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ABSTRACT	

	

The	main	application	of	ChIP-seq	technology	is	the	detection	of	genomic	regions	that	bind	to	a	

protein	of	interest.	A	large	part	of	functional	genomics	public	catalogs	are	based	on	ChIP-seq	data.	

These	catalogs	rely	on	peak	calling	algorithms	that	infer	protein-binding	sites	by	detecting	genomic	

regions	associated	with	more	mapped	reads	(coverage)	than	expected	by	chance	as	a	result	of	the	

experimental	protocol’s	lack	of	perfect	specificity.	We	find	that	GC-content	bias	accounts	for	

substantial	variability	in	the	observed	coverage	for	ChIP-Seq	experiments	and	that	this	variability	

leads	to	false-positive	peak	calls.	More	concerning	is	that	GC-effect	varies	across	experiments,	with	

the	effect	strong	enough	to	result	in	a	substantial	number	of	peaks	called	differently	when	different	

laboratories	perform	experiments	on	the	same	cell-line.	However,	accounting	for	GC-content	in	

ChIP-Seq	is	challenging	because	the	binding	sites	of	interest	tend	to	be	more	common	in	high	GC-

content	regions,	which	confounds	real	biological	signal	with	the	unwanted	variability.	To	account	for	

this	challenge	we	introduce	a	statistical	approach	that	accounts	for	GC-effects	on	both	non-specific	

noise	and	signal	induced	by	the	binding	site.	The	method	can	be	used	to	account	for	this	bias	in	

binding	quantification	as	well	to	improve	existing	peak	calling	algorithms.	We	use	this	approach	to	

show	a	reduction	in	false	positive	peaks	as	well	as	improved	consistency	across	laboratories.		
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INTRODUCTION	

	

Chromatin	immunoprecipitation	followed	by	NGS	(ChIP-Seq)	is	widely	used	for	detecting	the	

genomic	locations	of	transcription	factor	binding	and	histone	modifications.	ChIP-Seq	is	widely	used,	

with	the	majority	of	data	provided	by	the	ENCODE	(Dunham	et	al.	2012)	and	modENCODE	(Celniker	

et	al.	2009)	projects	produced	with	this	technology.	After	mapping	the	NGS	reads,	the	main	part	of	

the	quantitative	analysis	is	to	infer	the	genomic	sites	where	the	protein	of	interest	binds	by	finding	

regions	with	an	enrichment	of	mapped	reads.	The	regions	reported	by	this	analysis	are	referred	to	as	

peaks	due	to	the	appearance	of	the	coverage	plots	(Pepke	et	al.	2009).	Several	competing	peak	

detection	algorithms	have	been	described	in	the	literature	(Ji	et	al.	2008;	Jothi	et	al.	2008;	

Kharchenko	et	al.	2008;	Valouev	et	al.	2008;	Zhang	et	al.	2008;	Rozowsky	et	al.	2009;	Rashid	et	al.	

2011).	Although	details	of	these	competing	approaches	vary,	most	follow	similar	general	principles.	

First,	after	reads	are	mapped,	coverage	is	calculated	for	binned	regions	of	the	genome.	In	principle	

only	regions	including	binding	sites	should	have	counts	larger	than	0.	But	due	to	non-specificity	of	

the	experimental	protocol	we	observe	a	background	level.	This	background	level	is	then	modeled	

and	statistical	inference	is	used	to	distinguish	between	count	levels	that	can	be	explained	with	the	

background	model	and	those	that	are	higher	than	expected	by	chance.	The	latter	are	reported	as	

peaks.		

	

GC	content	bias	has	been	reported	for	several	NGS	applications	(Dohm	et	al.	2008;	Alkan	et	al.	2009;	

Cheung	et	al.	2011;	Benjamini	and	Speed	2012).	For	genomic	DNA	data,	PCR	amplification	of	DNA	

fragments	during	library	preparation	is	one	factor	that	introduces	this	bias	(Aird	et	al.	2011;	Ross	et	

al.	2013).	The	bias	has	also	been	observed	in	RNA-Seq	data	(Love	et	al.	2016).	Solutions	to	this	bias	

have	been	published	for	genomic	DNA	(Benjamini	and	Speed	2012)	and	RNA-Seq	data	(Hansen	et	al.	

2012;	Love	et	al.	2016).	However,	below	we	explain	why	these	approaches	are	not	directly	

applicable	to	ChIP-Seq	data.		
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Using	ENCODE	(Dunham	et	al.	2012)	data	we	show	that	GC-content	bias	is	also	present	in	ChIP-Seq	

technology.	Furthermore,	we	demonstrate	that	the	way	in	which	GC-content	affects	coverage	varies	

across	samples	and	laboratories	and	that	this	unwanted	variability	is	substantial	enough	to	results	in	

different	laboratories	calling	different	regions	as	peaks.	Unfortunately,	solutions	for	GC-bias	

correction,	published	for	other	NGS	applications,	are	not	directly	applicable	to	ChIP-Seq	experiments.	

This	is	because,	in	many	instances,	binding	sites	are	expected	to	occur	in	or	near	high	GC-content	

regions	such	as	gene	promoters.	If	we	naively	correct	for	GC-content	we	may	erase	the	biologically	

relevant	signals	we	are	interested	in	detecting.	Here	we	present	an	approach,	based	on	a	mixture	

model,	that	accounts	for	GC-content	bias	separately	for	effects	related	to	protein	binding	and	

differential	non-specific	binding.	We	demonstrate	how	this	approach	greatly	reduces	false	positive	

peaks	and	improves	agreement	across	laboratories.		

	

	

RESULTS	

	

GC	affects	coverage	and	it	does	so	differently	in	different	labs	

	

To	demonstrate	the	challenges	presented	by	GC-content	bias	and	the	advantages	presented	by	our	

method,	we	downloaded	and	processed	raw	ENCODE	(Dunham	et	al.	2012)	ChIP-Seq	data	measuring	

CTCF	binding	for	the	GM12878,	HeLa-S3,	HepG2,	HUVEC,	K562	and	NHEK	cell	lines.	We	selected	this	

particular	example	because	data	is	available	from	experiments	performed	by	three	independent	

laboratories	each	running	two	replicated	experiments	with	at	least	one	million	mapped	reads	(cell	

lines	GM12878	and	K562	have	3	replicates	from	one	lab).		
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To	explore	the	extent	and	characteristics	of	the	bias,	we	segmented	the	genome	into	10K	basepair	

bins	(we	used	a	large	bin	size	because	it	facilitated	exploratory	data	analysis)	and	GC-content	was	

computed	for	each	bin.	Then	for	each	of	the	HUVEC	cell	lines,	we	counted	read	starts	for	each	bin.	

Plotting	counts	versus	GC-content	reveals	two	clusters	in	each	of	the	samples	(Fig.	1A-F).	We	used	

the	HUVEC	data	to	illustrate	the	challenge	because	it	exhibited	the	strongest	GC-content	bias.	The	

presence	of	two	clusters	are	in	agreement	with	the	previously	noted	observation	that	ChIP-Seq	

reads	can	result	from	either	1)	a	background	level	or	2)	protein	binding	regions	(Zhang	et	al.	2008),	

with	the	latter	associated	with	peaks.	In	both	replicates	from	one	laboratory	we	observe	that	counts	

increase	with	GC-content	in	both	background	and	signal	clusters	(Fig.	1A	and	1B).	Of	particular	

concern	is	the	fact	that	the	way	GC-content	affects	coverage	is	different	in	another	laboratory	(Fig.	

1C	and	1D)	in	which	counts	decrease	with	GC-content.	In	a	third	laboratory,	the	GC-content	bias	is	

only	present	in	one	of	the	two	replicates	(Fig.	1E	and	1F).		
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Figure	1	–	Evidence	of	GC-content	effects	at	the	bin	level	and	its	downstream	result	on	peaks	

demonstrated	on	the	HUVEC	cell	line.	A)	The	genome	is	divided	into	10	kB	bins	and	counts	are	

computed	in	the	first	replicate	of	laboratory	UW	each	as	well	as	the	GC-content	of	each	bin.	Counts	

are	plotted	against	GC-content.	Hand-drawn	contours	are	added	to	highlight	the	presence	of	two	

clusters.	B)	As	A)	but	for	the	second	replicate.	C)	as	A)	but	for	the	first	replicate	of	laboratory	UTA.	D)	

As	C)	but	for	the	second	replicate.	E)	as	A)	but	for	the	first	replicate	of	laboratory	Broad.	F)	As	E)	but	

for	the	second	replicate.	G)	An	example	of	peak	that	changes	substantially	from	laboratory	to	

laboratory.	This	peak	is	associated	with	the	bin	denoted	with	an	‘G’	in	A-F.	H)	As	G	but	for	the	bin	

denoted	with	an	‘H’	in	A-F.	
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GC	bias	leads	to	variability	of	ChIP-Seq	peak	calling	

	

These	effects	described	above	are	strong	enough	to	affect	downstream	analysis	such	as	peak	

detection.	For	example,	coverage	can	change	drastically	across	laboratories	depending	on	the	GC-

content	of	the	region	(Fig.	1G	and	1H,	Supplemental	Fig.	1).	Note	that	in	the	high	GC-content	region,	

laboratory	UW	shows	a	peak	but	laboratory	UTA	does	not,	while	in	the	low	GC-content	region	it	is	

the	other	way	around.	These	regions	are	not	isolated	examples.	In	fact,	the	agreement	in	peak	calls	

across	laboratories	(Supplemental	Fig.	2A)	is	rather	low.		For	example,	the	peaks	reported	for	the	

HUVEC	cell-line	on	the	ENCODE(Landt	et	al.	2012)	portal	report	in	37,920,	44,033	and	37,412	peaks	

called	for	the	three	laboratories	respectively	with	24.3%	of	regions	reported	by	only	one	lab.	To	see	

that	GC-content	was	a	major	driver	of	these	differences	we	compared	the	GC-content	of	the	peak	

regions	detected	just	by	laboratory	UW,	to	those	detected	just	by	laboratory	Broad,	to	those	

detected	just	by	laboratory	UTA	and	found	a	strong	difference	(Fig.	2A).	Note	that	these	differences	

cannot	be	due	to	biology	but	rather	must	be	a	result	of	differences	in	experimental	conditions.	

These	results	demonstrate	that,	if	left	unaccounted	for,	GC-content	bias	will	lead	current	peak	

callers	to	report	a	substantial	number	of	false	positives.	
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Figure	2	–	GC-content	of	peaks	called	by	only	one	laboratory.	(A)	For	the	HUVEC	cell	line	we	formed	

four	groups	of	peaks	reported	by	ENCODE	portal.	We	split	them	into	those	called	only	in	laboratory	

UW,	those	called	only	in	laboratory	Broad,	those	called	only	in	laboratory	UTA	and	those	called	in	all	

three.	We	computed	the	GC-content	for	each	of	these	peak	regions	and	show	in	four	boxplots.	(B)	As	

(A)	but	after	finding	peaks	with	our	algorithm.	

	

Mixture	Model	Estimates	GC-content	effect	for	background	and	signal	

	

Published	work	on	GC-content	bias	correction	has	found	that	modeling	GC-content	effects	at	the	

fragment	level	is,	currently,	the	optimal	approach	(Benjamini	and	Speed	2012;	Love	et	al.	2016).	

However,	this	approach	is	not	directly	applicable	to	ChIP-Seq	data.	One	reason	is	that	most	peak	

calling	algorithms	operate	on	bin	level	information.		Specifically,	these	algorithms	define	bins,	

compute	coverage	in	these	bins,	and	then	peaks	are	inferred	from	these	coverage	measurements	(Ji	

et	al.	2008;	Kharchenko	et	al.	2008;	Zhang	et	al.	2008;	Rashid	et	al.	2011).	Here	we	develop	a	

method	that	makes	use	of	an	approximation	that	permits	the	adaptation	of	published	peak	calling	
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algorithms	so	that	they	adjust	for	GC-content	bias.	Although	we	focus	on	the	SPP	(algorithm)	

(Kharchenko	et	al.	2008)	because	it	was	used	by	the	ENCODE	project,	our	approach	applies	to	any	

peak	algorithm	based	on	coverage	computed	in	bins.	The	approach	can	also	be	used	to	adjust	

enrichment	scores	for	predefined	regions.	

	

The	first	step	of	our	approach	is	to	estimate	a	sample	specific	GC-content	effect	from	the	data.	This	

effect	is	defined	by	estimating	the	GC-bias	for	both	background	level	and	binding	signal	for	any	

given	potential	binding	region	(Fig.	3).	Suppose	our	targeted	protein	binds	to	a	region	centered	at	

genomic	location	𝑖"	and	has	length	𝑙.	Computing	the	GC-content	of	the	genomic	region	starting	at	

𝑖"–
%
&
	and	ending	at	𝑖" +

%
&
	is	straightforward.	However,	due	to	the	fact	that	DNA	is	randomly	cut	into	

fragments	of	sizes	ranging	from	200bp	to	500bp	(depending	on	the	experimental	protocol)	the	

sequenced	reads	associated	with	this	binding	site	maps	to	a	larger	region	of	the	genome	(Fig.	3).	

Specifically,	if	fragments	are,	on	average,	size	ℎ	then	the	peak	region	will	span	from	𝑖" +
%
&
−

ℎ	𝑡𝑜	𝑖" −
%
&
+ ℎ.	Note	also	that	once	outside	of	the	[𝑖"–

%
&
, 𝑖" +

%
&
]	range,	the	probability	that	a	

specific	fragments	appears	decreases	as	its	center	is	further	to	𝑖".	Specifically,	these	different	

probabilities	imply	that	we	should	use	the	following	weights:	

𝑤1 =

𝑖	 − 		 𝑖" −
𝑙
2
+ ℎ							if		𝑖 ∈ [𝑖" +

𝑙
2
− ℎ, 𝑖" −

𝑙
2
]

ℎ − 𝑙 + 1											if	𝑖 ∈ (𝑖" −
𝑙
2
, 𝑖" +

𝑙
2
)

𝑖" −
𝑙
2
+ ℎ − 𝑖											if		𝑖 ∈ [𝑖" +

𝑙
2
, 𝑖" −

𝑙
2
+ ℎ]

	

	

The	shape	of	𝑤1 	can	be	seen	in	Supplemental	Figure	3.	This	implies	that	the	total	GC-content	bias	

affecting	fragments	associated	with	a	protein	binding	at	[𝑖"–
%
&
, 𝑖" +

%
&
]	is	a	weighted	average	of	all	

the	GC-content	effects	of	all	potential	fragments	in	the	bin	[𝑖" +
%
&
− ℎ, 𝑖" −

%
&
+ ℎ].	We	therefore	

define	the	effective	GC-content	(EGCC)	associated	with	a	bin	centered	at	𝑖"	as	
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where	𝑥1 	is	1	if	genomic	location	𝑖	is	G	or	C,	and	0	otherwise.	Note	that	positive	side	effect	of	this	

approach	is	that	it	results	in	a	GC-content	covariate	that	is	less	sensitive	to	the	bin	size	

(Supplemental	Fig.	4).	

	

	

	

Figure	3	–	Illustration	of	regions	related	to	the	enrichment	score	calculation.	The	regions	associated	

with	the	counts	denoted	by	𝑌1,<	, 𝑌1,?,𝐵1,<	,𝐵1,?	in	the	paper	are	denoted	with	the	regions	1,	4,	2,	and	

3	respectively.	

	

With	an	EGCC	in	place	for	any	given	genomic	location,	we	then	estimate	GC-content	effects	for	both	

the	background	level	and	signal	using	a	mixture	model.	Specifically,	we	pose	a	mixed	generalized	

linear	model	with	two	components	corresponding	to	coverage	due	to	specific	binding	and	

background	regions	respectively.	We	assume	that	each	component	follows	a	Poisson	distribution	

with	the	log	of	the	rate	a	smooth	function	of	EGCC.	When	fitting	this	model	to	the	HUVEC	data,	the	

fitted	GC-content	dependent	effects	demonstrate	that	each	laboratory	introduces	a	different	type	

of	bias	for	both	the	signal	and	background	(Fig.	4).		See	Methods	Section	for	details.		

	

protein

Fragments

DNA
…

Parameters
i0

W
h

l
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Figure	4	–	Visualization	of	the	fitted	generalized	linear	mixture	model.	A)	We	defined	bins	using	

estimated	binding	size	and	randomly	selected	a	5%	of	all	genome-wide	bins.	We	computed	counts	

for	these	bins	in	the	first	replicated	of	the	HUVEC	cell	line	for	laboratory	UW.	For	these	bins	we	

fitted	our	model.	The	colors	represent	the	probability	of	being	background	(blue)	or	signal	(red).	The	

GC-content	bias	smooth	functions	are	plotted	with	dashed	curves.	B)	As	A)	but	for	the	second	

replicate	for	laboratory	UW.	C)	As	A)	but	for	laboratory	UTA.	D)	As	C)	but	for	the	second	replicate	for	

laboratory	UTA.	E)	As	A)	but	for	laboratory	Broad.	F)	As	E)	but	for	the	second	replicate	for	laboratory	

Broad.	

	

Adjusting	binding	quantification	for	GC-bias	reduces	batch	effects	

	

We	computed	counts	for	each	the	regions	reported	as	CTCF	peaks	in	at	least	one	cell	line	by	ENCODE	

(Kundaje	et	al.	2015)	for	each	of	the	GM12878,	HeLa-S3,	HepG2,	HUVEC,	K562	and	NHEK	samples.	

We	constructed	a	matrix	with	these	binding	quantifications	and	performed	principal	component	
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analysis	(PCA)	on	the	log-transformed	values	in	this	matrix.	The	first	two	principal	components	(PCs)	

do	not	separate	by	cell	line	as	expected	(Fig.	5A).	Furthermore,	the	large	variation	seen	within	each	

cell	line	is	largely	explained	by	the	different	labs	(Fig.	5A).	We	then	adjusted	the	values	in	this	matrix	

for	GC-content	using	our	model	based	approach	and	recomputed	the	PCs.	The	results	were	

markedly	improved	(Fig.	5B)	with	the	samples	now	clearly	clustering	by	cell	line	and	much	of	the	

batch	effects	removed.	The	improvement	in	specificity	and	batch	effect	removal	was	evident	from	

plotting	mean	squared	residuals	summarizing	across	laboratory	variability,	computed	within	cell-line,	

before	and	after	GC-content	correction	and	noting	a	substantial	reduction	(Fig.	5C).	

	

	

	

Figure	5	–	GC-bias	correction	reduces	the	impact	of	batch	effects.	A)	For	the	regions	reported	as	

binding	sites	by	ENCODE	we	computed	counts	for	the	GM12878,	HeLa-S3,	HepG2,	HUVEC,	K562	and	

NHEK.	The	first	two	principal	components	of	this	matrix	are	shown	with	color	representing	cell-line	

and	different	symbols	used	to	represent	lab.	B)	As	A)	but	after	performing	the	batch	correction.	C)	

Boxplots	showing	the	within	cell-line	across	laboratory	variability	before	and	after	correction	for	the	

HUVEC	cell	line.	

	

	

	

−0.3 −0.2 −0.1 0.0 0.1 0.2

−0
.4

−0
.2

0.
0

0.
2

Before GC-content adjustment

PC1: 14.3 %

PC
2:

 1
2.

9 
%

GM12878
HeLa-S3
HepG2
HUVEC
K562
NHEK

Broad
UTA
UW

−0.3 −0.2 −0.1 0.0 0.1 0.2

−0
.2

−0
.1

0.
0

0.
1

0.
2 After GC-content adjustment

PC1: 15.1 %

PC
2:

 1
1.

3 
%

0
1

2
3

4
5

C
ro

ss
 la

bo
ra

to
ry

 v
ar

ia
bi

lit
y

Before 
GC-content
adjustment

After
GC-content
adjustment

A B C

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 15, 2017. ; https://doi.org/10.1101/090704doi: bioRxiv preprint 

https://doi.org/10.1101/090704
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

Integrating	GC-content	adjustment	into	peak	calling	algorithms	

	

Our	model-based	approach	provides	an	adjustment	value	for	any	genomic	bin.	This	implies	that	it	

can	be	integrated	with	peak	algorithms	that	use	bins	as	raw	data	(Ji	et	al.	2008;	Kharchenko	et	al.	

2008;	Zhang	et	al.	2008;	Rashid	et	al.	2011).	Here	we	demonstrate	the	advantages	of	our	approach	

by	adapting	the	peak	detection	algorithm	used	by	ENCODE,	namely	the	ChIP-Seq	processing	pipeline	

(SPP)	(Kharchenko	et	al.	2008).	SPP	starts	by	estimating	the	average	half	width	of	the	binding	protein,	

referred	to	here	as	𝑊	(see	Methods	Section	for	details).	With	this	estimate	in	place	the	SPP	

algorithm	then	computes	read	counts	for	positive	and	negative	strands	separately	for	each	genomic	

location	𝑖,	denoted	here	with	𝑌1,<	and	𝑌1,?	respectively.	The	𝑌1,<		represents	positive	strand	counts	in	

a	region	starting	at	𝑖 − 𝑊	and	ending	at	𝑖	and	the	𝑌1,?	represents	negative	strand	counts	in	a	region	

starting	at	𝑖	and	ending	at	𝑖 + 𝑊.	As	described	by	Pepke	et	al	(Pepke	et	al.	2009),	these	counts	

should	be	large	when	a	protein	binds	a	region	centered	at	𝑖.	To	account	for	local	background,	SPP	

also	computes	counts	in	regions	that	should	be	associated	with	non-specific	binding,	denoted	here	

with	𝐵1,<	and	𝐵1,?	respectively.	The	background	level	𝐵1,<		represents	positive	strand	counts	in	a	

region	starting	at	𝑖	and	ending	at	𝑖 + 𝑊	and	the	background	level	𝐵1,?	represnets	negative	strand	

counts	in	a	region	starting	at	𝑖 − 𝑊	and	ending	at	𝑖.	As	described	by	Pepke	et	al	(Pepke	et	al.	2009),	

there	should	be	no	counts	in	these	regions	when	a	protein	binds	a	region	centered	at	𝑖.	Then	for	

each	𝑖,	SPP	defines	the	enrichment	score	as	a	geometric	mean	of	the	signal	counts	minus	the	

average	background	signal	𝑆1 = 2 𝑌1,<	 ∗ 	𝑌1,?	 − (𝐵1,<	+	𝐵1,?	).	Note	that	this	is	geometric	average	of	

the	signal	minus	the	arithmetic	average	of	background	multiplied	by	2.	To	find	candidate	peaks	SPP	

then	estimates	of	binding	significance,	and	uses	the	local	maxima	of	enrichment	score	to	call	peaks.	

To	correct	for	GC	we	simply	compute	the	effective	GC-content	of	each	bin	and	adjust	

𝑌1,<	, 𝑌1,?,𝐵1,<	,𝐵1,?	accordingly.	We	then	used	an	approach	similar	SPP	to	quantify	uncertainty	for	

each	candidate	peak	reported	by	our	GC-corrected	SPP	algorithm	(Methods	and	Supplemental	Fig.	5).	

We	compared	these	peaks	to	those	obtained	by	the	original	SPP	and	found	that	our	method	(gcapc)	
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resulted	in	substantial	improvement	in	consistency	(Fig.	6A).	If,	as	done	by	ENCODE,	we	filter	peaks	

using	an	IDR(Li	et	al.	2011)	of	0.02,	our	algorithm	reports	improved	results	of	33,216,	35,234	and	

30,089	peaks	(Supplemental	Fig.	2B)	called	for	the	three	laboratories	and	now	only	18.6%	of	regions	

reported	by	only	one	lab.	More	importantly	the	differences	are	no	longer	due	to	differences	in	GC-

content	(Fig.	2B).		Note	that	the	ENCODE	pipeline	is	more	complicated	than	running	a	peak	caller	

and	IDR	(https://www.encodeproject.org/chip-seq/transcription_factor/).	If	we	simply	run	SPP	

followed	by	IDR	the	improvements	of	our	algorithm	are	even	larger	since	this	approach	produced	

29.5%	regions	reported	by	only	one	lab	(Supplemental	Fig.	2C)	

	

Finally,	to	further	assess	the	improvement	provided	by	our	approach	we	performed	CTCF	binding	

site	enrichment	analysis.	Specifically,	we	used	the	most	recent	prediction	of	the	human	CTCF	motif	

(Schmidt	et	al.	2012)		to	define	a	position	weight	matrix	(PWM)	score	sequence	of	the	same	size	as	

the	motif	(Wasserman	and	Sandelin	2004).	Then	we	assigned	a	PWM	score	to	each	reported	peak	by	

selecting	the	maximum	PWM	within	the	region	associated	with	the	peak.	Following	(Wasserman	and	

Sandelin	2004),	we	defined	peaks	with	a	maximum	PWM	score	lower	than	72%	as	a	false	positive.	

The	gcapc	had	substantially	less	false	positives	than	SPP	(Fig.	6B).	For	example,	if	we	examine	the	top	

100	peaks	across	all	six	replicates,	SPP	results	in	a	total	of	17	false	positives	while	gcapc	has	none.	
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Figure	6	–	Improvements	of	peak	calling	consistency	and	TFBS	enrichment	with	GC	content	

adjustment.	For	the	HUVEC	cell-line	we	create	lists	of	candidate	peaks	of	varying.	A)	Correspondence	

at	the	top	(CAT)	plots.	For	each	list	size	we	compute	the	proportion	of	peaks	in	common	reported	by	

two	different	laboratories.	We	do	this	for	each	pairwise	comparison	and	plot	this	percentage	against	

the	list	size.	Peak	width	is	scaled	to	the	same	median	size	between	gcapc	and	SPP	for	each	sample.	B)	

For	each	list	size	we	compute	PWM	scores	for	each	peak	and	define	with	a	lower	than	72%	as	false	

positives.	We	do	this	for	each	replicate	and	plot	false	positive	rate	against	the	list	size	and	plot	the	

number	of	false	positives	for	each	list	sizes	ranging	from	1	to	30,000.	

	

	

DISCUSSION	

	

We	have	demonstrated	how	GC-content	bias	induces	substantial	variability	into	ChIP-Seq	data	and	

that	this	variability	is	large	enough	to	result	in	different	peaks	being	reported	by	different	

laboratories	when	studying	the	same	cell-lines.	We	described	how	published	GC-content	adjustment	

methods	are	not	directly	applicable	to	ChIP-Seq	data	due	to	confounding	between	GC-content	of	

regions	and	their	biological	relevance.	We	described	gcapc	

Size of ranked peak listSize of ranked peak list
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(http://bioconductor.org/packages/gcapc/),	a	method	that	adjusts	for	GC-content	bias	in	ChIP-

Seq	data	using	a	mixed	model,	which	permits	independent	adjustments	of	the	signal	and	

background	signals	and	thus	circumvents	the	confounding	challenge,	and	can	be	incorporated	into	

most	current	peak	callers.	Our	method	permits	the	GC-content	bias	correction	for	any	predefined	

bin.	We	demonstrated	the	practical	advantage	of	our	approach	by	removing	batch	effects	from	

binding	quantifications	in	ENCODE	data	and	by	adapting	the	widely	used	SPP	algorithm	and	showing	

substantial	improvements	in	peak	calling	consistency	across	labs.	

	

	

METHODS	

	

Data	Acquisition	and	Preprocessing	

	

We	chose	data	for	the	transcription	factor	CTCF	provided	by	ENCODE	an	example	dataset	because	it	

includes	a	wide	range	of	cell	types	and	experiments	performed	by	three	different	laboratories	using	

the	same	protocol.		The	three	laboratories	were	located	at	the	Broad	Institute	(Broad),	University	of	

Texas	at	Austin	(UTA)	and	University	of	Washington	(UW).	We	focused	on	the	GM12878,	HeLa-S3,	

HepG2,	HUVEC,	K562	and	NHEK	cell	lines	because	each	of	these	was	processed	in	replicates	by	each	

of	the	three	laboratories.	Raw	sequencing	reads	were	downloaded	from	ENCODE	data	portal	

(https://www.encodeproject.org/)	using	accession	IDs	documented	in	Supplemental	Table	1.	

	

The	raw	reads	were	aligned	to	human	genome	build	hg19	with	aligner	BWA	(Li	and	Durbin	2009).	

Reads	from	chromosome	Y	were	ignored	to	avoid	sex	effects.	Mapped	reads	with	mapping	score	less	

than	30	were	removed.	Secondary	alignments	were	also	removed.	Duplicate	reads	were	thinned	

down	to	one	read.	For	the	purposes	of	quantifying	binding	in	predefined	region,	we	only	considered	

the	start	position	at	the	5’	end.		
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Estimating	GC-content	bias	with	mixed	generalized	linear	model		

	

Figure	1	and	4	clearly	demonstrate	the	presence	of	two	clusters.	We	assume	the	cluster	

characterized	by	low	counts	is	related	to	non-specific	binding	and	refer	to	it	as	the	background.	We	

assume	that	the	cluster	characterized	by	higher	counts	is	related	to	the	specific	binding	signals	that	

constitute	the	peaks.	The	counts	in	both	clusters	show	a	strong	non-linear	dependence	on	GC-

content	and	motivate	the	following	mixed	model.	We	assume	that	for	any	given	position	𝑖,	𝑍1 = 1	if	

binding	occurs	at	that	position	and	0	otherwise.	We	denote	with	𝜋	the	probability	that	any	given	

𝑍1 = 1.		We	then	assume	that	conditioned	on	the	state	𝑍1,	the	counts	𝑌1 	follow	a	Poisson	

distribution	with	log(	E 𝑌1 𝑍1 = 𝑎, 𝑋1 = 𝑥1 	) = 𝜇N + 𝑓N(𝑥1)	with	𝜇N	the	mean	count	level	for	the	

positions,	𝑥1 	the	effective	GC	content	for	position	𝑖,	𝑓N	is	a	smooth	function	that	we	represent	with	a	

cubic	spline.	Note	that	𝑎	is	indexing	the	two	possible	states,	background	or	specific	signal,	which	

implies	the	GC-content	effect	is	modeled	differently	for	each	state.	

	

Because	we	start	with	millions	of	bins,	to	improve	computational	efficiency,	we	selected	a	random	

subset	of	bins	representing	5%	of	the	genome.	We	then	estimated	the	parameters	π,	𝜇",	𝜇P	and	the	

parameters	used	to	represent	the	splines	𝑓"	and	𝑓P	using	an	EM	algorithm.	The	GC-content	effect	

used	in	the	correction	for	binding	quantification	is	simply	

(1 − 𝑍1)𝑓" 𝑥1 + 	ZR𝑓P 𝑥1 	

with	𝑍1 = Pr	(𝑍1 = 1).	To	extend	SPP	we	use	the	correction	𝑓" 𝑥1,P,< 	and		𝑓" 𝑥1,P,? 	for	the	𝑌1,<	and	

𝑌1,?	respectively	where	𝑥1,P,<	and	𝑥1,P,?	are	the	effective	GC-content	in	the	positive	and	negative	

strand	bins,	described	above,	respectively.	Similarly,	we	used	the	correction	𝑓" 𝑥1,",< 	and	

𝑓" 𝑥1,",? 	for	the	𝐵1,<	and	𝐵1,?	respectively.	Note	that	we	use	𝑓"	for	both	signal	and	background	

components	because	this	summary	is	intended	as	a	test	statistic	for	which	we	define	a	null	
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distribution	assuming	there	is	no	signal.	The	use	of	𝑓P	is	therefore	only	used	to	fit	the	model	and	also	

for	binding	quantification	of	regions	already	determined	to	be	potential	peaks.	

	

Analysis	of	regions	reported	by	ENCODE	

	

For	the	analysis	involving	the	binding	regions	reported	by	ENCODE	

(https://www.encodeproject.org/data/annotations/v2/)	we	did	not	need	to	run	a	peek-calling	

algorithm	since	regions	were	already	provided.	We	used	data	from	all	the	regions	reported	by	

ENOCDE	as	potential	peaks.	To	perform	a	GC-content	bias	correction	of	binding	quantification	we	

assumed	a	binding	width	of	150bp	and	used	flanking	regions	of	width	of	250bp.	We	fit	the	model	

described	above	and	we	can	correct	as	described.	PCA	analysis	was	based	on	binding	regions	

reported	for	GM12878,	HeLa-S3,	HepG2,	HUVEC,	K562	and	NHEK	cell	lines.		As	an	example,	the	

across	laboratory	variability	was	computed	in	the	HUVEC.	

	

Quantifying	Uncertainty		

	

We	implement	a	method	similar	to	SPP.	Specifically,	we	compute	the	enrichment	score	𝑆1 	for	each	

region	𝑖.	Then,	for	each	of	these	regions,	we	permuted	the	start	sites	of	all	the	reads	falling	the	

region	and	recomputed	the	enrichment	scores,	denoted	here	with	𝑆1∗.	We	used	the	𝑆1∗	to	form	a	null	

distribution	and	assign	a	p-value	to	each	candidate	peak	(Supplemental	Fig.	5).	The	user	should	treat	

the	p-values	obtained	from	this	procedure,	as	well	as	SPP,	with	caution	as	they	are	based	on	several	

assumptions	that	are	hard	to	test	empirical.	Furthermore,	these	uncertainty	estimates	do	not	

account	for	the	selection	process.	Permutation	approaches	such	as	those	implemented	by	the	

bumphunter	approach	(Aryee	et	al.	2014)	are	the	subject	of	future	research.	Regardless,	we	find	this	

quantification	useful	for	prioritizing	peaks.	
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Other	improvements	on	SPP	algorithm	

	

Apart	from	the	GC-content	correction	we	adapted	the	SPP	algorithm	in	three	other	ways,	which	we	

describe	in	detail	here.		

	

The	SPP	algorithm	computes	the	enrichment	score	𝑆1 	for	every	location	𝑖	on	the	genome.	To	do	this,	

SPP	defines	a	window	size	𝑊	that	is	used	to	compute	the	read	counts	as	described	in	the	Results	

Section	(Fig.	3).	This	window	size	is	supposed	to	define	the	region	that	includes	fragments	resulting	

with	a	protein	binding	at	location	𝑖.	To	define	𝑊,	SPP	uses	the	cross-correlation	function	between	

the	fragment	start	sights	from	positive	and	negative	strands.	SPP	uses	an	ad-hoc	procedure	picking	

𝑊	to	be	a	number	between	the	lag	that	maximizes	the	cross-correlation	function	and	a	use	defined	

maximum	window	size	that	defaults	to	500	basepairs.	Instead,	we	make	the	assumption	that	the	

window	size	𝑊	should	maximize	the	correlation	of	read	counts	between	positive-strand	windows	

and	corresponding	negative-strand	windows.	Using	this	criteria,	the	estimated	window	size	in	CTCF	

dataset	are	always	much	smaller	than	those	estimated	by	SPP.		

	

The	second	difference	related	to	computational	efficiency.	While	SPP	computes	𝑆1 	and	uncertainty	

estimate	for	every	location	on	the	genome.	In	our	software	we	perform	a	filter	that	removes	regions	

with	small	counts	in	all	four	relevant	bins	(𝑌1,<, 𝑌1,?, 𝐵1,<, 𝐵1,?).	This	reduces	the	number	of	regions	for	

which	the	uncertainty	quantification	is	computed.	

	

Finally,	to	report	the	center	of	the	binding	site,	SPP	searches	for	local	maxima	of	enrichment	scores	

𝑆1.	However,	distributions	of	enrichment	scores	are	not	always	symmetric	around	these	local	

maxima,	and	we	find	that	neighbored	peaks	regions	sometimes	represent	the	same	binding	site.	To	

avoid	reporting	two	maxima	associated	with	the	same	binding	site	as	two	separate	peaks,	we	
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merged	any	two	neighboring	peaks	that	are	within	the	estimated	binding	width	from	each	other.	

Uncertainty	is	quantified	only	for	merged	peaks.			

	

Software	and	source	code	availability		

	

The	method	described	in	this	manuscript	is	available	as	an	R/Bioconductor	package	

(http://bioconductor.org/packages/gcapc/).	The	source	code	for	the	main	results	is	documented	

here	(https://github.com/tengmx/gcapc_manuscript).	
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