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Abstract

Bacteria can exchange and acquire new genetic material from other organisms directly
and via the environment. This process, known as bacterial recombination, has a strong
impact on the evolution of bacteria, for example leading to the spread of antibiotic
resistance across clades and species, and to the avoidance of clonal interference.
Recombination hinders phylogenetic and transmission inference because it creates
patterns of substitutions that are not consistent with the hypothesis of a single
evolutionary tree (homoplasies). Bacterial recombination is typically modelled as
statistically akin to the gene conversion process of eukaryotes, i.e., using the coalescent
with gene conversion (CGC). However, this model can be very computationally
demanding as it requires to account for the correlations of evolutionary histories of even
distant loci. So, with the increasing popularity of whole genome sequencing, the need
has emerged for a new and faster approach to model and simulate bacterial evolution at
genomic scales. We present a new model that approximates the coalescent with gene
conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based
on a similar idea to the the sequential Markov coalescent (SMC), an approximation of
the coalescent with recombination. However, bacterial recombination poses hurdles to a
sequential Markov approximation, as it leads to strong correlations and linkage
disequilibrium across very distant sites in the genome. Our BSMC overcomes these
difficulties and shows both a considerable reduction in computational demand compared
the exact CGC, and very similar patterns in the simulated data. We use the BSMC
within an Approximate Bayesian Computation (ABC) inference scheme and show that
we can correctly recover parameters simulated under the exact CGC, which further
showcases the accuracy of our approximation. We also use this ABC approach to infer
recombination rate, mutation rate, and recombination tract length from a whole genome
alignment of Bacillus cereus. Lastly, we implemented our BSMC model within a new
simulation software FastSimBac. In addition to the decreased computational demand
compared to previous bacterial genome evolution simulators, FastSimBac also provides
a much more general set of options for evolutionary scenarios, allowing population
structure with migration, speciations, population size changes, and recombination
hotspots. FastSimBac is available from https://bitbucket.org/nicofmay/fastsimbac and
is distributed as open source under the terms of the GNU General Public Licence.
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Introduction

Whole-genome bacterial sequencing has rapidly replaced multilocus sequence typing as
for population analyses of bacterial pathogens thanks to its fast and cost-effective
provision of higher resolution genetic information (Didelot et al., 2012; Wilson, 2012).
Methods using genomic data to infer epidemiological, phylogeographic, phylodynamic
and evolutionary patterns are often hampered by recombination (e.g. Schierup and Hein,
2000; Posada and Crandall, 2002), and bacterial recombination is no exception (Hedge
and Wilson, 2014). Recombination, in fact, causes different sites of the genome to have
different inheritance histories. For these reasons, in recent years many methods have
been proposed to measure, identify and account for bacterial recombination (e.g.
Didelot and Falush, 2007; Marttinen et al., 2008; Tang et al., 2009; Didelot et al., 2010;
Marttinen et al., 2012; Croucher et al., 2014; Didelot and Wilson, 2015). Among these,
simulators of bacterial evolution (e.g. Didelot et al., 2009b; Mostowy et al., 2014; Brown
et al., 2015) are used for parameter inference and hypothesis testing (e.g. Fearnhead
et al., 2005; Fraser et al., 2005; Wilson et al., 2009; Ansari and Didelot, 2014) and for
benchmarking (e.g. Falush et al., 2006; Didelot and Falush, 2007; Turner et al., 2007;
Buckee et al., 2008; Marttinen et al., 2012; Hedge and Wilson, 2014).

Simulating bacterial evolution poses specific difficulties as the process of bacterial
recombination is very different from that of other organisms. Eukaryotic recombination
is predominantly modelled as a cross-over process, with recombination events breaking a
chromosome into two parts with different ancestries (Figure 1). While it is possible to
simulate eukaryotic evolution with recombination forward in time (Peng and Kimmel,
2005; Carvajal-Rodŕıguez, 2008; Hernandez, 2008; Arenas, 2013), coalescent-based
(Kingman, 1982) backward in time models (Hudson, 1983; Griffiths and Marjoram,
1997; Wiuf and Hein, 1999) are usually more computationally efficient (e.g. Hudson,
2002; Arenas and Posada, 2007, 2010; Ewing and Hermisson, 2010; Excoffier and Foll,
2011). Yet, the coalescent with recombination itself may not be sufficiently fast when
large genomic segments are considered (McVean and Cardin, 2005). One of the reasons
is that the structure describing the evolutionary history of all positions (ancestral
recombination graph, or ARG) seems to grow subexponentially with genome size and
recombination rate (Wiuf and Hein, 1999). For this reason, a faster approximation to
the coalescent with recombination, the sequential Markov coalescent (SMC, see McVean
and Cardin, 2005; Marjoram and Wall, 2006) has been proposed. Similar to the
sequential coalescent with recombination (Wiuf and Hein, 1999), the SMC starts by
considering one evolutionary tree on the left end of the genome, and generates new trees
affected by recombination as it moves towards the right end. However the SMC does
not generate an ARG, but rather a sequence of local trees under the simplifying
assumption that if the local tree for the current position is known, all previous local
trees can be ignored in the next steps. This model has been further extended to include
population history (Chen et al., 2009), increased accuracy (Wang et al., 2014), and
increased computational efficiency (Staab et al., 2015).

Bacterial recombination is different from eukaryotic recombination (Smith et al.,
1993, 2000), and is generally modelled as a gene conversion process, such that in a
bacterial recombination event only a relatively small fragment of DNA is imported from
a donor, whereas most of the genome is inherited clonally (Figure 1). This results in
sites very distantly located in the genome to be very tightly linked genetically. In fact, a
single genealogy, the clonal frame (Milkman and Bridges, 1990), represents the
evolutionary history of all non-recombining sites, no matter how far they are from each
other on the genome. For this reason, most methods used to describe and simulate
eukaryotic recombination cannot be applied in bacteria. While bacterial evolution can
also be simulated forward in time, backward in time coalescent methods are usually
more efficient, and are generally based on the coalescent with gene conversion (CGC,
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Figure 1. Graphical representation of bacterial and eukaryotic
recombination models. Black circles represent samples, black lines are lineages
(dashed if they represent bacterial recombination lineages). Blue segments represent the
genome, and red segments represent the portion of the genome that is ancestral to the
particular lineage. A) Gene conversion, or bacterial recombination: most of the genome
is inherited from a single parent lineage, except for a short segment. B) Crossover
event: all the genome on the left side of the crossover site is inherited from one parent,
all the genome on the right side is inherited from the other parent.

see Wiuf and Hein, 2000, and Figure 2A). Recently, efficient methods implementing the
CGC have been developed for simulating bacterial evolution (Didelot et al., 2009b;
Brown et al., 2015). However, these approaches still struggle in simulating
whole-genomes at high recombination rates (e.g. requiring up to hours to simulate a
single bacterial genome-wide alignment with ρ > 0.01, see Brown et al., 2015, and
Results) because, similar to the coalescent with recombination, the CGC also generates
large ARGs.

Here, we present a new model of recombination (Figure 2B) that, inspired by the
SMC, efficiently and accurately approximates bacterial recombination. We explicitly
model the clonal frame, and simulate the coalescent and recombination processes along
the genome conditional on the clonal frame, but “forgetting” recombination events that
occur at distant positions. This approach differs by other approximations to the CGC
(Didelot et al., 2010; Ansari and Didelot, 2014) as we can simulate entire genomes while
allowing recombining lineages to coalesce with one another, and recombination events to
split the ancestral material of recombinant lineages. Ignoring these complexities leads to
biases when considering elevated recombination rates (Didelot et al., 2010), and by
accounting for them we aim at specifying a model more adherent to the CGC. We call
this model the bacterial sequential Markov coalescent (BSMC), which we implement
within a new simulation software called FastSimBac. FastSimBac is faster than previous
methods (between about one and two orders of magnitude for typical bacterial genome
size and recombination rates). Also, by building on top of popular simulators ms
(Hudson, 2002) and MaCS (Chen et al., 2009), our software can simulate more general
evolutionary scenarios, allowing migration, speciation, demographic changes,
recombination hotspots, and between-species recombination. We show that the BSMC
can accurately approximate the exact CGC by inferring recombination parameters
simulated under the CGC using Approximate Bayesian Computation (ABC)
implementing BSMC simulations with FastSimBac. We also showcase its applicability
by using it to infer recombination and mutation parameters via ABC from a whole
genome alignment of Bacillus cereus.
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Figure 2. Graphical representation of the bacterial coalescent and BSMC
models. Black circles represent samples, black lines are lineages (continuous if they
belong to the clonal frame, dashed otherwise). Red segments represent, for each extant
lineage, the portion of the genome that is ancestral to any sampled descendent of that
lineage. Time is considered backward from bottom to top, and merges of lineages are
coalescent events. A) Example simulation under the bacterial coalescent;
recombinations and coalescent events are simulated backward in time starting from
present, when one lineage per sample is given. B) Example of BSMC simulation: first a
clonal frame is simulated; then, the process moves left to right across the genome (for
simplicity the genome is assumed linear with left and right ends), and left portions of
the genome are gradually forgotten (represented in green); recombination events are
thus simulated at their start, and then forgotten at their end, but the clonal frame is
never forgotten.
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Materials and Methods

BSMC algorithm

We assume that a given set of parameters is priorly specified: λ is the mean length of a
recombining segment, G is the total genome length, and ρ is the recombination rate. λ
and G are considered in terms of base pairs, while ρ = 2NeGr is the per-individual,
per-generation, per-base pair gene conversion initiation rate r scaled by the effective
population size Ne and genome length G. Our BSMC algorithm, while inspired by the
SMC (McVean and Cardin, 2005; Marjoram and Wall, 2006) in that it crosses the
genome from left to right and discards previous local trees, also keeps tracks of and
conditions on the clonal frame, and so has several important differences from the SMC.
All lineages with ancestral material exclusively on the left of the currently considered
genomic position xcur are forgotten (removed from the current local ARG A(xcur)),
while all lineages with ancestral material on the right of xcur are stored in memory
(included in A(xcur)). All lineages in A(xcur) are possible targets of new recombination
events and coalescent events. Recombination events and coalescent events are instead
not allowed on lineages that have been forgotten (not in A(xcur)). In order to decide
which lineage is in A(xcur) and which needs to be removed, we record and update for
each lineage l its ancestral material on the right of xcur: al(xcur). Updating the
ancestral material of each lineage in A(xcur) after a new recombination has been added
to A(xcur) is one of the most complex routines in our algorithm. One aim of the
algorithm is to generate the sequence of local trees along the genome. For a given
position xcur, the local tree (or marginal tree) T (xcur) is the coalescent tree describing
the inheritance history of site xcur. T (xcur) can be obtained from A(xcur) by removing
all branches that are not ancestral at xcur. While a simple graphical example of the
algorithm is given in Figure S2, the list of BSMC algorithmic steps is the following:

1 Initialisation: xcur = 0 (current position, maximum is 1), and Tcf (the clonal
frame) is simulated under the coalescent without recombination. The initial local
ARG A(xcur), and local tree T (xcur), are set to T (0) = A(0) = Tcf . The ancestral
material of every lineage l in A(0) is set to al(0) = [xcur, 1] = [0, 1], the whole
genome. The list of recombination end points E (the right ends of recombination
segments) is initialised as empty: E = ().

2 Position of new event: The distance until the next recombination initiation xnew

is drawn according to an exponential distribution (xnew −xcur) ∼Exp
(ρ

2
Ā(xcur)

)
,

where Ā(xcur) is the sum of all branch lengths in A(xcur), expressed in units of
2Ne generations. If xnew > E0, where E0 is the first (and smallest) element of the
list E of recombination end points (if E is empty then E0 =∞), then xnew = E0,
E0 is removed from E, and the next event is a recombination termination, so go
to step 4. If xnew ≥ 1, and E is empty, terminate the algorithm. Otherwise the
next event is a new recombination, so go to step 3.

3 New recombination event: sample a lineage l randomly from A(xcur)
proportionally to branch length. Then sample a time t uniformly along the time
spanned by l. The new recombination happens at time t on branch l, and a new
lineage l′ is created, with its more recent end joining l at time t. A new coalescent
time and coalescing lineage is sampled for l′ conditional on A(xcur) (under the
algorithm of Wiuf and Hein, 1999). The right end of the recombining interval
xend is sampled from the distribution (xend − xnew) ∼ Geom(λ)/G, where
Geom(λ) is the geometric distribution with mean λ. If xend < 1, it is added to E
in such a way to keep E sorted in increasing order. The new local ARG is defined
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A(xnew) = A(xcur) ∪ l′ and ancestral material of all lineages in A(xnew) is
updated (ancestral material on the left of xnew is deleted). All lineages with no
ancestral material on the right side of xnew are removed from A(xnew). The new
local tree T (xnew) is defined from A(xnew) and is printed to file. The current
position is updated: xcur = xnew. Go back to step 2.

4 Terminate a recombination event: the ancestral material of all lineages in A(xnew)
is updated (ancestral material on the left of xnew is deleted). All lineages with no
ancestral material on the right side of xnew are removed from A(xnew). The new
local tree T (xnew) is defined from A(xnew) and is printed to file. The current
position is updated: xcur = xnew. Go back to step 2.

A large part of the complexity of the algorithm goes into the process of updating the
ancestral material of lineages after a new recombination event is added to the local
ARG. This step is described more in detail in the Supplement. Our algorithm and
model differs from the approximation of the CGC used by (Didelot et al., 2010; Ansari
and Didelot, 2014) in that, differently from them, we allow recombinant lineages to be
affected by recombination, and to coalesce with each other if having overlapping
ancestral material. To increase the realism of the model, we use the first positions
simulated by the algorithm (generally 10λ bases) as burn-in, that is, they are simulated
but not written to output or considered part of the genome length. While we simulate a
linear genome, bacterial genomes are typically circular, so we assume that a genome
start position has been arbitrarily chosen. The version of the algorithm above conveys
the basics of the model of within-population recombination, and does not describe many
additional events that we have included in our simulation software FastSimBac and that
are described in the Supplement: mutations, migration, speciations, demographic
changes, recombination hotspots and between-species recombination.

Performance Testing

We simulated bacterial genome evolution under the coalescent with gene conversion
using SimBac (Brown et al., 2015). We always simulated 50 contemporaneous samples.
We performed simulations under four different recombination intensities:
ρ = 2Ner = 0.001, 0.002, 0.005, 0.01, with ρ the population-scaled per generation per site
recombination initiation rate. We also used four different genome sizes: G =1Mbp,
2Mbp, 5Mbp, 10Mbp. The mean recombination tract length was fixed to λ = 500.
These values encompass a range of typical biologically relevant scenarios for bacteria
(Vos and Didelot, 2009; Didelot and Maiden, 2010). We simulated 10 replicates for each
combination of parameters, and for each replicate the collection of local trees, and the
clonal frame, were stored. Sequence data was generated using the local trees and
SeqGen (Rambaut and Grassly, 1997) under an HKY85 model (Hasegawa et al., 1985)
with transition/transversion rate ratio κ = 3. Some of the parameter combinations were
too computationally demanding for SimBac: (ρ = 0.005, G =10Mbp),
(ρ = 0.01, G =5Mbp), (ρ = 0.01, G =10Mbp). For all the replicates for which we could
run SimBac, we used the clonal frame simulated by SimBac as an input for our new
software FastSimBac. In fact, the clonal frame is a major source of variation in
sequence patterns between simulations (Ansari and Didelot, 2014). By using the same
clonal frames in the two methods we expect less variance in the difference of summary
statistics between the two methods; in particular, we eliminate the variance associated
with the clonal frame, and this allows us to perform fewer simulations to compare the
methods. For all scenarios in which we could not run SimBac, the clonal frame was
generated randomly within FastSimBac. Again, we generated local trees in FastSimBac
and used these to generate alignments in SeqGen as before.
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Approximate Bayesian Computation Inference

We performed Approximate Bayesian Computation (ABC) inference with the
local-linear regression approach (Beaumont et al., 2002) as implemented in the R
package abc (Csilléry et al., 2012). To test the performance of an ABC scheme based on
our BSMC model, we used it with FastSimBac simulations to infer parameters from
datasets simulated under the CGC using SimBac. We used a uniform prior distribution
over [0, 0.005] for the recombination rate ρ, and over [10, 1000] for the mean length λ of
recombining intervals. The same priors were used for simulating datasets and for
performing inference. The aim of the ABC analyses was to infer these ρ and λ. For
simplicity, the clonal frame simulated in SimBac was assumed to be known (see also
Ansari and Didelot, 2014; Hedge and Wilson, 2014), as was the mutation rate θ = 0.005.
The genome size was fixed to 1Mbp, and the number of samples to 20. For each true
data set simulated with SimBac, we simulated 10,000 approximate datasets under the
BSMC in FastSimBac. Only 1% of the simulations in FastSimBac was retained for
parameter inference (the 1% with closest summary statistics to the true dataset, see
Beaumont et al., 2002). We used two summary statistics: the proportion of
incompatible sites (G4) between neighbouring SNPs, and the G4 between SNPs at least
20kbp away. More precisely, we considered the simulated alignment starting from the
left end of the genome, and, for the first summary statistic, for each SNP we selected
the first SNP occurring on its right; for the second summary statistic for each SNP we
selected the first SNP on its right at least 20kbp away . The idea is that G4 (and
linkage disequilibrium) at very short distances (� λ) will mostly depend only on the
recombination rate ρ, while G4 on long distances (� λ) will mostly depend on the
product ρλ, so that these two summary statistics together will give sufficient
information to estimate ρ and λ.

We also performed Approximate Bayesian Computation (ABC) inference on a real
Bacillus cereus genome alignment (Didelot et al., 2010; Ansari and Didelot, 2014) with
the ABC-MCMC scheme (Marjoram et al., 2003). We used uniform prior distributions
on [0.0, 0.25] for ρ, on [1, 10000] for λ, and on [0.01, 0.2] for θ (the per-bp per-individual
per-generation mutation rate scaled by 2Ne). These are the 3 parameters that we
attempt to infer. We simulated entire genome alignments of 13 samples and 5240935 bp,
as for the real dataset. We use 7 summary statistics: number of polymorphic sites (real
value 629942); G4 (proportion of SNP pairs that are not consistent, breaking the
4-gamete rule) for consecutive SNPs (real value 0.167) and for SNPs at least 2kbp away
(real value 0.297); mean linkage disequilibrium (LD, measured as

r2 =
(pAB − pApB)2

pA(1− pA)pB(1− pB)
where pA is the frequency of allele A in the first SNP, pB

the frequency of B in the second SNP, and pAB the frequency of the AB haplotype) for
consecutive SNPs (real value 0.396) and for SNPs at least 2kbp away (real value 0.274);
and mean number of haplotypes (considering a certain number of SNPs at the time) for
pairs of consecutive SNPs (real value 3.003) and for groups of 4 SNPs made of 2 pairs of
consecutive SNPs, the two pairs being at a distance of at least 2kbp. While the number
of SNPs is informative of the mutation rate, the three summary statistics at short range
are informative of the recombination initiation rate, while the three summary statistics
at long range are informative of the product ρλ. Number of SNPs, G4 and r2 were also
used as summary statistics by (Ansari and Didelot, 2014). The fact that we are able to
generate entire genomes (instead of SNP pairs as Ansari and Didelot, 2014) allows us
also to include summary statistics on groups of SNPs, such as numbers of haplotypes.
For simplicity we fixed the clonal frame to the one estimated and used by (Didelot
et al., 2010; Ansari and Didelot, 2014). However, we also correct for the branch lengths
estimation error caused by recombination. In fact, with increasing recombination, all
genetic distances between samples converge to a unique value. We discuss this bias and
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our corresponding correction in the Supplement. Lastly, in an attempt to further
increase the realism of our model, we account for invariable sites. In fact, a large
proportion of the sites is polymorphic (about 1 bp every 6 after removing sites with
limited coverage) and a large proportion of the genome is expected to be coding; so, in
principle, one would expect many homoplasies (sites patterns not consistent with the
clonal frame and the infinite sites assumption) to occur just due to multiple mutations
at one site, and not necessarily involve recombinations. Using back of the envelop
calculations (see Supplement) we estimated about half of the genome to be invariant
(48.44% of sites) and a transition-transversion ratio of about 5.21. We used these
estimates as fixed values within an HKY (Hasegawa et al., 1985) substitution model
with invariant sites, instead of the basic JC model (Jukes and Cantor, 1969)
implemented in our basic inference and in (Ansari and Didelot, 2014). This model,
together with the local trees simulated by FastSimBac, was used in SeqGen to simulate
the alignment from which summary statistics were extracted at each step of the
ABC-MCMC. Each run consisted of 10000 ABC-MCMC steps, of which 1000 were used
as burn-in.

Results and Discussion

Computational efficiency of BSMC

Thanks to our BSMC approximation that simplifies the coalescent with gene conversion
(CGC) by considering many small local ARGs, instead of a unique, large, global ARG,
FastSimBac shows great computational improvement in simulating typical bacterial
genome evolution. Compared to the currently most efficient software to the best of our
knowledge, SimBac, FastSimBac speed improvements range from about one order of
magnitude for low recombination rate (ρ = 0.001) and genome size(106bp), to two orders
of magnitude for more elevated recombination rate (ρ = 0.01) and genome size (107bp),
as shown in Figure 3. Also, FastSimBac allows simulation of scenarios with both high
recombination rate and genome size which are currently out of reach of other methods,
due to excessive requirements in time and RAM. In fact, we see that the performance of
FastSimBac relative to the exact coalescent with gene conversion improves as we
increase either genome size or recombination rate (Figure 3). As expected, the running
time of FastSimBac appears linear with genome size, while this is not true for SimBac.
Another benefit of FastSimBac is that, by avoiding the generation of a global ARG, it
has small RAM usage, which allows it to efficiently run in parallel on multiple cores.

Accuracy of BSMC

Next, we compare the simulated patterns of genetic variation and local tree features
between the exact CGC simulated under SimBac, and the BSMC simulated with
FastSimBac. Looking at linkage disequilibrium (LD, measured as r2) and site pair
incompatibility (or four-gamete test, G4), we notice that, as expected, LD decreases and
G4 increases considerably with increasing recombination rate (Figure 4). There is a lot
of variation across different replicates in mean LD, but this is also expected as each
replicate has a distinct clonal frame, and the clonal frame influences site patterns of the
whole genome. LD and G4 at 1kbp are already very close to that of longer distances,
suggesting that a distance of 2λ is sufficient to reach nearly as much LD as any arbitrary
distance. Most importantly, we notice that values simulated under the BSMC mimic
very closely those simulated under the exact CGC, suggesting that indeed, even at high
recombination rates and short distances, the BSMC is a very accurate approximation
(Figure 4). Similar results are also observed at different genome sizes (Figure S3).
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Figure 3. Comparison of computational demand between the BSMC and
the coalescent with gene conversion (CGC). The bacterial sequential Markov
coalescent implemented in FastSimBac is faster than the exact CGC implemented in
SimBac. On the Y axis is the per replicate running time to generate local trees (in
seconds and on a log scale), on the X axis the genome size (in bp and on a log scale).
Red lines refer to FastSimBac, blue lines to SimBac. Each point is the mean over 10
replicates, and bars are standard errors of the mean. SimBac was not run for the
combinations of highest recombination rates and genome sizes due to time limitations.
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Figure 4. Comparison of linkage disequilibrium and site incompatibility
between the BSMC and the CGC. The BSMC has patterns of linkage
disequilibrium (LD, measure as r2) and site incompatibility (G4) very similar to the
bacterial coalescent. On the X axis is the distance between SNPs in bp at which LD

and G4 are measured. r2 is calculated as
(pAB − pApB)2

pA(1− pA)pB(1− pB)
, and G4 (the

four-gamete test) is 1 if a SNP pair is incompatible and 0 otherwise. For each distance
d, and for any SNP x, LD and G4 were calculated between x and the first SNP at least
d bp to the right of x. Red lines refer to FastSimBac, blue lines to SimBac, and
different point and line styles refer to different recombination rates (see legend).
Genome length was fixed at 1Mbp. Each point is the mean over 20 replicates, and bars
are standard errors of the mean. A) Mean LD. B) Mean G4.
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Additionally, looking at the number of haplotypes present in non-overlapping
windows of 10 SNPs, we observe an expected increases with recombination rate (Figure
5A). More importantly, the BSMC again very closely mimics the exact CGC. The
genomic variation in number of haplotypes (Figure S4A) is very slightly underestimated,
probably because long-range correlations in local trees (after conditioning on the clonal
frame) are ignored in the BSMC, while present in the CGC. The mean pairwise genetic
distances between samples appears not affected by recombination and by the model
used for simulations (Figure 5B), but recombination does affect the variance of genetic
distances over sample pairs (Figure S4B) because it tends to break down the relatedness
of samples. Again, both patterns in the CGC are very closely approximated by the
BSMC. Looking at mean local tree height (Figure 5C) and mean local tree total branch
length (Figure 5D) we see that these are highly variable dependent on the simulated
clonal frame, but are not considerably affected by the simulation parameters. Again,
BSMC and CGC values are very close.

BSMC-based ABC inference

We investigated the accuracy and applicability of the BSMC approximation by
performing ABC inference of parameters. First, we reconstructed parameters simulated
under the exact CGC. We use summary statistics based incompatibilities indicative of
recombination between pairs of sites (G4). Despite the fact that the exact CGC was
used to create the original datasets, while our BSMC was used for the ABC, inference
was accurate. 95% posterior confidence intervals for ρ and λ (respectively the
population-scaled recombination rate and the mean length of recombining intervals)
contain the simulated values in both our replicates (Figure 6 and S5). This supports the
idea that sequential Markov approximations of the CGC can be used for accurately
inferring bacterial evolutionary parameters.

As an additional example of the applicability of our model and software, we used an
ABC-MCMC approach (Marjoram et al., 2003) to infer ρ, λ, and the scaled mutation
rate θ for the Bacillus cereus bacterial group. Bacteria of the B. cereus group mostly
live in the soil, feeding on dead organic matter, but they can occasionally infect humans
and cause a range of diseases, from food poisoning up to deadly anthrax (Arnesen et al.,
2008). Disagreement has been found between B. cereus species designation and MLST
clade structure and population history, probably due to the contribution of plasmids
and genetic recombination to the bacterial phenotype (Priest et al., 2004; Sorokin et al.,
2006; Didelot et al., 2009a; Zwick et al., 2012). Furthermore, analyses of MLST data
showed discordant results regarding the prevalence of recombination in B. cereus
relative to mutation, with estimates ranging from ρ/θ ≈ 0.05 (Hanage et al., 2006), to
ρ/θ ≈ 0.2 (Didelot et al., 2009a), to ρ/θ ≈ 0.3 (Didelot and Falush, 2007), up to
ρ/θ ≈ 2 (Pérez-Losada et al., 2006), leading to present uncertainty regarding the
contribution of recombination to the B. cereus evolution. Improving our understanding
of recombination in B. cereus would help us recognise the effect of homologous
recombination on epidemiological inference and species delimitation (Didelot and
Maiden, 2010), and predict the acquisition and spread of infectivity and resistance
factors (Perron et al., 2011). With this respect, genome-wide data from multiple strains
provide a greater opportunity to study recombination in detail, and here we consider
the genome alignment described in Didelot et al. (2010) and Ansari and Didelot (2014),
and comprising 13 genomes from the B. cereus group. Didelot et al. (2010) performed
MCMC inference on this dataset using an approximate coalescent model with bacterial
recombination (the ClonalOrigin model) that did not allow recombinant lineages to be
affected by further recombination, or recombinant lineages to coalesce with each other.
They inferred a mean recombination tract length of λ = 171bp with interquartile range
[168, 175], and ρ/θ = 0.21 with interquartile range [0.20, 0.23]. Ansari and Didelot
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Figure 5. Comparison of several simulated patterns between the BSMC
and the exact CGC. Bacterial evolution simulated under the BSMC gives very
similar results to the exact CGC. A) Genome-wide mean number of simulated
haplotypes over non-overlapping sliding windows of 10 SNPs; B) Mean over all sample
pairs of whole-genome genetic differences; C) Mean local tree height; D) Mean local
tree length (sum of all branch lengths). On the X axis is genome size in bp and on log
scale. Red lines refer to FastSimBac, blue lines to SimBac, and different line and dot
styles refer to different recombination rates (see legend). Each point is the mean over 50
replicates, and bars are standard deviations. SimBac and FastSimBac were not run for
the highest recombination rates and genome sizes due to time and memory limitations.
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Figure 6. Accurate inference of recombination parameters with the
BSMC-based ABC. Recombination parameters simulated under the exact CGC (red
vertical lines) where reconstructed using simulations under the BSMC within an ABC
inference scheme. Inference from another independent ABC run is shown in Figure S5.
A) Posterior distribution of ρ. B) Posterior distribution of λ.

(2014) used again a model similar to the ClonalOrigin one within an ABC-MCMC
approach, and accounted for the propensity of lineages to recombine with more closely
related lineages than with distantly related ones. They inferred ρ = 0.077 with
confidence interval CIρ = [0.036, 0.127], λ = 152bp with CIλ = [74, 279], and θ = 0.0528
with CIθ = [0.0437, 0.0640]. The ClonalOrigin model used by these methods
approximates the coalescent with gene conversion, but in a less adherent way than the
BSMC; in fact, their model leads to overestimation of the recombination rate ρ at
elevated recombination and mutation rates which are relevant in this scenario (Didelot
et al., 2010). Our BSMC-based ABC-MCMC approach instead allows recombining
lineages to coalesce with one another, and recombination events to split the ancestral
material of recombinant lineages. Furthermore, differently from these previous methods
we account for differences in transition and transversion rates, for invariant sites, and
for biases in tree branch length estimation (see Materials and Methods and Supplement)

With our BSMC-based approach, we inferred higher mean recombination tract
length λ (median 592bp and interquartile range [336, 885]) than previous estimates
(52bp and 171bp from Didelot et al. (2010) and Ansari and Didelot (2014) respectively);
This estimate is closer to values inferred from genome-wide likelihood-based analyses in
Clostridium difficile (Didelot and Wilson, 2015). We also inferred a considerably lower
contribution of recombination relative to mutation (ρ/θ, median 0.0065 and interquartile
range [0.004, 0.011]) than previous genome-wide studies (0.21 and ≈ 1.46 from Didelot
et al. (2010) and Ansari and Didelot (2014) respectively); this means that recombination
has a much lower contribution to evolution in B. cereus than previously thought, and
that in fact these bacteria are considerably clonal, although, due to variation in
recombination rates between B. cereus clades, our results do of course not apply to all
species within the B. cereus group (Sorokin et al., 2006). These results were confirmed
by an additional independent estimation run (Figure S7), and can be explained by the
fact that we account for invariant sites and for different transition and transversion
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rates. In fact, invariant sites and high transition/transversion rate ratio cause more
homoplasies than expected under an homogeneous substitution rate; these homoplasies,
if unaccounted for, can be interpreted as short recombinant fragments, biasing
downward estimates of λ, and upward estimates of ρ/θ. Supporting our interpretation,
when we ran our method without accounting for invariant sites we estimated lower λ
and higher ρ/θ (Figure S8). Another factor that can explain our larger λ estimate is
that in our BSMC model we allow recombination events to interfere with each other,
breaking recombinant segments into smaller pieces as expected in the CGC, and this
process, if unaccounted for, could lead to a downward bias in the estimation of λ.

We also found correlation between ρ and λ, suggesting that while the total impact of
recombination ρ ∗ λ is easier to estimate, identifying the two individual parameters is
harder. We found no correlation instead between other pairs of parameters (Figure S6
A-C, see also Ansari and Didelot, 2014). While our ABC-MCMC seems to capture well
the complexity of real data for 5 out of 7 summary statistics, for two of them (G4 at
large distances and r2 at short distances) there seem to be discrepancies (Figure S6 D-J
and Figure S7 E-K). This might suggest the existence of some complexities that we did
not account for in our model, for example the larger rate of recombination between
closely related lineages (see Ansari and Didelot, 2014), variable recombination rate
between B. cereus clades (Sorokin et al., 2006), prevalent non-homologous
recombination (Didelot and Maiden, 2010), population structure (such as due to niche
adaptation Sorokin et al., 2006), recombination with other bacterial groups, variable
selective pressure and mutation rate, and alignment errors.

In conclusion, the BSMC offers not only a very computationally convenient
approximation to the CGC, but also an accurate one. Our implementation of the
BSMC model in the simulation software FastSimBac allows faster simulations, and
therefore parameter inference, of bacterial genome evolution, and under a broader range
of parameter values. FastSimBac also allows specification of the clonal frame upon
which to condition simulations, which can grant simulations a closer fit to particular
phylogenies reconstructed from real datasets. But more importantly, by virtue of
building on top of the popular simulators ms (Hudson, 2002) and MaCS (Chen et al.,
2009), our software includes many evolutionary scenario options that have been included
in previous eukaryotic coalescent simulators (Hudson, 2002; Chen et al., 2009) but have
remained precluded from bacterial coalescent simulations, such as population structure
and migration, speciation histories, changes in population sizes, and recombination
hotspots. FastSimBac is available as open source from
https://bitbucket.org/nicofmay/fastsimbac . Applications of our model and software are
not necessarily restricted to simulations, but, as we have shown, also include inference of
recombination rate and other parameters of bacterial evolution. Our simulations suggest
that our approach gives results very close to those obtained with the exact CGC, but at
considerably reduced computational cost. Our analysis of recombination in the B.
cereus group showcases the applicability of our method for inference from genome-wide
alignments. Possible further applications of our model include the study and inference
of recombination patterns and events, or the estimation of the clonal frame while
accounting for recombination. We thus believe that the BSMC and FastSimBac will
provide very useful for both benchmarking and for statistical inference on bacterial
whole genome sequence data.
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Supplement

Algorithm for updating the ancestral material

We record ancestral material of each lineage as a list m = (m1, . . . ,mn) of pairs
mi = (si, pi) with si integers and pi real numbers with p0 = xcur and pi > pi−1. The
first element, m1, tells us that from the current position p0 = xcur until position p1, the
considered lineage is constantly ancestral to s1 samples. The second element, m2, if
present, tells us that between positions p1 and p2 the considered lineage is constantly
ancestral to s2 samples. Similarly for the other elements of m. If for any i ≤ n we have
si = 0 or si = N , where N is the number of samples, then the considered lineage is not
in local tree between positions pi−1 and pi. Here we discuss how we update in
FastSimBac these ancestral material lists after the local ARG is modified by including a
new recombination event and lineage. Updating the lists when xcur is changed is
instead trivial, as it just requires to remove all elements of the lists with pi ≤ xcur. Also,
there is no need to modify the lists after some lineages with no ancestral material are
removed from the current local ARG.

The update of the lists is performed by a function addMRCAUp(l, m′) that
iteratively travels upward along the tree starting from lineage l, and updates the
ancestral material lists of the lineages it encounters by summing ancestral material m′

to it. addMRCAUp is called twice; the first time it is called on the new recombinant
lineage l1 with a positive m′ (the ancestral material of the new lineage has to be added
to the lineages above the one it coalesces to). If recombination happens on lineage l
with ancestral material m, then m′ is defined as the intersection of m with the
recombining segment m′ = m ∩ [xcur, xend] (m′ has the same values as m on
[xcur, xend], and is 0 after xend). addMRCAUp(l1, m′) is then called. If l2 is the sister
lineage of l1 (the one with which it shares the recombination point), then
addMRCAUp(l2, −m′) is also called, where −m′ is obtained from m′ by taking the
same positions pi but opposite counts −si.

Each call of addMRCAUp(l, m′) does the following:

1 Add m′ to the ancestral material of l.

2 If nl, the node above l, is the root of the local ARG, end the iteration.

3 If nl is a coalescent node with parent lineage l′, call addMRCAUp(l′, m′).

4 Otherwise if nl is a recombination node with recombinant parent lineage l1 and
sister l2, and if [p1, p2] is the recombining segment of nl, then we will call
addMRCAUp(l1, m′ ∩ [p1, p2]), and addMRCAUp(l2, m′ \ [p1, p2]).

addMRCAUp(l, m′) is not executed if m′ is empty.

Features of FastSimBac

FastSimbac can be used to generate a sequence of local trees for subsequent intervals of
the genome. For example local trees can be written to output with the option ”-T”:

. / fastSimBac 10 10000 −r .001 500 −T 1> t r e e s . txt

generates a sequence of local trees in the file ”trees.txt” for a genome of 1000 bp, 10
isolates, a recombination initiation rate of ρ = 0.001, and a mean recombination tract
length of λ = 500. SNPs can also be generated by specifying a mutation rate with
option ”-t”, for example:

. / fastSimBac 10 10000 −r .001 500 −t 0 .002 1> s i t e s . txt
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simulates mutations along the local trees (generated similar to before) under a per-base
scaled mutation rate of θ = 0.002 and under a two-allele infinite sites model, and writes
the list of SNPs generated in the file ”sites.txt”. For more realistic mutation scenarios,
the local trees generated by FastSimBac can be used as input in SeqGen (Rambaut and
Grassly, 1997).

Complex evolutionary histories of population structure and demography can be
specified using options similar to ms (Hudson, 2002) and MaCS (Chen et al., 2009). For
example, n populations with migration rate (backward in time) of m = 0.1 between
them can be specified with the option ”-I”:

. / fastSimBac 10 10000 −r .001 500 −I 3 5 1 4 0 .1 1>output . txt

simulates 3 populations (with 5 samples from the first, 1 sample from the second, and 4
samples from the third) with migration rate of 0.1 (the migration rate for each
population is 0.1 divided by the number of populations minus one). Population growth
can be simulated with option ”-G”:

. / fastSimBac 10 10000 −r .001 500 −G 0.3 1>output . txt

Simulates under an exponentially growing (α = 0.3 in this case, or shrinking if α < 0)
effective population size N(t) = N0 exp(−αt), where N0 is the population size at time 0
(present) and t is the time before the present, measured in units of 2N0 generations.
Further simulation options depending on a specific time t (such as population splits and
merges) are described in the list of options at the end of this section.

We can also simulate recombination between populations or species, similar to
(Brown et al., 2015), but with some differences. In fact, instead of modeling a generic
diverged donor of recombining segments as (Brown et al., 2015), we instead explicitly
model different population/species and migration of recombinant segments between
them. This makes simulations more realistic, as we consider the possibility of multiple
donor species/populations with a given set of divergence times, and we also model the
coalescent process of recombinant segments within a donor species/population.
However, this also makes our model of inter-population recombination more
computationally demanding. An example of usage is

. / fastSimBac 10 10000 −x 0.0005 10 −T −I 2 0 10 0 .0 −e j 20 .0 1 2

which will simulate 10 samples collected all from the same population, a second
unsampled population, no migration between the two populations (these 3 factors are
specified by option ”-I 2 0 10 0.0” as in ms), a merging backward in time of the two
populations at time 20 (option ”-ej 20.0 1 2” as in ms), and a cross-population
recombination rate of 0.0005 and tract length of 10 (these last 2 features are specified
by option ”-x 0.0005 10”). So this scenario is useful to simulate two species diverged a
certain time in the past but that exchanged small pieces of the genome continuously
after being diverged.

Option ”-C” can be used to specify an input clonal frame, on which simulations will
be conditioned. leaves of the clonal frame must be named with integer numbers from 0
on. An example of usage is:

. / fastSimBac 3 10000 −r .001 500 −C ” ( ( 0 : 0 . 1 , 2 : 0 . 1 ) : 0 . 2 , 1 : 0 . 3 ) ; ”

Lastly, option ”-R” instructs the program to use variable recombination rate as
specified in an input file, and can be used to specify recombination hotspots and
coldspots, for example.

The full list of option is:

Usage : <samples i ze> <r eg i on in base pa i r s> [ opt ions ]
Options :
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−s <random seed>
−d enable debugging messages
− i < i t e r a t i o n s>
−t <mu> ( mutation ra t e per s i t e per 2N gene ra t i on s )
−C <clonalFrame> ( the input c l o n a l frame to f i x s imu la t i on s on ,
sample names must be i n t e g e r s from 0 on )
−b <b> ( burn in : sequence l ength in base p a i r s to be used to
i n i t i a l i z e the recombinat ion proce s s )
−r <r> <lambda> ( r = recombinat ion ( gene conver s i on ) i n i t i a t i o n
ra t e per−i nd iv idua l , per−base pair , per−2N gene ra t i on s ; lambda =
mean length o f recombinat ion t r a c t in base p a i r s )
−x <r2> <lambda2> ( r2 = between−s p e c i e s recombinat ion ( gene
conver s i on ) i n i t i a t i o n ra t e per−i nd iv idua l , per−base pair , per−2N
gene ra t i on s ; lambda2 = mean length o f between−s p e c i e s
recombinat ion t r a c t in base p a i r s )
−T ( Pr int each l o c a l t r e e in Newick format , compatible with
SeqGen , to standard output )
−F <input f i l ename> [ 0 | 1 ] (Tab de l im i t ed f requency d i s t r i b u t i o n
f i l e where f i r s t column i n d i c a t e range o f SNP a l l e l e f r e q u e n c i e s
from prev ious row to cur rent row and l a s t column i s d e s i r e d bin
f requency . Second parameter i s 1 i f SNPs with der ived a l l e l e
f r e q > 1 .0 should have a l l e l e s f l i pped , 0 otherwi se )
−R <input f i l ename> (Tab de l im i t ed f i l e where f i r s t two columns
i n d i c a t e range o f base pa i r p o s i t i o n s s c a l e d to the un i t i n t e r v a l
and l a s t column i s r a t i o with r e s p e c t to base l i n e recombinat ion
ra t e )
−G <alpha> ( Assign growth ra t e alpha a c r o s s popu la t i ons where
alpha=−l og (Np/Nr)
−I <n> <n1> <n2> . . <mig rate> ( Assign a l l e lements o f the
migrat ion matrix f o r n popu la t i ons . Values in matrix s e t to
mig rate /(n−1) )
−m <i> <j> <m> ( Assign i , j−th element o f migrat ion matrix to m. )
−ma <m 11>..<m 12>..<m nn> ( Assign va lue s to a l l e lements
o f migrat ion matrix f o r n popu la t i ons )
−n <i> <s i z e> (Pop i has s i z e s e t to s i z e ∗N 0 )
−g <i> <alpha> ( I f used must appear a f t e r −M option )

The f o l l o w i n g opt ions modify parameters at time t .
−eG <t> <alpha> ( Assign growth ra t e f o r a l l pops at time t )
−eg <t> <i> <alpha> ( Assign growth ra t e alpha o f pop i at time t )
−eM <t> <m> ( Assign migrate ra t e m f o r a l l e lements o f migrat ion
matrix at time t )
−em <t> <i> <j> <m ij> ( Assign migrat ion ra t e f o r i , j−th element o f
migrat ion matrix at time t )
−ema <t> <n> <m 11>..<m 12>..<m nn> ( Assign migrat ion r a t e s
with in the migrat ion matrix f o r n popu la t i ons at time t )
−eN <t> <s i z e> (New pop s i z e s at time t f o r a l l pops where new
s i z e s = s i z e ∗N 0 )
−en <t> <i> <s i z e i > (New pop s i z e o f pop i w i l l be s e t to
( s i z e i ∗N 0 ) at time t .
−es <t> <i> <p> ( S p l i t two popu la t i ons . At time t , a propor t ion p
o f chromosomes from pop i w i l l migrate to a populat ion i +1)
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−e j <t> <i> <j> ( Join two popu la t i ons . At time t a l l chromosomes
migrate from pop i to pop j )

Correction of Branch Lengths in the ABC-MCMC Analysis

Let us assume that two samples have a time to most recent common ancestor (TMRCA)
within the clonal frame of t, measured in number of 2Ne generations. Because of
recombination, the local TMRCA at any site of the genome between these two samples
might be different from t. For example, if the two samples are closely related, we
suggest that recombination events will likely cause their divergence to increase along
some tracts of the genome. On the other hand, if the samples are distantly related,
recombination might reduce their phylogenetic distance in some parts of the genome.
More precisely, let us consider any given position of the genome, and let us denote with
P2(x) the probability that at time x (in units of 2Ne generations) the ancestral lineages
of the two samples have not coalesced and are both in the clonal frame, with P1(x) the
probability that one of them is in the clonal frame and one is recombinant, with P0(x)
the probability that none of them is in the clonal frame and so both are recombinant
and have not coalesced yet, and finally with Pc(x) the probability that at time x the
lineages have already coalesced. Then, we have by definition that
Pc(x) = 1− (P0(x) + P1(x) + P2(x)), that P2(0) = 1 and P0(0) = P1(0) = Pc(0) = 0,
and that P2(x) = 0 for x > t. Let us start by considering values of x < t. For these,
given that the coalescent rate between any two lineages is 1, the following system of
differential equations holds:

dP2(x)/dx = −2ρλP2(x) + P1(x),
dP1(x)/dx = (−2− ρλ)P1(x) + 4P0(x) + 2ρλP2(x),
dP0(x)/dx = ρλP1(x)− 5P0(x),
dPc(x)/dx = P1(x) + P0(x).

(1)

At any value of x > t, the expected time to coalesce for the two lineages is 1. So the
overall expected time to coalesce for two lineages is:

P2(t)t+

∫ t

0

Pc(x)xdx+ (P1(t) + P0(t))(t+ 1). (2)

Equation 2 gives us the mean divergence that we expect to observe overall the genome
between any two lineages given a clonal frame divergence of t. By assuming that the
genome is sufficiently large such that the observed divergence corresponds to the
expected divergence, inverting this function, we can infer t. We performed this
numerical integration to infer t both in R and Python and verified that we obtained
consistent results. We show values of Equation 2 in Figure S1. As can be seen,
recombination pushes small values of divergence up, and large values of divergence
down, overall homogenizing divergence among samples pairs.

Equation 2 expects, and returns, values expressed in terms of 2Ne generations, while
what we can measure from data is only divergence in terms of genetic distance. To
translate genetic distances into scaled time divergence, we assumed that recombination
is strong enough so that the mean divergence time between all lineage pairs is 1, and we
ignore recurring mutations.

Invariant Sites in ABC-MCMC analysis

We get a rough estimate of the transition/transversion rate ratio κ = 5.21 as the ratio of
the number of observed biallelic SNPs involving a transition over the number of
observed biallelic SNPs involving a transversion. We assume that P0 is the proportion
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Figure S1. Effect of recombination on mean divergence between pairs of
samples. Different lines show the effect of different recombination rates (from ρ = 0 to
2ρ = 5) as in the legend. On the X axis is the divergence of two lineages in the clonal
frame, on the Y axis is the genome-mean divergence after accounting for recombination.
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of invariant sites, and µ the transversion rate times genome-average total tree length.
G = 3610430 is number of sequenced and aligned sites in the genome. Then we expect
about (1− P0)Gµ(2 + κ) biallelic sites and about (1− P0)2µ2G(1 + 2κ) triallelic sites
along the genome alignment. Since we observe 556484 biallelic sites and 73090 triallelic
sites, substituting these values in the previous equations, we get a back of the envelope
estimate of P0 = 0.484. While we are aware that our calculations are very approximate
and that the concept of invariant sites itself is an approximation of the more realistic
scenario of different degrees of selection affecting different sites, we only use these
calculations here to test if accounting for selection can have a strong effect on the
inference of recombination parameters.
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Supplementary Figures
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Figure S2. Graphical representation of the BSMC model. Black circles
represent samples, black lines are lineages (continuous if they belong to the clonal frame,
dashed otherwise). Red segments represent, for each extant lineage, the portion of the
genome that is ancestral to any sampled descendent of that extant lineage. Merges of
lineages are coalescent events. The process moves left to right across the genome, and
left portions of the genome are gradually forgotten (represented in green). A) The
clonal frame is simulated at the left end (the start) of the genome; B) the first
recombination event is sampled at the position of the red circle; C) the first
recombining lineage is created (the dashed line, i) and is coalesced to the rest of the
tree; D) a second recombination event is sampled (red circle), this time along a
recombining lineage; E) the second recombining lineage is created (ii), and coalesced to
the tree; F) the endpoint of the second recombination is reached, the second
recombining lineage ii has no ancestral material left; G) the second recombining lineage
ii is removed; H) the endpoint of the first recombination is reached, the recombining
lineage i has no ancestral material left; I) the first recombining lineage i is removed; J)
the right end of the genome is reached.
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Figure S3. Comparison of linkage disequilibrium and site incompatibility
patterns at longer genome sizes. The BSMC simulates patterns of linkage
disequilibrium (LD) and site incompatibility (G4) very similar to the bacterial

coalescent (or CGC). LD is calculated as r2 =
(pAB − pApB)2

pA(1− pA)pB(1− pB)
. G4 (the

four-gamete test) is measured as the proportion of incompatible SNP pairs. On the X
axis is the distance (in bp) between SNPs in a pair at which LD and G4 are calculated.
For each distance d on the X axis, and for any SNP x in the alignment, LD and G4 are
calculated between x and the first SNP at least d bp to the right of x. Red lines refer to
FastSimBac, blue lines to SimBac, and different point and line styles refer to different
recombination rates (see legend). Each point is the mean over 20 replicates, and bars
are standard errors of the mean. A) Mean LD for a genome of 2Mbp, B) 5Mbp, C)
10Mbp. D) Mean G4 for a genome of 2Mbp, E) 5Mbp, F) 10Mbp. SimBac was not run
for the highest recombination rates and genome sizes due to time limitations.
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Figure S4. Comparison of level of genome-wide variation in genetic
structure simulated between the BSMC and the CGC. The BSMC and the
CGC show similar simulated variation in genetic structure along the genome, despite
the approximation in the BSMC. A) Genome-wide standard deviation of number of
simulated haplotypes across non-overlapping sliding windows of 10 SNPs; higher values
mean that different loci have more different numbers of haplotypes. B) Standard
deviation across sample pairs of the number of whole-genome genetic differences; lower
values mean that genetic distances among sample pairs are more homogeneous (expected
with higher recombination rates). On the X axis the genome size (in bp and on log
scale). Red lines refer to FastSimBac, blue lines to SimBac, and different point and line
styles refer to different recombination rates (see legend). Each point is the mean over 50
replicates, and bars are standard deviations. SimBac and FastSimBac were not run for
the highest recombination rates and genome sizes due to time and memory limitations.
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Figure S5. Second replicate of ABC inference using the BSMC on data
simulated under the CGC. Recombination parameters simulated under the exact
CGC (red vertical lines) where reconstructed using simulations under the BSMC within
an ABC inference scheme. A) Posterior distribution of ρ. B) Posterior distribution of λ.
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Figure S6. Scatterplots of posterior parameters and summary statistics for
genome-wide evolution of B. cereus. We inferred BSMC parameters using an
ABC-MCMC inference scheme. In the first three scatterplots we show posterior
distributions of A) ρ and λ; B) ρ and θ; C) λ and θ. In the second and third rows we
show the posterior distributions of summary statistics: D) G4 (proportion of SNP pairs
that are not consistent, breaking the 4-gamete rule) for consecutive SNPs (”short
distance”); E) G4 for SNPs at least 2kbp away (”long distance”); F) mean linkage

disequilibrium (LD, measured as r2 =
(pAB − pApB)2

pA(1− pA)pB(1− pB)
) for consecutive SNPs

(”short distance”); G) mean linkage disequilibrium for SNPs at least 2kbp away (”long
distance”); H) mean number of haplotypes for pairs of consecutive SNPs (”short
distance”); I) mean number of haplotypes for groups of 4 SNPs made of 2 pairs of
consecutive SNPs, the two pairs being at a distance of at least 2kbp (”long distance”);
J) number of SNPs. Summary statistics of the real dataset are shown with red vertical
lines in plots D-J).
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Figure S7. Posterior distributions of parameters and scatterplots of
summary statistics for a second inference of genome-wide evolution of B.
cereus. We inferred BSMC parameters using an ABC-MCMC inference scheme, similar,
but independent, from the one in Figures 7 and S6. A) Posterior distribution of ρ
(interquartile range [0.0002, 0.0007]). B) Posterior distribution of λ (interquartile range
[181, 563]). C) Posterior distribution of θ (interquartile range [0.0247, 0.0262]). D)
Posterior distribution of ρ/θ (interquartile range [0.008, 0.026]). E) Posterior
distributions of G4 (proportion of SNP pairs that are not consistent, breaking the
4-gamete rule) for consecutive SNPs (”short distance”); F) Posterior distributions of G4
for SNPs at least 2kbp away (”long distance”); G) Posterior distributions of mean

linkage disequilibrium (LD, measured as r2 =
(pAB − pApB)2

pA(1− pA)pB(1− pB)
) for consecutive

SNPs (”short distance”); H) Posterior distributions of mean linkage disequilibrium for
SNPs at least 2kbp away (”long distance”); I) Posterior distributions of mean number
of haplotypes for pairs of consecutive SNPs (”short distance”); J) Posterior
distributions of mean number of haplotypes for groups of 4 SNPs made of 2 pairs of
consecutive SNPs, the two pairs being at a distance of at least 2kbp (”long distance”);
K) Posterior distributions of number of SNPs. Summary statistics of the real dataset
are shown with red vertical lines in plots E-K).
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Figure S8. Posterior distributions of parameters for genome-wide evolution
of B. cereus when not accounting for invariant sites. We inferred BSMC
parameters using an ABC-MCMC inference scheme as in Figure 7, but this time
without account for invariant sites, without correcting branch lengths, an running for
5000 ABC-MCMC steps. A) Posterior distribution of ρ (interquartile range
[0.007, 0.013]). B) Posterior distribution of λ (interquartile range [14, 44]). C) Posterior
distribution of θ (interquartile range [0.0271, 0.0289]). D) Posterior distribution of ρ/θ
(interquartile range [0.257, 0.449]).
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