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Short Title 

How do DGE tools perform in a higher eukaryote? 
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Abstract 

 

RNA-seq experiments are usually carried out in three or fewer replicates. In order to work 

well with so few samples, Differential Gene Expression (DGE) tools typically assume the 

form of the underlying distribution of gene expression. A recent highly replicated study 

revealed that RNA-seq gene expression measurements in yeast are best represented as being 

drawn from an underlying negative binomial distribution. In this paper, the statistical 

properties of gene expression in the higher eukaryote Arabidopsis thaliana are shown to be 

essentially identical to those from yeast despite the large increase in the size and complexity 

of the transcriptome:  Gene expression measurements from this model plant species are 

consistent with being drawn from an underlying negative binomial or log-normal distribution 

and the false positive rate performance of nine widely used DGE tools is not strongly affected 

by the additional size and complexity of the A. thaliana transcriptome. For RNA-seq data, we 

therefore recommend the use of DGE tools that are based on the negative binomial 

distribution. 
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Introduction 

 

Short read RNA sequencing (RNA-seq) has become the method of choice for transcriptome-

wide quantification of gene expression and the analysis of differential gene expression 

between experimental conditions (Mortazavi et al. 2008; Nagalakshmi et al. 2010). RNA-seq 

data analysis typically involves aligning short sequence fragments (reads) to a reference 

genome or transcriptome, counting the resulting alignments that fall within an annotated 

feature region, then identifying any significant differences between two conditions. More 

than a dozen computational tools have been developed to identify Differential Expression 

(DE) from RNA-seq data and each makes assumptions about the variability of the RNA-seq 

expression measurements across replicates (Anders and Huber 2010; Hardcastle and Kelly 

2010; Robinson et al. 2010; Wang et al. 2010; Tarazona et al. 2011; Li et al. 2012; Lund et al. 

2012; Trapnell et al. 2012; Li and Tibshirani 2013; Leng et al. 2013; Frazee et al. 2014; Law 

et al. 2014; Love et al. 2014; Moulos and Hatzis 2014; Ritchie et al. 2015). Based on these 

assumptions, the tools calculate the probability that two sets of measurements come from the 

same statistical distribution, thus determining whether a genuine shift in expression is a more 

likely explanation for the observed values than random chance. Assuming an incorrect 

distribution can lead to poor False Discovery Rate (FDR) control and inaccurate True 

Positive (TP) identification in the DGE calls. Such errors will propagate downstream into the 

biological interpretation of the DE results. Most commonly, these tools are used to identify 

DE for genes (Differential Gene Expression – DGE), however they are increasingly being 

used to identify DE of other genic regions (i.e. exons, spliced transcripts, etc.) (Wood et al. 

2013; Frazee et al. 2014; Gaidatzis et al. 2015).  
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Several studies have assessed the performance of DGE tools (Busby et al. 2013; Soneson 

2014; Bullard et al. 2010; Rapaport et al. 2013; Seyednasrollah et al. 2015; Li et al. 2012; 

Lund et al. 2012; Trapnell et al. 2012; Li and Tibshirani 2013; Leng et al. 2013; Frazee et al. 

2014; Law et al. 2014; Love et al. 2014; Moulos and Hatzis 2014; Ritchie et al. 2015). 

However, these studies were carried out using either simulated data or biological data that 

was originally designed for a different purpose. Although a few of these studies have 

explored high biological replication by leveraging publicly available datasets on individuals 

within a species (Seyednasrollah et al. 2015; Guo et al. 2013; Soneson and Delorenzi 2013; 

Burden et al. 2014; Bottomly et al. 2011), most have a limited level of replication. Recently, 

a study was performed in yeast specifically to test both the underlying statistical properties of 

RNA-seq data across biological and technical replicates and the influence of replication on 

DGE results (Gierliński et al. 2015; Schurch et al. 2016). With 48 biological replicates per 

condition, the distribution of read counts per gene was found to be most consistent with a 

negative binomial (NB) distribution, and the FDR of many DGE tools was demonstrated to 

be low at all replication levels. However, the number of replicates was shown to affect the 

tools’ sensitivity for identifying differential expression, particularly at low fold-changes. The 

authors recommended that future RNA-seq experiments that focus on identifying DE have at 

least six replicates per condition in order to reliably detect genes with fold-changes greater 

than a factor of 2, rising to at least twelve replicates to reliably detect the majority of 

differentially expressed genes regardless of fold-change. 

 

In this paper, RNA-seq data from 17 wild-type biological replicates of Arabidopsis thaliana 

were used to explore read count measurements across replicates and the FDR of DGE tools. 

Although A. thaliana has a relatively small genome, its transcriptome is similar in scale and 

complexity to that of model mammal species (Arabidopsis Genome Initiative 2000; Carvalho 
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et al. 2013; Krishnakumar et al. 2014) and its genome is extensively annotated. Accordingly, 

conclusions from the high replicate RNA-seq study presented here should provide useful 

guidance for work in other complex eukaryotes as well.  

 

Results 

 

Consistency among replicates 

Our dataset consisted of 100-base reads from 17 wild type Arabidopsis thaliana samples with 

sequencing throughput of at least 77 x 106 read pairs per sample. The samples were collated 

from three separate experiments (see Materials and Methods for details). The global gene 

expression measurements from 16 of the 17 wild-type biological replicates are well 

correlated, irrespective of the different experiments (R>0.99, Figure 1). Replicate 11 

correlates less well with all the other replicates (0.83 � � � 0.87, Figure 1) due to less 

efficient removal of ribosomal RNA during sample preparation, as evidenced by higher read 

counts across ribosomal genes by at least an order of magnitude compared to the other 

replicates (Supplementary Table 1) and high level of multi-mapping reads (Supplementary 

Table 2). Consequently, replicate 11 was excluded from the subsequent analyses. 

Additionally, a low but uniform level of read coverage across the genome was observed in 

the replicates from ExpB (replicates 8-14), explaining the marginally lower correlation 

between the replicates of this experiment and the other replicates (Figure 1, right panel).  
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Distribution of gene read counts across replicates 

Figure 2 shows that the distribution of expression measurements across replicates is 

consistent with being drawn from a negative binomial distribution for 100% of the genes, and 

is consistent 

 

 

Figure 1. [Left]: Pairwise Pearson correlation of gene expression for all 17 replicates. Apart 

from replicate 11, all replicates correlate very well. [Right]: Same as left, but with replicate 

11 filtered out, allowing the patterns of correlation among the remaining 16 replicates to be 

better seen. 

 

with a log-normal distribution for 98% of genes.  In contrast, 23% of genes have expression 

distributions that are not consistent with a normal distribution and more than 70% are 

inconsistent with a Poisson distribution.  

 

As mentioned previously, replicates 8-14 presented a low level of uniform read coverage 

along the genome. We believe this to be noise consistent with a small amount of DNA 
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contamination in the affected samples. Such reads have the potential to interfere with the 

fitting of statistical distributions to the data, as they can make silent genes artificially appear 

as expressed. Indeed, Figure 3 shows that approximately 6,000 of the genes annotated in 

Araport11 appear to be lowly expressed in the affected replicates, but are not detected in the 

ten replicates from the 

 

Figure 2. Histograms of the probability that the genes’ fragment counts across replicates are 

compatible with each of the four specified distributions. The fraction of genes rejecting the 

distribution model is given above each plot. 
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other two experiments (replicates 1-7 and 15-17). The potential for this noise to impact on the 

distribution measurements was assessed by comparing the fit of the distributions to the full 

dataset of 16 replicates against the the fit without the noisy replicates of ExpB. As a control, 

the distribution fitting was also performed with the exclusion of replicates 1-7 in place of the 

noisy ones. In both cases, the fit of the distributions to the reduced dataset was very similar to 

that of the full dataset, with the exception of the normal distribution where, in both the noise 

exclusion and the control, the fraction of the gene data that is inconsistent with the 

distribution was reduced from 23% to ~10%. The lack of difference between excluding the 

noisy replicates and excluding the control replicates demonstrates that the apparent 

improvement of model fit is due to the reduction of statistical power caused by the smaller 

number of replicates, rather than to a cleaner signal.  

 

 

Figure 3. Distribution of gene expression. Each gene is represented by the mean of its read 

count estimates across replicates. The various levels of non-zero expression are shown in 

blue. Because the x-axis is in logarithmic scale, the number of genes with zero expression 

was added manually at an arbitrary but distinct location on the axis and is shown in red. 
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False positive behavior of differential gene expression tools 

The distribution of the false positive fraction as a function of the number of replicates, for 

each differential expression tool, is shown in Figure 4. Most tools consistently control their 

FP fraction well at all numbers of replicates despite the presence of a small number of outlier  

results. DEGseq fails to control its FP fraction adequately, likely due to over-estimation of 

the  
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Figure 4. False Positive Rates in WT vs. WT comparisons of Differential Gene Expression, 

measured across 100 bootstrap iterations and across a range of sample sizes from 2 to 7 

replicates per condition. Panel [A]  and [B] differ on the range of the Y-axis. DEGSeq 

displays poor FPR performance (nearly 50% of its positives are false). The median FPR for 

all the other tools is below 5%. The performance of the tools is connected to their choice of 

statistical model (Table 1), with the lowest FPR tools using the negative binomial or log-

normal distributions. 

performance is worse than the other tools at all the tested numbers of replicates, suggesting 

that it is a poor choice for calling SDE. 

 

Discussion 

 

In this study the statistical assumptions made by tools that identify differential gene 

expression from RNA-seq read count data were validated in a high-replicate experiment.  The 

findings show that the negative binomial (NB) and log-normal distributions are both good 

choices as models for the cross-replicate variability of RNA-seq read counts.  The study 

demonstrates that 6 out of the 9 DGE tools examined here control their identification of false 

positives well even with only 3 replicates. In contrast, tools that assume distributions other 

than negative binomial or log-normal showed higher FPR, at all replication levels. These 

results reinforce similar conclusions previously reached by studies of the yeast transcriptome 

(Gierliński et al. 2015; Schurch et al. 2016). 

 

The transcriptome of A. thaliana is considerably more complex than S. cerevisiae, with 

almost four times the number of protein-coding genes (27,667 in A. thaliana, 7,126 in S. 

cerevisiae) and widespread alternative splicing and alternative polyadenylation. The 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2017. ; https://doi.org/10.1101/090753doi: bioRxiv preprint 

https://doi.org/10.1101/090753
http://creativecommons.org/licenses/by/4.0/


 

 11

similarity of the results from these two diverse organisms suggests that the conclusions of 

both studies are applicable to a wide range of eukaryotes. 

 

However, the concept of gene expression in complex transcriptomes is confounded by the 

presence of alternative transcript isoforms, which give the organism additional means to 

regulate a gene’s expression. This type of regulation is not necessarily reflected in changes to 

the total transcriptional output by a gene. Ideally, expression studies should aim to quantify 

the 

abundance of alternative isoforms individually and independently. Interestingly, the sum of 

independent random variables with a NB distribution itself has a NB distribution. Thus, the 

conclusion that a NB is a suitable model for gene expression variability across replicates is 

consistent with the hypothesis that the underlying variability of expression of the individual 

isoforms also follows the NB distribution. This suggests that tools originally intended for the 

study of differential gene expression may also be appropriate for studying differential 

transcript expression (DTE). 

 

In summary, our analyses show that the statistical properties of gene expression are similar 

between simple and complex eukaryotes, and validate the model assumptions of the best-

performing DGE tools, thus justifying their use in a broad range of organisms. 

 

Materials and Methods 
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Sample Preparation & Sequencing 

The RNA-seq data for this study are wild-type (WT) Arabidopsis thaliana Colombia-0 (Col-

0) biological replicates from three separate experiments (hereafter ExpA, ExpB & ExpC). 

Briefly, for all three experiments WT A. thaliana Col-0 seeds were sown aseptically on 

MS10 plates. The seeds were stratified for 2 days at 4 oC and then grown at a constant 21oC 

under a 16-h light/8-h dark cycle for a further 14 days, at the end of which the seedlings were 

harvested. Total RNA was isolated from the seedlings with the RNeasy Plant Mini Kit 

(Qiagen) and treated with TURBOTM DNase (Ambion). 4 μl of ERCC spike-ins (External 

RNA Controls Consortium 2005) at a 1:100 dilution were added to 1 μg/6 μl of total RNA. 

Libraries were prepared using the Illumina TruSeq Stranded Total RNA with Ribo-Zero Plant 

kit. The libraries were sequenced on a HiSeq2000 at the Genomic Sequencing Unit of the 

University of Dundee. Two of the experiments, ExpA & ExpB, have 7 biological WT 

replicates (replicates 1-7 and 8-14 respectively) while ExpC has 3 (replicates 15-17), for a 

total of 17 biological WT replicates and ~1.7 	 10
� 100-bp paired-end reads across the three 

experiments. The plants were sown, grown, harvested and the libraries were prepared by the 

same lab, and the sequencing was performed on the same machine by the same people at the 

same sequencing facility and all the samples include the ERCC spike-ins which can verify 

the WT samples are consistent and comparable across experiments. 

 

Quality Control, Alignment & Quantification 

The quality of the data was quantified using FastQC v0.11.2 

(http://www.bioinformatics.babraham.ac.uk/projects/) with all the replicates performing as 

expected for high quality RNA-seq data with excellent median per-base quality (≥38) across 

>90% of the read length. The read data for each sample were aligned to the TAIR10 A. 

thaliana genome using the splice-aware aligner STAR v2.5.0a (Dobin et al. 2012). The index 
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was built with “--sjdbOverhang 99” and the alignment was run with parameters:“--

outSAMstrandField intronMotif --outSJfilterIntronMaxVsReadN 

5000 10000 15000 20000 --outFilterType BySJout --

outFilterMultimapNmax 2 --outFilterMismatchNmax 5”. 

 

Read counts per gene were then quantified from these alignments with featureCounts v1.4.6-

p4 (Liao et al. 2014) using the publically available Araport11 annotation (pre-release 3, 

12/2015, comprising 33,851 genes) (Krishnakumar et al. 2014) with the parameters: “-t 

exon -g gene_id -s 2 -p –P”. 

 

These read counts were used without further processing to examine the FPR performance of 

nine DGE tools, allowing each tool to carry out its default normalization. The tools were used 

in the R v3.2.2 environment and installed through Bioconductor v3.2. 

 

For the purposes of comparing the expression distribution models, consistently normalized 

data was required. As some of the distributions in question are discrete, normalized integer 

read counts were used for this purpose, which were calculated by randomly down-sampling 

read-pairs from each replicate to the level of the replicate with the lowest read depth. In the 

present study, the focus is on the collective behavior of gene expression, rather than the 

biological interpretation of the expression of any specific gene, so this type of normalization 

is appropriate here.  However, it is not recommended for typical gene expression analysis 

studies, as some low expression signals can randomly be lost during resampling.  After the 

normalization, each replicate consisted of ~77 	 10� read pairs, which were then aligned to 

the genome and quantified as described above.  
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Performing the tests 

The read counts of each gene were tested against four theoretical distributions across 

replicates: normal, log-normal, Poisson and negative binomial (NB). For the normal and log-

normal distributions the goodness of fit was determined using the test for normality from 

D’Agostino et. al. (1990). For the NB distribution, the method described by Meintanis (2005) 

was employed and for the Poisson distribution a χ2 test (Fisher 1950). In each case, rejection 

of the null hypothesis was based on a Benjamini-Hochberg corrected critical p-value of 0.05 

(Benjamini and Hochberg 1995). 

 

 

Table 1. RNA-seq differential gene expression tools used in this study. 

Name 
Assumed 

Distribution 
Normalization Description Version Citations1

 

baySeq (Hardcastle 

and Kelly 2010) 

negative 

binomial 

Internal Empirical Bayesian estimate of 

posterior likelihood 

2.4 186 

DEGseq 

 (Wang et al. 2010) 

binomial None random sampling model using 

Fisher's exact test and the 

likelihood ratio test 

1.24.0 411 

DESeq 

 (Anders and Huber 

2010) 

negative 

binomial 

DEseq Shrinkage variance  1.22.0 2384 

DESeq2 (Love et al. 

2014) 

negative 

binomial 

DEseq Shrinkage variance  1.10.0 590 

EBSeq (Leng et al. 

2013) 

negative 

binomial 

DEseq (median) Empirical Bayesian estimate of 

posterior likelihood 

1.10.0 120 

                                                 
1
 as reported by PubMed Central articles that reference the listed source on the 23

rd
 Aug 2016. 
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edgeR 

 (Robinson et al. 

2010) 

negative 

binomial 

TMM2 Empirical Bayes estimation & 

either an exact test analogous to 

Fisher’s exact test but adapted 

to over-dispersed data or a 

generalized linear model 

3.12 2068 

Limma 

 (Ritchie et al. 2015) 

Log-normal TMM2 Generalised linear model 3.26.2 266 

PoissonSeq 

 (Li et al. 2012) 

Poisson log-

linear model 

Internal Score statistic 1.1.2 48 

SAMSeq  

(Li and Tibshirani 

2013) 

None Internal Mann-Whitney test with 

Poisson resampling 

2.0 73 

 

 

In order to test the false positive rate (FPR) of the DGE tools, two sets of ��  replicates were 

randomly selected without replacement from the pool of 16 WT replicates. Differential gene 

expression was then called on each of the set pairs with each of nine DGE tools (Table 1), 

allowing each tool to apply its default normalization. Since all sets are drawn from the same 

WT pool, every gene identified as significantly differentially expressed (SDE) is, by 

definition, a false positive. This process was repeated 100 times for each sample size in the 

range 2 � �� � 7 for each tool.  

 

Availability 

The raw data for the 17 WT Arabidopsis thaliana datasets is available from the European 

Nucleotide Archive ([database accession to be inserted here]). 
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