Ott J. Genetic data analysis II. Trends Genet.
1997;13(9):379.

[66] Roesch A, Schmidbauer H. WaveletComp: Computa-
tional Wavelet Analysis; 2014. R package version 1.0.
Available from: http://CRAN.R-project.org/package=
WaveletComp.


https://doi.org/10.1101/090571
http://creativecommons.org/licenses/by-nc-nd/4.0/

